Current Transducer LTC 1000-T For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). $I_{PN} = 1000 A$ ### **Electrical data** | I _{PN} I _P R _M | Primary nominal r.m.s. current
Primary current, measuring range @ 24 V
Max overload not measurable
Measuring resistance | | 1000
0 \pm 2
10 / 10
$\mathbf{R}_{M \text{ min}}$ | | A
A
kA/ms | |---|--|---------------------------|--|--------|--------------------| | | with ± 15 V | @ ± 1000 A _{max} | 0 | 15 | Ω | | | | @ ± 1200 A max | 0 | 7 | Ω | | | with ± 24 V | @ ± 1000 A _{max} | 0 | 50 | Ω | | | | @ $\pm 2000 A_{max}$ | 0 | 7 | Ω | | I _{SN} | Secondary nominal r.m.s. current | | 200 | | m A | | K _N | Conversion ratio | | 1:500 | 0 | | | V _c | Supply voltage (± 5 %) | | ± 15 | 24 | V | | I _C | Current consumption | | < 30 (@ | ±24V)+ | ⊦l _s mA | | V _d | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn | | 13.4 ²⁾ | | kV | | n | | | 1.5 ³⁾ | | kV | | V _e | R.m.s. voltage for partial discharge extinction | | > 2.8 | | kV | ### **Accuracy - Dynamic performance data** | \mathbf{X}_{G} | Overall accuracy @ I _{PN} , T _A = 25°C | $< \pm 0.4$ | % | |-------------------------------------|--|------------------------|-------------------| | $\mathbf{e}_{\scriptscriptstyle L}$ | @ \mathbf{I}_{PN} , \mathbf{T}_{A} = - 40°C + 85°C Linearity | < ± 1
< 0.1 | %
% | | I _о
I _{от} | Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$
Thermal drift of I_O - $40^{\circ}C + 85^{\circ}C$ | Max
± 0.5
± 1 | m A
m A | | t _,
di/dt
f | Response time 4) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB) | < 1
> 100
DC 100 | μs
Α/μs
kHz | #### General data | T , | Ambient operating temperature | - 40 + 85 | °C | | |---------------------------|---|---------------|--------------------|--| | T _s | Ambient storage temperature | - 45 + 90 | °C | | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 85°C | 44 | Ω | | | m | Mass | 1270 | g | | | | Standards | EN50155 (01.1 | EN50155 (01.12.20) | | | | | | | | Notes : 1) With a di/dt of > $5 \text{ A/}\mu\text{s}$ 2) Between primary and secondary + shield ³⁾ Between secondary and shield 4) With a di/dt of 100 Å/µs. #### **Features** - Closed loop (compensated) current transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0 - Railway equipment. # **Advantages** - Excellent accuracy - Very good linearity - Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - · Current overload capability. ### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. 030528/0 # **Dimensions LTC 1000-T** (in mm. 1 mm = 0.0394 inch) ## **Mechanical characteristics** • General tolerance Fixing the transducer Fastening torque max Connection of secondary Fastening torque max ±1 mm 2 holes \varnothing 13 mm or by the primary bar 2 steel screws M12 24.5 Nm 24.5 MIII M5 threaded studs 2.2 Nm or 1.62 Lb.-Ft. Faston 6.3 x 0.8 mm ## Remarks - I_s is positive when I_s flows in the direction of the arrow. - Temperature of the primary conductor should not exceed - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole. LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.