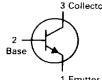
MAXIMUM RATINGS

Rating	Symbol	2N718A 2N956	2N1711	Unit
Collector-Emitter Voltage	VCER	50		Vdc
Collector-Base Voltage	V _{CBO}	7	Vdc	
Emitter-Base Voltage	VEBO	7.0		Vdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	500 2.86	800 4.57	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.8 10.3	3.0 17.15	Watts mW/°C
Operating and Storage Junction Temperature Range	Tj, T _{stg}	-65 to +200		°C


THERMAL CHARACTERISTICS

Characteristic	Symbol	2N718A 2N956	2N1711	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	350	58	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	97	219	°C/W

2N718A 2N956

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

2N1711

CASE 79-04, STYLE 1 TO-39 (TO-205AD)

Min

Symbol

Unit

GENERAL PURPOSE TRANSISTORS

NPN SILICON

Refer to 2N3019 for graphs.

Max

Тур

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.) Characteristic

VCER(sus)	50			Vdc
V(BR)CBO	75	-		Vdc
V _{(BR)EBO}	7.0		_	Vdc
ICBO		0.001	0.01 10	μAdc
EBO		_	0.010 0.005	μAdc
		·	·	l
pEE	20	_		_
	20 35	_	_	
	35 75	=	<u> </u>	
	20 35	=	<u> </u>	
	40 100	_	120 300	
	20 40	_	<u> </u>	
V _{CE(sat)}	_	0.24	1.5	Vdc
VBE(sat)	_	1.0	1.3	Vdc
	V(BR)CBO V(BR)EBO ICBO IFE VCE(sat)	V(BR)CBO 75 V(BR)EBO 7.0 ICBO ——— IEBO ——— PFE 20 20 35 35 75 20 35 40 100 20 40 VCE(sat) ——	V(BR)CBO 75 — V(BR)EBO 7.0 — ICBO — 0.001 — IEBO — — A 35 — 35 — 35 — 20 — 35 — 40 — 100 — 20 — 40 — VCE(sat) — 0.24	V(BR)CBO 75 — — V(BR)EBO 7.0 — — ICBO — 0.001 0.01 10 10 10 10 10 10 10 10 10 10 10 10 1

(1) Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N718A, 2N956, 2N1711

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
SMALL-SIGNAL CHARACTERISTICS						<u>. </u>
Current-Gain — Bandwidth Product (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	2N718A, 2N956, 2N1711	fτ	60 70	300 300	-	MHz
Output Capacitance (VCB = 10 Vdc, I _E = 0, f = 1 MHz)		C _{obo}	_	4.0	25	pF
Input Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 1 MHz)		C _{ibo}	-	20	80	pF
Input Impedance (I _C = 1.0 mAdc, V_{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CB} = 10 Vdc, f = 1.0 kHz)		h _{ib}	24 4.0	_	34 8.0	ohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz)	2N718A, 2N956, 2N1711	h _{rb}	_	_ }	3.0 5.0	X10-4
$(I_C = 5.0 \text{ mAdc}, V_{CB} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N718A, 2N956, 2N1711			<u> </u>	3.0 5.0	
Small-Signal Current Gain (IC = 1.0 mAdc, VCE = 5.0 Vdc, f = 1.0 kHz)	2N718A, 2N956, 2N1711	h _{fe}	30 50	<u> </u>	100 200	_
$(I_C = 5.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	2N718A, 2N956, 2N1711		35 70	_ _	150 300	
Output Admittance (I _C = 1.0 mAdc, V _{CB} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V _{CB} = 10 Vdc, f = 1.0 kHz)		h _{ob}	0.05 0.05		0.5 0.5	μmhos
Noise Figure (I _C = 300 μ Adc, V _{CE} = 10 Vdc, f = 1.0 kHz)	2N718A, 2N956, 2N1711	NF	_		12 8.0	dB