IR3Y38M

DESCRIPTION

The IR3Y38M is a bipolar single-chip signal processing IC for CCD area sensors which includes correlated double sampling circuit (CDS), clamp circuit, automatic gain control amplifier (AGC), reference voltage generator, black level detection circuit, 10-bit analog-to-digital converter (ADC), and serial interface for internal circuits.

FEATURES

- Low power consumption : 315 mW (TYP.)
- Wide AGC range : 12 to 43.5 dB
- High speed sample-and-hold circuits : pulse width 12 ns (MIN.)
- Built-in standby mode for power saving applications
- Built-in serial interface to control the AGC gain, maximum gain and offset adjustment
- 10-bit ADC operating up to 18 MHz
- Digital interface for operating 3.3 V logic ICs
- Single +5 V power supply
- Package :

48-pin QFP (QFP048-P-0707) 0.5 mm pin-pitch

CCD Signal Process & Digital Interface IC

PIN CONNECTIONS

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

BLOCK DIAGRAM

PIN DESCRIPTION

(The voltage is measured on condition that VCC1 to VCC6 = $+5.0$ V, VLOGIC = $+3.3$ V.)									
PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION					
1	DOo		Vcc6	Digital data output pins of the A/D					
			500≩ ▼	converter. DO0 is LSB.					
2	DO1	3.1 V		The data format is a straight binary					
3	DO2			code.					
4	DO3	0.2 V							
5	DO4		GND6	VOH . VLOGIC – 0.2 V (TTP.)					
6	GND6	0.0 V		GND pin of the output buffer of the A/D converter.					
				Power supply pin of the output					
7	VCC6	5.0 V		buffer of the A/D converter.					
8	DO5		Vcce	Digital data output pins of the A/D					
9	DO6	3.1 V		The data format is a straight binary					
10	DO7			code.					
11	DO8	0.2 V	<u>→</u> →→, ↓ ★	VoL : 0.2 V (TYP.)					
10				Voн : Vlogic – 0.2 V (TYP.)					
12	DO9								
			Vcc5						
		0.4.14	150 µ 🔤	The A/D conversion is executed at					
		> 2.1 V	200	the riging edge of the ADCK and					
13	ADCK		(13	the data is output at the folling adapt					
				of the ADCK					
		< 0.7 V	T I						
			GND5	fmov + 19 MHz (MINL)					
				Digital CND gin of the A/D					
14	GND5	0.0 V		Converter					
		> /		Digital power supply pin of the A/D					
15	VCC5	5.0 V		converter.					
			Vcc1	Clock input pin of the serial					
			15 μ 🖓	interface.					
		> 2.1 V	▲	Refer to "TRUTH TABLE" of pin 19.					
16	SCK								
		< 0.7 V							
			GND1						

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION		
17	Vcca	50V		Analog power supply pin of the A/D		
	V 004	0.0 1		converter.		
18		0.0 V		Analog GND pin of the A/D		
				converter.		
				Data input pin of the serial		
			15 µ 😡	interface.		
		> 2.1 V	★	TRUTH TABLE		
19	SDATA			SDATA SCK Action		
				DATA 1 SHIFT		
		< 0.7 V		0 -		
			GND1	1 ↓ STORE		
			GINDI			
			Vcc1	Bias decoupling pin of the CDS		
				signal clamp circuit. This pin is		
				connected to the GND1 via a		
20	CLPCAP	3.2 V		capacitor.		
			GND1			
			GNDT			
				Signal input pin of the CDS.		
21	CCDIN	2.5 V	26 k ≥ 150 µ ⊖	Input CCD signal to this pin via a		
				capacitor.		
				Defense is sub size of the ODO		
				This pin is connected to the CND		
22	REFIN	2.5 V	150 μ 😔	This pin is connected to the GND1		
			GND1	via a capacitor.		
				GND pip of the CDS/AGC		
				Pay careful attention to board		
23	GND1	0.0 V		layout of the GND1 because the		
		0.0 1		CDS/AGC are noise-sensitive		
				circuitry		
				Operation current setting pin of the		
				CDS and \overline{S}/H_3 circuits		
				This pin is connected to the GND1		
				via a resistor.		
24	SHISET	1.7 V		The slew rates of the \overline{S}/Hs are in		
				inverse proportion to the value of		
			1 3 k≹	the resistor.		
			GND1			

			DESCRIPTION
VCC1	5.0 V		Power supply pin of the CDS/AGC.
REFCAP	3.2 V	200 200 $63 k \leq 2 k \leq 150 \mu \odot$ GND1	Bias decoupling pin of the CDS reference clamp circuit. This pin is connected to the GND1 via a capacitor.
STBY	5.0 V (open) > 2.1 V < 0.7 V	200 27 ↓ 110 k§ 40 µ ⊖ 68 k§ 200 ↓ 65 k§ 10 k 32 k§ 75 k§ GND1	Standby function control pin. All actions stop and the power consumption is decreased when low. The threshold voltage has 0.4 V hysteresis. Connect to the Vcc if not used.
CLP		Vor	Pulse input pin of the CDS feed- through level clamp. Signal is clamped when low.
S/H1			Pulse input pin of the \overline{S}/H_1 .
	> 2.1 V		Signal is sampled when low.
Ī∕H₂			Pulse input pin of the S/H2.
	< 0.7 V		Pulse input pin of the S/H3.
SH3		100≶	Signal is sampled when low.
		GND1	Pulse input pin of the OPB clamp
OBP			and bias error amplifier.
			Signal is clamped when low.
OBCAP	3.7 V	$\begin{array}{c} V_{CC2} \\ 20 \text{ k} \\ 200 \text{ k} \\ 3.3 \text{ k} \\ 200 \text{ k} \\ 3.3 \text{ k} \\ 3.$	Clamp capacitor pin of the optical black clamp (OPB clamp) circuit. Connect to the GND2 via a capacitor.
	VCC1 REFCAP STBY CLP S/H1 S/H2 SH3 OBP OBCAP	Vcc1 5.0 V REFCAP 3.2 V STBY 5.0 V STBY 5.0 V STH1 > 2.1 V S/H1 > 0.7 V S/H2 0.7 V SH3 000000000000000000000000000000000000	VCc15.0 VREFCAP3.2 V $36 k \leq 75 \mu \oplus 100 \mu$

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION		
34	OFSCTL	2.15 to 2.30 V	Vcc1 30 k 34 $10 k \ge 2.2 V$ D/A D/A GND1	Decoupling capacitor pin of the blanking offset control D/A converter. Connect to the GND1 via a capacitor.		
35	BLK	> 2.1 V	35 Vcc2 20 µ O 35 Control of the second	Blanking pulse input pin. The output of the AGCOUT pin is blanked when low. The blanking level can be controlled by the serial interface.		
36	VCC2	5.0 V		Power supply pin of the \overline{S} /H ₃ and OPB clamp circuits.		
37	GND2	0.0 V		GND pin of the \overline{S} /H ₃ and OPB clamp circuits.		
38	Vссз	5.0 V		Power supply pin of the output buffer circuit connected to the AGCOUT pin.		
39	AGCOUT	0.9 V (OBP = L)	Vcc3 300 \$ 20 300 \$ 20 339 39 GND3	Signal output pin of the AGC. Connect to the ADIN pin via a capacitor.		
40	GND3	0.0 V		GND pin of the output buffer circuit connected to the AGCOUT pin.		
41	AGCCTL	2.5 to 3.8 V	(4) (4) (4) (4) (4) (4) (4) (4)	Decoupling capacitor pin of the AGC gain control D/A converter. Connect to the GND1 via a capacitor.		

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
42	ADOFS	3.3 V (open) Input range 1.6 to 5.0 V	$(42) \qquad \qquad$	Voltage adjustment pin of the ADC black level clamp. This pin is biased at 3.3 V from the inside of the IC. Connect to the GND4 via a capacitor if not used.
43	ADIN	1.4 V (ADCLP = L)	Vcc_4 43 43 43 43 $16 k \leq 16 k \leq GND_4$	Signal input pin of the ADC. Connect to the AGCOUT pin via a capacitor. This capacitor is also used as the clamp capacitor of the ADC blank level clamp.
44	NC			No connection. It is recommended to connect to GND for better heat radiation and avoiding noise.
45	ADCLP	> 2.1 V	45 VCC4 45 GND4	Pulse input pin of the ADC black level clamp. Signal is clamped when low. When the ADOFS is opened, the clamped level is set to make the ADC output 61 (decimal).
46	Vrt	3.90 V	Vcc4 5 46 VRT GND4 Vcc4	Upper reference decoupling pin of the ADC. Connect to the GND4 via a capacitor.
47	Vrb	1.95 V	GND4	Lower reference decoupling pin of the ADC. Connect to the GND4 via a capacitor.

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
48	Vlogic	3.3 V	Vccs 25 µ O 200 48 GND5	ADC output voltage setting pin. The high level voltage of the DO ₀ to DO ₉ pins is set to VLOGIC $-$ 0.2 V. It is recommended to connect to the power supply of the following logic ICs.

FUNCTIONAL DESCRIPTION

CDS Circuit

The clamp circuit clamps the feed-through level of the CCD signal with the $\overline{\text{CLP}}$ pulse. Then the $\overline{\text{S}}/\text{H}_1$ circuit samples the signal period of the one with the $\overline{\text{S}}/\text{H}_1$ pulse and holds on. Thus the video signal is obtained. But this signal has a level drop caused by the reset pulse of the CCD signal, and for removing it, the $\overline{\text{S}}/\text{H}_2$ circuit samples this signal again with the $\overline{\text{S}}/\text{H}_2$ pulse.

For reducing the effect of the sampling pulse or other noise sources, the CDS circuit is formed with a differential structure.

Bias Error Amplifier Circuit

For stabilizing the bias level of the CDS circuit and reducing the offset of the AGC circuit, the bias error amplifier acts with the \overline{OBP} pulse during the OPB period.

AGC Amplifier Circuit

The AGC amplifier amplifies the video signal obtained by the CDS circuit. The gain of the AGC is controlled by the value of the AGCGAIN serial register. And the maximum gain of the AGC is controlled by the value of the GAINSEL serial register.

OPB Clamp Circuit

For clamping the level of the amplified signal to the black level, the OPB clamp circuit acts with the $\overline{\text{OBP}}$ pulse during the OPB period.

Blanking Circuit

The output signal is fixed to the blanking level with the $\overline{\text{BLK}}$ pulse. The blanking level is the sum of the black level and the offset value decided by the value of the OFFSET serial register.

A/D Converter Circuit

The \overline{S}/H_3 circuit samples the amplified signal with the \overline{S}/H_3 pulse and the A/D converter converts the sampled signal to 10-bit straight binary digital data. The clamp circuit placed in front of the A/D converter clamps the signal level beside the lower limit of the convertible input range with the \overline{ADCLP} pulse. The clamped level is controllable by the voltage of the ADOFS pin.

The A/D conversion is executed at the rising edge of the ADCK clock, and the data is output at the falling edge.

The high level voltage of the outputs is controlled by the voltage of the VLOGIC pin.

Standby Function

By making the STBY pin low, all actions of this IC stop and power consumption is decreased.

The outputs of the A/D converter (DOo to DO9) turn to high impedance when on standby.

SDATA

SCK

Serial Interface Circuit

Store

3-bit

Register

Gain

Selector

The IR3Y38M has a serial interface to control the gain of the AGC amplifier and the offset of the blanking level. This interface is constituted by a shift register for serial-parallel conversion, data registers and D/A converters.

The data input to SDATA is fetched and shifted at

D2-D9

8-bit

Register

8-bit

D/A Converter

AGC GAIN

Shift Register

Do

D1

Decoder

6-bit

Register

6-bit

D/A Converter

OFFSET

Select

the rising edge of the SCK. While transmitting data, the SDATA must be low when the SCK falls. When the SDATA is high and the SCK falls, the data on the shift register is stored at the selected data register at the following falling edge of the SDATA. The stored data register is selected by the data of the D0 and D1 bits.

GAIN SEL	MAXIMUM GAIN (dB)
0	22
1	25
2	28
3	31.5
4	34.5
5	38
6	41
7	43.5

	D8	D7	D6	D5	D4	Dз	D2	D1	Do
					do	d1	d2	0	0
do	d1	d2	dз	d4	d 5	d6	d7	0	1
		do	d1	d2	dз	d4	d5	1	0
								1	1
	do	do d1	do d1 d2 d0	do d1 d2 d3 d0 d1 d0 d1	do d1 d2 d3 d4 d0 d1 d2	d0 d1 d2 d3 d4 d5 d0 d1 d2 d3 d4 d5	d0 d1 d2 d3 d4 d5 d6 d0 d1 d2 d3 d4 d5 d6	do d1 d2 d0 d1 d2 d3 d4 d5 d6 d7 d0 d1 d2 d3 d4 d5 d6 d7	d0 d1 d2 0 d0 d1 d2 d3 d4 d5 d6 d7 0 d0 d1 d2 d3 d4 d5 d6 d7 0 d0 d1 d2 d3 d4 d5 1

MSB

TIMING CHART

PRECAUTIONS

Each Vcc1 to Vcc6 pin corresponds to the each GND1 to GND6 pin. Connect a ceramic capacitor as near the IC as possible between each corresponding Vcc pin and GND pin.

The GND1 pin is the ground of the CDS/ADC circuit handling a weak signal. Pay careful attention to the board layout of the GND1 pattern in order to avoid the potential fluctuation of the GND1 caused by the current of the other GND pins. Especially pay attention to the current of the GND6 pin's flowing spiky current.

All the GND pins must be at the same potential and not open. And keep the potential difference of each Vcc pin within 0.3 V.

The high level voltage of the outputs of the A/D

converter is controllable by the voltage of the VLOGIC pin, but take care that the high level voltage does not fall below about 1.5 V, in spite of making the VLOGIC pin 0 V. This may cause the latch up of the following logic ICs if the power supply of this IC rises up faster than the power supply of the following logic. To avoid this problem, it is recommended to make the STBY pin low until the voltage of the logic power supply becomes stable. Take care too that the high level voltage does not rise above about Vcc - 1.0 V, in spite of making the VLOGIC pin the Vcc potential.

Restore the value of the serial register when setting up the power supply or making the STBY pin high because the value will have been removed in that case.

ABSOLUTE MAXIMUM RATINGS

(Unless otherwise specified, TA = +25 °C)

PARAMETER	SYMBOL	CONDITIONS	RATING	UNIT
Supply voltage	VCC1-VCC6		7	V
Input voltage	Vin		-0.3 to Vcc + 0.3	V
Power consumption	PD	Ta ≤ +25 °C	570	mW
PD derating ratio		Ta > +25 °C	4.5	mW/°C
Operating temperature	TOPR		-30 to +70	°C
Storage temperature	Tstg		-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	APPLICABLE PINS	RATING	UNIT
Supply voltage	VCC1-VCC6		4.75 to 5.25	V
Standard CCD input signal level	VCCD	CCDIN	200	mVp-p
Input "Low" voltage	VIL	ADCK, SCK, SDATA,	0 to 0.7	V
Input "High" voltage	Vін	S/H ₃ , OBP, BLK, ADCLP	2.1 to Vcc	V
S/H pulse width	tws/H	$\overline{\text{CLP}}$, $\overline{\text{S}}/\text{H}_1$, $\overline{\text{S}}/\text{H}_2$, $\overline{\text{S}}/\text{H}_3$	≥ 12	ns
Clamp pulse width	twc	OBP, ADCLP	≥ 1.5	μs
A/D converter clock frequency	fadck	ADCK	≤ 18	MHz
Serial interface clock frequency	fsck	SCK	≤ 300	kHz

ELECTRICAL CHARACTERISTICS

DC Characteristics

(Unless otherwise specified, TA = +25 °C, Vcc1 = Vcc2 = Vcc3 = Vcc4 = Vcc5 = Vcc6 = 5.0 V, Vlogic = 3.3 V, ADCK = 0 V, SCK = 0 V, SDATA = 0 V, \overline{STBY} = 3.3 V, \overline{CLP} = 0 V, \overline{S}/H_1 = 0 V, \overline{S}/H_2 = 0 V, \overline{S}/H_3 = 0 V, \overline{BLK} = 3.3 V, \overline{OBP} = 0 V, SW42 = OFF, SW43 = (a), \overline{ADCLP} = 3.3 V)

The current direction flowing into the pin is positive direction.

General

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply current (1)	ICC1	Measure pin 25 (Vcc1)	_	27	34	mA
Supply current (2)	ICC2	Measure pin 36 (Vcc2).	_	2.3	2.8	mA
Supply current (3)	Іссз	Measure pin 38 (Vcc3).	_	0.7	1.0	mA
Supply current (4)	ICC4	Measure pin 17 (Vcc4).	_	13	20	mA
Supply current (5)	ICC5	Measure pin 15 (Vcc5).	-	16	21	mA
Supply current (6)	ICC6	Measure pin 7 (VCC6).	_	5.0	6.5	mA
Total supply current	Icc	Total of ICC1 to ICC6	_	63	77	mA
Standby supply current	ISTBY	$\overline{\text{STBY}} = 0 \text{ V}$, Total of Icc1 to Icc6.	-	4.5	6.5	mA
Input "Low" current (1)	lı∟1	Apply to pin 28 ($\overline{\text{CLP}}$), pin 29 ($\overline{\text{S}}$ /H ₁), pin 30 ($\overline{\text{S}}$ /H ₂), pin 31 ($\overline{\text{S}}$ /H ₃), and pin 32 ($\overline{\text{OBP}}$). VIL = 0 V	-3.5	-2.0	_	μA
Input "High" current (1)	Іінт	Apply to pin 28 ($\overline{\text{CLP}}$), pin 29 ($\overline{\text{S}}$ /H ₁), pin 30 ($\overline{\text{S}}$ /H ₂), pin 31 ($\overline{\text{S}}$ /H ₃), and pin 32 ($\overline{\text{OBP}}$). VIH = 3.3 V	_	0	0.1	μA
Input "Low" current (2)	lı∟2	Apply to pin 16 (SCK) and pin 19 (SDATA). $VIL = 0 V$	-0.3	-0.2	_	μA
Input "High" current (2)	Ііна	Apply to pin 16 (SCK) and pin 19 (SDATA). VIH = 3.3 V	-	0	0.1	μA
Input "Low" current (3)	lı∟3	Apply to pin 35 (\overline{BLK}) and pin 45 (\overline{ADCLP}). VIL = 0 V	-0.5	-0.3	0	μA
Input "High" current (3)	Іінз	Apply to pin 35 (\overline{BLK}) and pin 45 (\overline{ADCLP}). VIH = 3.3 V	_	0	0.1	μA
Input "Low" current (4)	lil4	Apply to pin 13 (ADCK). VIL = 0 V	-3.5	-2.0	_	μA
Input "High" current (4)	Іін4	Apply to pin 13 (ADCK). VIH = 3.3 V	_	0	0.1	μA
STBY voltage	V27	Open pin 27 (STBY).	4.5	5.0	-	V
STBY impedance	Z27		70	110	140	kΩ

• CDS & AGC Circuits

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CLPCAP voltage	V20		2.9	3.2	3.6	V
CCDIN voltage	V21		2.3	2.5	2.8	V
REFIN voltage	V22		2.3	2.5	2.8	V
SHISET voltage	V24		1.5	1.7	1.9	V
REFCAP voltage	V26		2.9	3.2	3.6	V
OBCAP voltage	V33		3.3	3.7	4.0	V
AGCOUT voltage	V39		0.7	0.9	1.1	V
CCDIN impedance	Z21		9	13	18	kΩ
REFIN impedance	Z 22		9	13	18	kΩ
REFCAP impedance	Z26		15	23	32	kΩ
OFSCTL impedance	Z 34		6	9	12	kΩ
AGCCTL impedance	Z41		7	11	15	kΩ
CLPCAP charge	li oo	CLPCAP = 2.8 V, OBP = 0 V	2.9 2.3 2.3 1.5 2.9 3.3 0.7 9 9 15 6 7 - 110 -0.5 - 65 -0.5	125	-110	μA
current	IL20	Measure the current of CLPCAP.		-135		
CLPCAP discharge	luoo	CLPCAP = 3.6 V, OBP = 0 V	110	125		
current	IH20	Measure the current of CLPCAP.	2.9 2.3 2.3 1.5 2.9 3.3 0.7 9 15 6 7 110 -0.5 - 65 -0.5	135	_	μA
CLPCAP leakage	1700	CLPCAP = 3.2 V, OBP = 3.3 V	0.5	0	0.5	
current	1220	Measure the current of CLPCAP.	7 - 110 -0.5	0	0.5	μΑ
OBCAP charge	li oo	OBCAP = 3.3 V, OBP = 0 V		00	65	
current	IL33	Measure the current of OBCAP.	_	-90	-05	μΑ
OBCAP discharge	luco	OBCAP = 4.1 V, OBP = 0 V	65	00		
current	IH33	Measure the current of OBCAP.	05	90	_	μΑ
OBCAP leakage	1700	OBCAP = 3.7 V, OBP = 3.3 V	0.5	0	0.5	
current	1233	Measure the current of OBCAP.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0.5	μA	

• A/D Converter Circuit

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ADOFS voltage	V42		3.0	3.3	3.6	V
ADIN voltage	V43	ADCLP = 0 V	1.2	1.4	1.6	V
VRT voltage	V46		3.7	3.9	4.1	V
VRB voltage	V47		1.8	1.95	2.2	V
ADOFS impedance	Z42		50	70	90	kΩ
	IL43	ADIN = 1.0 V, ADCLP = 0 V	-	-45	-30	μA
ADIN charge current		Measure the current of ADIN.				
ADIN discharge	luvo	ADIN = 1.8 V, ADCLP = 0 V	30	45	_	μA
current	IH43	Measure the current of ADIN.				
ADIN leakage current	IZ43	ADIN = 1.4 V, ADCLP = 3.3 V	-0.3	0	0.3	μA
		Measure the current of ADIN.				
	Vol	SW43 = (b), ADCIN = 0.8 V				
Output "Low" voltage		Change the level of ADCK to $L \rightarrow H \rightarrow L$, then	-	0.2	0.4	V
		measure the voltages of DOo to DO9 pins.				
		SW43 = (b), ADCIN = 3.5 V				
Output "High" voltage	Vон	Change the level of ADCK to $L \rightarrow H \rightarrow L$, then	2.9	3.1	_	V
		measure the voltages of DOo to DO9 pins.				

AC Characteristics

(Unless otherwise specified, TA = +25 °C, VCc1 = VCc2 = VCc3 = VCc4 = VCc5 = VCc6 = 5.0 V, VLOGIC = 3.3 V, ADCK = 0 V, SCK = 0 V, SDATA = 0 V, \overline{STBY} = 3.3 V, \overline{CLP} = 3.3 V, \overline{S}/H_1 = 0 V, \overline{S}/H_2 = 0 V, \overline{S}/H_3 = 0 V, \overline{BLK} = 3.3 V, \overline{OBP} = 3.3 V, SW42 = OFF, SW43 = (a), \overline{ADCLP} = 3.3 V, (OFFSET) = 32) The value of the serial register is written with decimal.

CDS & AGC Circuits

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
AGC minimum gain	Gan	(GAIN SEL) = 0, (AGC GAIN) = 0 $\overline{CLP} = SG2, \overline{OBP} = SG3$ Input the attenuated SG1 (f = 2 MHz, V = 1.6 Vp-p) to the SIN and seek the attenuation amount to make the amplitude of AGCOUT	11	12	13	dB
		1.6 Vp-p.				
AGC maximum gain (0)	GAX0	(GAIN SEL) = 0, (AGC GAIN) = 255 Measure the gain using the same procedure as for the measurement of GAN.	20.5	22	24.5	dB
AGC maximum gain (1)	GAX1	(GAIN SEL) = 1, (AGC GAIN) = 255 Measure the gain using the same procedure as for the measurement of GAN.	23	25	28	dB
AGC maximum gain (2)	GAX2	(GAIN SEL) = 2, (AGC GAIN) = 255 Measure the gain using the same procedure as for the measurement of GAN.	26	28	31	dB
AGC maximum gain (3)	Gахз	(GAIN SEL) = 3, (AGC GAIN) = 255 Measure the gain using the same procedure as for the measurement of GAN.	28.5	31.5	35	dB
AGC maximum gain (4)	GAX4	(GAIN SEL) = 4, (AGC GAIN) = 255 Measure the gain using the same procedure as for the measurement of GAN.	31	34.5	38	dB
AGC maximum gain (5)	Gax5	(GAIN SEL) = 5, (AGC GAIN) = 255 Measure the gain using the same procedure as for the measurement of GAN.	34	38	42	dB
AGC maximum gain (6)	GAX6	(GAIN SEL) = 6, (AGC GAIN) = 255 Measure the gain using the same procedure as for the measurement of GAN.	36.5	41	44.5	dB
AGC maximum gain (7)	GAX7	(GAIN SEL) = 7, (AGC GAIN) = 255 Measure the gain using the same procedure as for the measurement of GAN.	38.5	43.5	47.5	dB
AGC gain variable width	Gar	GAR = GAX7 – GAN	26.5	31.5	35.5	dB

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Bandwidth (1) (Minimum gain)	ftn	(GAIN SEL) = 0, (AGC GAIN) = 0 $\overline{CLP} = SG2, \overline{OBP} = SG3$ Input the SG1 (f = 2 MHz, V = 0.2 Vp-p) to the SIN and measure the amplitude of the AGCOUT. Increase the frequency and measure the frequency when the amplitude attenuates to -3 dB.	24	35	_	MHz
Bandwidth (2) (Maximum gain)	fтx	(GAIN SEL) = 7, $(AGC GAIN) = 255\overline{CLP} = SG2, \overline{OBP} = SG3Input the SG1 (f = 2 MHz, V = 8 mVp-p) tothe SIN and measure the amplitude of theAGCOUT. Increase the frequency andmeasure the frequency when the amplitudeattenuates to -3 dB.$	13	20	_	MHz
OFFSET adjustment limit (1) (OFFSET = 0)	Vbon	$\begin{array}{l} (\text{GAIN SEL}) = 0, \ (\text{AGC GAIN}) = 0\\ \text{SIN} = \text{GND1}, \ (\text{OFFSET}) = 0, \ \overline{\text{CLP}} = 0 \ \text{V},\\ \overline{\text{OBP}} = 0 \ \text{V}\\ \end{array}$ $\begin{array}{l} \text{Measure the voltage of the AGCOUT at BLK}\\ = 3.3 \ \text{V} \ \text{and define it VB011}.\\ \end{array}$ $\begin{array}{l} \text{Measure the one similarly at BLK} = 0 \ \text{V} \ \text{and}\\ \end{array}$ $\begin{array}{l} \text{define it VB012}.\\ \end{array}$ $\begin{array}{l} \text{VBON} = \text{VB012} - \text{VB011} \end{array}$	_	-75	-60	mV
OFFSET adjustment limit (2) (OFFSET = 63)	Vвох	$\begin{array}{l} (\text{GAIN SEL}) = 0, \ (\text{AGC GAIN}) = 0 \\ \text{SIN} = \text{GND1}, \ (\text{OFFSET}) = 63, \ \overline{\text{CLP}} = 0 \ \text{V}, \\ \overline{\text{OBP}} = 0 \ \text{V} \\ \text{Measure the VB021 and VB022 similarly to} \\ \text{above-mentioned method.} \\ \text{VBON} = \text{VB022} - \text{VB021} \end{array}$	50	65	-	mV
Output dynamic range (1) (Minimum gain)	Vdyn	(GAIN SEL) = 0, $(AGC GAIN) = 0\overline{CLP} = SG2, \overline{OBP} = SG3Input the SG1 (f = 2 MHz, V = 0.9 Vp-p) to theSIN and measure the amplitude of theAGCOUT.$	2.0	2.2	_	Vp-p
Output dynamic range (2) (Maximum gain)	Vdyx	(GAIN SEL) = 7, $(AGC GAIN) = 255\overline{CLP} = SG2, \overline{OBP} = SG3Input the SG1 (f = 2 MHz, V = 50 mVp-p) to theSIN and measure the amplitude of the AGCOUT.$	2.0	2.2	_	Vp-р

• A/D Converter Circuit

(Unless otherwise specified, TA = +25 °C, VCC1 = VCC2 = VCC3 = VCC4 = VCC5 = VCC6 = 5.0 V, VLOGIC = 3.3 V, ADCK = 18 MHz square wave, \overline{SCK} = 0 V, \overline{SDATA} = 0 V, \overline{STBY} = 3.3 V, \overline{CLP} = 3.3 V, \overline{S}/H_1 = 0 V, \overline{S}/H_2 = 0 V, \overline{S}/H_3 = 0 V, \overline{BLK} = 3.3 V, \overline{OBP} = 3.3 V, SW42 = OFF, SW43 = (b), \overline{ADCLP} = 3.3 V)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	DCLP	SW43 = (a)	56	61	66	
Clamp value		ADCLP = 0 V				_
		ADCIN = GND4				
		Read the output value of DO ₀ to DO ₉ .				
Clamp value	DCLPN	$SW42 = ON, V42 = 5.0 V, \overline{ADCLP} = 0 V,$	31	36	41	_
adjustment limit (1)		ADCIN = GND4				
		Read the output value of DO ₀ to DO ₉ .				
Clamp value		SW42 = ON, V42 = 1.6 V, $\overline{\text{ADCLP}}$ = 0 V,	81	86	91	-
odiuotmont limit (2)	DCLPX	ADCIN = GND4				
		Read the output value of DO ₀ to DO ₉ .				
Differential linearity		ADCIN = SG4		±0.5	±0.9	LSB
error	DLE	Read the output value of DOo to DO9 at about	-			
	ILE	10 ⁶ times and make it a histogram. Normalize	_	±3	±7	LSB
Integral linearity error		the histogram and obtain the DLE.				
		Integrate the histogram and obtain the ILE.				
	tdlh	ADCIN = SG4, CL = 20 pF	15	26	38	ns
Propagation delay		Measure the delay time from the falling edge				
(L→H)		(50%) of the ADCK to the rising edge (50%)				
		of the DO ₀ to DO ₉ .				
		ADCIN = SG4, CL = 20 pF				
Propagation delay	tDHL.	Measure the delay time from the falling edge	15	26	38	ns
(H→L)		(50%) of the ADCK to the falling edge (50%)				
		of the DO0 to DO9.				
Output rise time	twLH	ADCIN = SG4, CL = 20 pF	10	17	25	ns
		Measure the rise time (10% \rightarrow 90%) of the				
		DOo to DO9.				
	twnL	ADCIN = SG4, CL = 20 pF				
Output fall time		Measure the fall time (90% \rightarrow 10%) of the	10	17	25	ns
		DO ₀ to DO ₉ .				

Measurement Waveforms

Test Circuit

PACKAGE

(Unit : mm)

