

Overview

The LV23000M is a single-chip tuner IC for radio/cassette players that provides FM, AM, MPX, and PLL circuits. It allows the tuner PCB to be simplified significantly.

Functions

- AM tuner
- FM tuner
- Multiplex stereo decoder
- PLL frequency synthesizer

Features

- Tuner circuit includes built-in PLL for easy end product design.
- Supports FCC standards
- Built-in adjustment-free multiplex VCO
- AM low-cut control
- Provides the transistor required to implement an active low-pass filter.

Package Dimensions
unit: mm
3129-MFP36SD

- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.

■ Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
■ SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Specifications

Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$V_{\text {CC }}$ max	$\mathrm{V}_{\text {CC }}$	7.0	V
	$V_{\text {DD }}$ max	$V_{D D}$	7.0	V
Maximum input voltage	$\mathrm{V}_{\text {IN }} 1$ max	CE, DI, CL	7.0	V
	$\mathrm{V}_{\text {IN } 2}$ max	XIN	$V_{D D}+0.3$	V
Allowable power dissipation	Pdmax	$\mathrm{Ta} \leq 70^{\circ} \mathrm{C}^{*}$	400	mW
Maximum output voltage	$\mathrm{V}_{0} 1$ max	DO	7.0	V
	$\mathrm{V}_{0} 2$ max	XOUT, PD	$V_{D D}+0.3$	V
	$\mathrm{V}_{\mathrm{O}} 3$ max	BO1, BO2, AOUT	12.0	V
Operating temperature	Topr		-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Note: * When mounted on a $114.3 \times 76.1 \times 1.6 \mathrm{~mm}$ glass epoxy printed circuit board.
Operating Conditions at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}		5.0	V
	$\mathrm{~V}_{\mathrm{DD}}$		V	
Operating supply voltage range	V_{CC} op		4.0	V to 6.0
	$\mathrm{~V}_{\mathrm{DD}}$ op		2.5 to 3.6	V

PLL Block Allowable Operating Ranges at $\mathrm{Ta}=-\mathbf{2 0}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$V_{\text {DD }}$		2.5		3.6	V
High-level input voltage	V_{IH}	CE, CL, DI	$0.7 \mathrm{~V}_{\mathrm{DD}}$		6.0	V
Low-level input voltage	$\mathrm{V}_{\text {IL }}$	CE, CL, DI	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Output voltage	$\mathrm{V}_{\mathrm{O}} 1$	DO	0		6.0	V
	$\mathrm{V}_{\mathrm{O}} 2$	BO1, BO2, AOUT	0		10	V
Operating frequency	$\mathrm{f}_{\mathrm{IN} 1}$	XIN: $\mathrm{V}_{1 \times 1}{ }^{1}$		75		kHz
	fiN^{2}	FMIN: $\mathrm{V}_{\text {IN }} 2$	10		160	MHz
	fin^{3}	AMIN (SNS = 1): $\mathrm{V}_{\mathbb{1}} 3$	2		40	MHz
	fin^{4}	AMIN (SNS = 0): $\mathrm{V}_{1 \times} 4$	0.5		10	MHz

[^0]Operating Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, in the specified test circuit, using Yamaichi Electronics socket IC51-0362-736

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
[FM Front End Characteristics] : fc = $98 \mathrm{MHz}, \mathrm{fm}=1 \mathrm{kHz}, 22.5 \mathrm{kHzdev}$.						
3 dB sensitivity	3 dB LS	$60 \mathrm{~dB} \mu \mathrm{~V}$ EMF, referenced to a 22.5 kHz dev. output, -3 dB input		12		$\begin{gathered} \mathrm{dB} \mu \mathrm{~V} \\ \mathrm{EMF} \end{gathered}$
Practical sensitivity	QS	For a 30 dB signal-to-noise ratio input		12		$\begin{gathered} \mathrm{dB} \mu \mathrm{~V} \\ \mathrm{FMF} \end{gathered}$
[FM IF Monaural Characteristics] : fc = $10.7 \mathrm{MHz}, \mathrm{fm}=1 \mathrm{kHz}, 75 \mathrm{kHzdev}$.						
Demodulator output	V_{0}	$100 \mathrm{~dB} \mu \mathrm{~V}$, the pin 12 output	210	330	420	mVrms
Signal-to-noise ratio	S/N	$100 \mathrm{~dB} \mu \mathrm{~V}$, the pin 12 output	68	75		dB
Total harmonic distortion (mono)	THD	$100 \mathrm{~dB} \mu \mathrm{~V}$, the pin 12 output		0.3	1.5	\%
3 dB sensitivity	3 dB LS	$100 \mathrm{~dB} \mu \mathrm{~V}$, referenced to a 75 kHz dev. output, -3 dB input		38	44	$\mathrm{dB} \mu \mathrm{V}$
IF counter sensitivity	IF-C3	SDC0 = 1, SDC1 = 0, the pin 18 (DO) output	41	51	61	dB $\mu \mathrm{V}$
Muting attenuation	Mute-Att	$100 \mathrm{~dB} \mu \mathrm{~V}$, the pin 12 output		68		dB
[FM IF Stereo Characteristics] : $\mathrm{fc}=10.7 \mathrm{MHz}, \mathrm{fm}=1 \mathrm{kHz}, \mathrm{L}+\mathrm{R}=90 \%$, Pilot $=10 \%$						
Separation	SEP	$100 \mathrm{~dB} \mu \mathrm{~V}$, L-mod, Pin 12 output/pin 13 output	28	40		dB
Total harmonic distortion (main)	THD	$100 \mathrm{~dB} \mu \mathrm{~V}$, main modulation, the pin 12 output		0.5	1.5	\%
[AM Characteristics] : fc = $1000 \mathrm{kHz}, \mathrm{fm}=1 \mathrm{kHz}, 30 \% \mathrm{mod}$						
Detector output 1	$\mathrm{V}_{\mathrm{O}} 1$	$23 \mathrm{~dB} \mu \mathrm{~V}$, the pin 12 output	20	40	80	mVrms
Detector output 2	$\mathrm{V}_{\mathrm{O}} 2$	$80 \mathrm{~dB} \mu \mathrm{~V}$, the pin 12 output	60	110	160	mVrms
Signal-to-noise ratio 1	S/N1	$23 \mathrm{~dB} \mu \mathrm{~V}$, the pin 12 output	1.5	20		dB
Signal-to-noise ratio 2	S/N2	$80 \mathrm{~dB} \mu \mathrm{~V}$, the pin 12 output	47	54		dB
Total harmonic distortion	THD	$80 \mathrm{~dB} \mu \mathrm{~V}$, the pin 12 output		1.2	3.0	\%
IF counter sensitivity	IF-C	The pin 18 (DO) output	16	26	36	$\mathrm{dB} \mu \mathrm{V}$
AM low cut	LOW-CUT	$80 \mathrm{~dB} \mu \mathrm{~V}$, referenced to $\mathrm{fm}=1 \mathrm{kHz}$, the pin 12 output when $\mathrm{fm}=100 \mathrm{~Hz}$.	5	8	11	dB
[Current Drain]						
FM tuner block	$\mathrm{I}_{\mathrm{CC}} \mathrm{FM}$	In FM mode with no input	20	30	40	mA
AM tuner block	ICCAM	In AM mode with no input	10	20	30	mA
PLL block	IDD	$\mathrm{fr}=83 \mathrm{MHz}, \mathrm{X}^{\prime} \mathrm{tal}=75 \mathrm{kHz}$, With no input to the tuner block	1	2	5	mA
[PLL Characteristics]						
Built-in feedback resistor	Rf	XIN		8		$\mathrm{M} \Omega$
Built-in output resistor	Rd	XOUT		250		$\mathrm{k} \Omega$
Hysteresis	$\mathrm{V}_{\text {HIS }}$	CE, CL, DI		$0.1 \mathrm{~V}_{\mathrm{DD}}$		V
High-level output voltage	V_{OH}	PD: $\mathrm{I}_{\mathrm{O}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-1.0$			V
Low-level output voltage	$\mathrm{V}_{\text {OL }} 1$	PD: $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	BO1, BO2: $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			0.25	V
	$\mathrm{V}_{\mathrm{OL}} 2$	BO1, BO2: $\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$			1.25	V
	$\mathrm{V}_{\text {OL }}$	DO: $\mathrm{I}_{0}=1 \mathrm{~mA}$			0.25	V
	$\mathrm{V}_{\text {OL }} 4$	AOUT: $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \mathrm{AIN}=2.0 \mathrm{~V}$			0.5	V
High-level input current	$\mathrm{I}_{\mathrm{H} 1}$	CE, CL, DI: $\mathrm{V}_{1}=6.0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{IH}^{\text {2 }}$	$\mathrm{XIN}: \mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$	0.16		0.9	$\mu \mathrm{A}$
	l_{1+3}	AIN: $\mathrm{V}_{1}=6.0 \mathrm{~V}$			200	nA
Low-level input current	$l_{\text {IL }} 1$	CE, CL, DI: $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$l_{1 L 2}$	XIN: $\mathrm{V}_{1}=0 \mathrm{~V}$	0.16		0.9	$\mu \mathrm{A}$
	$l_{\text {IL }} 3$	AIN: $\mathrm{V}_{1}=0 \mathrm{~V}$			200	nA
Output leakage current	loff1	AOUT, BO1, BO2: $\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	loff2	DO: $\mathrm{V}_{\mathrm{O}}=6.0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
High-level 3-state off leakage current	l IFFH	PD: $\mathrm{V}_{\mathrm{O}}=6.0 \mathrm{~V}$		0.01	200	nA
Low-level 3-state off leakage current	l FFFL	PD: $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		0.01	200	nA

Structure of the DI Control Data (Serial Input Data)

(1) IN1 mode

(2) IN2 mode

Description of the DI Control Data

Continued on next page.

Continued from preceding page.

No.	Control block/data	Description	Related data
(4)	Mute control data IFSW	- Determines the output of the IFSW output port and controls the muting function. $\begin{aligned} \text { Data } & =0: \text { Receive mode } \\ & =1: \text { Muted } \end{aligned}$	
(5)	FM/AM band switching control data BDSW	- Determines the output of the BDSW output port and switches the reception band. $\begin{aligned} \text { Data } & =0: A M \\ & =1: F M \end{aligned}$	
(6)	DO pin control data $\begin{aligned} & \text { DOC0 } \\ & \text { DOC1 } \\ & \text { DOC2 } \end{aligned}$	- Determines the output of the DO pin. - The open state is selected after the power on reset. Note: end-UC: The IF counter measurement complete check. (1) If the end-UC setting is used, the DO pin will automatically go to the open state when an IF count operation starts (CTE transitions from 0 to 1). (2) When the IF counter measurement completes, the DO pin goes low and it becomes possible to check for the count completed state. (3) The DO pin goes to the open state when serial data I/O is performed (when the CE pin is high). Note: The DO pin goes to the open state during the data input period (IN1 and IN2 modes when CE is high), regardless of the values of the DO pin control data (DOC0:2). During the data output period (OUT mode when CE is high), the DO pin outputs the content of the internal DO serial data in synchronization with the CL signal, regardless of the values of the DO pin control data (DOC0:2).	$\begin{aligned} & \text { UL0, UL1 } \\ & \text { CTE } \end{aligned}$
(7)	Unlock detection data UL0, UL1	- Phase error ($\varnothing \mathrm{E}$) detection width selection data used for PLL lock state discrimination. The unlocked state is recognized when a phase error in excess of the specified detection width occurs. Note: When the unlocked state is detected, the DO pin goes low and UL in the serial data output will be 0 .	$\begin{aligned} & \text { DOC0 } \\ & \text { DOC1 } \\ & \text { DOC2 } \end{aligned}$

Continued on next page.

Continued from preceding page.

No.	Control block/data	Description	Related data
(8)	Phase comparator control data DZO, DZ1	- Controls the phase comparator dead band. Dead band widths: DZA < DZB < DZC < DZD	
(9)	Output port data $\overline{\mathrm{BO} 1}, \overline{\mathrm{BO} 2}$	- Sets the outputs from the $\overline{\mathrm{BO} 1}$ and $\overline{\mathrm{BO} 2}$ output ports. $\begin{aligned} \text { Data } & =0: \text { Open } \\ & =1: \text { Low } \end{aligned}$	
(10)	Charge pump control data DLC	- Forcibly controls the state of the charge pump output. If deadlock occurs due to VCO oscillation when the VCO control voltage (Vtune) is 0 V , the deadlock can be released by setting the charge pump output low and setting Vtune to V_{CC}. (This is referred to as a deadlock clear circuit.)	
(11)	IFS	- This bit should normally be set to 1 . However, setting this bit to 0 sets the device to degraded input sensitivity mode, and the input sensitivity is reduced by about 10 to 30 mV rms.	
(12)	IC test data TEST0 toTEST2	$\left.\begin{array}{l} \text { - IC test data } \\ \text { TEST0 } \\ \text { TEST1 } \\ \text { TEST2 } \end{array}\right] \text { All bits must be set to } 0 \text {. }$ All these bits are set to 0 after the power on reset.	
(13)	DNC	- This bit must be set to 0 .	
(14)	Forced mono control data STSW	- Determines the output of the STSW output port and controls the forced stereo function. $\begin{aligned} \text { Data } & =0: \text { Mono } \\ & =1: \text { Stereo } \end{aligned}$	
$\begin{aligned} & (15) \\ & (16) \end{aligned}$	SD sensitivity adjustment data $\begin{aligned} & \text { SDC0 } \\ & \text { SDC1 } \end{aligned}$	- Determines the outputs of the SDC0 and SDC1 ports and sets the SD sensitivity.	

Structure of the DO Control Data (Serial Output Data)

(1) OUT mode

DO Output Data

No.	Control block/data	Description	Related data
(1)	Stereo indicator SD indicator Control data STIND, SDIND	- Indicates the states of the stereo and SD indicators at the point latched. The data is latched at the point the devices goes to data output mode (OUT mode). STIND \leftarrow Stereo indicator state: 0 : ST on, 1: ST off SDINC \leftarrow SD indicator state: 0 : SD on, $1:$ SD off	
(2)	PLL unlocked data UL	- Indicates the state of the unlock detection circuit at the point latched. $\mathrm{UL} \leftarrow 0$: Unlocked 1: Locked or detection stopped mode.	ULO UL1
(3)	IF counter Binary counter C19 to C0	- Indicates the content of the IF counter (20-bit binary counter) at the point latched. $\mathrm{C} 19 \leftarrow$ MSB of the binary counter $\mathrm{C} 0 \leftarrow$ LSB of the binary counter	$\begin{aligned} & \text { CTE } \\ & \text { GT0 } \\ & \text { GT1 } \end{aligned}$

Serial Data Input (IN1 / IN2) $\mathrm{t}_{\mathrm{SU}}, \mathrm{t}_{\mathrm{HD}}, \mathrm{t}_{\mathrm{EL}}, \mathrm{t}_{\mathrm{ES}}, \mathrm{t}_{\mathrm{EH}} \geq 0.75 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{LC}}<0.75 \mu \mathrm{~s}$

(1) CL: Normally high

(2) CL: Normally low

Serial Data Output (OUT) $\mathrm{t}_{\mathrm{SU}}, \mathrm{t}_{\mathrm{HD}}, \mathrm{t}_{\mathrm{EL}}, \mathrm{t}_{\mathrm{ES}}, \mathrm{t}_{\mathrm{EH}} \geq 0.75 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{DC}}, \mathrm{t}_{\mathrm{DH}}<0.35 \mu \mathrm{~s}$

(1) CL: Normally high

(2) CL: Normally low

Note: Since the DO pin is an n-channel open-drain output, the data transition times ($t_{D C}$ and $t_{D H}$) depend on the value of the pull-up resistor and the printed circuit board capacitance.

LV23000M

Serial Data Timing

<<When CL Stops at the Low Level>>

<<When CL Stops at the High Level>>

Parameter	Symbol	Pins	Conditions		Rating		Unit
				min	typ	max	
Data setup time	tsu	DI, CL		0.75			$\mu \mathrm{s}$
Data hold time	thd	DI, CL		0.75			$\mu \mathrm{s}$
Clock low-level time	t_{CL}	CL		0.75			$\mu \mathrm{s}$
Clock high-level time	t_{CH}	CL		0.75			$\mu \mathrm{s}$
CE wait time	t_{EL}	CE, CL		0.75			$\mu \mathrm{s}$
CE setup time	t_{ES}	CE, CL		0.75			$\mu \mathrm{s}$
CE hold time	$t_{\text {EH }}$	CE, CL		0.75			$\mu \mathrm{s}$
Data latch transition time	tLC					0.75	$\mu \mathrm{s}$
Data output time	tDC	DO, CL	These times depend on the value of the pull-up resistors and the printed circuit board capacitances.			0.35	$\mu \mathrm{s}$
	$t_{\text {DH }}$	DO, CE					

LV23000M Block Diagram

LV23000M Test Circuit Diagram

\square Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■ SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of June, 2001. Specifications and information herein are subject to change without notice.

[^0]: Note: The XIN pin has an extremely high input impedance, which may result in current leakage problems

