Constant-Current DC/DC LED Driver in ThinSOT

feATURES

- Up to 80\% Efficiency
- Inherently Matched LED Current
- Drives Five White LEDs from 2V
- Drives Six White LEDs from 2.7V
- Drives Eight White LEDs from 3V
- Precise, Adjustable Control of LED Current
- Disconnects LEDs In Shutdown
- 1.2MHz Fixed Frequency Switching
- Uses Tiny Ceramic Capacitors
- Uses Tiny 1 mm -Tall Inductors
- Regulates Current Even When $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {OUt }}$
- Operates with V_{IN} as Low as 1 V
- Low Profile (1 mm) ThinSOT ${ }^{\text {TM }}$ Package

APPLICATIONS

- Celluar Telephones
- Handheld Computers
- Digital Cameras
- Portable MP3 Players
- Pagers

DESCRIPTIOn

The $\mathrm{LT}{ }^{\circledR} 1932$ is a fixed frequency step-up DC/DC converter designed to operate as a constant-current source. Because it directly regulates output current, the LT1932 is ideal for driving light emitting diodes (LEDs) whose light intensity is proportional to the current passing through them, not the voltage across their terminals.

With an input voltage range of 1 V to 10 V , the device works from a variety of input sources. The LT1932 accurately regulates LED current even when the input voltage is higher than the LED voltage, greatly simplifying batterypowered designs. A single external resistor sets LED current between 5 mA and 40 mA , which can then be easily adjusted using either a DC voltage or a pulse width modulated (PWM) signal. When the LT1932 is placed in shutdown, the LEDs are disconnected from the output, ensuring a quiescent current of under $1 \mu \mathrm{~A}$ for the entire circuit. The device's 1.2 MHz switching frequency permits the use of tiny, low profile chip inductors and capacitors to minimize footprint and cost in space-conscious portable applications.

[^0]TYPICAL APPLICATION

Li-Ion Driver for Four White LEDs

Efficiency

ABSOLUTE MAXIMUM RATINGS

(Note 1)
VIN Voltage ... 10V
SHDN Voltage ... 10V
SW Voltage .. 36V
LED Voltage .. 36V
RSET Voltage ... 1 V
Junction Temperature ... $125^{\circ} \mathrm{C}$
Operating Temperature Range (Note 2) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDEß InFORMATION

	ORDER PART NUMBER
	LT1932ES6
	S6 PART MARKING
	LTST

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes specifications that apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{I N}=1.2 \mathrm{~V}, \mathrm{~V}_{\overline{S H D N}}=1.2 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Input Voltage					1	V
Quiescent Current	$\begin{aligned} & V_{\text {RSET }}=0.2 \mathrm{~V} \\ & V_{\overline{S H D N}}=0 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.0 \end{aligned}$	mA $\mu \mathrm{A}$
$\mathrm{R}_{\text {SET }}$ Pin Voltage	$\mathrm{R}_{\text {SET }}=1.50 \mathrm{k}$			100		mV
LED Pin Voltage	$\mathrm{R}_{\text {SET }}=1.50 \mathrm{k}, \mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {OUT }}$ (Figure 1)			120	180	mV
LED Pin Current	$\begin{aligned} & \mathrm{R}_{\text {SET }}=562 \Omega, \mathrm{~V}_{\text {IN }}=1.5 \mathrm{~V} \\ & \mathrm{R}_{\text {SET }}=750 \Omega, \mathrm{~V}_{\text {IN }}=1.2 \mathrm{~V} \\ & \mathrm{R}_{\text {SET }}=1.50 \mathrm{~K}, \mathrm{~V}_{\text {IN }}=1.2 \mathrm{~V} \\ & \mathrm{R}_{\text {SET }}=4.53 \mathrm{~K}, \mathrm{~V}_{\text {IN }}=1.2 \mathrm{~V} \end{aligned}$		$\begin{gathered} 34 \\ 26 \\ 12.5 \end{gathered}$	$\begin{gathered} 38 \\ 30 \\ 15 \\ 5 \end{gathered}$	$\begin{gathered} 42 \\ 34 \\ 17.5 \end{gathered}$	mA mA mA mA
LED Pin Current Temperature Coefficient	$\mathrm{I}_{\text {LED }}=15 \mathrm{~mA}$			-0.02		$\mathrm{mA} /{ }^{\circ} \mathrm{C}$
Switching Frequency	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}$		0.8	1.2	1.6	MHz
Maximum Switch Duty Cycle		\bullet	90	95		\%
Switch Current Limit			400	550	780	mA
Switch V CESAT	$\mathrm{I}_{\text {SW }}=300 \mathrm{~mA}$			150	200	mV
$\overline{\text { SHDN }}$ Pin Current	$\begin{aligned} & V \overline{\mathrm{SHDN}}=0 \mathrm{~V} \\ & \mathrm{~V} \overline{\mathrm{SHDN}}=2 \mathrm{~V} \\ & \hline \end{aligned}$			$\begin{gathered} 0 \\ 15 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 30 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Start-Up Threshold (SHDN Pin) Shutdown Threshold (SHDN Pin)			0.85		0.25	V
Switch Leakage Current	Switch Off, V $\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$			0.01	5	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The LT1932E is guaranteed to meet specifications from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

TYPICAL PGRFORMANCE CHARACTGRISTICS

PIn functions

SW (Pin 1): Switch Pin. This is the collector of the internal NPN power switch. Minimize the metal trace area connected to this pin to minimize EMI.
GND (Pin 2): Ground Pin. Tie this pin directly to local ground plane.
LED (Pin 3): LED Pin. This is the collector of the internal NPN LED switch. Connect the cathode of the bottom LED to this pin.
$\mathbf{R}_{\text {SET }}$ (Pin 4): A resistor between this pin and ground programs the LED current (that flows into the LED pin). This pin is also used to provide LED dimming.

SHDN (Pin 5): Shutdown Pin. Tie this pin higher than 0.85 V to turn on the LT1932; tie below 0.25 V to turn it off.
V_{IN} (Pin 6): Input Supply Pin. Bypass this pin with a capacitor to ground as close to the device as possible.

BLOCK DIAGRAM

Figure 1. LT1932 Block Diagram

OPERATION

The LT1932 uses a constant frequency, current mode control scheme to regulate the output current, $\mathrm{I}_{\text {LED }}$. Operation can be best understood by referring to the block diagram in Figure 1. At the start of each oscillator cycle, the SR latch is set, turning on power switch Q1. The signal at the noninverting input of the PWM comparator A2 is proportional to the switch current, summed together with a portion of the oscillator ramp. When this signal reaches the level set by the output of error amplifier A1, comparator A2 resets the latch and turns off the
power switch. In this manner, A1 sets the correct peak current level to keep the LED current in regulation. If A1's output increases, more current is delivered to the output; if it decreases, less current is delivered. A1 senses the LED current in switch Q2 and compares it to the current reference, which is programmed using resistor $\mathrm{R}_{\text {SET }}$. The $\mathrm{R}_{\text {SET }}$ pin is regulated to 100 mV and the output current, $l_{\text {LED }}$, is regulated to $225 \bullet{ }^{\text {SET }}$. Pulling the $\mathrm{R}_{\text {SET }}$ pin higher than 100 mV will pull down the output of A1, turning off power switch Q1 and LED switch Q2.

APPLICATIONS InFORMATION

Inductor Selection

Several inductors that work well with the LT1932 are listed in Table 1. Many different sizes and shapes are available. Consult each manufacturer for more detailed information and for their entire selection of related parts. As core losses at 1.2 MHz are much lower for ferrite cores that for the cheaper powdered-iron ones, ferrite core inductors should be used to obtain the best efficiency. Choose an inductor that can handle at least 0.5A and ensure that the inductor has a low DCR (copper wire resistance) to minimize I^{2} R power losses. A $4.7 \mu \mathrm{H}$ or $6.8 \mu \mathrm{H}$ inductor will be a good choice for most LT1932 designs.
Table 1. Recommended Inductors

PART	L $(\mu \mathrm{H})$	MAX DCR $(\mathbf{m} \Omega)$	MAX HEIGHT $(\mathbf{m m})$	VENDOR
ELJEA4R7	4.7	180	2.2	Panasonic (714) 373-7334 www.panasonic.com
ELJEA6R8	6.8	250	2.2	
			2.2	Murata (814) 237-1431 www.murata.com
LQH3C4R7M24	4.7	260	2.2	
LQH3C100M24	10	300		
			250	2.0
LB2016B4R7	4.7	350	2.0	Taiyo Yuden (408) 573-4150 www.t-yuden.com
LB2016B100	6.8	350		
				0.8
CMD4D06-4R7	4.7	216	Sumida	
CMD4D06-6R8	6.8	296	0.8	(847) 956-0666
CLQ4D10-4R7	4.7	162	1.2	www.sumida.com
CLQ4D10-6R8	6.8	195	1.2	

Inductor Efficiency Considerations

Many applications have thickness requirements that restrict component heights to 1 mm or 2 mm . There are 2 mm tall inductors currently available that provide a low DCR and low core losses that help provide good overall efficiency. Inductors with a height of 1 mm (and less) are becoming more common, and a few companies have introduced chip inductors that are not only thin, but have a very small footprint as well. While these smaller inductors will be a necessity in some designs, their smaller size gives higher DCR and core losses, resulting in lower efficiencies. Figure 2 shows efficiency for the Typical Application circuit on the front page of this data sheet, with several different inductors. The larger devices improve
efficiency by up to 12% over the smaller, thinner ones. Keep this in mind when choosing an inductor.

The value of inductance also plays an important role in the overall system efficiency. While a $1 \mu \mathrm{H}$ inductor will have a lower DCR and a higher current rating than the $6.8 \mu \mathrm{H}$ version of the same part, lower inductance will result in higher peak currents in the switch, inductor and diode. Efficiency will suffer if inductance is too small. Figure 3 shows the efficiency of the Typical Application on the front page of this data sheet, with several different values of the same type of inductor (Panasonic ELJEA). The smaller values give an efficiency 3% to 5% lower than the $6.8 \mu \mathrm{H}$ value.

Figure 2. Efficiency for Several Different Inductor Types

Figure 3. Efficiency for Several Different Inductor Values

APPLICATIONS InFORMATION

Capacitor Selection

Low ESR (equivalent series resistance) capacitors should be used at the output to minimize the output ripple voltage. Because they have an extremely low ESR and are available in very small packages, multilayer ceramic capacitors are an excellent choice. X5R and X7R type capacitors are preferred because they retain their capacitance over wider voltage and temperature ranges than other types such as Y 5 V or Z 5 U . A $1 \mu \mathrm{~F}$ or $2.2 \mu \mathrm{~F}$ output capacitor is sufficient for most applications. Always use a capacitor with a sufficient voltage rating. Ceramic capacitors do not need to be derated (do not buy a capacitor with a rating twice what your application needs). A 16 V ceramic capacitor is good to more than 16 V , unlike a 16 V tantalum, which may be good to only 8 V when used in certain applications. Low profile ceramic capacitors with a 1 mm maximum thickness are available for designs having strict height requirements.
Ceramic capacitors also make a good choice for the input decoupling capacitor, which should be placed as close as possible to the LT1932. A $2.2 \mu \mathrm{~F}$ or $4.7 \mu \mathrm{~F}$ input capacitor is sufficient for most applications. Table 2 shows a list of several ceramic capacitor manufacturers. Consult the manufacturers for detailed information on their entire selection of ceramic parts.

Table 2. Recommended Ceramic Capacitor Manufacturers

VENDOR	PHONE	URL
Taiyo Yuden	(408) 573-4150	www.t-yuden.com
Murata	(814) 237-1431	www.murata.com
Kemet	$(408) 986-0424$	www.kemet.com

Diode Selection

Schottky diodes, with their low forward voltage drop and fast switching speed, are the ideal choice for LT1932 applications. Table 3 shows several different Schottky diodes that work well with the LT1932. Make sure that the diode has a voltage rating greater than the output voltage. The diode conducts current only when the power switch is
turned off (typically less than one-third the time), so a 0.4A or 0.5 A diode will be sufficient for most designs.

Table 3. Recommended Schottky Diodes

PART	VENDOR
MBR0520	ON Semiconductor
MBR0530	(800) 282-9855
MBR0540	www.onsemi.com
ZHCS400	Zetex
ZHCS500	(631) 543-7100
	www.zetex.com

Programming LED Current

The LED current is programmed with a single resistor connected to the $\mathrm{R}_{\text {SET }}$ pin (see Figure 1). The $\mathrm{R}_{\text {SET }}$ pin is internally regulated to 100 mV , which sets the current flowing out of this pin, $I_{\text {SET }}$, equal to $100 \mathrm{mV} / \mathrm{R}_{\text {SET }}$. The LT1932 regulates the current into the LED pin, $\mathrm{I}_{\text {LED }}$, to 225 times the value of $I_{\text {SET }}$. For the best accuracy, a 1% (or better) resistor value should be used. Table 4 shows several typical 1\% RSET values. For other LED current values, use the following equation to choose $\mathrm{R}_{\text {SET }}$.

$$
\mathrm{R}_{\mathrm{SET}}=225 \cdot\left(\frac{0.1 \mathrm{~V}}{\mathrm{~L}_{\mathrm{LED}}}\right)
$$

Table 4. R Ret Resistor Values

$\mathbf{I}_{\text {LED }}(\mathrm{mA})$	R $_{\text {SET }}$ VALUE
40	562Ω
30	750Ω
20	1.13 k
15	1.50 k
10	2.26 k
5	4.53 k

Most white LED s are driven at maximum currents of 15 mA to 20 mA . Some higher power designs will use two parallel strings of LEDs for greater light output, resulting in 30 mA to 40 mA (two strings of 15 mA to 20 mA) flowing into the LED pin.

APPLICATIONS INFORMATION

Open-Circuit Protection

For applications where the string of LEDs can be disconnected or could potentially become an open circuit, azener diode can be added across the LEDs to protect the LT1932 (see Figure 4). If the device is turned on without the LEDs present, no current feedback signal is provided to the LED pin. The LT1932 will then switch at its maximum duty cycle, generating an output voltage 10 to 15 times greater than the input voltage. Without the zener, the SW pin could see more than 36 V and exceed its maximum rating. The zener voltage should be larger than the maximum forward voltage of the LED string.

Figure 4. LED Driver with Open-Circuit Protection

Dimming Using a PWM Signal

PWM brightness control provides the widest dimming range (greater than 20:1) by pulsing the LEDs on and off using the control signal. The LEDs operate at either zero or full current, but their average current changes with the PWM signal duty cycle. Typically, a 5kHz to 40kHz PWM signal is used. PWM dimming with the LT1932 can be accomplished two different ways (see Figure 6). The SHDN pin can be driven directly or a resistor can be added to drive the $\mathrm{R}_{\text {SET }}$ pin.
If the $\overline{\text { SHDN }}$ pin is used, increasing the duty cycle will increase the LED brightness. Using this method, the LEDs can be dimmed and turned off completely using the same control signal. A 0\% duty cycle signal will turn off the LT1932, reducing the total quiescent current to zero.

If the $R_{\text {SET }}$ pin is used, increasing the duty cycle will decrease the brightness. Using this method, the LEDs are dimmed using RSET and turned off completely using SHDN. If the $\mathrm{R}_{\text {SET }}$ pin is used to provide PWM dimming, the approximate value of $\mathrm{R}_{\text {PWM }}$ should be (where $\mathrm{V}_{\text {MAX }}$ is the "high" value of the PWM signal):

$$
\mathrm{R}_{\mathrm{PWM}}=\mathrm{R}_{\mathrm{SET}} \cdot\left(\frac{\mathrm{~V}_{\mathrm{MAX}}}{0.15 \mathrm{~V}}-1\right)
$$

In addition to providing the widest dimming range, PWM brightness control also ensures the "purest" white LED color over the entire dimming range. The true color of a white LED changes with operating current, and is the "purest" white at a specific forward current, usually 15 mA or 20 mA . If the LED current is less than or more than this value, the emitted light becomes more blue. For color LCDs, this often results in a noticeable and undesirable blue tint to the display.

When a PWM control signal is used to drive the $\overline{\text { SHDN }}$ pin of the LT1932 (see Figure 6), the LEDs are turned off and on at the PWM frequency. The current through them alternates between full current and zero current, so the average current changes with duty cycle. This ensures that when the LEDs are on, they can be driven at the appropriate current to give the purest white light. Figure 5 shows the LED current when a 5 kHz PWM dimming control signal is used with the LT1932. The LED current waveform cleanly tracks the PWM control signal with no delays, so the LED brightness varies linearly with the PWM duty cycle.

Figure 5. PWM Dimming Using the $\overline{\text { SHDN }}$ Pin

APPLICATIONS InFORMATION

Dimming Using a Filtered PWM Signal

While the direct PWM method provides the widest dimming range and the purest white light output, it causes the LT1932 to enter into Burst Mode ${ }^{\text {TM }}$ operation. This operation may be undesirable for some systems, as it may reflect some noise to the input source at the PWM frequency. The solution is to filter the control signal by adding a 10k resistor and a $0.1 \mu \mathrm{~F}$ capacitor as shown in Figure 6, converting the PWM to a DC level before it reaches the $R_{\text {SET }}$ pin. The 10k resistor minimizes the capacitance seen by the $\mathrm{R}_{\text {SET }}$ pin.

Dimming Using a Logic Signal

For applications that need to adjust the LED brightness in discrete steps, a logic signal can be used as shown in Figure 6. $\mathrm{R}_{\text {MIIN }}$ sets the minimum LED current value (when the NMOS is off):

$$
\mathrm{R}_{\mathrm{MIN}}=225 \cdot\left(\frac{0.1 \mathrm{~V}}{\mathrm{I}_{\operatorname{LED}(\mathrm{MIN})}}\right)
$$

$R_{\text {INCR }}$ sets how much the LED current is increased when the NMOS is turned on:

Dimming Using a DC Voltage

For some applications, the preferred method of brightness control uses a variable DC voltage to adjust the LED current. As the DC voltage is increased, current flows through $R_{A D J}$ into $R_{S E T}$, reducing the current flowing out of the $R_{S E T}$ pin, thus reducing the LED current. Choose the $R_{A D J}$ value as shown below where $\mathrm{V}_{\text {MAX }}$ is the maximum DC control voltage, I IED(MAX) is the current programmed by $\mathrm{R}_{\text {SET }}$, and $\mathrm{I}_{\mathrm{LED}(\mathrm{MIN})}$ is the minimum value of $\mathrm{I}_{\text {LED }}$ (when the $D C$ control voltage is at $\mathrm{V}_{\mathrm{MAX}}$).

$$
\mathrm{R}_{\mathrm{ADJ}}=225 \cdot\left(\frac{\mathrm{~V}_{\mathrm{MAX}}-0.1 \mathrm{IV}}{\operatorname{LEDD(MAX)}-\mathrm{I}_{\mathrm{LED}(\mathrm{MIN})}}\right)
$$

Regulating LED Current when $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\text {OUT }}$

The LT1932 contains special circuitry that enables it to regulate the LED current even when the input voltage is higher than the output voltage. When $\mathrm{V}_{\text {IN }}$ is less than $\mathrm{V}_{\text {OUT }}$, the internal NPN LED switch (transistor Q2 in Figure 1) is saturated to provide a lower power loss. When $V_{\text {IN }}$ is greater than $\mathrm{V}_{\text {OUT }}$, the NPN LED switch comes out of saturation to keep the LED current in regulation.

Burst Mode is a trademark of Linear Technology Corporation.

$$
\mathrm{R}_{\text {INCR }}=225 \cdot\left(\frac{0.1 \mathrm{~V}}{l_{\text {LED(INCREASE) }}}\right)
$$

Figure 6. Five Methods of LED Dimming

APPLICATIONS InFORMATION

Board Layout Considerations

As with all switching regulators, careful attention must be paid to the PCB board layout and component placement. To maximize efficiency, switch rise and fall times are made as short as possible. To prevent radiation and high frequency resonance problems, proper layout of the high frequency switching path is essential. Minimize the length and area of all traces connected to the SW pin and always use a ground plane under the switching regulator to minimize interplane coupling. The signal path including the switch, output diode D1 and output capacitor C2, contains nanosecond rise and fall times and should be kept as short as possible. In addition, the ground connection for the R $_{\text {SET }}$ resistor should be tied directly to the GND pin and not be shared with any other component, ensuring a clean, noise-free connection. Recommended component placement is shown in Figure 7.

Figure 7. Recommended Component Placement

TYPICAL APPLICATIONS

5V Driver for 16 White LEDs

Efficiency

1932 TA14b

TYPICAL APPLICATIONS

Single Cell Driver for One White LED

Efficiency

TYPICAL APPLICATIONS

2-Cell Driver for Two White LEDs

2-Cell Driver for Three White LEDs

Efficiency

1932 TA15b

Efficiency

TYPICAL APPLICATIONS

2-Cell Driver for Four White LEDs

Efficiency

Efficiency

1932 TA07b
1932 TA076

TYPICAL APPLICATIONS

Li-Ion Driver for Two White LEDs

Li-Ion Driver for Three White LEDs

Efficiency

Efficiency

TYPICAL APPLICATIONS

Efficiency

Efficiency

TYPICAL APPLICATIONS

Li-Ion Driver for Eight White LEDs

Efficiency

PACKAGE DESCRIPTION
S6 Package
6-Lead Plastic SOT-23
(LTC DWG \# 05-08-1634)
(LTC DWG \# 05-08-1636)

TYPICAL APPLICATION

Li-Ion Driver for Ten White LEDs

Efficiency

Efficiency

1932 TA12b

Li-Ion Driver for Six White LEDs

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1615	Micropower DC/DC Converter in 5-Lead ThinSOT	20V at 12mA from 2.5V Input, ThinSOT Package
LT1617	Micropower Inverting DC/DC Converter in 5-Lead ThinSOT	-15 V at 12mA from 2.5V Input, ThinSOT Package
LT1618	Constant-Current/Constant-Voltage DC/DC Converter	Drives 20 White LEDs from Li-Ion, MS10 Package
LTC1682	Doubler Charge Pump with Low Noise Linear Regulator	3.3 V and 5V Outputs with 60uV RMS Noise, Up to 80mA Output
LT1930	1.4MHz Switching Regulator in 5-Lead ThinSOT	5 V at 480mA from 3.3V Input, ThinSOT Package
LT1931	Inverting 1.2MHz Switching Regulator in 5-Lead ThinSOT	-5 V at 350mA from 5V Input, ThinSOT Package
LTC3200	Low Noise Regulated Charge Pump	5V Output with Up to 100mA Output

[^0]: $\mathbf{\Sigma Y}$, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.

