feATURES

- Single Supply 5 V or $\pm 5 \mathrm{~V}$ Operation
- Two Speed Grades,500ksps (LTC1278-5) 400ksps (LTC1278-4)
- 70dB S/(N + D) and 74dB THD at Nyquist
- No Missing Codes Over Temperature
- 75mW (Typ) Power Dissipation
- Power Shutdown with Instant Wake-Up
- Internal Reference Can Be Overdriven Externally
- Internal Synchronized Clock; No Clock Required
- High Impedance Analog Input
- 0 V to 5 V or $\pm 2.5 \mathrm{~V}$ Input Range
- New Flexible, Friendly Parallel Interface to DSPs and FIFO s
- 24-Pin Narrow PDIP and SW Packages

APPLICATIONS

- High Speed Data Acquisition
- Digital Signal Processing
- Multiplexed Data Acquisition Systems
- Audio and Telecom Processing
- Spectrum Analysis
$\boldsymbol{\mathcal { F }}, \mathrm{LTC}$ and LT are registered trademarks of Linear Technology Corporation

DESCRIPTIOn

The LTC ${ }^{\circledR} 1278$ is a $1.6 \mu \mathrm{~s}, 500 \mathrm{ksps}$, sampling 12 -bit A / D converter that draws only 75 mW from a single 5 V or $\pm 5 \mathrm{~V}$ supplies. This easy-to-use device comes complete with a 200 ns sample-and-hold, a precision reference and an internally trimmed clock. Unipolar and bipolar conversion modes add to the flexibility of the ADC. The low power dissipation is made even more attractive by a 8.5 mW power-down feature. Instant wake-up from shutdown allows the converter to be powered down even during brief inactive periods.
The LTC1278 converts OV to 5V unipolar inputs from a single 5 V supply and $\pm 2.5 \mathrm{~V}$ bipolar inputs from $\pm 5 \mathrm{~V}$ supplies. Maximum DC specs include ± 1 1SB INL and ± 1 LSB DNL. Outstanding guaranteed AC performance includes $70 \mathrm{~dB} \mathrm{~S} /(\mathrm{N}+\mathrm{D})$ and 78 dB THD at the input frequency of 100 kHz over temperature.
The internal clock is trimmed for $1.6 \mu \mathrm{~s}$ conversion time. The clock automatically synchronizes to each sample command, eliminating problems with asynchronous clock noise found in competitive devices. A separate convert start input and a data ready signal (BUSY) ease connections to FIFOs, DSPs and microprocessors.

TYPICAL APPLICATION

Single 5V Supply, 500kHz, 12-Bit Sampling A/D Converter

Effective Bits and Signal-to-(Noise + Distortion) vs Input Frequency

absolute maximum ratings
$A V_{D D}=D V_{D D}=V_{D D}$ (Notes 1, 2)
Supply Voltage (VD)
Negative Supply Voltage (VS) Bipolar Operation Only \qquad -6V to GND
Total Supply Voltage (V_{DD} to $\mathrm{V}_{S S}$) Bipolar Operation Only \qquad
Analog Input Voltage (Note 3)
Unipolar Operation \qquad -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ Bipolar Operation............... $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Input Voltage (Note 4)
Unipolar Operation \qquad .-0.3V to 12 V
Bipolar Operation.......................... VSS -0.3 V to 12 V
Digital Output Voltage
Unipolar Operation \qquad . -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Bipolar Operation................ $\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation \qquad 500 mW
Operating Temperature Range LTC1278-4C, LTC1278-5C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC1278-4I \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

CODVERTER CHARACTERISTICS With Internal Reference (Notes 5, 6)

| | | LTC1278-4/LTC1278-5
 PARAMETER | | MIN | MAX |
| :--- | :--- | :---: | :---: | :---: | :---: | UNITS

ARALOG INPUT

(Note 5)

SYMBOL	PARAMETER	CONDITIONS		LTC1278-4/LTC1278-5			UNITS
				MIN	TYP	MAX	
VIN	Analog Input Range (Note 9)	$\begin{aligned} & 4.95 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V} \text { (Unipolar) } \\ & 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V},-5.25 \mathrm{~V} \leq \mathrm{V}_{S S} \leq-2.45 \mathrm{~V} \text { (Bipolar) } \end{aligned}$	\bullet		$\begin{aligned} & 0 \text { to } 5 \\ & \pm 2.5 \end{aligned}$		V
1 IN	Analog Input Leakage Current	$\overline{C S}=$ High	\bullet			± 1	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Analog Input Capacitance	Between Conversions (Sample Mode) During Conversions (Hold Mode)			$\begin{gathered} \hline 45 \\ 5 \end{gathered}$		pF pF

DYNAMIC ACCURACY (Note 5)

SYMBOL	PARAMETER	CONDITIONS		LTC1278-4/LTC1278-5			UNITS
				MIN	TYP	MAX	
S/(N+D)	Signal-to-Noise Plus Distortion Ratio	100kHz Input Signal 250kHz Input Signal	\bullet	70	$\begin{aligned} & 72 \\ & 70 \end{aligned}$		dB dB
THD	Total Harmonic Distortion First 5 Harmonics	100kHz Input Signal 250kHz Input Signal	-		$\begin{aligned} & -80 \\ & -74 \end{aligned}$	-78	dB dB
	Peak Harmonic or Spurious Noise	100 kHz Input Signal 250kHz Input Signal	-		$\begin{aligned} & \hline-84 \\ & -74 \end{aligned}$	-78	dB dB
IMD	Intermodulation Distortion	$\begin{aligned} & f_{\mathrm{IN1} 1}=99.37 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN2} 2}=102.4 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{IN} 1}=249.37 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN} 2}=252.4 \mathrm{kHz} \end{aligned}$			$\begin{aligned} & -82 \\ & -70 \end{aligned}$		dB dB
	Full Power Bandwidth				4		MHz
	Full Linear Bandwidth (S/(N + D) $\geq 68 \mathrm{~dB}$)				350		kHz

PARAMETER	CONDITIONS		LTC1278-4/LTC1278-5			UNITS
			MIN	TYP	MAX	
$V_{\text {REF }}$ Output Voltage	$\mathrm{I}_{\text {OUT }}=0$		2.400	2.420	2.440	V
$V_{\text {ReF }}$ Output Tempco	$\mathrm{I}_{\text {OUT }}=0$	\bullet		± 10	± 45	ppm/ ${ }^{\circ} \mathrm{C}$
$V_{\text {REF }}$ Line Regulation	$\begin{aligned} & 4.95 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.25 \mathrm{~V} \\ & -5.25 \mathrm{~V} \leq \mathrm{V}_{S S} \leq-4.95 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$		$\begin{aligned} & \mathrm{LSB} / \mathrm{V} \\ & \mathrm{LSB} / \mathrm{V} \end{aligned}$
$\mathrm{V}_{\text {REF }}$ Load Regulation	OV $\leq \mathrm{l}_{\text {OUT }} \mid \leq 1 \mathrm{~mA}$			2		LSB/mA

DIGITAL InPUTS AND DIGITAL OUTPUTS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		LTC1278-4/LTC1278-5			UNITS
				MIN	TYP	MAX	
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$V_{\text {DD }}=5.25 \mathrm{~V}$	\bullet	2.4			V
VIL	Low Level Input Voltage	$V_{D D}=4.95 \mathrm{~V}$	\bullet			0.8	V
In	Digital Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{DD}	\bullet			± 10	$\mu \mathrm{A}$
$\mathrm{ClN}^{\text {cos }}$	Digital Input Capacitance				5		pF
V_{OH}	High Level Output Voltage	$\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =4.95 \mathrm{~V} \\ I_{0} & =-10 \mu \mathrm{~A} \\ \mathrm{I}_{0} & =-200 \mu \mathrm{~A} \end{aligned}$	\bullet	4	4.7		V
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	$\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =4.95 \mathrm{~V} \\ I_{0} & =160 \mu \mathrm{~A} \\ I_{0} & =1.6 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{aligned} & 0.05 \\ & 0.10 \end{aligned}$	0.4	V
I_{02}	High Z Output Leakage D11 to D0	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}, \overline{\mathrm{CS}}$ High	\bullet			± 10	$\mu \mathrm{A}$
C_{02}	High Z Output Capacitance D11 to D0	$\overline{\text { CS }}$ High (Note 9)	\bullet			15	pF
ISOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-10		mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$			10		mA

POWER $\boldsymbol{R} \in$ PUIREMENTS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		LTC1278-4/LTC1278-5			UNITS
				MIN	TYP	MAX	
V_{DD}	Positive Supply Voltage (Notes 10, 11)	Unipolar Bipolar		$\begin{aligned} & 4.95 \\ & 4.75 \end{aligned}$		$\begin{aligned} & 5.25 \\ & 5.25 \end{aligned}$	V
$\mathrm{V}_{\text {SS }}$	Negative Supply Voltage (Note 10)	Bipolar Only		-2.45		-5.25	V
I_{DD}	Positive Supply Current	$\begin{aligned} & \mathrm{f}_{\text {SAMPLE }}=500 \mathrm{ksps} \\ & \mathrm{SHDN}=0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} \hline 15.0 \\ 1.7 \end{gathered}$	$\begin{gathered} \hline 29.5 \\ 3.0 \end{gathered}$	mA
ISS	Negative Supply Current	$\mathrm{f}_{\text {SAMPLE }}=500 \mathrm{ksps}, \mathrm{V}_{\text {SS }}=-5 \mathrm{~V}$	\bullet		0.12	0.30	mA
P_{D}	Power Dissipation	$\begin{aligned} & \mathrm{f}_{\mathrm{SAMPLE}}=500 \mathrm{ksps} \\ & \mathrm{SHDN}=0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} \hline 75.0 \\ 8.5 \\ \hline \end{gathered}$	$\begin{gathered} 150 \\ 15 \end{gathered}$	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{mWW} \end{aligned}$

TImInG CHARACTERISTICS (Note 5)

TIMInG CHARACTERISTICS (Note 5)

The indicates specifications which apply over the full operating temperature range; all other limits and typicals $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to ground with DGND and AGND wired together (unless otherwise noted).
Note 3: When these pin voltages are taken below $\mathrm{V}_{S S}$ (ground for unipolar mode) or above $V_{D D}$, they will be clamped by internal diodes. This product can handle input currents greater than 60 mA below V_{SS} (ground for unipolar mode) or above $V_{D D}$ without latch-up.
Note 4: When these pin voltages are taken below $\mathrm{V}_{S S}$ (ground for unipolar mode), they will be clamped by internal diodes. This product can handle input currents greater than 60 mA below $\mathrm{V}_{\text {SS }}$ (ground for unipolar mode) without latch-up. These pins are not clamped to V_{DD}.
Note 5: $A V_{D D}=D V_{D D}=V_{D D}=5 \mathrm{~V}$, $\left(\mathrm{V}_{S S}=-5 \mathrm{~V}\right.$ for bipolar mode $)$, $\mathrm{f}_{\text {SAMPLE }}=$ 400 kHz (LTC1278-4), 500 kHz (LTC1278-5), $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}$ unless otherwise specified.
Note 6: Linearity, offset and full-scale specifications apply for unipolar and bipolar modes.

Note 7: Integral nonlinearity is defined as the deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.
Note 8: Bipolar offset is the offset voltage measured from $-1 / 2 L S B$ when the output code flickers between 000000000000 and 111111111111.
Note 9: Guaranteed by design, not subject to test.
Note 10: Recommended operating conditions.
Note 11: $A_{I N}$ must not exceed $V_{D D}$ or fall below $V_{S S}$ by more than 50 mV for specified accuracy. Therefore the minimum supply voltage for the unipolar mode is 4.95 V . The minimum for the bipolar mode is $4.75 \mathrm{~V},-2.45 \mathrm{~V}$.
Note 12: The falling $\overline{\text { CONVST }}$ edge starts a conversion. If $\overline{\text { CONVST }}$ returns high at a bit decision point during the conversion it can create small errors. For best performance ensure that CONVST returns high either within 120ns after conversion start (i.e., before the first bit decision) or after $\overline{\text { BUSY }}$ rises (i.e., after the last bit test). See mode 1a and 1b (Figures 12 and 13) timing diagrams.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMAOCE CHARACTERISTICS

LTLTC1278 G11

LTC1278 G3

Signal-to-Noise Ratio (without Harmonics) vs Input Frequency

LTC1278 G5

LTC1278 G8
Power Supply Feedthrough vs Ripple Frequency

LTC1278 G7

Distortion vs Input Frequency

Acquisition Time vs Source Impedance

LTC1278 G9

Reference Voltage vs Load Current

PIn functions

$A_{\text {IN }}$ (Pin 1): Analog Input. 0 V to 5 V (Unipolar), $\pm 2.5 \mathrm{~V}$ (Bipolar).
$\mathbf{V}_{\text {REF }}$ (Pin 2): 2.42V Reference Output. Bypass to AGND ($10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic).

AGND (Pin 3): Analog Ground.
D11 to D4 (Pins 11 to 4): Three-State Data Outputs. D11 is the Most Significant Bit.
DGND (Pin 12): Digital Ground.
D3 to D0 (Pins 13 to 16): Three-State Data Outputs.
DV ${ }_{D D}$ (Pin17): Digital Power Supply, 5V. Tie to $A V_{D D}$ pin.
$\overline{\text { SHDN (Pin 18): Power Shutdown. }}$
CONVST (Pin 19): Conversion Start Signal. This active low signal starts a conversion on its falling edge (to recognize $\overline{\mathrm{CONVST}}, \overline{\mathrm{CS}}$ has to be low).
$\overline{\mathbf{R D}}$ (Pin 20): READ Input. This enables the output drivers when $\overline{C S}$ is low.
$\overline{\mathbf{C S}}$ (Pin 21): The CHIP SELECT input must be low for the ADC to recognize CONVST and RD inputs.
$\overline{\text { BUSY (Pin 22): The BUSY output shows the converter }}$ status. It is low when a conversion is in progress.
VSS (Pin 23): Negative Supply. -5 V for bipolar operation. Bypass to AGND with $0.1 \mu \mathrm{~F}$ ceramic. Analog ground for unipolar operation.
AV ${ }_{\text {DD }}$ (Pin 24): Positive Supply, 5V. Bypass to AGND ($10 \mu \mathrm{~F}$ tantalum in parallel with $0.1 \mu \mathrm{~F}$ ceramic).

functional block pingram

TEST CIRCUITS

Load Circuits for Access Timing

A) $\mathrm{HIGH}-\mathrm{Z} \mathrm{TO} \mathrm{V}_{\mathrm{OH}}\left(\mathrm{t}_{8}\right)$ AND $V_{O L}$ TO $V_{O H}\left(\mathrm{t}_{6}\right)$

LTC1278 TA08

Load Circuits for Output Float Delay

timing DIAGRAmS

APPLICATIONS INFORMATION

CONVERSION DETAILS

The LTC1278 uses a successive approximation algorithm and an internal sample-and-hold circuit to convert an analog signal to a 12-bit parallel output. The ADC is complete with a precision reference and an internal clock. The control logic provides easy interface to microprocessors and DSPs. (Please refer to the Digital Interface section for the data format.)
Conversion start is controlled by the $\overline{\mathrm{CS}}$ and $\overline{\text { CONVST }}$ inputs. At the start of conversion the successive approximation register (SAR) is reset. Once a conversion cycle has begun it cannot be restarted.

During conversion, the internal 12-bit capacitive DAC output is sequenced by the SAR from the most significant bit (MSB) to the least significant bit (LSB). Referring to Figure 1, the $A_{\text {IN }}$ input connects to the sample-and-hold capacitor during the acquire phase, and the comparator

Figure 1. $A_{I N}$ Input
offset is nulled by the feedback switch. In this acquire phase, a minimum delay of 200 ns will provide enough time for the sample-and-hold capacitor to acquire the analog signal. During the convert phase, the comparator feedback switch opens, putting the comparator into the

APPLLCATIONS INFORMATION

compare mode. The input switch switches $\mathrm{C}_{\text {SAMPLE }}$ to ground, injecting the analog input charge onto the summing junction. This input charge is successively compared with the binary-weighted charges supplied by the capacitive DAC. Bit decisions are made by the high speed comparator. At the end of a conversion, the DAC output balances the $A_{\text {IN }}$ input charge. The SAR contents (a 12-bit data word) which represent the $A_{\text {IN }}$ are loaded into the 12-bit output latches.

DYNAMIC PERFORMANCE

The LTC1278 has excellent high speed sampling capability. FFT (Fast Fourier Transform) testtechniques are used to test the ADC's frequency response, distortion and noise at the rated throughput. By applying a low distortion sine wave and analyzing the digital output using an FFT algorithm, the ADC's spectral content can be examined for frequencies outside the fundamental. Figure 2 shows a typical LTC1278 FFT plot.

LTC1278 F2
Figure 2. LTC1278 Nonaveraged, 4096 Point FFT Plot

Signal-to-Noise Ratio

The Signal-to-Noise plus Distortion Ratio [$\mathrm{S} /(\mathrm{N}+\mathrm{D})$] is the ratio between the RMS amplitude of the fundamental input frequency to the RMS amplitude of all other frequency components at the A/D output. The output is band limited to frequencies from above DC and below half the sampling frequency. Figure 2 shows a typical spectral content with
a 500 kHz sampling rate and a 100 kHz input. The dynamic performance is excellent for input frequencies up to the Nyquist limit of 250 kHz .

Effective Number of Bits

The Effective Number of Bits (ENOBs) is a measurement of the resolution of an ADC and is directly related to the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ by the equation:

$$
N=[S /(N+D)-1.76] / 6.02
$$

where N is the Effective Number of Bits of resolution and $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ is expressed in dB . At the maximum sampling rate of 500 kHz the LTC1278 maintains very good ENOB sup to the Nyquist input frequency of 250 kHz . Refer to Figure 3.

Figure 3. Effective Bits and Signal-to-Noise + Distortion vs Input Frequency

Total Harmonic Distortion

Total Harmonic Distortion (THD) is the ratio of the RMS sum of all harmonics of the input signal to the fundamental itself. The out-of-band harmonics alias into the frequency band between DC and half the sampling frequency. THD is expressed as:

$$
T H D=20 \log \frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2} \ldots+V_{N}^{2}}}{V_{1}}
$$

where V_{1} is the RMS amplitude of the fundamental frequency and V_{2} through V_{N} are the amplitudes of the second through Nth harmonics. THD versus input

APPLICATIONS Information

frequency is shown in Figure 4. The LTC1278 has good distortion performance up to the Nyquist frequency and beyond.

Figure 4. Distortion vs Input Frequency

Intermodulation Distortion

If the ADC input signal consists of more than one spectral component, the ADC transfer function nonlinearity can produce intermodulation distortion (IMD) in addition to THD. IMD is the change in one sinusoidal input caused by the presence of another sinusoidal input at a different frequency.

If two pure sine waves of frequencies fa and fb are applied to the ADC input, nonlinearities in the ADC transfer function can create distortion products at sum and difference frequencies of $m f a \pm n f b$, where m and $n=0,1,2,3$, etc. For example, the 2nd order IMD terms include ($\mathrm{fa}+\mathrm{fb}$) and $(f a-f b)$ while the $3 r d$ order IMD terms include ($2 f a+f b$), ($2 \mathrm{fa}-\mathrm{fb}$), (fa +2 fb), and (fa $-2 \mathrm{fb})$. If the two input sine waves are equal in magnitude, the value (in decibels) of the 2 nd order IMD products can be expressed by the following formula:

$$
\text { IMD }(\mathrm{fa} \pm \mathrm{fb})=20 \log \frac{\text { Amplitude at }(\mathrm{fa} \pm \mathrm{fb})}{\text { Amplitude at } \mathrm{fa}}
$$

Figure 5 shows the IMD performance at a 100 kHz input.

Figure 5. Intermodulation Distortion Plot

Peak Harmonic or Spurious Noise

The peak harmonic or spurious noise is the largest spectral component excluding the input signal and DC. This value is expressed in decibels relative to the RMS value of a full-scale input signal.

Full Power and Full Linear Bandwidth

The full power bandwidth is that input frequency at which the amplitude of the reconstructed fundamental is reduced by 3dB for a full-scale input signal.
The full linear bandwidth is the input frequency at which the $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ has dropped to 68 dB (11 effective bits). The LTC1278 has been designed to optimize input bandwidth, allowing ADC to undersample input signals with frequencies above the converter's Nyquist Frequency. The noise floor stays very low at high frequencies; $\mathrm{S} /(\mathrm{N}+\mathrm{D})$ becomes dominated by distortion at frequencies far beyond Nyquist.

Driving the Analog Input

The analog input of the LTC1278 is easy to drive. It draws only one small current spike while charging the sample-and-hold capacitor at the end of conversion. During conversion the analog input draws no current. The only requirement is that the amplifier driving the analog input must settle after the small current spike before the next

APPLICATIONS IIFORMATION

conversion starts. Any op amp that settles in 200ns to small current transients will allow maximum speed operation. If slower op amps are used, more settling time can be provided by increasing the time between conversions. Suitable devices capable of driving the ADC's $A_{\text {IN }}$ input include the LT1360, LT1220, LT1223 and LT1224 op amps.

Internal Reference

The LTC1278 has an on-chip, temperature compensated, curvature corrected, bandgap reference, which is factory trimmed to 2.42V. It is internally connected to the DAC and is available at Pin 2 to provide up to 1 mA current to an external load.
For minimum code transition noise the reference output should be decoupled with a capacitor to filter wideband noise from the reference ($10 \mu \mathrm{~F}$ tantalum in parallel with a $0.1 \mu \mathrm{~F}$ ceramic).
The $V_{\text {REF }}$ pin can be driven with a DAC or other means to provide input span adjustment in bipolar mode. The $\mathrm{V}_{\text {REF }}$ pin must be driven to at least 2.45 V to prevent conflict with the internal reference. The reference should be driven to no more than 4.8 V to keep the input span within the $\pm 5 \mathrm{~V}$ supplies.
Figure 6 shows an LT1006 op amp driving the reference pin. (In the unipolar mode, the input span is already 0 V to 5 V with the internal reference so driving the reference is not recommended, since the input span will exceed the supply and codes will be lost at the full scale.) Figure 7 shows a typical reference, the LT1019A-2.5 connected to the LTC1278. This will provide an improved drift (equal to the maximum 5ppm/ ${ }^{\circ} \mathrm{C}$ of the LT1019A-2.5) and $\mathrm{a} \pm 2.582 \mathrm{~V}$ full scale.

Figure 6. Driving the $V_{\text {REF }}$ with the LT1006 0 p Amp

Figure 7. Supplying a 2.5 V Reference Voltage to the LTC1278 with the LT1019A-2.5

UNIPOLAR/BIPOLAR OPERATION AND ADJUSTMENT

Figure 8a shows the ideal input/output characteristics for the LTC1278. The code transitions occur midway between successive integer LSB values (i.e., 0.5LSB, 1.5LSB, $2.5 \mathrm{LSB}, \ldots \mathrm{FS}-1.5 \mathrm{LSB}$). The output code is naturally binary with $1 \mathrm{LSB}=\mathrm{FS} / 4096=5 \mathrm{~V} / 4096=1.22 \mathrm{mV}$. Figure 8 b shows the input/output transfer characteristics for the bipolar mode in two's complement format.

Figure 8a. LTC1278 Unipolar Transfer Characteristics

Figure 8b. LTC1278 Bipolar Transfer Characteristics

APPLICATIONS INFORMATION

± 20 LSB TRIM RANGE
Figure 9a. Full-Scale Adjust Circuit

Figure 9b. LTC1278 Unipolar Offset and Full-Scale Adjust Circuit

Unipolar Offset and Full-scale Error Adjustments

In applications where absolute accuracy is important, then offset and full-scale errors can be adjusted to zero. Offset error must be adjusted before full-scale error. Figure 9a shows the extra components required for full-scale error adjustment. If both offset and full-scale adjustments are needed, the circuit in Figure 9b can be used. For zero offset error apply 0.61 mV (i.e., $1 / 2 \mathrm{LSB}$) at the input and adjust the offset trim until the LTC1278 output code flickers between 000000000000 and 000000000001 . For zero full-scale error apply an analog input of 4.99817 V (i.e., FS $-11 / 2$ LSB or last code transition) at the input and adjust R5 until the LTC1278 output code flickers between 1111 11111110 and 111111111111.

Bipolar Offset and Full-scale Error Adjustments

Bipolar offset and full-scale errors are adjusted in a similar fashion to the unipolar case. Again, bipolar offset must be adjusted before full-scale error. Bipolar offset error adjustment is achieved by trimming the offset of the op amp

Figure 9c. LTC1278 Bipolar Offset and Full-Scale Adjust Circuit
driving the analog input of the LTC1278 while the input voltage is $1 / 2$ LSB below ground. This is done by applying an input voltage of $-0.61 \mathrm{mV}(-0.5 \mathrm{LSB})$ to the input in Figure 9 c and adjusting the R8 until the ADC output code flickers between 000000000000 and 111111111111. For full-scale adjustment, an input voltage of 2.49817 V (FS - 1.5LSBs) is applied to the input and R5 is adjusted until the output code flickers between 011111111110 and 011111111111.

BOARD LAYOUT AND BYPASSING

Wire wrap boards are not recommended for high resolution or high speed A / D converters. To obtain the best performance from the LTC1278, a printed circuit board is required. Layout for the printed circuit board should ensure that digital and analog signal lines are separated as much as possible. In particular, care should be taken not to run any digital track alongside an analog signal track or underneath the ADC. The analog input should be screened by AGND.
High quality tantalum and ceramic bypass capacitors should be used at the $A V_{D D}$ and $V_{\text {REF }}$ pins as shown in Figure 10. For the bipolar mode, a 0.1μ F ceramic provides adequate bypassing for the V_{SS} pin. The capacitors must be located as close to the pins as possible. The traces connecting the pins and the bypass capacitors must be kept short and should be made as wide as possible.
Input signal leads to $A_{\text {IN }}$ and signal return leads from AGND (Pin 3) should be kept as short as possible to minimize input noise coupling. In applications where this is not possible, a shielded cable between source and ADC is recommended.

APPLICATIONS INFORMATION

Also, since any potential difference in grounds between the signal source and ADC appears as an error voltage in series with the input signal, attention should be paid to reducing the ground circuit impedances as much as possible.
A single point analog ground separate from the logic system ground should be established with an analog ground plane at Pin 3 (AGND) or as close as possible to the ADC. Pin 12 (DGND) and all other analog grounds should be connected to this single analog ground point. No other digital grounds should be connected to this analog ground point. Low impedance analog and digital power supply common returns are essential to low noise operation of the ADC and the foil width for these tracks should be as wide as possible. In applications where the ADC data outputs and control signals are connected to a continuously active microprocessor bus, it is possible to get errors in conversion results. These errors are due to feedthrough from the microprocessor to the successive approximation comparator. The problem can be eliminated by forcing the microprocessor into a WAIT state during conversion or by using three-state buffers to isolate the ADC data bus.

DIGITAL INTERFACE

The A / D converter is designed to interface with microprocessors as a memory mapped device. The $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ control inputs are common to all peripheral memory interfacing. A separate CONVST is used to initiate a conversion.

Internal Clock

The A/D converter has an internal clock that eliminates the need of synchronization between the external clock and the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ signals found in other ADCs. The internal clock is factory trimmed to achieve a typical conversion time of $1.6 \mu \mathrm{~s}$. No external adjustments are required, and with the typical acquisition time of 250ns, throughput performance of 500 ksps is assured.

Power Shutdown

The LTC1278 provides a shutdown feature that will save power when the ADC is in inactive periods. To power down the ADC, Pin 18 (SHDN) needs to be driven low. When in power shutdown mode, the LTC1278 will not start a conversion even though the CONVST goes low. All the

Figure 10. Power Supply Grounding Practice

Figure 11. Internal Logic for Control Inputs $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{CONVST}}$ and $\overline{\mathrm{SHDN}}$
13

APPLICATIONS INFORMATION

power is off except the Internal Reference which is still active and provides 2.42 V output voltage to the other circuitry. In this mode the ADC draws 8.5 mW instead of 75 mW (for minimum power, the logic inputs must be within 600 mV of the supply rails). The wake-up time from the power shutdown to active state is 350 ns .

Timing and Control

Conversion start and data read operations are controlled by three digital inputs: $\overline{\mathrm{CS}}, \overline{\mathrm{CONVST}}$ and $\overline{\mathrm{RD}}$. Figure 11 shows the logic structure associated with these inputs. A Iogic "0" for CONVST will start a conversion after the ADC has been selected (i.e., $\overline{\mathrm{CS}}$ is low). Once initiated it cannot be restarted until the conversion is complete. Converter status is indicated by the BUSY output, and this is low while conversion is in progress.
Figures 12 through 16 show several different modes of operation. In modes 1a and 1 b (Figures 12 and 13) $\overline{\mathrm{CS}}$ and RD are both tied low. The falling CONVST starts the conversion. The data outputs are always enabled and data can be latched with the BUSY rising edge. Mode 1a shows operation with a narrow low going CONVST pulse. Mode 1 b shows high going CONVST pulse.

In mode 2 (Figure 14) $\overline{\mathrm{CS}}$ is tied low. The falling CONVST signal again starts the conversion. Data outputs are in three-state until read by MPU with the RD signal. Mode 2 can be used for operation with a shared MPU databus.
In Slow memory and ROM modes (Figures 15 and 16) $\overline{C S}$ is tied low and CONVST and $\overline{R D}$ are tied together. The MPU starts conversion and read the output with the $\overline{\mathrm{RD}}$ signal. Conversions are started by the MPU or DSP (no external sample clock).
In Slow memory mode the processor takes $\overline{\mathrm{RD}}$ (= $\overline{\text { CONVST }}$) low and starts the conversion. BUSY goes low forcing the processor into a WAIT state. The previous conversion result appears on the data outputs. When the conversion is complete, the new conversion results appear on the data outputs; BUSY goes high releasing the processor, and the processor takes $\overline{\mathrm{RD}}$ (= CONVST) back high and reads the new conversion data.

In ROM mode, the processor takes $\overline{\mathrm{RD}}$ (= $\overline{\text { CONVST }}$) low which starts a conversion and reads the previous conversion result. After the conversion is complete, the processor can read the new result (which will initiate another conversion).

Figure 13. Mode 1b. $\overline{\text { CONVST }}$ Starts a Conversion. Data Outputs Always Enabled. ($\overline{\text { CONVST }}=\curvearrowleft \downarrow \square$)

APPLICATIONS INFORMATION

Figure 14. Mode 2. $\overline{\text { CONVST }}$ Starts a Conversion. Data is Read by $\overline{\mathrm{RD}}$

Figure 15. Slow Memory Mode

Figure 16. ROM Mode Timing

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

PACKAGE DESCRIPTION Dimensions in incteses (mililimeters) unless oltemivise noled.

N Package
 24-Lead PDIP (Narrow 0.300)

(LTC DWG \# 05-08-1510)

SW Package
24-Lead Plastic Small Outline (Wide 0.300)
(LTC DWG \# 05-08-1620)

NOTE:

1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006 " $(0.152 \mathrm{~mm})$ PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1274/LTC1277	12-Bit, 10mW, 100ksps A/D Converters with 1 μ A Shutdown	Complete with Clock Reference
LTC1279	12-Bit, 600ksps Sampling A/D Converter with Shutdown	70dB SINAD at Nyquist, Low Power
LTC1400	12-Bit, 400ksps Serial A/D Converter	Complete High Speed 12-Bit ADC in S0-8
LTC1409	12-Bit, 800ksps Sampling A/D Converter with Shutdown	Fast, Complete Low Power ADC
LTC1415	12-Bit, 1.25Msps Sampling A/D Converter with Shutdown	Single 5V Supply, Low Power: 55mW
LTC1419	14-Bit, 800ksps Sampling A/D Converter with Shutdown	81.5dB SINAD, Low Power: 150mW

