LTC 1290

Single Chip 12-Bit Data Acquisition System

FEATURES

- Software Programmable Features
- Unipolar/Bipolar Conversion
- Four Differential/Eght Single-Ended Inputs
- MSB- or LSB-Frst Data Sequence
- Variable Data Word Length
- Power Shutdown
- Built-In Sample-and-Hold
- Single Supply 5V or $\pm 5 \mathrm{~V}$ Operation
- Direct Four-Wire Interface to Most MPU Serial Ports and All MPU Parallel Ports
- 50kHz Maximum Throughput Rate

KEY SPECIFICATIO NS

. Resolution: 12 Bits

- Fast Conversion Time: 13us Max Over Temp

■ Low Supply Current: 6.0mA

DESCRIPTIO n

The LTC ${ }^{\text {® }} 1290$ is a data acquisition component which contains a serial I/O successive approximation A/D converter. It uses LTCMOS $^{\text {™ }}$ switched capacitor technology to perform either 12-bit unipolar or 11-bit plus signbipolar A/D conversions. The 8-channel input multiplexer can be configured for either single-ended or differential inputs (or combinations thereof). An on-chip sample-and-hold is included for all single-ended input channels. When the LTC1290 is idle it can be powered down with aserial word in applications where low power consumption is desired.

The serial I/Ois designed to be compatible with industry standard full duplex serial interfaces. It allowseither MSBor LSB-first data and automatically provides 2's complement output coding in the bipolar mode. The output data word can be programmed for alength of 8,12 or 16 bits. This allows easy interface to shift registers and avariety of processors.
$\mathbf{\Omega}$, LTC and LT are registered trademarks of Linear Technology Corporation. LTCMOS is a trademark of Linear Technology Corporation.

TYPICAL APPLICATI On

12-Bit 8-Channel Sampling Data Acquisition System

* FOR OVERVOLTAGE PROTECTION ON ONLY ONE CHANNE LIMIT THE INPUT OURRENT TO 15mA. FOR OVERVOLTAGE PROTECTION ON MORE THAN ONE OHANNE LIMIT THE INPUT OURRENT TO7mA PER CHANNE AND 28 mA FOR ALL OHANNES. (SEE SECTION ON OVERVOLTAGE PROTECTION IN THE APPLICATIONS INFORMATION SECTION.) OONVERSION RESULTS ARENOT VALID WHENTHE SEEECIE OR ANY OTHER CHANNE IS OVERVOLTAGED ($\mathrm{V}_{I N}<\mathrm{V}^{-}$OR $\left.\mathrm{V}_{I N}>\mathrm{V}_{\propto C}\right)$.

ABSOLUTE MAXIMUM RATING $\mathbf{S}_{\text {(Notes } 1,2)}$

Supply Voltage ($\mathrm{V}_{\text {©C }}$) to GND or V^{-} \qquad 12 V
Negative Supply Voltage (V^{-}) -6V to GND Voltage
Analog/Reference Inputs \qquad $(\mathrm{V})-0.3 \mathrm{~V}$ to $\mathrm{V}_{\propto \subset}+0.3 \mathrm{~V}$
Digital Inputs \qquad -0.3 V to 12 V
Digital Outputs \qquad -0.3 V to $\mathrm{V}_{\propto \mathrm{C}}+0.3 \mathrm{~V}$
Power Dissipation.. 500 mW

Operating Temperature Range
LTC1290BC, LTC12900C, LTC1290DC.... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC1290BI, LTC1290C, LTC1290DI $-40^{\circ} \mathrm{Cto} 85^{\circ} \mathrm{C}$ LTC1290BM, LTC12900M, LTC1290DM \qquad $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range................ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec .)
$300^{\circ} \mathrm{C}$

PACKAG E/ORDER INFORMATIO

CO NVERTER AnD MULTIPLEXER CHARACTERISTICS

(Note 3)

PARAMETER	CONDITIONS		LTC1290B		LTC1290C		LTC1290D		UNITS
			MIN	TYP MAX	MIN	TYP MAX	MIN	TYP MAX	
Offset Eror	(Note 4)	\bullet		± 1.5		± 1.5		± 1.5	LSB
Linearity Eror (INL)	(Notes 4,5)	\bullet		± 0.5		± 0.5		± 0.75	LSB
Gain Eror	(Note 4)	\bullet		± 0.5		± 1.0		± 4.0	LSB
Minimum Resolution for Which No Missing Codes are Guaranteed		\bullet		12		12		12	Bits
Analog and RE Input Range	(Note 7)		(V^{-})	to $\mathrm{V}_{\mathrm{C}}+0.05 \mathrm{~V}$	$\left(\mathrm{V}^{-}\right)$	to $\mathrm{V}_{\mathrm{C}}+0.05 \mathrm{~V}$	$\left(\mathrm{V}^{-}\right)-$	to $\mathrm{V}_{\mathrm{C}}+0.05 \mathrm{~V}$	V
On Channel Leakage Ourrent (Note8)	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V} \\ & \text { Off Channel }=0 \mathrm{~V} \end{aligned}$	\bullet		± 1		± 1		± 1	$\mu \mathrm{A}$
	$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \\ & \text { Off Channel }=5 \mathrm{~V} \end{aligned}$	\bullet		± 1		± 1		± 1	$\mu \mathrm{A}$
Off Channel Leakage Ourrent (Note8)	$\begin{aligned} & \text { On Channel }=5 \mathrm{~V} \\ & \text { Of Channel }=0 \mathrm{~V} \end{aligned}$	\bullet		± 1		± 1		± 1	$\mu \mathrm{A}$
	$\begin{aligned} & \text { On Channel }=0 \mathrm{~V} \\ & \text { Off Channel }=5 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet		± 1		± 1		± 1	$\mu \mathrm{A}$

AC CHARACTERISTICS

(Note 3)

SYMBOL	PARAMETER	CONDITIONS			LTC1290B/LTC1290C/LTC1290DMIN TYP MAX		UNITS
fsa_k	Shift Cock Frequency	$V_{C C}=5 \mathrm{~V}$ (Note 6)			0	2.0	MHz
fack	A/D Clock Frequency	$\mathrm{V}_{\text {C }}=5 \mathrm{~V}$ ((Note 6)			(Note 10)	4.0	MHz
tacc	Delay time from $\overline{\mathrm{C}} \downarrow$ to Dorr Data Valid	(Note9)			2		$\begin{aligned} & \text { ACLK } \\ & \text { Oycles } \end{aligned}$
tsMPL	Analog Input Sample Time	See Operating Seq	quence		7		$\begin{aligned} & \text { SQLK } \\ & \text { Cycles } \end{aligned}$
toonv	Conversion Time	See Operating Seq	quence		52		ACLK Oycles
tcyc	Total Oycle Time	See Operating Seq	quence (Note 6)		$\begin{aligned} & 12 \text { SCLK + } \\ & 56 \text { ACLK } \end{aligned}$		Oycles
tdDO	Delay Time, SCLK \downarrow to Dout Data Valid	See Test Circuits	LTC1290BC, LTC12900C LTC1290DC, LTC1290BI LTC1290CI, LTC1290DI	-	130	220	ns
			LTC1290BM, LTC1290OM LTC1290DM	-	180	270	ns
tdis	Delay Time, $\overline{\mathrm{CS}} \uparrow$ to Dour Hi-Z	See Test Circuits		\bullet	70	100	ns
ten	Delay Time, 2nd ACLK \downarrow to Dour Enabled	See Test Oircuits		\bullet	130	200	ns
th \bar{C}	Hold Time, $\overline{\mathrm{CS}}$ After Last SCLK \downarrow	$\mathrm{V}_{\propto C}=5 \mathrm{~V}$ (Note6)			0		ns
thDI	Hold Time, Din After SCLK \uparrow	$\mathrm{V}_{\propto C}=5 \mathrm{~V}$ (Note6)			50		ns
thDo	Time Output Data Remains Valid After SCLK \downarrow				50		ns
$\mathrm{tf}^{\text {f }}$	Dorr Fall Time	See Test Circuits		\bullet	65	130	ns
tr	Dour Rise Time	See Test Orrcuits		\bullet	25	50	ns
tsudl	Setup Time, Din Stable Before SCLK \uparrow	$\mathrm{V}_{\bigcirc C}=5 \mathrm{~V}$ (Note6)			50		ns
$\mathrm{t}_{\text {suc }} \overline{\mathrm{S}}$	Setup Time, $\overline{\operatorname{CS}} \downarrow$ Before Cocking in Frst Address Bit	(Notes 6, 9)			$\begin{aligned} & 2 \text { ACLK Cycles } \\ + & 100 \mathrm{~ns} \end{aligned}$		
twh ${ }_{\text {c }}$	$\overline{\mathrm{CS}}$ High Time During Conversion	$V^{\circ} \mathrm{C}=5 \mathrm{~V}$ (Note 6)			52		$\begin{aligned} & \text { ACLK } \\ & \text { Cycles } \end{aligned}$
GN	Input Capacitance	Analog Inputs On Channel Analog Inputs Off Channel			$\begin{gathered} 100 \\ 5 \end{gathered}$		pF
		Digital Inputs			5		pF

DIG ITAL AnD DC ELECTRICAL CHARACTERISTICS
 (Note 3)

DIG ITAL AnD DC ELECTRICAL CHARACTERISTICS

(Note 3)

The denotes specifications which apply over the full operating temperature range; all other limits and typicals $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to ground with DGND, AGND and RE $^{-}$wired together (unless otherwise noted).
Note 3: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RE}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=0 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$ for unipolar mode and -5 V for bipolar mode, ACK $=4.0 \mathrm{MHz}$ unless otherwise speicfied.
Note 4: These specs apply for both unipolar and bipolar modes. In bipolar mode, one LSB is equal to the bipolar input span ($2 \mathrm{~V}_{\mathrm{REF}}$) divided by 4096. For example, when $\mathrm{V}_{\mathrm{RE}}=5 \mathrm{~V}, 1 \mathrm{LSB}$ (bipolar) $=2(5 \mathrm{~V}) / 4096=2.44 \mathrm{mV}$.
Note 5: Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.
Note 6: Recommended operating conditions.
Note 7: Two on-chip diodes are tied to each reference and analog input which will conduct for reference or analog input voltages one diode drop
below V^{-}or one diode drop above V_{\propto}. Be careful during testing at low $V_{o c}$ levels (4.5V), as high level reference or analog inputs (5 V) can cause this input diode to conduct, especially at elevated temperatures and cause errors for inputs near full scale. This spec allows 50 mV forward bias of either diode. This means that as long as the reference or analog input does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute 0 V to 5 V input voltage range will therefore require a minimum supply voltage of 4.950 V over initial tolerance, temperature variations and loading.
Note 8: Channel leakage current is measured after the channel selection.
Note 9: To minimize errors caused by noise at the chip select input, the internal circuitry waits for two ACLK falling edge after a chip select falling edge is detected before responding to control input signals. Therefore, no attempt should be made to clock an address in or data out until the minimum chip select setup time has elapsed.
Note 10: Increased leakage currents at elevated temperatures cause the S / H to droop, therefore it's recommended that $\mathrm{f}_{\text {AC_K }} \geq 500 \mathrm{kHz}$ at $125^{\circ} \mathrm{C}$, $f_{\text {AC_K }} \geq 125 \mathrm{kHz}$ at $85^{\circ} \mathrm{C}$ and $\mathrm{f}_{\text {ACLK }} \geq 15 \mathrm{kHz}$ at $25^{\circ} \mathrm{C}$.

TYPICAL PERFO RMAnCE CHARACTERISTICS

$1290 \cdot$ TPCO1

Supply Current vs Temperature

LT1290•TPCO2

Unadjusted Offset Voltage vs Reference Voltage

$1290 \cdot$ TPC03

TYPICAL PERFO RMAnCE CHARACTERISTICS

TYPICAL PERFO RMAnCE CHARACTERISTICS

PIn FUNCTIO NS

CH0 to CH7 (Pin 1 to Pin 8): Analog Inputs. The analog inputs must be fre of noise with respect to AGND.

COM (Pin 9): Common. The common pin defines the zero referencepoint for all single-ended inputs. It must befree of noise and is usually tied to the analog ground plane.

DGND (Pin10): Digital Ground. This is theground for the internal logic. Tie to the ground plane.

AGND (Pin 11): Analog Ground. AGND should be tied directly to the analog ground plane.
V^{-}(Pin 12): Negative Supply. Tie V^{-}to most negative potential in the circuit. (Ground in single supply applica tions.)

REF-, REF+ (Pins 13, 14): Reference Inputs. The reference inputs must be kept free of noise with respect to AGND.
$\overline{\mathrm{CS}}$ (Pin 15): Chip Select Input. A logic low on this input enables data transfer.
$D_{\text {OUT }}$ (Pin 16): Digital Data Output. The A/D conversion result is shifted out of this output.

PIn FUnCTIO $n S$

$D_{\text {IN }}$ (Pin 17): Digital Data Input. The A/D configuration word is shifted into this input after $\overline{\mathrm{CS}}$ is recognized.

SCLK (Pin 18): Shift Clock. This clock synchronizes the serial data transfer.

ACLK (Pin 19): A/DConversion Cock. This clock controls the A/D conversion process.
V_{CC} (Pin 20): Positive Supply. This supply must be kept free of noiseand rippleby bypassing directly to theanalog ground plane.

BLOCK DIAG RAM

LTC1290•BD

TEST CIRCUITS

On and Off Channel Leakage Current

Load Circuit for $t_{\text {dis }}$ and $t_{e n}$

LTC1290•T002

TEST CIRCUITS

Voltage Waveform for $D_{\text {Out }}$ Rise and Fall Times, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$

Load Circuit for $\mathrm{t}_{\mathrm{dDO}}, \mathrm{t}_{\mathrm{r}}$ and t_{f}

NOTE 1: WAVEORM 1 IS FOR AN OUTPUT WITH INIERNAL OONDITIONS SUCH THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONIROL. NOTE2: WAVEORM 2 IS FOR AN OUTPUT WITH INIERNAL OONDITIONS SUCH THAT THEOUTPUT IS LOW UNLESS DISABLED BY THEOUTPUT OONTROL.

APPLICATI ONS INFO RMATIO

The LTC1290 is a data acquisition component which contains the following functional blocks:

1. 12-bit successive approximation capacitive A/D converter
2. Analog multiplexer (MUX)
3. Sample-and-hold (S/H)
4. Synchronous, full duplex serial interface
5. Control and timing logic

DIGITAL CONSIDERATIONS

Serial Interface

The LTCl290 communicates with microprocessors and other external circuitry via a synchronous, full duplex, four-wire serial interface (se Operating Sequence). The shift clock (SCLK) synchronizes the data transfer with each bit being transmitted on the falling SCLK edge and captured on therising SCLKedgein both transmitting and receiving systems. The data is transmitted and received simultaneously (full duplex).
Datatransfer is initiated by afalling chip select ($\overline{\mathrm{CS}}$) signal. After the falling $\overline{\mathrm{CS}}$ is recognized, an 8-bit input word is shifted into the $D_{\text {IN }}$ input which configures the LTC1290 for the next conversion. Simultaneously, the result of the previous conversion is output on the $\mathrm{D}_{\text {Or }}$ line. At theend
of the dataexchangetherequested conversion begins and CSshould be brought high. After toonv, the conversion is complete and the results will be available on the next data transfer cycle. As shown below, theresult of a conversion is delayed by one $\overline{\mathrm{CS}}$ cycle from theinput word requesting it.

Input Data Word

The LTC1290 8-bit data word is clocked into the DiN $_{\text {IN }}$ input on the first eight rising SCLK edges after chip select is recognized. Further inputs on the $D_{\text {IN }}$ pin arethen ignored until the next CScycle. Theeight bits of theinput word are defined as follows:

Operating Sequence
(Example: Differential Inputs (CH3-CH2), Bipolar, MSB-First and 12-Bit Word Length)

LTC1290 • A103

APPLICATIONS INFORMATIO

MUX Address

The first four bits of the input word assign the MUX configuration for the requested conversion. For a given channel selection, the converter will measure the voltage between the two channels indicated by the + and - signs in the selected row of Table 1. Note that in differential
mode (SGL/ $\overline{\text { DIF }}=0$) measurements are limited to four adjacent input pairs with either polarity. In single-ended mode, all input channels are measured with respect to COM.

Table 1. Multiplexer Channel Selection

MUX ADDRESS			DIFFERENTIAL CHANNEL SELECTION								MUX ADDRESS			SINGLE-ENDED CHANNEL SELECTION									
$\frac{\overline{\text { SGL }}}{\overline{\mathrm{DIFF}}}$	$\begin{aligned} & \hline \text { ODD } \\ & \text { SIGN } \end{aligned}$	$\begin{array}{\|c} \hline \text { SELECT } \\ 100 \end{array}$	0	1	2	3	4	5	6	7	$\\| \frac{\text { SGL }}{\text { DIFF }}$	$\begin{aligned} & \hline \text { ODD } \\ & \text { SIGN } \end{aligned}$	$\begin{gathered} \hline \text { SELECT } \\ 100 \end{gathered}$	0	1	2	3	4	5	6	7	COM	
0	0	00	$+$	-							1	0	00	$+$								-	
0	0	01			+	-					1	0	01			+						-	
0	0	10					+	-			1	0	10					+				-	
0	0	11							+	-	1	0	11							+		-	
0	1	00	-	+							1	1	00		+							-	
0	1	01			-	+					1	1	01				+					-	
0	1	10					-	+			1	1	10						+			-	
0	1	11							-	+	1	1	11								+	-	

Changing the MUX Assignment "On the Fly"

Figure 1. Examples of Multiplexer Options on the LTC1290

APPLICATI ONS INFO RMATIO

Unipolar/Bipolar (UNI)

The fifth input bit (UNI) determines whether the conversion will be unipolar or bipolar. When UNI is alogical one, a unipolar conversion will be performed on the selected
input voltage. When UNN is alogical zero, abipolar conversion will result. The input span and code assignment for each conversion type are shown in the figures below.

Bipolar Output Code (UNI =0)

OUTPUT CODE	INPUT VOLTAGE	INPUT VOLTAGE $\left(V_{R E F}=5 \mathrm{~V}\right)$	OUTPUT CODE	INPUT VOLTAGE	INPUT VOLTAGE ($\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$)
011111111111	$V_{\text {REI }}$-1LSB	4.9976V	111111111111	-1LSB	-0.0024V
011111111110	$\mathrm{V}_{\mathrm{REF}}$-2LSB	4.9851 V	111111111110	-2LSB	-0.0048V
-		-	-	-	-
-	$\stackrel{.}{ }$	-	-	-	.
00000000001	1LSB	0.0024 V	100000000001	$-\left(\mathrm{V}_{\text {REF }}\right)+1 \mathrm{LSB}$	-4.9976V
00000000000	OV	OV	10000000000	$-\left(\mathrm{V}_{\text {RE }}\right)$	$-5.0000 \mathrm{~V}$

APPLICATIONS INFORMATIO N

MSB-First/LSB-First Format (MSBF)

The output data of the LTC1290 is programmed for MSBfirst or LSB-first sequence using the MSBF bit. For MSB first output data the input word clocked to the LTC1290 should always contain alogical one in thesixth bit location (MSBF bit). Likewise for LSB-first output data the input word clocked to theLTC1290 should al ways contain azero in the MSBF bit location. The MSBF bit affects only the order of theoutput dataword. Theorder of theinput word is unaffected by this bit.

MSBF	OUTPUT FORMAT
0	LSB Frst
1	MSB Frst

Word Length (WL1, WL0) and Power Shutdown

The last two bits of the input word (WL1 and WL0) program the output data word length and the power shutdown feature of the LTC1290. Word lengths of 8,12 or 16 bits can be selected according to the following table. The WL1 and WL0 bits in a given $\mathrm{D}_{\text {IN }}$ word control the length of the present, not the next, Dor word. WL1 and WLO are never "don't cares" and must be set for the correct Dorw word length even when a "dummy" DiN word is sent. On any transfer cycle, the word length should be made equal to the number of SCLK cycles sent by the MPU. Power down will occur when WL1 = 0 and WL0 = 1 is selected. Theprevious conversion result will beclocked out as a 10 bit word so a "dummy"conversion is required before powering down the LTC1290. Conversions are
resumed onceCS goes low or an SCLKis applied, if CS is aready low.

WL1	WLO	OUTPUT WORD LENGTH
0	0	8 -Bits
0	1	Power Shutdown
1	0	12 -Bits
1	1	$16-$ Bits

Deglitcher

A deglitching circuit has been added to the Chip Select input of the LTC1290 to minimize the effects of errors caused by noiseon that input. This circuit ignores changes in state on the $\overline{\mathrm{CS}}$ input that are shorter in duration than oneACLKcycle. After achange of stateonthe $\overline{\operatorname{CS}}$ input, the LTC1290 waits for two falling edge of the ACLK before recognizing a valid chip select. One indication of $\overline{C S}$ recognition is the D_{ou} line becoming active (leaving the Hi-Z state). Note that the deglitching applies to both the rising and falling $\overline{\mathrm{CS}}$ edges.

$\overline{C S}$ Low During Conversion

In the normal mode of operation, $\overline{\mathrm{CS}}$ is brought high during the conversion time. The serial port ignores any SCLK activity while $\overline{\mathrm{CS}}$ is high. The LTC1290 will also operate with CSlow during the conversion. In this mode, SCLK must remain low during the conversion as shown in thefollowing figure. After the conversion is complete, the Dorlinewill become active with the first output bit. Then the data transfer can begin as normal.

APPLICATI ONS INFORMATIO

8-Bit Word Length

12-Bit Word Length

16-Bit Word Length

Figure 2. Data Output ($\mathrm{D}_{\text {Out }}$) Timing with Different Word Lengths

APPLICATIONS INFO RMATIO

Figure 3. $\overline{\mathrm{CS}}$ High During Conversion

Figure 4. $\overline{C S}$ Low During Conversion ($\overline{C S}$ Must go High to Low Once to Insure Proper Operation in this Mode)

Microprocessor Interfaces

TheLTC1290 caninterfacedirectly (without external hardware) to most popular microprocessor (MPU) synchronous serial formats (see Table 2). If an MPU without a serial interface is used, then four of theMPU's parallel port lines can be programmed to form the serial link to the LTC1290. Included hereare two serial interface examples and one example showing a parallel port programmed to form the serial interface

Serial Port Microprocessors

Most synchronous serial formats contain a shift clock (SCLK) and two datalines, onefor transmitting and onefor receiving. In most cases data bits are transmitted on the falling edge of theclock (SCLK) and captured ontherising edge. However, serial port formats vary among MPU manufactures as to the smallest number of bitsthat canbe sent in one group (e.g., 4-bit, 8-bit or 16-bit transfers). They also vary as to the order in which the bits are transmitted (LSB or MSB first). The following examples show how theLTC1290 accommodates thesedifferences.

APPLICATIONS INFORMATIO

Table 2. Microprocessors with Hardware Serial Interfaces Compatible with the LTC1290**

PART NUMBER	TYPE OF INTERFACE
Motorola	
M06805S2, S3	SPI
M068HC11	SPI
M068H005	SPI
RCA	
CDP68H005	SPI
Hitachi	
HD6305	SCI Synchronous
HD6301	SCI Synchronous
HD63701	SCI Synchronous
HD6303	SCI Synchronous
HD64180	SCl Synchronous
National Semiconductor	
COP400 Family	MICROWIRE ${ }^{\text {M }}$
COP800 Family	MICROWIRE/PLUS ${ }^{\text {TM }}$
NS8050U	MICROWIRE/PLUS
HPC16000 Family	MICROWIRE/PLUS
Texas Instruments	
TMS7002	Serial Port
TMS7042	Serial Port
TMS70002	Serial Port
TMS70C42	Serial Port
TMS32011*	Serial Port
TMS32020	Serial Port
TMS3700050	SPI

* Requires external hardware
** Contact factory for interface information for processors not on this list
Hardware and Software Interface to COP402 Processor

Dout from LTC1290 Stored in COP402 RAM

 LOCATION \$14 \begin{tabular}{|c|c|c|c|}
\hline B 7 \& B 6 \& B 5 \& B 4

\hline

 LOCATION \$15

\hline B3 \& B2 \& B1 \& B0

\hline
\end{tabular} ${ }^{\dagger}$ B11 IS MSB IN UNIPOLAR OR SIGN BIT IN BIPOLAR

National MICROWIRE (COP402)

The COP402 transfers data MSB first and in 4-bit increments (nibbles). This is easily accommodated by setting the LTC1290 to MSB-first format and 12-bit word length. The data output word is then received by the COP402 in three 4-bit blocks.

COP402 Code

	MNEMONIC	COMMENTS
LOOP	CLRA	Must be Frst Instruction
	LBI 1,0	$B R=1 B D=0$ Initialize B Reg.
	STII 8	Frst $\mathrm{D}_{\text {IN }}$ Nibble in \$10
	STII E	Second $\mathrm{D}_{\text {IN }}$ Nibble in \$11
	STII 0	Null Data in \$12, B = \$13
	L日 C	Set EN to (1100) BIN
	SC	Carry Set
	LDD 1,0	Load Frst $\mathrm{D}_{\text {IN }}$ Nibble In ACC
	OGI 0	Go ($\overline{\mathrm{CS}}$) Cleared
	XAS	ACCto Shift Reg. Begin Shift
	LDD 1,1	Load Next DIN Nibble in ACC
	NOP	Timing
	XAS	Next Nibble, Shift Continues
	XIS 0	Frst Nibble Dour to \$13
	LDD 1,2	Put Null Data in ACC
	XAS	Shift Continues, Dout to ACC
	XIS 0	Next Nibble Dour to \$14
	RC	Clear Carry
	CLRA	Cear ACC
	XAS	Third Nibble Dour to ACC
	OGl 1	Go ($\overline{\mathrm{CS}}$) Set
	XIS 0	Third Nibble Dout to \$15
	LBI 1,3	Set B Reg. For Next Loop

Motorola SPI (MC68HCO5C4)

The MO68HC05C4 transfers data MSB first and in 8-bit increments. Programming the LTC1290 for MSB-first format and 16-bit word length allows the 12-bit data output to be received by the MPU as two 8-bit bytes with thefinal four unused bits filled with zeros by the LTC1290.

APPLICATIONS INFORMATIO N

Hardware and Software Interface to Motorola MC68HC05C4 Processor

Dout from LTC1290 Stored in MC68HC05C4 RAM

*B11 IS MSB IN UNIPOLAR OR SIGN BIT INBIPOLAR

MC68HCO5C4 Code		
	MNEMONIC	COMMENTS
START	LDA \#\$50	Configuration Data for SPCR
	STA \$0A	Load Data Into SPCR (\$0A)
	LDA \#\$干	Config. Data for Port CDDR
	STA \$06	Load Data Into Port CDDR
	LDA \#\$0F	Load LTC1290 ${ }_{\text {IN }}$ Data Into ACC
	STA \$50	Load LTC1290 ${ }_{\text {IN }}$ Data Into \$50
	BCRR 0,\$20	OOGoes Low (CS Goes Low)
	LDA \$50	Load $\mathrm{DIN}^{\text {IN }}$ Into ACC from \$50
	STA \$0C	Load DIN Into SPI, Start SCK
	NOP	8 NOPs for Timing
	LDA \$0B	Check SPI Status Reg
	LDA \$0C	Load LTC1290 MSBs Into ACC
	STA \$61	Store MSBs in \$61
	STA \$0C	Start Next SPI Oycle
	NOP	6 NOPs for Timing
	BSET 0,\$02	O Goes High ($\overline{\text { S }}$ Goes High)
	LDA \$0B	Check SPI Status Register
	LDA \$0C	Load LTC1290 LSBs Into ACC
	STA \$62	Store LSBs in \$62

APPLICATIONS INFORMATIO

8051 Code

	MNEMONIC	COMMENTS
	MOV P1,\#02H	Bit 1 Port 1 Set as Input
	CLR P1.3	SCLK Goes Low
	SEIB P1.4	$\overline{\text { CS }}$ Goes High
CONT	MOV A,\#0日	$\mathrm{D}_{\text {IN }}$ Word for LTC1290
	CLR P1.4	$\overline{\text { CS }}$ Goes Low
	MOV R4,\#08H	Load Counter
	NOP	Delay for Deglitcher
LOOP	MOV C,P1.1	Read Data Bit Into Carry
	RLC A	Rotate Data Bit Into ACC
	MOV P1.2,C	Output $\mathrm{D}_{\text {IN }}$ Bit to LTC1290
	SEIB P1.3	SCLK Goes High
	CLR P1.3	SCLK Goes Low
	DJNZ R4,LOOP	Next Bit
	MOV R2,A	Store MSBs in R2
	MOV C,P1.1	Read Data Bit Into Carry
	CLR A	Clear ACC
	RLC A	Rotate Data Bit Into ACC
	SEIB P1.3	SCLK Goes High
	CLR P1.3	SCLK Goes Low
	MOV C,P1.1	Read Data Bit Into Carry
	RLC A	Rotate Data Bit Into ACC
	SEIB P1.3	SCLK Goes High
	OLR P1.3	SCLK Goes Low
	MOV C,P1. 1	Read Data Bit Into Carry
	RLC A	Rotate Data Bit Into ACC
	SEIB P1.3	SCLK Goes High
	CLR P1.3	SCLK Goes Low
	MOV C, P1.1	Read Data Bit Into Carry
	RRC A	Rotate Right Into ACC
	RRC A	Rotate Right Into ACC
	RRC A	Rotate Right Into ACC
	RRC A	Rotate Right Into ACC
	MOV R3,A	Store LSBs in R3
	SEIB P1.3	SCLK Goes High
	CLR P1.3	SCLK Goes Low
	SEIB P1.4	$\overline{\text { CS }}$ Goes High
	MOV R5,\#OBH	Load Counter
DEAY	DJNZ R5,DE-AY	Go to Delay if Not Done

Sharing the Serial Interface

The LTC1290 can share the same 3 -wire serial interface with other perpheral components or other LTC1290s (see Figure 5). In this case, the CS signals decide which LTC1290 is being addressed by the MPU.

ANALOG CONSIDERATIONS

1. Grounding

The LTC1290 should beused with an analog ground plane and single point grounding techniques.
AGND (Pin 11) should betieddirectly tothis groundplane.
DGND (Pin 10) can also be tied directly to this ground plane because minimal digital noise is generated within the chip itself.
$V_{\circ \subset}$ (Pin20) should be bypassed to theground planewith a 22μ Ftantalum with leads as short as possible. V^{-}(Pin 12) should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic disk. For single supply applications, V^{-}can be tied to the ground plane.

It is also recommended that RE- (Pin 13) and COM (Pin 9) be tied directly to the ground plane. All analog inputs should be referenced directly to the single point ground. Digital inputs and outputs should be shielded from and/or routed away from the reference and analog circuitry.

Figure 5. Several LTC1290s Sharing One 3-Wire Serial Interface

APPLICATIONS INFORMATIO

Figure 6. Example Ground Plane for the LTC1290
Figure6shows an exampleof anideal ground planedesign for atwo-sided board. Of course, this much ground plane will not always be possible, but users should striveto get as close to this ideal as possible.

2. Bypassing

For good performance, V_{\propto} must be free of noise and ripple. Any changes in the V_{\propto} voltage with respect to analog ground during a conversion cycle can induce errors or noiseintheoutput code. $V_{\propto C}$ noiseand ripplecan bekept below 0.5 mV by bypassing the $\mathrm{V}_{\propto c}$ pin directly to the analog ground plane with a $22 \mu \mathrm{~F}$ tantalum capacitor and leads as short as possible. Thelead from thedeviceto the $\mathrm{V}_{\propto \subset}$ supply should also bekept to a minimum and the V_{\propto} supply should have a low output impedance such as that obtained from a voltage regulator (e.g., LT323A). Figures 7 and 8 show the effects of good and poor V_{\propto} bypassing.

3. Analog Inputs

Because of the capacitive redistribution A/D conversion techniques used, the analog inputs of the LTC1290 have capacitive switching input current spikes. These current

Figure 7. Poor $V_{c c}$ Bypassing. Noise and Ripple Can Cause A/D Errors

HORIZONTAL: 10us/DIV
Figure 8. Good $V_{c c}$ Bypassing Keeps Noise and Ripple on VCC Below 1 mV
spikes settle quickly and do not cause a problem. However, if largesourceresistances are used or if slow settling op amps drivetheinputs, caremust betakento insurethat the transients caused by the current spikes settle completely before the conversion begins.

Source Resistance

The analog inputs of the LTC1290 look like a 100pF capacitor (GIN) in series with a 500Ω resistor (RON) as shown in Figure 9. G_{N} gets switched between the selected "+" and "-" inputs onceduring each conversion cycle. Large external source resistors and capacitances will slow the settling of theinputs. It is important that theoverall RCtime constants be short enough to allow the analog inputs to completely settle within the allowed time.

APPLICATIONS INFO RMATIO

Figure 9. Analog Input Equivalent Circuit

" + " Input Settling

This input capacitor is switched onto the " + " input during the sample phase (tsMPL, see Fgure 10). The sample phase starts at the4th SCLKcycleand lasts until thefall ling edge of the last SCLK (the 8th, 12th or 16th SCLK cycle depending on the selected word length). The voltage on the " + " input must settle completely within this sample time. Minimizing RSOURCE ${ }^{+}$and Cl will improve the input settling time. If large " + " input source resistance must be used, the sampletime can be increased by using a slower SCLK frequency or selecting a longer word length. With theminimum possiblesampletime of $2 \mu \mathrm{~s}, \mathrm{R}_{\text {SOURCE }}{ }^{+}<1 \mathrm{k}$ and $\mathrm{C} 1<20 \mathrm{pF}$ will provide adequate settling.
"-" Input Settling
At theend of the samplephasetheinput capacitor switches to the "-" input and the conversion starts (seeFigure 10). During the conversion, the " + " input voltage is effectively "held" by the sample-and-hold and will not affect the conversion result. However, it is critical that the "-" input voltage be free of noise and settle completely during the first four ACLK cycles of the conversion time. Minimizing RSOURCE $^{-}$and C2 will improve settling time. If large "-" input sourceresistancemust beused, thetimeallowedfor settling can be extended by using a slower ACLK frequency. At the maximum ACLK rate of 4 MHz , RSOURCE ${ }^{-}$$250 \Omega$ and $\mathrm{C} 2<20 \mathrm{pF}$ will provide adequate settling.

Input Op Amps

When driving the analog inputs with an op amp it is important that the op amp settle within the allowed time (see Fgure 10). Again, the " + " and "-" input sampling times can be extended as described above to accommodateslower op amps. Most op amps including the LT1006 and LT1013 single supply op amps can be made to settle well even with the minimum settling windows of $2 \mu \mathrm{~s}$ ("+" input) and $1 \mu \mathrm{~s}$ ("-" input) which occur at the maximum

Figure 10. " + " and " - " Input Settling Windows

APPLICATIONS INFORMATIO

clock rates (ACLK = 4MHz and SCLK=2MHz). Fgures 11 and 12 show examples of adequate and poor op amp settling.

HORIZONTAL: 500ns/DIV
Figure 11. Adequate Settling of Op Amps Driving Analog Input

Figure 12. Poor Op Amp Settling Can Cause A/D Errors
RC Input Filtering
It is possibletofilter theinputswithan RCnetworkasshown inFigure 13. For largevalues of C_{F} (e.g., $1 \mu \mathrm{~F}$), thecapacitive input switching currents areaveraged into anet DCcurrent. Therefore, afilter should bechosen with asmall resistor and largecapacitor to prevent DCdrops across the resistor. The magnitude of the DC current is approximately $\mathrm{I}_{\mathrm{DC}}=$ (100 pF) $\left(\mathrm{V}_{\mathbb{I}} \sqrt{ } \mathrm{t}_{\mathrm{CYC}}\right.$) and is roughly proportional to $\mathrm{V}_{\mathbb{I N}}$. When running at the minimum cycle time of $20 \mu \mathrm{~s}$, the input current equals $25 \mu \mathrm{~A}$ at $\mathrm{V}_{I N}=5 \mathrm{~V}$. Inthis case, afilter resistor of 5Ω will cause 0.1 LSB of full-scale error. If a larger filter resistor must beused, errors can beeliminated by increasingthecycletimeas shown inthetypical curveof Maximum Filter Resistor vs Oycle Time.

Figure 13. RC Input Filtering

Input Leakage Current

Input leakage currents can also createerrors if the source resistancegetstoolarge. For instance, themaximuminput leakage specification of $1 \mu \mathrm{~A}$ (at $125^{\circ} \mathrm{C}$) flowing through a sourceresistance of $1 \mathrm{k} \Omega$ will causeavoltagedrop of 1 mV or 0.8LSB. This error will be much reduced at lower temperatures because leakage drops rapidly (see the typical curve of Input Channel Leakage Current vs Temperature).

Noise Coupling Into Inputs

High source resistance input signals ($>500 \Omega$) are more sensitive to coupling from external sources. It is preferable to use channels near the center of the package (i.e., CH 2 to CH 7) for signals which have the highest output resistance because they are essentially shielded by the pins on the package ends (DGND and CHO). Grounding any unused inputs (especially the end pin, CHO) will also reduce outside coupling into high source resistances.

4. Sample-and-Hold

Single-Ended Inputs

The LTCl290 provides a built-in sample-and-hold (S\&H) function for all signals acquired in the single-ended mode (COM pin grounded). This sample-and-hold allows the LTC1290 to convert rapidly varying signals (see the typical curve of S\&H Acquisition Time vs Source Resistance). The input voltage is sampled during the tsMPL time as shown in Figure 10. Thesampling interval begins after thefourthMUX address bit is shifted in and continues during the remainder of the datatransfer. On thefalling edge of the final SOK, the S\&H goes into hold mode and the conversion begins. The voltage will beheld oneither the8th, 12th or 16thfalling edge of the SCLK depending on the word length selected.
\triangle IINEAR

APPLICATI ONS INFO RMATIO

Differential Inputs

With differential inputs or when the COM pin is not tied to ground, the A/D no longer converts just asinglevoltage but rather the difference between two voltages. In these cases, thevoltageontheselected " + " input isstill sampled and held and therefore may be rapidly time varying just as in singleended mode. However, the voltageontheselected "-" input must remain constant and be fre of noise and ripple throughouttheconversiontime. Otherwise, thedifferencing operationmay not beperformed accurately. Theconversion time is 52 ACLKcycles. Therefore, achangein the"-" input voltage during this interval can cause conversion errors. For asinusoidal voltageonthe"-" input this error would be:

$$
\mathrm{V}_{\text {ERROR }}(\mathrm{MAX})=\left(\mathrm{V}_{\text {PEAK }}\right)(2 \pi)[\mathrm{f}("-")]\left(52 / f_{\text {ACLK }}\right)
$$

Where $f($ " - ") is the frequency of the "-" input voltage, $V_{\text {PEAK }}$ is its peak amplitude and $f_{\text {ACLK }}$ is the frequency of the ACLK. In most cases $\mathrm{V}_{\text {IRROR }}$ will not besignificant. For a60Hzsignal on the "-" input to generate a0.25LSBerror $(300 \mu \mathrm{~V})$ with the converter running at $\mathrm{ACLK}=4 \mathrm{MHz}$, its peak value would have to be 61 mV .

5. Reference Inputs

The voltage between the referenceinputs of the LTC1290 defines the voltage span of the A/D converter. The reference inputs will have transient capacitive switching currents due to the switched capacitor conversion technique (se Figure 14). During each bit test of the conversion (every 4 ACLK cycles), a capacitive current spike will be generated on the reference pins by the A/D. Thesecurrent spikes settle quickly and do not cause a problem. However, if slow settling circuitry is used to drivethereference inputs, caremust betakento insurethat transients caused by these current spikes settle completely during each bit test of the conversion.

Figure 14. Reference Input Equivalent Circuit

When driving the reference inputs, two things should be kept in mind:

1. Transients on the reference inputs caused by the capacitive switching currents must settle completely during each bit test (each 4 ACLK cycles). Fgures 15 and 16 show examples of both adequate and poor settling. Using aslower ACLK will allow moretimefor thereferenceto settle. However, even at themaximum ACLK rate of 4 MHz most references and op amps can be made to settle within the 1μ s bit time. For example theLT1027 will settleadequately or with a10 μ Fbypass capacitor at REF ${ }^{+}$the LT1021 can also be used.
2. It is recommended that RE^{-}input be tied directly to the analog ground plane. If REF- is biased at a voltage other than ground, the voltage must not changeduring a conversion cycle. This voltage must also be free of noise and ripple with respect to analog ground.

Figure 15. Adequate Reference Settling

HORIZONTAL: $1 \mu \mathrm{~s} / \mathrm{DIV}$
Figure 16. Poor Reference Settling Can Cause A/D Errors

APPLICATIONS INFORMATIO

6. Reduced Reference Operation

The effective resolution of the LTC1290 can be increased by reducing theinput span of the converter. The LTC1290 exhibits good linearity and gain over a wide range of reference voltages (see the typical curves of Linearity and Gain Eror vs Reference Voltage). However, care must be taken when operating at low values of V_{RE} because of the reduced LSB step size and the resulting higher accuracy requirement placed ontheconverter. Thefollowing factors must be considered when operating at low $\mathrm{V}_{\text {RE }}$ values:

1. Ofset
2. Noise

Offset with Reduced $\mathrm{V}_{\text {REF }}$

The offset of the LTC1290 has alarger effect on theoutput code when the AD is operated with reduced reference voltage. The offset (which is typically a fixed voltage) becomes alarger fraction of an LSB as the size of the LSB is reduced. Thetypical curve of Unadjusted Offset Eror vs Reference Voltage shows how offset in LSBs is related to reference voltage for atypical value of V_{OS}. For example, a $\mathrm{V}_{\circ S}$ of 0.1 mV which is 0.1 LSB with a 5 V reference becomes 0.4 LSB with a 1.25 V reference. If this offset is unacceptable, it can be corrected digitally by the receiving system or by offsetting the "-" input to the LTC1290.

Noise with Reduced $V_{\text {REF }}$

The total input referred noise of the LTC1290 can be reduced to approximately $200 \mu \mathrm{~V}$ peak-to-peak using a ground plane, good bypassing, good layout techniques and minimizing noise on the reference inputs. This noise is insignificant with a5V referencebut will becomealarger fraction of an LSB as the size of the LSB is reduced. The typical curve of Noise Eror vs Reference Voltage shows the LSB contribution of this $200 \mu \mathrm{~V}$ of noise.

For operation with a 5 V reference, the $200 \mu \mathrm{~V}$ noise is only 0.16 LSB peak-to-peak. In this case, the LTC1290 noise will contribute virtually no uncertainty to the output code. However, for reduced references, the noise may become asignificant fraction of an LSB and causeundesirablejitter in the output code. For example, with a 1.25 V reference, this same $200 \mu \mathrm{~V}$ noise is 0.64 LSB peak-to-peak. This will
reduce the range of input voltages over which a stable output code can be achieved by 0.64 LSB. In this case averaging readings may be necessary.

This noise datawas taken in avery clean setup. Any setup induced noise (noiseor ripple on $\mathrm{V}_{\mathrm{OC}}, \mathrm{V}_{\mathrm{RE}}, \mathrm{V}_{\text {IN }} \mathrm{Or}^{\circ} \mathrm{V}^{-}$) will add to the internal noise. The lower the reference voltage to be used, the more critical it becomes to have a clean, noise free setup.

7. LTC1290 AC Characteristics

Two commonly used figures of merit for specifying the dynamic performance of the AD's in digital signal processing applications are the Signal-to-Noise Ratio (SNR) and the "effective number of bits (ENOB)." SNRis defined as the ratio of the RMS magnitude of the fundamental to the RMS magnitude of all the nonfundamental signals up to the Nyquist frequency (half the sampling frequency). The theoretical maximum SNR for a sine wave input is given by:

$$
\mathrm{SNR}=(6.02 \mathrm{~N}+1.76 \mathrm{~dB})
$$

where Nis the number of bits. Thus the SNR is afunction of theresolution of the $A D$. For anideal 12 -bit A / D theSNR is equal to 74dB. A Fast Fourier Transform(居) plot of the output spectrum of the LTC1290 is shown in Figures 17a and 17 b . The input (f_{i}) frequencies are 1 kHz and 25 kHz with the sampling frequency (f_{s}) at 50.6 kHz . The SNR obtained from the plot are 73.25 dB and 72.54 dB .

Rewriting the SNR expression it is possible to obtain the equivalent resolution based on the SNR measurement.

$$
N=(S N R-1.76 d B) / 6.02
$$

This is the so-called effective number of bits (ENOB). For the example shown in Figures 17a and 17b, $\mathrm{N}=11.9$ bits and 11.8 bits, respectively. Fgure 18shows aplot of ENOB as a function of input frequency. The curve shows the AD's ENOB remain in the range of 11.9 to 11.8 for input frequencies up to $\mathrm{f}_{5} / 2$.

Fgure19shows an FTplot of theoutput spectrumfor two tones applied to the input of the AID. Nonlinearities in the A/D will cause distortion products at the sum and difference frequencies of the fundamentals and products of the

APPLICATIONS INFORMATIO N

$1290 \cdot$ F17a
Figure 17a. LTC1290 FFT Plot

1290 F18
Figure 18. LTC1290 ENOB vs Input Frequency
fundamentals. This is classically referred to as intermodulation distortion (IMD).

8. Overvoltage Protection

Applying signals to the analog MUX that exceed the positive or negative supply of the device will degrade the accuracy of the A/D and possibly damage the device. For examplethis condition would occur if asignal is applied to the analog MUX before power is applied to the LTC1290. Another example is the input source is operating from different supplies of larger valuethan theLTC1290. These conditions should be prevented either with proper supply sequencing or by use of external circuitry to clamp or current limit the input source. As shown in Figure20, a 1k resistor is enough to stand off $\pm 15 \mathrm{~V}$ (15 mA for one only channel). If more than one channel exceeds the supplies

Figure 17b. LTC1290 FFT Plot

$1290 \cdot$ F19
Figure 19. LTC1290 FFT Plot
then the following guidelines can be used. Limit the current to 7 mA per channel and 28 mA for all channels. This means four channels can handle 7 mA of input current each. Reducing the ACLK and SCLK frequencies from the maximum of 4 MHz and 2 MHz , respectively, (see Typical Peformance Characteristics curves Maximum ACLK Fre quency vs Source Resistance and Sample-and-Hold Acquisition Timevs Source Resistance) allows the use of

Figure 20. Overvoltage Protection for MUX

APPLICATIONS INFORMATIO

larger current limiting resistors. Use1N4148diodeclamps fromtheMUXinputs to V_{Cc} and V^{-}if thevalue of theseries resistor will not allow the maximum clock speeds to be used or if an unknown sourceis used to drivetheLTC1290 MUX inputs.

How the various power supplies to the LTC1290 are applied can also lead to overvoltageconditions. For single supply operation (i.e., unipolar mode), if $\mathrm{V}_{\propto c}$ and $R E^{+}$are not tied together, then V_{\propto} should be turned on first, then REF+. If this sequence cannot be met, connecting adiode from RE^{+}to $\mathrm{V}_{\propto \subset}$ is recommended (see Fgure 21).

For dual supplies (bipolar mode) placing two Schottky diodes from V_{\propto} and V^{-}to ground (Figure23) will prevent
power supply reversal from occuring when an input source is applied to theanalog MUXbefore power is applied to the device. Power supply reversal occurs, for example, if the input is pulled below V^{-}then V_{\circ} will pull a diode drop below ground which could cause the device not to power up properly. Likewise, if the input is pulled above $\mathrm{V}_{\circ \text { cthen }}$ V^{-}will be pulled a diode drop above ground. If no inputs are present on the MUX, the Schottky diodes are not required if V^{-}is applied first, then V_{\propto}.

Becauseauniqueinput protection structureis used on the digital input pins, the signal levels on these pins can exceed the device V_{\propto} without damaging the device.

Figure 22. Power Supply Reversal

Figure 21

TYPICAL APPLICATI ONS

A "Quick Look" Circuit for the LTC1290

Users can get aquick look at thefunction and timing of the LTC1290 by using the following simplecircuit. RE+ ${ }^{+}$and $\mathrm{D}_{\text {IN }}$ are tied to $\mathrm{V}_{\propto C}$ selecting a 5 V input span, CH 7 as a single-ended input, unipolar mode, MSB-first format and 16 -bit word length. ACLK and SCLK are tied together and driven by an external clock. ©Sis driven at $1 / 128$ the clock rate by the CD4520 and Dor outputs the data. All other pins are tied to a ground plane. The output data from the Dourpin can be viewed on an oscilloscope which is set up to trigger on the falling edge of $\overline{C S}$.

A "Quick Look" Circuit for the LTC1290

TYPICAL APPLICATI ONS

SNEAK-A-BIT ${ }^{T M}$

The LTC1290's unique ability to software select the polarity of the differential inputs and the output word length is used to achieve one more bit of resolution. Using the circuit below with two conversions and some software, a 2's complement 12-bit + sign word is returned to memory inside the MPU. The MC68HC05C4 was chosen as an example, however, any processor could be used.

SNEAK-A-BIT Circuit

Two 12-bit unipolar conversions are performed: the first over a0Vto 5 V span and the second over $\mathrm{aOVto}-5 \mathrm{~V}$ span (by reversing the polarity of the inputs). The sign of the input is determined by which of the two spans contained it. Then the resulting number (ranging from -4095 to +4095 decimal) is converted to 2's complement notation and stored in RAM.

SNEAK-A-BIT

1ST CONVERSION 4096 STEPS

IST CONVERSION

$$
\begin{array}{r|r}
& \\
\mathrm{V}_{\mathrm{IN}} & (-) \mathrm{CH6} \\
\underline{=} & (+) \mathrm{CH} 7 \\
\text { 2ND OONVERSION }
\end{array}
$$

TYPICAL APPLICATIONS

SNEAK-A-BIT Code
Dor from LTC1290 in MO68HC05C4 RAM
Sign

LOCATION \$77 | B12 | B11 | B10 | B9 | B8 | B7 | B6 | B5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

LSB						
LOCATION $\$ 87$						
	B4	B3	B2	B1	B0	Filled with 0s

Din Words for LTC1290

SNEAK-A-BIT Code for the LTC1290 Using the MC68HCO5C4

MNEMONIC		DESCRIPTION
LDA	\#\$50	Configuration Data for SPCR
STA	\$0A	Load Configuration Data into \$0A
LDA	\#\$F	Configuration Data for Port CDDR
STA	\$06	Load Configuration Data into Port CDDR
BSET	0,\$02	Make Sure $\overline{\text { CS }}$ is High
JSR	READ -/+	Dummy Read Configures LTC1290 for next read
JSR	READ -/+	Read CH6 with Respect to CH7
JSR	READ - +	Read CH7 with Respect to CH6
JSR	CHK Sign	Determines which Reading has Valid Data Converts to 2's Complement and Stores in RAM

SNEAK-A-BIT Code for the LTC1290 Using the MC68HCO5C4

MNEMONIC			DESCRIPTION
READ - + :	LDA	\#\$3F	Load $\mathrm{D}_{\text {IN }}$ Word for LTC1290 into ACC
	JSR	TRANSFR	Read LTC1290 Routine
	LDA	\$60	Load MSBs from LTC1290 into ACC
	STA	\$71	Store MSBs in \$71
	LDA	\$61	Load LSBs from LTC1290 into ACC
	STA	\$72	Store LSBs in \$72
	RTS		Return
READ +/-:	LDA	\#\$7F	Load DIN Word for LTC1290 into ACC
	JSR	TRANSFR	Read LTC1290 Routine
	LDA	\$60	Load MSBs from LTCl290 into ACC
	STA	\$73	Store MSBs in \$73
	LDA	\$61	Load LSBs from LTC1290 into ACC
	STA	\$74	Store LSBs in \$74
	RTS		Return
TRANSfR:	BCLR	0,\$02	CS Goes Low
	STA	\$0C	Load DIN into SPI, Start Transfer
LOOP 1:	TST	\$0B	Test Status of SPIF
	BPL	LOOP 1	Loop to Previous Instruction if Not Done
	LDA	\$0C	Load Contents of SPI Data Reg. into ACC
	STA	\$0C	Start Next Oycle
	STA	\$60	Store MSBs in \$60
LOOP 2:	TST	\$0B	Test Status of SPIF
	BPL	LOOP 2	Loop to Previous Instruction if Not Done
	BSET	0,\$02	$\overline{\text { CS Goes High }}$
	LDA	\$0C	Load Contents of SPI Data Reg. into ACC
	STA	\$61	Store LSBs in \$61
	RTS		Return
CHK SIGN:	LDA	\$73	Load MSBs of \pm Read into ACC
	ORA	\$74	O ACC (MSBs) with LSBs of \pm Read
	BEQ	MINUS	If Result is 0 Go to Minus
	CLC		Cear Carry
	ROR	\$73	Rotate Right \$73 Through Carry
	ROR	\$74	Rotate Right \$74 Through Carry
	LDA	\$73	Load MSBs of \pm Read into ACC
	STA	\$77	Store MSBs in RAM Location \$77
	LDA	\$74	Load LSBs of \pm Read into ACC
	STA	\$87	Store LSBs in RAM Location \$87
	BRA	END	Go to End of Routine
MINUS:	CLC		Clear Carry
	ROR	\$71	Shift MSBs of \pm Read Right
	ROR	\$72	Shift LSBs of \pm Read Right
	COM	\$71	1's Complement of MSBs
	COM	\$72	1's Complement of LSBs
	LDA	\$72	Load LSBs into ACC
	ADD	\#\$01	Add 1 to LSBs
	STA	\$72	Store ACC in \$72
	CLRA		Clear ACC
	ADC	\$71	Add with Carry to MSBs. Result in ACC
	STA	\$71	Store ACC in \$71
	STA	\$77	Store MSBs in RAM Location \$77
	LDA	\$72	Load LSBs in ACC
	STA	\$87	Store LSBs in RAM Location \$87
END:	RTS		Return

TYPICAL APPLICATI ONS

Power Shutdown

For battery-powered applications it is desirable to keep power dissipation at a minimum. The LTCl290 can be powered down when not in use reducing the supply current from anominal value of 5 mAto typically $5 \mu \mathrm{~A}$ (with ACLKturned off). Seethecurvefor Supply Current (Power Shutdown) vs ACLKif ACLKcannot beturned off when the LTC1290 is powered down. In this casethe supply current is proportional to the ACLK frequency and is independent of temperature until it reaches the magnitudeof the supply current attained with ACLK turned off.

As an example of how to use this feature let's add this to the previous application, SNEAK-A-BIT. After the CHK SIGN subroutine call insert the following:

JSR CHK SIGN Determines which reading has valid data, converts to 2's complement and stores in RAM

JSR SHUTDOWN LTC1290 power shutdown routine

The actual subroutine is:
SHUTDOWN: LDA \#\$3D Load DiN word for
LTC1290 into ACC
JSR TRANSFR Read LTC1290 routine RTS Return

To place the device in power shutdown the word length bits are set to WL1 $=0$ and WL0 $=1$. The LTC1290 is powered up on the next request for a conversion and it's ready to digitize an input signal immediately.

Power Shutdown Timing Considerations

After power shutdown has been requested, the LTC1290 is powered up on the next request for a conversion. This request can be initiated either by bringing $\overline{\mathrm{CS}}$ low or by starting the next cycle of SCLKs if CS is kept low (see Figures 3 and 4). When the SCLK frequency is much slower than the ACLK frequency a situation can arise where the LTC1290 could power down and then prema turely power back up. Power shutdown begins at the negative going edge of the 10th SCLK once it has been requested. A dummy conversion is executed and the LTC1290 waits for the next request for conversion. If the SCLKs havenot finished oncetheLTC1290 has finished its dummy conversion, it will recognize the next remaining SCLKs as a request to start aconversion and power up the LTC1290 (seeFgure23). To prevent this, bring either $\overline{\mathrm{CS}}$ high at the 10th SCLK (Figure 24) or clock out only 10 SCLKs (Figure 25) when power shutdown is requested.

Figure 23. Power Shutdown Timing Problem

Figure 24. Power Shutdown Timing

Figure 25. Power Shutdown Timing

J Package
20-Lead CERDIP (Narrow 0.300, Hermetic)
(LTCDWG\# 05-08-1110)

> N Package
> 20-Lead PDIP (Narrow 0.300)
> (LTCDWG\# 05-08-1510)

*THESE DIMENSIONS DONOT INCLUDE MOLD ALASH OR PROIRUSIONS.
MOLD RLASH OR PROTRUSIONS SHALL NOT EXCHD 0.010 INCH (0.254 mm)
SW Package
20-Lead Plastic Small Outline (Wide 0.300)
(LTCDWG\# 05-08-1620)

NOIE 1 . PIN IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.

* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCॄAD 0.006" (0.152 mm) PER SIDE
** DIMENSION DOES NOT INCLUDEINIERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXC\#D $0.010 "(0.254 \mathrm{~mm})$ PER SIDE

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1286/LTC1298	12-Bit, Micropower Serial ADC in SO-8	1- or 2-Channel, Autoshutdown
LTC1293/LTC1294/LTC1296	12-Bit, Multiplexed Serial ADC	6-, 8- or 8-Channel with Shutdown Output
LTC1594/LTC1598	12-Bit, Micropower Serial ADC	4- or 8-Channel, 3V Versions Available

