IR3Y30M/M1

DESCRIPTION

The IR3Y30M/M1 are bipolar single-chip signal processing ICs with built-in low-pass filter and delay line for B/W video cameras. They realize both downsizing and cost reduction of the finished set.

FEATURES

- Low power consumption : 265 mW (TYP.)
- Wide AGC range : -3 to +29 dB
- High speed sample-and-hold circuits : pulse width 15 ns (MIN.)
- Signal processing from CCD output to 75 Ω video output is possible
- Built-in low-pass filter
- Built-in comparator for electronic exposure control
- Built-in aperture circuit and delay line
- Single +5 V power supply
- Packages
 - IR3Y30M : 48-pin QFP (QFP048-P-1010)
 - IR3Y30M1 : 48-pin QFP (QFP048-P-0707)
 0.5 mm pin-pitch

COMPARISON TABLE

	IR3Y30M	IR3Y30M1
Package	48-pin QFP (QFP048-P-1010)	48-pin QFP (QFP048-P-0707)
Power consumption	725 mW	560 mW
PD derating ratio	5.8 mW/°C	4.5 mW/°C
Operating temperature	−30 to +75 °C	−30 to +70 °C

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

1

CCD Signal Processors for B/W CCD Cameras

PIN CONNECTIONS

BLOCK DIAGRAM

PIN DESCRIPTION

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
1	CCDIN	2.5 V	Vcc1 200 1 200 200 200 1 200 1 200 1 205 k 9 k 9 k 59 k 1 GND	Input for the signal from CCD area sensor. 2.5 V bias applied internally.
2	CLAMP BIAS	2.9 V	Vcc1 200 200 200 200 200 200 200 20	Feed through level of the input signal is clamped to this pin voltage. 2.9 V bias applied internally. Connect capacitor between this pin and GND.
3	IRIS GAMMA	3.1 V	Vcc1 200 6.4 k 3 $33.8 \text{ k} \leq 25 \text{ k}$ $\leq 33.8 \text{ k} \leq 25 \text{ k}$ $\leq 25 \text{ k}$ = 30 k =	Gamma adjustment of the exposure circuit. This pin is preset to 3.1 V, and gamma becomes 0.45 at open.
4	WINDOW		Vcc1 4 7 k 18.8 k 18.8 k 18.8 k 100μ 190μ GND	Window pulse input for the exposure circuit. Outputs the signal while "H".
5	IRIS OUT	2.3 V	Vcc1 \$20 k \$50 t 1 k \$50 \$50 \$50 \$50 \$50 \$50 \$50 \$50	Output for the exposure signal. Connect a resistor between this pin and GND.

PIN NO.	PIN NAME VOLTAG	E EQUIVALENT CIRCUIT	DESCRIPTION
6	VCC1		Power supply for analog circuits.
7	GND1		Ground for analog circuits.
8	EE NR		Comparator output for electronic exposure control.
9	SET NR		High reference voltage input of the comparator for electronic exposure control.
10	IRIS IN		Input of the amplifier for electronic exposure control. This amplifier has 5 times gain.
11	SET UP		Low reference voltage input of the comparator for electronic exposure control.
12	EE UP		Output of the comparator for electronic exposure control.
13	SYNC	Vcc1	Synchronous signal input.

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
14	BLK CLP		Vcc1 40μ 5 k 5 k 14	Composite pulse input. (pulse for optical black clamp and pulse for blanking)
15	BCLIP			Adjustment for the base clip level in the aperture circuit. Eliminates the low-level noise of aperture signal. When opened, base clip is canceled.
16	VCC2			Power supply for output amplifier circuits.
17	VIDEO OUT	1.5 V		Video signal output. At 75 Ω terminated : 1 Vp-p (Synchronous level 0.3 Vp-p)
18	PEDESTAL	2.5 V		Blanking level adjustment. 100 mV when opened.

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
19	WCLIP	3.3 V	Vcc2 35 k 15 k 19 b 50 00 100	White clip adjustment. 120% when opened.
20	CLAMP2	2.3 V	Vcc2 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	Input for encoder circuit. Black level of input signal is clamped to 2.3 V.
21	AMP2 OUT	1.0 V	Vcc1 50 µ \$100 100 21 GND	Output for the gain control amplifier.
22	GAIN CTRL	2.5 V	Vcc1 39 k 10 k 1.8 k 200 µ 200 µ GND	Controls the output amplitude at pin No. 21. Gain is controlled in the range from 6 to 12 dB. It is approximately 10 dB when this pin is open.
23	C3	1.8 V	Vcc1 3 p 3 p 3 p 3 p 50μ 50μ 50	Feedback clamp detector. Connect capacitor between this pin and GND.

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
24	C2	1.8 V	Vcc1 200 200 3p 3p 3p 3p 50μ 50μ	Feedback clamp detector. Connect capacitor between this pin and GND. When the external DL circuit is used, this will be input pin to make the aperture signal.
25	APA CTRL	1.8 V	Vcc1 40μ 30.5 k 19.5 k 100μ \equiv GND	Adjustment for the horizontal aperture amount. It is approximately 12 dB when this pin is open.
26	HAPA IN			Input for signal from pin 28. This signal is used as a main signal when aperture signals are mixed.
27	DL ADJ	1.2 V	Vcc1 $200 \leq 4 k$ $200 \leq 4 k$ 10 k 10 k 10 k	Adjustment for built-in delay line. When 200 kΩ resistor is connected between this pin and GND, delay line can be turned off.
28	GAMMA OUT	2.3 V	Vcc1	Gamma and knee processed signal output.

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
29	KNEE ADJ	2.8 V	Vcc1 40 k 10 k 0 J $100 $ $100 \text$	Knee adjustment. 120% when opened.
30	gamma Adj	2.0 V	Vcc1 40 k 30 40 k 10 k 10 k 30 40 k 10 k 30 GRD	Gamma correction adjustment. 0.7 when opened.
31	GND2			Ground for analog circuits.
32	AGC DET	2.0 V	Vcc1	Signal output for AGC control. Connect resistor between this pin and GND.
33	C1	2.0 V	Vcc1 1p 1p 1p 1p 1p 10k	Feedback clamp detector. Connect capacitor between this pin and GND.
34	AMP1 IN		Vcc1 200 34 170 µ 250 µ 170 µ 250 µ 170 µ 36 10 k	Input for gamma and knee signal process.

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
35	LPF ADJ		Vcc1 5 p 35 200 35 200 35 200 35 200 35 200 35 200 35	Adjustment for built-in LPF characteristic. When connected resistor is 220 k Ω or more between this pin and GND, LPF can be turned off.
36	AGC OUT	2.3 V	Vcc1	AGC signal output.
37	Vref	2.0 V	Vcc1 200 37 GND	Reference voltage.
38	Vc	2.0 V	Vcc1 200 38 200 38 200 38 20 k 38 20 k 38 20 k 38 38 38 38 38 38 38 38 38 38	Bias for reference voltage. Connect capacitor between this pin and GND.
39	AGC CTRL			Gain control for AGC amplifier. Be sure to input the voltage within the range from 2 to 4 V.

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
40	AGC OP OUT			Output of the operation at amplifier for AGC control.
41	MAX GAIN	3.3 V	Vcc1 41 41 550μ 500μ 100μ 1	Adjustment for AGC amplifier maximum gain. Maximum gain is 18 dB when opened. When applied voltage is 0.62 V or less, AGC circuit turns off and the amplifier is fixed to 0 dB.
42	AGC OP IN		Vcc1 42 42 GND	The operational amplifier for AGC control.
43	CLAMP1	2.0 V	Vcc1	Input of AGC amplifier. Black level is clamped at 2.0 V.
44	CDS OUT	2.4 V	Vcc1	CDS signal output.

PIN NO.	PIN NAME	VOLTAGE	EQUIVALENT CIRCUIT	DESCRIPTION
45	PVcc			Power supply for pulse circuits.
46	FS		PVcc 200 46 PGND	Pulse input for sample-hold.
47	FCDS		PVcc 200 47 F PGND	Pulse input for feed-through level clamp.
48	PGND			Ground for pulse circuits.

FUNCTIONAL OPERATION

CDS Circuit

The feed-through level of the input signal is clamped by the clamp circuit. Then the signal period is sampled and other periods are held by the sample and hold circuit, so that signals can be obtained.

Highlight Clip Circuit

Before the AGC circuit, excessive signals of more than approximately 0.5 Vp-p are clipped.

AGC Amplifier Circuit

The amplitude of output signals from the AGC amplifier is externally detected and the gain is controlled with control signals from the AGC operational amplifier. Decreasing voltage at pin 41 to 0.62 V or less causes the amplifier to be fixed to 0 dB.

LPF Circuit

The characteristics can be controlled with an external resistor at pin 35. Increasing the resistor to 220 k Ω or more allows signals passing over the LPF to be output.

Gamma and Knee Corrections Circuits

In order to comply with the characteristics of CRT, the high-bright part is suppressed. Pin 29 and 30 can be used to control this suppression. If voltage at pin 30 is increased to 4 V or more gamma will be 1.

Exposure Circuit

Signals which have not been processed by AGC are amplified, suppressed by gamma correction, and then output. Control signals can be generated by inputting the above signals to pin 10 after detecting them.

Aperture Circuit

The video articulation can be increased by enhancing the signal contour. If the built-in delay line is not used, it can be turned off by using an external resistor of minimum 200 k Ω at pin 27. To control the aperture amount, use a base clip.

Output Circuit

A load of 75 Ω can be driven directly. In addition, the pedestal level can be controlled vertically.

CAUTIONS

- To control the aperture amount, apply base clip by controlling pin 15.
- Avoid connecting or disconnecting an external resistor at pin 27 to prevent the malfunction of the built-in delay line.
- Use the shortest possible distance to connect the bypass capacitors between the power supply and GND pins. The addition or removal of any external component should be determined by how the existing components are mounted.
- This device is electronically sensitive. Handle only at electrostatically safe work stations.

ABSOLUTE MAXIMUM RATINGS

(Unless otherwise specified, TA = +25 $^{\circ}$ C)

DADAMETED	SAMBOI	CONDITIONS	RATING			
PARAMETER	STINDUL	CONDITIONS	IR3Y30M	IR3Y30M1		
Supply voltage	VCC1, VCC2		-	7	V	
Supply voltage	PVcc		-	7	V	
	Via	Except for pins 46 (FS) and 47 (FCDS)	Vcc		V	
Input voltage	VIP	Pins 46 (FS) and 47 (FCDS)	-0.2 to PVcc + 0.2		V	
Comparator output voltage	Vsd		Vcc		V	
Power consumption	PD	Ta ≤ +25 °C	725	560	mW	
PD derating ratio		Ta > +25 °C	5.8	4.5	mW/°C	
Operating temperature	TOPR		-30 to +75	-30 to +70	ںْ	
Storage temperature	Tstg		–55 to	+150	°C	

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	APPLICABLE PINS	RATING	UNIT
Supply voltage	Vcc	Pins 6 (Vcc1), 16 (Vcc2) and 45 (PVcc)	4.75 to 5.25	V
H-aperture signal	VH-AP	Pin 26 (HAPA IN)	600 (MAX.)	mVp-p
Standard CCD input signal	VCCD	Pin 1 (CCD IN)	200 (TYP.)	mVp-p
Clamp pulse width	tFS	Pin 46 (FS)	15 (MIN.)	ns
Sample-hold pulse width	tFCDS	Pin 47 (FCDS)	15 (MIN.)	ns

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, TA = +25 °C, Vcc = 5.0 V, SW conditions→(a), V₂₆ = 2.3 V, V₃₄ = 2.0 V, V₃₉ = 3 V, R27 = 30 kΩ, R35 = 22 kΩ)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT
Supply current	ICC1	Measure pin 6 (Vcc1).			43.0	54.5	mA
	ICC2	Measure pin 16 (VCC2).			5.7	7.8	mA
	Іссз	Measure pin 45 (PVcc).			4.3	5.4	mA
CDS Circuit							
		With signal 1 applied to SG1, measure the					
Low froquopov		signal attenuation on TP44. FS = 5 V, FCDS				-25	dB
attonuction	Glf	= Signal 2 (FCDS), VA = TP44 amplitude (f =			-30		
allenuation		100 kHz), VB = TP44 amplitude (f = 10 MHz)					
		Glf = 20*LOG (Va/Vb)					
		Signal 2 applied to SG1, FS and FCDS,					
Gain	GCDS	measure the amplitude on TP44.		-2	0	2	dB
		SG1 = 200 mVp-p, f = 10 MHz					
Clamp bias	VCP/BIAS			2.7	2.9	3.1	V
AGC Operational An	plifier Cire	cuit					
	AOPL	Measure the voltage on $V42 = 3 V$, TP40B. SW40, SW42→(b) $I40 = +200 \mu A$ V42 = 1 V, $I40 = -200 \mu A$	V42 = 3 V,		1.0	10	
			I40 = +200 μA			1.2	v
High level	Аорн		V42 = 1 V,	30	41		v
			0.0	4.1			
Exposure Operation			1				
	Gop	With $V_{10} = 2.3 V$, measure the voltage of V_{9a}		0.40	0.46	0.51	v
		(TP8 : $L \rightarrow H$) and V11a (TP12 : $H \rightarrow L$).					
Operational amplifier		With $V_{10} = 2.4$ V, measure the voltage of V _{9b}					
gain		(TP8 : $L \rightarrow H$) and V11b (TP12 : $H \rightarrow L$).					
		GOP = (V9b-V9a) or (V11b-V11a)					
		SW9, SW10, SW11→(b)					
Comparator low level	IOPL	Change the voltage of V9 and	d V11, and		0	0.2	
		measure the voltage on TP8 and TP12.				0.2	v
High level		V10 = 2.3 V		4 70	4 95		ľ
	10111	SW9, SW10, SW11→(b)		4.70	4.00		
AGC Circuit		1					
Highlight clip level	Hc∟	Change the amplitude of signal 3 which is					
		applied to SG43, and measure the amplitude		0.4	0.5	0.6	Vp-p
		on TP36 when TP36's output signal is clipped.					
		SW43, SW41→(b), Pulse→CLP, V41 = 0 V,					
		R35 = 220 kΩ					

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT
AGC circuit (contd.)		•			•		
AGC maximum gain	GAMAX1	Apply signal 3 to SG43 and	SG43 = 20 mVp-p	27	20	31	
(1)	GAIVIANT	measure the amplitude on	V39 = 4 V, V41 = 5 V	21	2.5	51	_
AGC maximum gain	GAMAYO	TP36.	SG43 = 20 mVp-p	15.5	18.0	20.5	
(2)	GAIVIAAZ	GA1 to GA4 = 20*LOG	V39 = 4 V, SW41→(a)	10.0	10.0		dB
	Gamin	(TP36 amplitude/SG43	SG43 = 400 mVp-p	-6.5	-3.5	-0.5	
		amplitude)	V39 = 2 V, V41 = 5 V				
	GAOFE	SW41, SW43→(b),	SG43 = 200 mVp-p	_2	0	2	
	GAOIT	Pulse→CLP, R35 = 220 kΩ	V39 = 4 V, V41 = 0 V	2		~	
		Apply signal 3 to SG43 and r	neasure the				
Output dynamic		amplitude on TP36.					
range	DA	SG43 = 50 mVp-p, SW41, SV	W43→(b),	0.55	0.75		Vp-p
lange		Pulse→CLP, V39 = 4 V, V41 =	= 5 V,				
		R35 = 220 kΩ					
	fA1	Apply signal 4 to SG43.		3.5	4.5		
Frequency		Increase the frequency of	SG43 = 10 mVp-p				
characteristic (1)		signal 4 until the frequency	$R35 = 22 k\Omega$				
		components of the signal on	$V_{39} = 4 V$				
		TP36 are 3 dB lower than					MHz
Frequency characteristic (2)	fA2	that at $f = 100 \text{ kHz}$, and	SC(42 - 200 m)/m	7.0	10.0		
		measure the frequency of	5043 = 200 mvp-p				
		signal 4. SW41→(b),	R35 = 220 KΩ				
		Pulse→CLP, V41 = 5 V					
	fАз	When measuring case (2),	SG43 = 10 mVp-p			-25	dB
Frequency		adjust the V ₃₉ such that the	R35 = 22 kΩ		-35		
characteristic (3)		amplitude of the output on	V39 = 4 V				
		TP36 is 200 mVp-p.	f = 9.5 MHz				
	Vagc	Apply signal 3 to SG43, chan	ge V41, and				
		measure the voltage of V41 who	en the gain on				
AGC ON/OFF		TP36 changes from -3.5 to 0	ges from –3.5 to 0 dB. The gain on		0.0	0.0	
switching voltage		TP36 : 20*LOG (TP36 amplitud	e/SG43 amplitude)	0.4	0.6	0.8	V
		SG43 = 400 mVp-p, SW43, SW41→(b),					
		Pulse→CLP, V₃9 = 2 V, R₃5 = 220 kΩ					
Reference voltage 1	VREF	Measure the voltage on TP37A.		1.84	1.94	2.04	V
	ΔVREF2	With I37 = +500 µA, measure	the change in				
Reference voltage 2		voltage on TP37B.	0		0.15	0.30	V
		SW37→(b)					
		With I ₃₇ = -500μ A, measure	the change in		-0.15	0	v
Reference voltage 3	ΔVREF3	voltage on TP37B.		-0.30			
		SW37→(b)					

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT
Exposure Circuit							
Exposure AMP gain	Gi	Apply signal 3 to SG43 and measure the amplitude on	SG43 = 200 mVp-p V3 = 5 V, V4 = 5 V	10.5	11.5	12.5	dB
Gamma output level	γPRE	TP5.	SW3→(a)	0.25	0.32	0.40	Vp-p
Output dynamic range	Dı	SW3, SW4, SW43→(b), Pulse→CLP, BLK	SG43 = 800 mVp-p V3 = 5 V, V4 = 5 V	1.5	1.9		Vp-р
Black level	Ві	Measure the voltage on TP5. SW4 \rightarrow (b), Pulse \rightarrow CLP, BLK, V4 = 0 V		2.15	2.30	2.45	v
Black level offset 1	BIOFF1	Measure the voltage on TP5.	V4 = 5 V	-50	0	50	m\/
Black level offset 2	BIOFF2	SW4→(b), Pulse→CLP, BLK	V4 = 0 V	-50	0	50	
Frequency characteristic	fı	Apply signal 4 to SG43. Increase the frequency of signal 4 until the frequency components of the signal on TP5 are 3 dB lower than that at f = 100 kHz, and measure the frequency of signal 4. SG43 = 200 mVp-p, V4 = 5 V, SW4, SW43 \rightarrow (b), Pulse \rightarrow CLP. BLK			1.1		MHz
Window OFF output level	Owoff	Apply signal 3 to SG43 and measure the amplitude on TP5. SG43 = 200 mVp-p, SW4, SW43 \rightarrow (b), Pulse \rightarrow CLP, BLK, V4 = 0 V			40	70	mVp-p
Window ON switching voltage	Vw	Same as in the window OFF output level measurement. Increase V4, and measure V4 when the amplitude of output signal on TP5 is not changed.		1.2	1.4	1.6	V
Window input current	Iw	With V4 = 5 V, measure input current on pin 4. SW4 \rightarrow (b)		0.5	1.2	3.0	μA
AMP1 Circuits							
AMP1 gain	Gamp1	Apply signal 3 to SG34 and measure the amplitude on TP32. SW34 \rightarrow (b), Pulse \rightarrow CLP, BLK, SG34 = 100 mVp-p, Black level = 2 V		13	14	15	dB
Output dynamic range	DAMP1	Same as in the AMP1 gain measurement. Measure output dynamic range on TP32.		1.20	1.40		Vp-p
Black level	BAMP1	Measure the voltage on TP32. Pulse→CLP, BLK		1.9	2.0	2.1	V
Gamma & Knee Circuits							
Gamma gain (1)	Gγ1	Apply signal 3 to SG34 and	SG34 = 100 mVp-p	310	410	510	mVp-p
Gamma gain (2)	Gy2	measure the amplitude on TP28 SW34 \rightarrow (b) Pulse \rightarrow Cl P	SG34 = 30 mVp-p		-6.4		
Gamma gain (3)	Gγ3	BLK, Input black level = 2 V SG34 = 200 mVp-p			1.3		UB

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT
Gamma & Knee Circ	uits (contd	.)					
Gamma OFF gain	GγOFF	Apply signal 3 to SG34 and measure the amplitude on TP28. SW29, SW30, SW34 \rightarrow (b), Pulse \rightarrow CLP, BLK, SG34 = 100 mVp-p, Black level = 2 V, V29 = 5 V, V30 = 5 V		450	510	580	mVp-p
	(1) CL1	Measure the amplitude of	SW30→(a)	-50	0	50	
Cleaning offset	(2) CL2	TP28 between BLK level and black level. Pulse→CLP, BLK	SW30→(b), V30 = 5 V	-50	0	50	mV
Frequency characteristic	fγ	Apply signal 4 to SG34. Incre- frequency of signal 4 until the components of the signal on T lower than that at f = 100 kHz the frequency of signal 4. SW Pulse→CLP, BLK, SG34 = 10 Black level = 2 V	ase the a frequency TP28 are 3 dB c, and measure /34→(b), 00 mVp-p,	6.0			MHz
Aperture & AMP ₂ Cir	rcuits						
Aperture maximum gain	Gармах	Apply signal 3 to SG26 and measure the amplitude on TP21. SW26A \rightarrow (b), Pulse \rightarrow CLP, BLK, SG26 = 100 mVp-p, Black level = 2.3 V	SW25→(b), V25 = 5 V	840	1 130		mVp-p
Aperture preset gain	GAPPRE			740	840	940	
Aperture minimum gain	Gapmin		SW25→(b), V25 = 0 V	320	420	520	
Base clip output	BCL		SW15→(b), V15 = 0 V SW25→(b), V25 = 5 V	250	350	450	
Delay line output	DLout	Apply signal 3 to SG34 and measure the amplitude on TP21. SW15, SW23, SW25, SW29, SW30, SW34 \rightarrow (b), Pulse \rightarrow CLP, BLK, SG34 = 50 mVp-p, Black level = 2 V, V15 = V25 = V29 = V30 = 5 V, V23 = 1 2 V, V26 = 2 3 V		1 100	1 700		mVp-p
AMP2 maximum gain	Gамр2мах	Apply signal 3 to SG26 and measure the amplitude on	SG26 = 100 mVp-p, V22 = 5 V	370	440	510	
AMP2 minimum gain	Gamp2min	TP21. Pulse \rightarrow CLP, BLK, SW15, SW22, SW25, SW26A \rightarrow (b),	SG26 = 100 mVp-p, V22 = 0 V	180	230	280	mVp-p
Output dynamic range	Damp2	Input black level = $2.3 V$, V15 = V25 = $0 V$	SG26 = 800 mVp-p, V22 = 5 V	2 000 2	2 550		
Frequency characteristic	famp2	Apply signal 4 to SG26. Increase the frequency of signal 4 until the frequency components of the signal on TP21 are 3 dB lower than that at f = 100 kHz, and measure the frequency of signal 4. SW15, SW25, SW26A \rightarrow (b), V15 = 0 V, V25 = 0 V, Pulse \rightarrow CLP, BLK, SG26 = 100 mVp-p, Black level = 2.3 V		8.0			MHz

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT
Encoder Circuit					1	1	I
White clip (1)	WC1	Apply signal 3 to SG20 and	SW19→(b), V19 = 5 V	1.9	2.0		
White clip (2)	WC2	measure the amplitude on	SW19→(b), V19 = 0 V		0.85	0.95	V
White clip preset	WCPRE	TP17A. SW20→(b), Pulse→CLP, BLK	SW19→(a)	1.75	1.85	1.95	
Setup (1)	SUP1	Measure the amplitude of	SW18→(b), V18 = 5 V	230	280		
Setup (2)	SUP2	TP17A between BLK level S	SW18→(b), V18 = 0 V		-310	-260	mV
Setup preset	SUPPRE	Pulse→CLP, BLK	SW18→(a)	-150	-100	-50	
SYNC level	Vsync	Measure the amplitude of TP17A between SYNC level and black level. Pulse→CLP, BLK, SYNC		530	580	630	mV
Gain	Gout	Apply signal 3 to SG20 and measure the amplitude on TP17A. SW20 \rightarrow (b), Pulse \rightarrow CLP, BLK, SG20 = 1 Vp-p			0	1	dB
Output dynamic range	Dout	Apply signal 3 to SG20 and measure the amplitude of TP17A between SYNC level and white level. SW19, SW20 \rightarrow (b), V19 = 5 V, Pulse \rightarrow CLP, BLK, SYNC		2.2	2.5		Vp-р
Frequency characteristic	fout	Apply signal 4 to SG20. Increase the frequency of signal 4 until the frequency components of the signal on TP17B are 3 dB lower than that at $f = 100 \text{ kHz}$, and measure the frequency of signal 4. SG20 = 1 Vp-p, SW17, SW20→(b), Pulse→CLP, BLK, SYNC		10			MHz
Output voltage	Vout	Apply signal 3 to SG20 and measure the amplitude of TP17B between SYNC level and white level. SG20 = 1.3 Vp-p, SW17, SW20 \rightarrow (b), Pulse \rightarrow CLP, BLK, SYNC		0.9	1.0		Vp-p
Pulse Circuit	1						
Clamp threshold voltage	VFCDS				1.3		
Sample-hold threshold voltage	VFS	Apply voltages to FCDS, FS, SYNC, BLK and CLP and measure the threshold voltage of each circuit.			1.5		
Synchronous signal threshold voltage	VSYNC				2.5		v
Blanking threshold voltage	VBLK			<u> </u>	1.5		
Clamp threshold voltage	Vср				3.5		

Measurement Waveforms

Test Circuit

(a) (b)

PACKAGES

(Unit : mm)

