FEATURES

Dual, 1024 Position Resolution
25K, 250K Ohm Terminal Resistance with 50ppm/ ${ }^{\circ} \mathrm{C}$ Tempco Nonvolatile Memory Preset
SPI Compatible Serial Data Input with Readback Function Increment/Decrement Commands, Push Button Command +3 to +5 V Single Supply Operation
$\pm 2.5 \mathrm{~V}$ Dual Supply Operation
30 bytes of general purpose nonvolatile memory

APPLICATIONS

Mechanical Potentiometer Replacement Instrumentation: Gain, Offset Adjustment Programmable Voltage to Current Conversion
Programmable Filters, Delays, Time Constants
Line Impedance Matching
Power Supply Adjustment
DIP Switch Setting

GENERAL DESCRIPTION

The AD5235 provides a dual channel, digitally controlled variable resistor (VR) with resolutions of 1024 positions. These devices perform the same electronic adjustment function as a potentiometer or variable resistor. The AD5235's versatile programming via a Micro Controller allows multiple modes of operation and adjustment.
In the direct program mode a predetermined setting of the RDAC register can be loaded directly from the micro controller. Another key mode of operation allows the RDAC register to be refreshed with the setting previously stored in the EEMEM register. When changes are made to the RDAC register to establish a new wiper position, the value of the setting can be saved into the EEMEM by executing an EEMEM save operation. Once the settings are saved in the EEMEM register, these values will be transferred automatically to the RDAC register to set the wiper position at system power ON. Such operation is enabled by the internal preset strobe and the preset can also be accessed externally.
An internal scratch pad RDAC register can be programmed by the micro controller to set the resistance between terminals W -and- B . Once the target value is achieved, the RDAC content register can be placed in the non-volatile memory for automatic recall during Power Up.
The AD5235 is available in the thin TSSOP-16 package. All parts are guaranteed to operate over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAMS

Nonvolatile Memory Digital Potentiometers

ELECTRICAL CHARACTERISTICS 25K, 250K OHM VERSIONS $\left(\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V} \pm 10 \%\right.$ to $+5 \mathrm{~V} \pm 10 \%$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}$

 $=+V_{D D}, V_{B}=0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$ unless otherwise noted.)| Parameter | Symbol | Conditions | Min | Typ ${ }^{1}$ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| INTERFACE TIMING CHARACTERISTICS applies to all parts(Notes 5, 8) | | | | | | |
| Clock Cycle Time | t_{1} | | 20 | | | ns |
| Input Clock Pulse Width | $\mathrm{t}_{2}, \mathrm{t}_{3}$ | Clock level high or low | 10 | | | ns |
| $\overline{\mathrm{CS}}$ Setup Time | t_{4} | | 10 | | | ns |
| Data Setup Time | t_{5} | From Positive CLK transition | 5 | | | ns |
| Data Hold Time | t_{6} | From Positive CLK transition | 5 | | | ns |
| CLK Shutdown Time | t_{7} | | 0 | | | ns |
| $\overline{\mathrm{CS}}$ Rise to Clock Rise Setup | t_{8} | | 10 | | | ns |
| $\overline{\mathrm{CS}}$ High Pulse Width | t_{9} | | 10 | | | ns |
| CLK to SDO Propagation Delay ${ }^{9}$ | t_{10} | $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}<20 \mathrm{pF}$ | 1 | | 25 | ns |
| Store to Nonvolatile EEMEM Save Time ${ }^{10}$ | t_{11} | Applies to Command 2H, 3 H | | | 25 | ms |
| $\overline{\mathrm{CS}}$ to SDO - SPI line acquire | t_{12} | | | | | ns |
| $\overline{\mathrm{CS}}$ to SDO - SPI line release | t_{13} | | | | | ns |
| RDY Rise to CLK Rise | t_{14} | | | | | ns |
| Startup Time | t_{15} | | | | | ms |
| CLK Setup Time | t_{16} | For 1 CLK period ($\mathrm{t}_{4}-\mathrm{t}_{3}=1$ CLK period) | | | | ns |
| Preset Pulse Width | tPR | | 50 | | | ns |

NOTES:

Typicals represent average readings at $+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=+5 \mathrm{~V}$.
2. Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. See figure 20 test circuit. $l_{W}=V_{D D} / R$ for both $V_{D D}=+3 V$ or $V_{D D}=+5 \mathrm{~V}$.
3. INL and DNL are measured at V_{W} with the RDAC configured as a potentiometer divider similar to a voltage output D / A converter. $\mathrm{V}_{A}=\mathrm{V}_{D D}$ and $\mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$.

DNL specification limits of ± 1 LSB maximum are Guaranteed Monotonic operating conditions. See Figure 19 test circuit.
4. Resistor terminals A, B, W have no limitations on polarity with respect to each other.
5. Guaranteed by design and not subject to production test.
6. Polss is calculated from ($\mathrm{ldD} \times \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$).
7. All dynamic characteristics use $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$.
8. See timing diagram for location of measured values. All input control voltages are specified with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}(10 \%$ to 90% of 3 V$)$ and timed from a voltage level of 1.5 V . Switching characteristics are measured using both $V_{D D}=+3 \mathrm{~V}$ or +5 V .
9. Propagation delay depends on value of $\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\text {PuLL_ }}$, , and C_{L} see applications text.
10. Low only for commands $8,9,10,2,3$: CMD_8~1ms; CMD_9,10~0.1ms; CMD_2,3 $\sim 20 \mathrm{~ms}$.

Timing Diagram

Figure 1. Timing Diagram

Ordering Guide

Model	\#CHs/ k Ohm	Temp Range	Package Description	Package Option
AD5235BRU25	X2/25	$-40 /+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16
AD5235BRU250	X2/250	$-40 /+85^{\circ} \mathrm{C}$	TSSOP-16	RU-16

The AD5235 contains 16,000 transistors.
Die size: $100 \times 105 \mathrm{mil}=10,500 \mathrm{sq}$. mil

AD5235
 AD5235 PIN CONFIGURATION

AD5235 PIN FUNCTION DESCRIPTION		
\#	Name	Description
1	CLK	Serial Input Register clock pin. Shifts in one bit at a time on positive clock edges.
2	SDI	Serial Data Input Pin. Shifts in one bit at a time on positive clock CLK edges.
3	SDO	Serial Data Output Pin. Open Drain Output requires external pull-up resistor. Commands 9 and 10 activate the SDO output. See Instruction operation Truth Table. Table 2.
4	GND	Ground pin, logic ground reference
5	$\mathrm{V}_{\text {SS }}$	Negative Supply. Connect to zero volts for single supply applications.
6	A1	A terminal of RDAC1.
7	W1	Wiper terminal of RDAC1, $\operatorname{ADDR}($ RDAC1 $)=0_{H}$.
8	B1	B terminal of RDAC1.
9	B2	B terminal of RDAC2.
10	W2	Wiper terminal of RDAC2, $\operatorname{ADDR}(\operatorname{RDAC} 3)=1_{\mathrm{H}}$.
11	A2	A terminal of RDAC2.
12	V_{DD}	Positive Power Supply Pin. Should be \geq the input-logic HIGH voltage.
13	$\overline{W P}$	Write Protect Pin. Prevents any changes to the present EEMEM contents when active low.
14	$\overline{\text { PR }}$	Hardware over ride preset pin. Refreshes the scratch pad register with current contents of the EEMEM register. Factory default loads midscale 512_{10}.
15	$\overline{\mathrm{CS}}$	Serial Register chip select active low. Serial register operation takes place when $\overline{\mathrm{CS}}$ returns to logic high.
16	RDY	Ready. Active-high open drain output. Identifies completion of commands $2,3,8,9,10$.

Nonvolatile Memory Digital Potentiometers OPERATIONAL OVERVIEW

The AD5235 digital potentiometer is designed to operate as a true variable resistor replacement device for analog signals that remain within the terminal voltage range of $\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\text {TERM }}<\mathrm{V}_{\text {DD }}$. The basic voltage range is limited to $\mathrm{a} \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}<5.5 \mathrm{~V}$. Control of the digital potentiometer allows both scratch pad register (RDAC register) changes to be made, as well as 100,000 times of nonvolatile electrically erasable memory (EEMEM) register operations. The EEMEM update process takes approximately 20.2 ms , during this time the shift register is locked preventing any changes from taking place. The RDY pin flags the completion of this EEMEM save. The EEMEM retention is designed to last 10 years without refresh. The scratch pad register can be changed incrementally by using the software controlled Increment/Decrement instruction or the Shift Left/Right instruction command. Once an Increment, Decrement or Shift command has been loaded into the shift register, subsequent CS strobes will repeat this command. This is useful for push button control applications. Alternately the scratch pad register can be programmed with any position value using the standard SPI serial interface mode by loading the representative data word. The scratch pad register can be loaded with the current contents of the nonvolatile EEMEM register under the program control. At system power ON, the default value of the scratch pad memory is the value previously saved in the EEMEM register. The factory EEMEM preset value is midscale 512_{10}.

A serial data output pin is available for daisy chaining and for readout of the internal register contents. The serial input data register uses a 24 -bit instruction/address/data WORD. The writeprotect ($\overline{\mathrm{WP}}$) pin provides a hardware EEMEM protection feature disabling any changes of the present EEMEM contents.

SERIAL DATA INTERFACE

The AD5235 contains a four-wire SPI compatible digital interface (SDI, SDO, $\overline{\mathrm{CS}}$, and CLK). Key features of this interface include:

- Permanent storage of the present scratch pad RDAC register values into the corresponding EEMEM register
- 30 bytes of user addressable electrical-erasable memory

The serial interface of AD5235 digital potentiometer uses a 24 -bit serial word loaded with MSB first. The format of the SPI compatible word is shown in Table 1. The Command Bits (Cx) control the operation of the digital potentiometer according to the command instruction shown in Table 2. The Address Bits (Ax) determine which register is activated. The Data Bits (Dx) are the values that are loaded into the decoded register. The last instruction executed prior to a period of no programming activity should be the NOP instruction. This will place the internal logic circuitry in a minimum power dissipation state.

Figure 2. Equivalent Digital Input-Output Logic
The equivalent serial data input and output logic is shown in figure 2. The open drain output SDO is disabled whenever chip select $\overline{\mathrm{CS}}$ is logic high. The SPI interface can be used in two slave modes CPHA $=1$, CPOL $=1$ and $\mathrm{CPHA}=0, \mathrm{CPOL}=0 . \mathrm{CPHA}$ and CPOL refer to the control bits, which dictate SPI timing in the following microprocessors/MicroConverters: ADuC812/824, M68HC11, and MC68HC16R1/916R1.

- Independently Programmable Read \& Write to all registers
- Direct parallel refresh of all RDAC wiper registers from corresponding EEMEM registers

Table 1. AD5235 24-bit Serial Data Word

	M S B																						

Command bits are identified as Cx , address bits are Ax , and data bits are Dx . Command instruction codes are defined in table 2 .

Table 2. AD5235 Instruction/Operation Truth Table

NOTES:

1. The SDO output shifts-out the last 24-bits of data clocked into the serial register for daisy chain operation. Exception, following Instruction \#9 or \#10 the selected internal register data will be present in data byte $0 \& 1$. Instructions following \#9 \& \#10 must be a full 24-bit data word to completely clock out the contents of the serial register.
2. The RDAC register is a volatile scratch pad register that is refreshed at power ON from the corresponding non-volatile EEMEM register.
3. The increment, decrement and shift commands ignore the contents of the shift register Data Byte 0 .
4. Execution of the Operation column noted in the table takes place when the $\overline{\mathrm{CS}}$ strobe returns to logic high.

Detail Potentiometer Operation

The actual structure of the RDAC is designed to emulate the performance of a mechanical potentiometer. The RDAC contains a string of connected resistor segments, with an array of analog switches that act as the wiper connection to several points along the resistor array. The number of points is the resolution of the device. The AD5235 has 1024 connection points allowing it to provide better than 0.5% set-ability resolution. Figure 3 provides an equivalent diagram of the connections between the three terminals that make up one channel of the RDAC. The SW_{A} and SW_{B} will always be ON while one of the switches $\mathrm{SW}(0)$ to $\mathrm{SW}\left(2^{\mathrm{N}}-1\right)$ will be ON one at a time depends upon the resistance step decoded from the Data Bits. Note that there are two 50Ω wiper resistances, R_{W}. The resistance contributed by R_{w} must be accounted for when calculating the output resistance. R_{W} is the sum of the resistances of $\mathrm{SW}_{\mathrm{A}}+\mathrm{SW}_{\mathrm{x}}$ and $\mathrm{SW}_{\mathrm{B}}+\mathrm{SW}_{\mathrm{x}}$ for A-to-Wiper and B-to-Wiper respectively.

Figure 3. Equivalent RDAC structure

PROGRAMMING THE VARIABLE RESISTOR

Rheostat Operation

The nominal resistance of the RDAC between terminals A and B are available with values of $25 \mathrm{~K} \Omega$, and $250 \mathrm{~K} \Omega$. The final digits of the part number determine the nominal resistance value, e.g., $25 \mathrm{~K} \Omega$ $=25 ; 250 \mathrm{~K} \Omega=250$. The nominal resistance (R_{AB}) of the AD5235 VR has 1024 contact points accessed by the wiper terminal, plus the B terminal contact. The 10 -bit data word in the RDAC latch is decoded to select one of the 1024 possible settings. The wiper's first connection starts at the B terminal for data 00_{H}. This Bterminal connection has a wiper contact resistance, R_{w} of 50Ω, regardless of what the nominal resistance $R_{A B}$ is. The second connection ($25 \mathrm{~K} \Omega$ part) is the first tap point where $\mathrm{R}_{\mathrm{WB}}=74 \Omega\left[\mathrm{R}_{\mathrm{wB}}\right.$ $\left.\left.=\mathrm{R}_{\mathrm{AB}} / 1024+\mathrm{R}_{\mathrm{W}}=24 \Omega+50 \Omega\right)\right]$ for data 01_{H}. The third connection is the next tap point representing $\mathrm{R}_{\mathrm{wB}}=49+50=99 \Omega$ for data 02_{H}. Each LSB data value increase moves the wiper up the resistor
ladder until the last tap point is reached at $\mathrm{R}_{\mathrm{wB}}=25025 \Omega$. See figure 3 for a simplified diagram of the equivalent RDAC circuit.

The general equation, which determines the digitally programmed output resistance between Wx and Bx , is:
$\mathrm{R}_{\mathrm{WB}}(\mathrm{Dx})=\left(\mathrm{Dx} / 2^{\mathrm{N}}\right) * \mathrm{R}_{\mathrm{AB}}+\mathrm{R}_{\mathrm{W}} \quad$ eqn. 1
Where N is the resolution of the VR, Dx is the data contained in the RDACx latch, and R_{AB} is the nominal end-to-end resistance.
Since $N=10$ and $R_{W}=50 \Omega$ for AD5235, eqn. 1 becomes:
$\mathrm{R}_{\mathrm{WB}}(\mathrm{Dx})=(\mathrm{Dx} / 1024) * \mathrm{R}_{\mathrm{AB}}+50 \Omega \quad$ eqn. 2

For example, when $\mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$ and A -terminal is open circuit the following output resistance values will be set for the following RDAC latch codes (applies to $\mathrm{R}_{\mathrm{AB}}=25 \mathrm{~K} \Omega$ potentiometers):

Dx (DEC)	R_{WB} (Ω)	Output State
1023	25025Ω	Full-Scale
512	12500Ω	Mid-Scale
1	74Ω	1 LSB
0	50Ω	Zero-Scale (Wiper contact resistance)

Note that in the zero-scale condition a finite wiper resistance of 50Ω is present. Care should be taken to limit the current flow between W and B in this state to no more than 20 mA to avoid degradation or possible destruction of the internal switch contact.

Figure 4. Symmetrical RDAC Operation
Like the mechanical potentiometer the RDAC replaces, the AD5235 part is totally symmetrical. The resistance between the wiper W and terminal A also produces a digitally controlled resistance R_{WA}. Figure 4 shows the symmetrical programmability of the various terminal connections. When these terminals are used, the B-terminal should be tied to the wiper. Setting the resistance value for R_{WA} starts at a maximum value of resistance and decreases as the data loaded in the latch is increased in value. The general equation for this operation is:

ESD PROTECTION CIRCUITS

Figure 5A. Equivalent Digital Input ESD Protection

Figure 5B. Equivalent Digital Output ESD Protection

Figure 5C. Equivalent SDO Output ESD Protection Circuit
Figure 5 shows the equivalent ESD protection circuit for digital pins. Figure 6 shows the equivalent analog-terminal protection circuit for the variable resistors.

Figure 6. Equivalent VR-Terminal ESD Protection

TEST CIRCUITS

Figures 7 to 15 define the test conditions used in the product specification's table.

Figure 7. Potentiometer Divider Nonlinearity error test circuit (INL, DNL)

Figure 8. Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)

Figure 9. Wiper Resistance test Circuit

Figure 10. Power supply sensitivity test circuit (PSS, PSSR)

Figure 11. Inverting Gain test Circuit

Figure 12. Non-Inverting Gain test circuit

Figure 13. Gain Vs Frequency test circuit

Figure 14. Incremental ON Resistance Test Circuit

Figure 15. Common Mode Leakage current test circuit

TYPICAL PERFORMANCE GRAPHS

TBD

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm)

