

Current Transducer LTC 1000-T

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

 $I_{PN} = 1000 A$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range @ 24 V Max overload not measurable Measuring resistance		1000 0 \pm 2 10 / 10 $\mathbf{R}_{M \text{ min}}$		A A kA/ms
	with ± 15 V	@ ± 1000 A _{max}	0	15	Ω
		@ ± 1200 A max	0	7	Ω
	with ± 24 V	@ ± 1000 A _{max}	0	50	Ω
		@ $\pm 2000 A_{max}$	0	7	Ω
I _{SN}	Secondary nominal r.m.s. current		200		m A
K _N	Conversion ratio		1:500	0	
V _c	Supply voltage (± 5 %)		± 15	24	V
I _C	Current consumption		< 30 (@	±24V)+	⊦l _s mA
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		13.4 ²⁾		kV
n			1.5 ³⁾		kV
V _e	R.m.s. voltage for partial discharge extinction		> 2.8		kV

Accuracy - Dynamic performance data

\mathbf{X}_{G}	Overall accuracy @ I _{PN} , T _A = 25°C	$< \pm 0.4$	%
$\mathbf{e}_{\scriptscriptstyle L}$	@ \mathbf{I}_{PN} , \mathbf{T}_{A} = - 40°C + 85°C Linearity	< ± 1 < 0.1	% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$ Thermal drift of I_O - $40^{\circ}C + 85^{\circ}C$	Max ± 0.5 ± 1	m A m A
t _, di/dt f	Response time 4) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1 > 100 DC 100	μs Α/μs kHz

General data

T ,	Ambient operating temperature	- 40 + 85	°C	
T _s	Ambient storage temperature	- 45 + 90	°C	
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 85°C	44	Ω	
m	Mass	1270	g	
	Standards	EN50155 (01.1	EN50155 (01.12.20)	

Notes : 1) With a di/dt of > $5 \text{ A/}\mu\text{s}$

2) Between primary and secondary + shield

³⁾ Between secondary and shield

4) With a di/dt of 100 Å/µs.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

030528/0

Dimensions LTC 1000-T (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fixing the transducer

Fastening torque max

Connection of secondary

Fastening torque max

±1 mm

2 holes \varnothing 13 mm or by the primary bar

2 steel screws M12

24.5 Nm

24.5 MIII

M5 threaded studs 2.2 Nm or 1.62 Lb.-Ft.

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_s flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.