features

- 400MHz Gain Bandwidth Product
- 2500V/us Slew Rate
- -85dBc Distortion at 5MHz
- 9mA Supply Current Per Amplifier
- Space Saving SOT-23 and MS8 Packages
- $6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Input Noise Voltage
- Unity-Gain Stable
- 1.5mV Maximum Input Offset Voltage
- $8 \mu \mathrm{~A}$ Maximum Input Bias Current
- 800nA Maximum Input Offset Current
- 40 mA Minimum Output Current, $\mathrm{V}_{\text {Out }}= \pm 3 \mathrm{~V}$
- $\pm 3.5 \mathrm{~V}$ Minimum Input CMR, $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$
- Specified at $\pm 5 \mathrm{~V}$, Single 5 V Supplies
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

APPLICATIONS

- Wideband Amplifiers
- Buffers
- Active Filters
- Video and RF Amplification
- Communication Receivers
- Cable Drivers
- Data Acquisition Systems

DESCRIPTIOn

The LT® $1818 / L T 1819$ are single/dual wide bandwidth, high slew rate, low noise and distortion operational amplifiers with excellent DC performance. The LT1818/LT1819 have been designed for wider bandwidth and slew rate, much lower input offset voltage and lower noise and distortion than devices with comparable supply current. The circuit topology is a voltage feedback amplifier with the excellent slewing characteristics of a current feedback amplifier.
The outputdrives 100Ω load to $\pm 3.8 \mathrm{~V}$ with $\pm 5 \mathrm{~V}$ supplies. On a single 5 V supply, the output swings from 1 V to 4 V with a 100Ω load connected to 2.5 V . The amplifier is unitygain stable with a 20pF capacitive load without the need for a series resistor. Harmonic distortion is -85 dBc up to 5 MHz for a $2 \mathrm{~V}_{\text {p-p }}$ output at a gain of 2 .
The LT1818/LT1819 are manufactured on Linear Technology's advanced low voltage complementary bipolar process. The LT1818 (single op amp) is available in SOT-23 and SO-8 packages; the LT1819 (dual op amp) is available in MSOP-8 and SO-8 packages.

[^0]
TYPICAL APPLICATION

Single Supply Unity-Gain ADC Driver for Oversampling Applications

FFT of Single Supply ADC Driver

LT1818/LT1819

AßSOLUTE MAXIMUM RATINGS

(Note 1)
Total Supply Voltage (V^{+}to V^{-})........................... 12.6 V
Differential Input Voltage
(Transient Only, Note 2) \qquad
Output Short-Circuit Duration (Note 3) Indefinite Operating Temperature Range (Note 8) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Specified Temperature Range (Note 9) ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Maximum Junction Temperature $150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATION

	ORDER PART NUMBER		ORDER PART NUMBER
	LT1818CS5 LT1818IS5		LT1819CMS8 LT1819IMS8
	S5 PART* MARKING		MS8 PART MARKING
	LTF7		$\begin{aligned} & \text { LTE7 } \\ & \text { LTE5 } \end{aligned}$
	ORDER PART NUMBER		ORDER PART NUMBER
	LT1818CS8 LT1818IS8		LT1819CS8 LT1819IS8
	S8 PART MARKING		S8 PART MARKING
	$\begin{aligned} & 1818 \\ & 1818 \mid \end{aligned}$		$\begin{aligned} & \hline 1819 \\ & 1819 \mid \end{aligned}$

*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS
The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 9) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	(Note 4) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	0.2	$\begin{aligned} & 1.5 \\ & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$	mV mV mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Input Offset Voltage Drift	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \text { (Note 7) } \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \text { (Note } 7 \text {) } \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	60	$\begin{gathered} \hline 800 \\ 1000 \\ 1200 \\ \hline \end{gathered}$	nA nA nA
I_{B}	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet	-2	$\begin{aligned} & \pm 8 \\ & \pm 10 \\ & \pm 12 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$		6		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$		1.2		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
						18189

ELECTRICAL CHARACTERISTICS The e denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 9) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$, unless otherwise noted.

LT1818/LT1819

ELECARICAL CHPRACTERISTICS The \bullet denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Note 9). $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to 2.5 V unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | (Note 4) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | $\bullet \bullet$ | | 0.4 | $\begin{aligned} & 2.0 \\ & 2.5 \\ & 3.5 \end{aligned}$ | mV mV mV |
| $\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$ | Input Offset Voltage Drift | (Note 7) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | $\begin{aligned} & 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & 15 \\ & 30 \end{aligned}$ | $\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$ |
| los | Input Offset Current | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | $\bullet \bullet$ | | 60 | $\begin{gathered} 800 \\ 1000 \\ 1200 \end{gathered}$ | nA nA nA |
| I_{B} | Input Bias Current | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | $\bullet \bullet$ | | -2.4 | $\begin{gathered} \pm 8 \\ \pm 10 \\ \pm 12 \end{gathered}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| e_{n} | Input Noise Voltage Density | $f=10 \mathrm{kHz}$ | | | 6 | | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| in_{n} | Input Noise Current Density | $f=10 \mathrm{kHz}$ | | | 1.4 | | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
| RIN | Input Resistance | $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}^{-}+1.5 \mathrm{~V} \text { to } \mathrm{V}^{+}-1.5 \mathrm{~V}$
 Differential | | 1.5 | $\begin{gathered} 5 \\ 750 \end{gathered}$ | | $M \Omega$ $\mathrm{k} \Omega$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | | | | 1.5 | | pF |
| $\mathrm{V}_{\text {CM }}$ | Input Voltage Range (Positive) | Guaranteed by CMRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | \bullet | $\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$ | 4.2 | | V |
| | Input Voltage Range (Negative) | Guaranteed by CMRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ | \bullet | | 0.8 | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | V |
| CMRR | Common Mode Rejection Ratio | $\begin{aligned} \mathrm{V}_{\mathrm{CM}} & =1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | 73 71 70 | 82 | | dB dB dB |
| | Minimum Supply Voltage | Guaranteed by PSRR $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | \bullet | | ± 1.25 | $\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$ | V |
| PSRR | Power Supply Rejection Ratio | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=4 \mathrm{~V} \text { to } 11 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | $\bullet \bullet$ | 78 76 75 | 97 | | dB dB dB |
| AVOL | Large-Signal Voltage Gain | $\begin{aligned} & \mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | 1.0 0.7 0.6 | 2 | | |
| | | $\begin{aligned} & \mathrm{V}_{\text {OUT }}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | 0.7 0.5 0.4 | 4 | | V / mV
 V / mV
 V / mV |
| | Channel Separation | $\begin{aligned} \mathrm{V}_{\text {OUT }} & =1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{LT} 1819 \\ \mathrm{~T}_{\mathrm{A}} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | 81 80 79 | 100 | | dB dB dB |
| V OUT | Output Swing(Positive) | $\begin{aligned} R_{L} & =500 \Omega, 30 \mathrm{mV} \text { Overdrive } \\ T_{A} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ T_{A} & =-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | 3.9 3.8 3.7 | 4.2 | | V |
| | | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, 30 \mathrm{mV} \text { Overdrive } \\ & \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | \bullet | $\begin{aligned} & 3.7 \\ & 3.6 \\ & 3.5 \end{aligned}$ | 4 | | V V V |
| | Output Swing(Negative) | $\begin{aligned} & R_{L}=500 \Omega, 30 \mathrm{mV} \text { Overdrive } \\ & T_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 0.8 | 1.1 1.2 1.3 | V V V |
| | | $\begin{aligned} & \mathrm{R}_{L}=100 \Omega, 30 \mathrm{mV} \text { Overdrive } \\ & \mathrm{T}_{A}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 1 | $\begin{aligned} & 1.3 \\ & 1.4 \\ & 1.5 \end{aligned}$ | V V |

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C}$ (Note 9$) . V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{C M}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ to 2.5 V unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
IOUT	Output Current	$\begin{aligned} \mathrm{V}_{\text {OUT }} & =1.5 \mathrm{~V} \text { or } 3.5 \mathrm{~V}, 30 \mathrm{mV} \text { Overdrive } \\ \mathrm{T}_{A} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{A} & =-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & \pm 30 \\ & \pm 25 \\ & \pm 20 \end{aligned}$	± 50		mA mA mA
ISC	Output Short-Circuit Current	$\begin{aligned} & \text { Vout }=2.5 \mathrm{~V}, 1 \mathrm{~V} \text { Overdrive (Note 3) } \\ & T_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	± 80 ± 70 ± 50	± 140		mA mA mA
SR	Slew Rate	$A_{V}=1$		1000			$\mathrm{V} / \mathrm{\mu s}$
		$\begin{aligned} A_{V} & =-1(\text { Note } 5) \\ T_{A} & =0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ T_{A} & =-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	450 375 300	800		$\mathrm{V} / \mu \mathrm{s}$ V/us $\mathrm{V} / \mu \mathrm{s}$
FPBW	Full Power Bandwidth	$2 \mathrm{~V}_{\text {P-P }}$ (Note 6)			125		MHz
GBW	Gain Bandwidth Product	$\begin{gathered} f=4 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	\bullet	240 230 220	360		MHz MHz MHz
$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	$A_{V}=1,10 \%$ to $90 \%, 0.1 \mathrm{~V}$ Step			0.7		ns
tPD	Propagation Delay	$A_{V}=1,50 \%$ to 50\%, 0.1V Step			1.1		ns
OS	Overshoot	$A_{V}=1,0.1 \mathrm{~V}, \mathrm{R}_{L}=100 \Omega$			20		\%
HD	Harmonic Distortion	$\begin{aligned} & H D 2, A_{V}=2, f=5 M H z, V_{\text {OUT }}=2 V_{P-P}, R_{L}=500 \Omega \\ & H D 3, A_{V}=2, f=5 M H z, V_{\text {OUT }}=2 V_{P-P}, R_{L}=500 \Omega \end{aligned}$			$\begin{aligned} & -72 \\ & -74 \end{aligned}$		$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBC} \end{aligned}$
dG	Differential Gain	$A_{V}=2, R_{L}=150 \Omega$			0.07		\%
dP	Differential Phase	$A_{V}=2, R_{L}=150 \Omega$			0.07		DEG
I_{S}	Supply Current	Per Amplifier $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		8.5	$\begin{aligned} & 10 \\ & 13 \\ & 14 \end{aligned}$	mA mA mA

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Differential inputs of $\pm 6 \mathrm{~V}$ are appropriate for transient operation only, such as during slewing. Large sustained differential inputs can cause excessive power dissipation and may damage the part.
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.
Note 4: Input offset voltage is pulse tested and is exclusive of warm-up drift.
Note 5: With $\pm 5 \mathrm{~V}$ supplies, slew rate is tested in a closed-loop gain of -1 by measuring the rise time of the output from -2 V to 2 V with an output step from -3 V to 3 V . With single 5 V supplies, slew rate is tested in a closed-loop gain of -1 by measuring the rise time of the output from 1.5 V to 3.5 V with an output step from 1 V to 4 V . Falling edge slew rate is not production tested, but is designed, characterized and expected to be within 10% of the rising edge slew rate.

Note 6: Full power bandwidth is calculated from the slew rate:

$$
\mathrm{FPBW}=\mathrm{SR} / 2 \pi \mathrm{~V}_{\mathrm{P}}
$$

Note 7: This parameter is not 100% tested.
Note 8: The LT1818C/LT1818I and LT1819C/LT1819I are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 9: The LT1818C/LT1819C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet the extended temperature limits, but is not tested at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. The LT1818I/LT1819I are guaranteed to meet the extended temperature limits.
Note 10: Thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads. If desired, the thermal resistance can be significantly reduced by connecting the V^{-}pin to a large metal area.

LT1818/LT1819

TYPICAL PERFORMAOCE CHARACTERISTICS

Supply Current vs Temperature

18189 G01
Input Bias Current vs Temperature

18189 G04

Open-Loop Gain vs Temperature

18189 G07

Input Common Mode Range vs Supply Voltage

18189 G02
Input Noise Spectral Density

8189 G05
Output Voltage Swing vs Supply Voltage

18189 G08

Input Bias Current vs Common Mode Voltage

18189 G03
Open-Loop Gain vs Resistive Load

Output Voltage Swing vs Load Current

TYPICAL PERFORMANCG CHARACTERISTICS

Gain vs Frequency, $A_{v}=1$

Gain vs Frequency, $A_{V}=2$

Gain vs Frequency, $A_{V}=-1$

LT1818/LT1819

TYPICAL PERFORMANCE CHARACTERISTICS

Differential Gain and Phase vs Supply Voltage

Distortion vs Frequency, $A_{V}=2$

18189 G26

Distortion vs Frequency, $A_{V}=-1$

TYPICAL PGRFORMAOCE CHARACTERISTICS

APPLICATIONS INFORMATION

Layout and Passive Components

As with all high speed amplifiers, the LT1818/LT1819 require some attention to board layout. A ground plane is recommended and trace lengths should be minimized, especially on the negative input lead.
Low ESL/ESR bypass capacitors should be placed directly at the positive and negative supply ($0.01 \mu \mathrm{~F}$ ceramics are recommended). For high drive current applications, additional $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalums should be added.
The parallel combination of the feedback resistor and gain setting resistor on the inverting input combine with the input capacitance to form a pole that can cause peaking or even oscillations. If feedback resistors greater than 500Ω are used, a parallel capacitor of value

$$
C_{F}>R_{G} \cdot C_{\mid N} / R_{F}
$$

should be used to cancel the input pole and optimize dynamic performance (see Figure 1). For applications where the DC noise gain is 1 and a large feedback resistor is used, C_{F} should be greater than or equal to $C_{I N}$. An example would be an I-to-V converter.

In high closed-loop gain configurations, $\mathrm{R}_{\mathrm{F}} \gg \mathrm{R}_{\mathrm{G}}$, and no C_{F} need to be added. To optimize the bandwidth in these applications, a capacitance, C_{G}, may be added in parallel with R_{G} in order to cancel out any parasitic C_{F} capacitance.

Capacitive Loading

The LT1818/LT1819 are optimized for low distortion and high gain bandwidth applications. The amplifiers can drive a capacitive load of 20 pF in a unity-gain configuration and more with higher gain. When driving a larger capacitive
load, a resistor of 10Ω to 50Ω must be connected between the output and the capacitive load to avoid ringing or oscillation (see R_{S} in Figure 1). The feedback must still be taken directly from the output so that the series resistor will isolate the capacitive load to ensure stability.

Input Considerations

The inputs of the LT1818/LT1819 amplifiers are connected to the bases of NPN and PNP bipolar transistors in parallel. The base currents are of opposite polarity and provide first order bias current cancellation. Due to variation in the matching of NPN and PNP beta, the polarity of the input bias current can be positive or negative. The offset current, however, does not depend on beta matching and is tightly controlled. Therefore, the use of balanced source resistance at each input is recommended for applications where DC accuracy must be maximized. For example, with a 100Ω source resistance at each input, the 800nA maximum offset current results in only $80 \mu \mathrm{~V}$ of extra offset, while without balance the $8 \mu \mathrm{~A}$ maximum input bias current could result in an 0.8 mV offset condition.

The inputs can withstand differential input voltages of up to 6 V without damage and without needing clamping or series resistance for protection. This differential input voltage generates a large internal current (up to 50 mA), which results in the high slew rate. In normal transient closed-loop operation, this does not increase power dissipation significantly because of the low duty cycle of the transient inputs. Sustained differential inputs, however, will result in excessive power dissipation and therefore this device should not be used as a comparator.

Figure 1

APPLICATIONS INFORMATION

Slew Rate

The slew rate of the LT1818/LT1819 is proportional to the differential input voltage. Highest slew rates are therefore seen in the lowest gain configurations. For example, a 6 V output step with a gain of 10 has a 0.6 V input step, whereas at unity gain there is a 6 V input step. The LT1818/LT1819 is tested for slew rate at a gain of -1 . Lower slew rates occur in higher gain configurations, whereas the highest slew rate ($2500 \mathrm{~V} / \mu \mathrm{s}$) occurs in a noninverting unity-gain configuration.

Power Dissipation

The LT1818/LT1819 combine high speed and large output drive in small packages. It is possible to exceed the maximum junction temperature specification $\left(150^{\circ} \mathrm{C}\right)$ under certain conditions. Maximum junction temperature $\left(T_{J}\right)$ is calculated from the ambient temperature $\left(T_{A}\right)$, power dissipation per amplifier $\left(\mathrm{P}_{\mathrm{D}}\right)$ and number of amplifiers (n) as follows:

$$
T_{J}=T_{A}+\left(n \bullet P_{D} \bullet \theta_{J A}\right)
$$

Power dissipation is composed of two parts. The first is due to the quiescent supply current and the second is due to on-chip dissipation caused by the load current. The worst-case load-induced power occurs when the output voltage is at $1 / 2$ of either supply voltage (or the maximum swing if less than $1 / 2$ the supply voltage). Therefore $\mathrm{P}_{\text {DMAX }}$ is:

$$
\begin{aligned}
P_{\text {DMAX }}= & \left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) \cdot\left(\mathrm{I}_{\text {SMAX }}\right)+\left(\mathrm{V}^{+} / 2\right)^{2} / \mathrm{R}_{\mathrm{L}} \text { or } \\
\mathrm{P}_{\text {DMAX }}= & \left(\mathrm{V}^{+}-\mathrm{V}^{-}\right) \bullet\left(\mathrm{I}_{\text {SMAX }}\right)+ \\
& \left(\mathrm{V}^{+}-\mathrm{V}_{\text {OMAX }}\right) \cdot\left(\mathrm{V}_{\text {OMAX }} / R_{\mathrm{L}}\right)
\end{aligned}
$$

Example: LT 1819 IS 8 at $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$

$$
\begin{aligned}
& P_{\text {DMAX }}=(10 \mathrm{~V}) \cdot(14 \mathrm{~mA})+(2.5 \mathrm{~V})^{2} / 100 \Omega=202.5 \mathrm{~mW} \\
& \mathrm{~T}_{\text {JMAX }}=85^{\circ} \mathrm{C}+(2 \cdot 202.5 \mathrm{~mW}) \cdot\left(150^{\circ} \mathrm{C} / \mathrm{W}\right)=146^{\circ} \mathrm{C}
\end{aligned}
$$

Circuit Operation

The LT1818/LT1819 circuit topology is a true voltage feedback amplifier that has the slewing behavior of a current feedback amplifier. The operation of the circuit can be understood by referring to the Simplified Schematic. Complementary NPN and PNP emitter followers buffer the inputs and drive an internal resistor. The input voltage appears across the resistor, generating a current that is mirrored into the high impedance node.
Complementary followers form an output stage that buffer the gain node from the load. The input resistor, input stage transconductance and the capacitor on the high impedance node determine the bandwidth. The slew rate is determined by the current available to charge the gain node capacitance. This current is the differential input voltage divided by R1, so the slew rate is proportional to the input step. Highest slew rates are therefore seen in the lowest gain configurations.

TYPICAL APPLICATION

Single Supply Differential ADC Driver

Results Obtained with the Circuit of Figure 2 at 5MHz. FFT Shows 81dB Overall Spurious Free Dynamic Range

SIMPLIFIED SCHEMATIC (One Amplifier)

PACKAGG DESCRIPTION

MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660)

1. DIMENSIONS IN MILLIMETER/(INCH)
2. DRAWING NOT TO SCALE
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.

INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152 mm (.006") PER SIDE
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102 mm (.004") MAX

S5 Package

5-Lead Plastic SOT-23
(Reference LTC DWG \# 05-08-1633)

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

NOTE:

1. DIMENSIONS IN $\frac{\text { INCHES }}{\text { (MILLIMETERS) }}$
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15 mm)
S08 0502

LT1818/LT1819

TYPICAL APPLICATION

80MHz, 20dB Gain Block

20dB Gain Block Frequency Response

Large-Signal Transient Response

18189 TA04

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1395/LT1396/LT1397	Single/Dual/Quad 400MHz Current Feedback Amplifiers	4.6mA Supply Current
LT1806/LT1807	Single/Dual 325MHz, 140V/us Rail-to-Rail I/O Op Amps	Low Noise: $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT1809/LT1810	Single/Dual 180MHz, 350V/ μ s Rail-to-Rail I/O Op Amps	Low Distortion: -90 dBc at 5 MHz
LT1812/LT1813/LT1814	Single/Dual/Quad 100MHz, 750V/ $\mu \mathrm{s}$ Op Amps	Low Power: 3.6 mA Max at $\pm 5 \mathrm{~V}$
LT1815/LT1816/LT1817	Single/Dual/Quad 220MHz, 1500V/ $/$ s Op Amps	Programmable Supply Current
LT6203/LT6204	Dual/Quad 100MHz, Rail-to-Rail I/0 Op Amps	1.9nV/ $/ \mathrm{Hz}$ Noise, 3mA Max

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

[^0]: $\overline{\boldsymbol{\Sigma}, \text { LTC and LT are registered trademarks of Linear Technology Corporation. }}$

