THAT Corporation

THAT 300 Series

FEATURES

- 4 Matched NPN Transistors (300)
 4 Matched PNP Transistors (320)
 2 Matched NPNs and PNPs (340)
 4 Matched NP6N 4 Matched PNP (380)
- Monolithic Construction
- Low Noise - $0.75 \text{ } nV/\sqrt{Hz}$ (PNP) - $0.8 \text{ } nV/\sqrt{Hz}$ (NPN)
- High Speed - $f_T = 350 \text{ MHz} \text{ (NPN)}$
 - $f_{\rm T} = 325$ MHz (PNP)
- Excellent Matching 500 μ V typical between devices of same gender
- Dielectrically Isolated
- 36V V_{CEO}

www.DataSheet4U.com

APPLICATIONS

- Microphone Preamplifiers
- Current Sources
- Current Mirrors
- Log/Antilog Amplifiers
- Multipliers
- Servos

DESCRIPTION

The THAT300 Series ICs are large-geometry monolithic NPN and/or PNP transistor arrays which combine low noise, high speed and excellent parametric matching between devices of the same gender. The large geometries typically result in 25 Ω base spreading resistance for the PNP devices (30 Ω for the NPNs), producing 0.75 nV/\sqrt{Hz} voltage noise (0.8 nV/\sqrt{Hz} for the NPNs). This makes the 300 Series an ideal choice for low-noise amplifier input stages.

Fabricated on a Complementary Bipolar Dielectrically Isolated process, each transistor is electrically isolated from the others by a layer of insulating oxide. The resulting low collector-to-substrate capacitance produces a typical NPN $f_{\rm T}$ of 350 MHz, 325 MHz for the PNPs. This delivers ac performance similar to discrete 2N3904- and 2N3906-class devices. Dielectric isolation also minimizes crosstalk and provides complete DC isolation.

Substrate biasing is not required for normal operation, though the substrate should be grounded to optimize speed and minimize inter-device crosstalk. The monolithic construction assures excellent parameter matching and tracking over temperature.

Part Number	Configuration	Package
THAT300P		DIP14
THAT300S	4-Matched NPN Transistors	SO14
THAT320P		DIP14
THAT320S	4- Matched PNP Transistors	SO14
THAT340P	2 Matched NPN Transistors and	DIP14
THAT340S	2 Matched PNP Transistors	SO14
THAT380G	4 Matched NPN Transistors and 4 Matched PNP Transistors	Individual Die

Table 1. Ordering Info

SPECIFICATIONS¹

		= 25°C)			
Symbol	Conditions	Min	Тур	Max	Units
BV_{CEO}	$I_{\rm C}$ = 1 mAdc, $I_{\rm B}$ = 0	36	40	_	V
BV_{CBO}	I_{C} =10 μ Adc, I_{E} =0	36	40	-	v
BV_{EBO}	I_{E} = 100 μ Adc, I_{C} = 0	5	_		V
I _{C MAX}		10	20		mA
I _{E MAX}		10	20		mA
BV_{CEO}	$I_{\rm C}$ = 1 mAdc, $I_{\rm B}$ = 0	-36	-40		v
BV_{CBO}	$I_{c} = 10 \ \mu Adc, I_{E} = 0$	-36	-40	-	V
BV_{EBO}	I_{E} = 100 μ Adc, I_{C} = 0	-5	—	_	V
I _{C MAX}		-10	-20		mA
I _{E MAX}		-10	-20		mA
BV _{cc}		±100	±200	—	V
BV _{EE}		±100	±200	_	V
T _A		0		70	°C
Т _{ЈМАХ}				150	°C
T _{STORE}		-45		125	°C
	ВV _{СЕО} ВV _{СВО} ВV _{ЕВО} Іс мах ВV _{СЕО} ВV _{СВО} ВV _{СВО} Іс мах Іе мах ВV _{СС} ВV _{ЕЕ} Т _А Т _{ЈМАХ}	$BV_{CEO} = I_{C} = 1 \text{ mAdc}, I_{B} = 0$ $BV_{CBO} = I_{C} = 10 \text{ \muAdc}, I_{E} = 0$ $BV_{EBO} = I_{E} = 100 \text{ \muAdc}, I_{C} = 0$ $I_{C \text{ mAX}} = I_{E} \text{ mAdc}, I_{B} = 0$ $BV_{CEO} = I_{C} = 1 \text{ mAdc}, I_{B} = 0$ $BV_{CBO} = I_{C} = 10 \text{ \muAdc}, I_{E} = 0$ $BV_{EBO} = I_{E} = 100 \text{ \muAdc}, I_{C} = 0$ $I_{C \text{ mAX}} = I_{E} \text{ mAX}$ $BV_{CC} = I_{C} = I_{C} \text{ mAdc}, I_{C} = 0$ $BV_{EE} = I_{C} \text{ mAX}$ $I_{E \text{ mAX}} = I_{C} \text{ mAX}$	BV_{CEO} $I_C = 1 \text{ mAdc}, I_B = 0$ 36 BV_{CBO} $I_C = 10 \mu \text{Adc}, I_E = 0$ 36 BV_{EBO} $I_C = 10 \mu \text{Adc}, I_C = 0$ 5 $I_C \text{ max}$ 10 $I_E \text{ max}$ 10 BV_{CEO} $I_C = 1 \text{ mAdc}, I_B = 0$ -36 BV_{CEO} $I_C = 1 \text{ mAdc}, I_B = 0$ -36 BV_{CBO} $I_C = 10 \mu \text{Adc}, I_E = 0$ -36 BV_{CBO} $I_C = 10 \mu \text{Adc}, I_C = 0$ -5 $I_C \text{ max}$ -10 BV_{EBO} $I_E = 100 \mu \text{Adc}, I_C = 0$ -5 $I_C \text{ max}$ -10 BV_{CC} ± 100 BV_{CC} BV_{EE} ± 100 T_A $T_M \text{ max}$ 0 T_{TA}	EVALUE Image 1 Type BV_{CEO} $I_C = 1 \text{ mAdc}, I_B = 0$ 36 40 BV_{CBO} $I_C = 10 \mu \text{Adc}, I_E = 0$ 36 40 BV_{EBO} $I_E = 100 \mu \text{Adc}, I_C = 0$ 5 $I_C \text{ mAX}$ 10 20 $I_E \text{ mAX}$ 10 20 BV_{CEO} $I_C = 1 \text{ mAdc}, I_B = 0$ -36 -40 BV_{CBO} $I_C = 10 \mu \text{Adc}, I_E = 0$ -36 -40 BV_{CBO} $I_C = 10 \mu \text{Adc}, I_C = 0$ -5 $I_C \text{ mAX}$ -10 -20 -20 BV_{EBO} $I_E = 100 \mu \text{Adc}, I_C = 0$ -5 $I_C \text{ mAX}$ -10 -20 -20 BV_{CC} $\pm 100 \pm 200$ ± 200 BV_{CC} $\pm 100 \pm 200$ T_A 0 T_{MAX} 0 T_{MAX} 0	BV _{CEO} I _C = 1 mAdc, I _B = 0 36 40 BV _{CBO} I _C = 10 μ Adc, I _E =0 36 40 BV _{EBO} I _E = 100 μ Adc, I _E =0 36 40 IV _{EBO} I _E = 100 μ Adc, I _C = 0 5 I _{C MAX} 10 20 BV _{CEO} I _C = 1 mAdc, I _B = 0 -36 -40 BV _{CEO} I _C = 10 μ Adc, I _E = 0 -36 -40 BV _{CBO} I _C = 10 μ Adc, I _C = 0 -5 I _{C MAX} -10 -20 BV _{EBO} I _E = 100 μ Adc, I _C = 0 -5 I _{C MAX} -10 -20 BV _{CC} ±100 ±200 BV _{EE} ±100 ±200 T _A 0 70 T _{MAX} 150

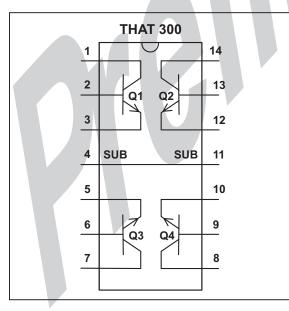


Fig 1. 300 Pinout

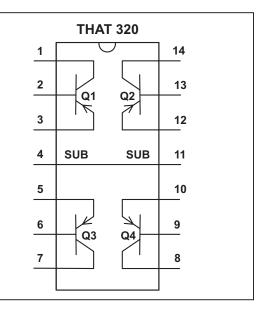


Fig 2. 320 Pinout

THAT Corporation; 45 Sumner Street; Milford, Massachusetts 01757-1656; USA Tel: +1 508 478 9200; Fax: +1 508 478 0990; Web: www.thatcorp.com

SPECIFICATIONS¹ (Cont'd)

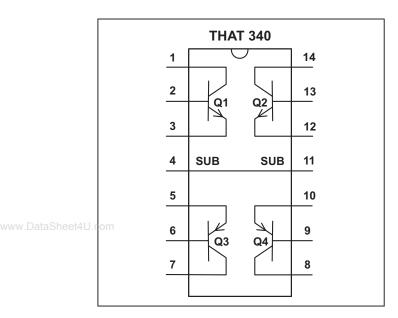


Fig 3. 340 Pinout



Fig 4. 380 Die layout

	NPN	Electrical Character	istics ²				
Parameter	Symbol	Conditions	Min	Тур	Max	Units	
NPN Current Gain	h _{fe}	V _{CB} = 10 V					
		I _c = 1 mA	60	100	—		
		I _C = 10 μA	V	100			
NPN Current Gain Matching	Δh_{fe}	V_{CB} = 10 V, I _C = 1 mA	_	5	_	%	
NPN Noise Voltage Density	e _N	V _{CB} = 10 V, I _C = 1 mA, 1 kHz	_	0.8	_	nV/√Hz	
NPN Gain-Bandwidth Product	f _T	I_{C} = 1 mA, V_{CB} = 10 V		350		MHz	
NPN ΔV_{BE} (THAT300: V_{BE1} - V_{BE2} ;	/ _{BE3} -V _{BE4}) (1	⁻ HAT340: V _{BE1} -V _{BE2})					
	Vos	I _c = 1 mA	—	±0.5	±3	mV	
		I _C = 10 μA	—	±0.5		mV	
NPN ∆I _B (THAT300: I _{B1} -I _{B2} , I _{B3} -I _{B4}) (THAT340: I _{B1} -V _{B2})							
	los	$I_c = 1 \text{ mA}$	_	±500	±1500	nA	
		$I_{\rm C}$ = 10 μ A	_	±5		nA	
NPN Collector-Base Leakage Cu	rrent I _{CBO}	V _{CB} = 25 V	_	25	_	pА	
NPN Bulk Resistance	r _{BE} \	$I_{\rm CB}$ = 0 V, 10 μ A < I _C < 10 mA	_	2	_	Ω	
NPN Base Spreading Resistance	r _{bb}	V_{CB} = 10 V, I _C = 1 mA	_	30	_	Ω	
NPN Collector Saturation Voltage	V _{CE(SAT)}	$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 100 μ A	_	0.05		V	
NPN Output Capacitance	C _{OB} V	ν _{CB} = 10 V, I _E = 0 mA, 100 kHz		3		pF	
NPN Collector-CollectorCapacitar	nce (THAT3 C _{cc}	00: Q1-Q2, Q3-Q4) (THAT340: 0 V _{CC} = 0 V, 100 kHz	Q1-Q2)	0.7		pF	

1. All specifications subject to change without notice.

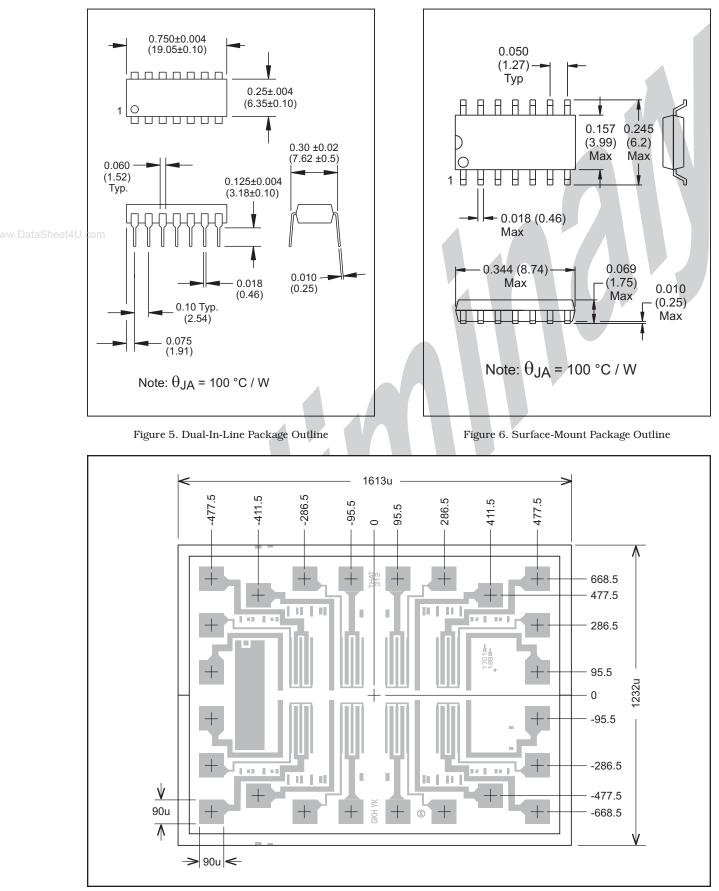
2. Unless otherwise noted, $T_A = 25^{\circ}C$.

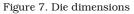
SPECIFICATIONS¹ (Cont'd)

	PNP	Electrical Character	ristics ²			
Parameter	Symbol	Conditions	Min	Тур	Max	Units
PNP Current Gain	h _{fe}	V _{CB} = 10 V				
		$I_c = 1 \text{ mA}$	50	75	—	
		I _C = 10 μA		75	_	
PNP Current Gain Matching	Δh_{fe}	V_{CB} = 10 V, I_{C} = 1 mA	—	5	-	%
PNP Noise Voltage Density	e _N	V_{CB} = 10 V, I _C = 1 mA, 1 kHz	_	0.75	_	nV/√Hz
PNP Gain-Bandwidth Product	f_{T}	I_{C} = 1 mA, V_{CB} = 10 V		325		MHz
PNP ∆V _{BE} (THAT320: V _{BE1} -V _{BE2;} \	/ _{BE3} -V _{BE4}) (THAT340: V _{BE3} -V _{BE4})				
tom	Vos	I _c = 1 mA		±0.5	±3	mV
		I _C = 10 μA		±0.5		mV
PNP ∆I _B (THAT320: I _{B1} -I _{B2:} I _{B3} -I _{B4})	(THAT340	: I _{B3} -I _{B4})				
	l _{os}	I _c = 1 mA	-	±700	±1800	nA
		I _C = 10 μA	—	±7		νA
PNP Collector-Base						
Leakage Current	I _{CBO}	V _{CB} = 25 V	—	-25	—	pА
PNP Bulk Resistance	r _{BE}	$V_{CB} = 0 \text{ V}, 10 \mu \text{A} < I_C < 10 \text{ mA}$	-	2	_	Ω
PNP Base Spreading Resistance	r _{bb}	V _{CB} = 10 V, I _C = 1 mA	-	25	_	Ω
PNP Collector Saturation Voltage	$V_{CE(SAT)}$	$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 100 μ A	-	-0.05		V
PNP Output Capacitance	Сов	V _{CB} = 10 V, I _E = 0 mA, 100 kHz		3		pF
PNP Collector-Collector Capacita	nce (THAT C _{cc}	320: Q1-Q2; Q3-Q4) (THAT340: V _{CC} = 0 V, 100 kHz	Q3-Q4)	0.6		pF

Information furnished by THAT Corporation is believed to be accurate and reliable. However no responsibility is assumed by THAT Corporation for it's use nor for any infringements of patents or other rights of third parties which may result from it's use.

LIFE SUPPORT POLICY


THAT Corporation products are not designed for use in life support equipment where malfunction of such products can reasonably be expected to result in personal injury or death. The buyer uses or sells such products for life suport application at the buyer's own risk and agrees to hold harmless THAT Corporation from all damages, claims, suits or expense resulting from such use.


CAUTION: THIS IS AN ESD (ELECTROSTATIC DISCHARGE) SENSITIVE DEVICE.

It can be damaged by the currents generated by electrostatic discharge. Static charge and therefore dangerous voltages can accumulate and discharge without detection causing a loss of function or performance to occur.

The transistors in this device are unprotected in order to maximize performance and flexibility. They are more sensitive to ESD damage than many other ICs which include protection devices at their inputs. Note that all of the pins (not just the "inputs") are susceptible.

Use ESD preventative measures when storing and handling this device. Unused devices should be stored in conductive packaging. Packaging should be discharged to the destination socket before the devices are removed. ESD damage can occur to these devices even after they are installed in a board-level assembly. Circuits should include specific and appropriate ESD protection.

