

NL6448CC33-30

26 cm (10.4 inches), 640×480 pixels, 262,144 colors, Backlight-less Wide temperature range

DESCRIPTION

NL6448CC33-30 is a TFT(Thin Film Transistor) active matrix color liquid crystal display (LCD) comprising amorphous silicon TFT attached to each signal electrode and a driving circuit.

The 26 cm (10.4 inches) diagonal display area contains 640×480 pixels and can display 262,144 colors simultaneously.

NL6448CC33-30 is a backlight-less model. Therefore, it is easy for customers to make own backlight and to get necessary brightness.

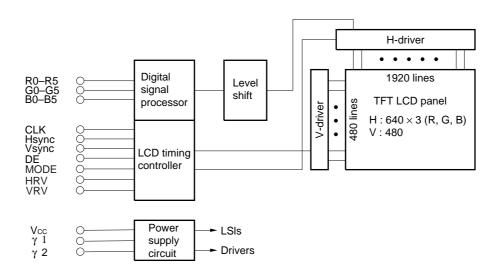
FEATURES

- · Backlight-less
- · High contrast, wide viewing angle and wide color gamut
- · Smooth polarizer surface
- 6-bit digital RGB interface
- · Data enable (DE) function
- · Variable gamma control
- · Reverse scan capability
- · Wide temperature range

APPLICATIONS

- · Display terminals for control system
- · Monitors for process controller
- Industrial PC

The information in this document is subject to change without notice.


STRUCTURE AND FUNCTIONS

A color TFT (thin film transistor) LCD module is comprised of a TFT liquid crystal panel structure, LSIs for driving the TFT array, and a backlight assembly. The TFT panel structure is created by sandwiching liquid crystal material in the narrow gap between a TFT array glass substrate and a color filter glass substrate.

RGB (red, green, blue) data signals from a source system is modulated into a form suitable for active matrix addressing by the onboard signal processor and sent to the driver LSIs which in turn addresses the individual TFT cells.

Acting as an electro-optical switch, each TFT cell regulates light transmission from a backlight assembly when activated by the data source. By regulating the amount of light passing through the array of red, green, and blue dots, color images are created with clarity.

BLOCK DIAGRAM

OUTLINE OF CHARACTERISTICS (at room temperature)

Display area $211.2 \text{ (H)} \times 158.4 \text{ (V)} \text{ mm}$ Drive system a-Si TFT active matrix

Display colors 262,144 colors Number of pixels 640×480 pixels Pixel arrangement RGB vertical stripe Pixel pitch 0.33 (H) \times 0.33 (V) mm

Module size 264.0 (H) \times 187.8 (V) \times 8.8 TYP. (D) mm

Weight 300 g (TYP.)
Contrast ratio 150 : 1 (TYP.)

Color gamut 43% (TYP., center, to NTSC) Response time 15 ms (TYP.), white to black

Transmittance 6.3% (TYP.) **Note**

Signal system 6-bit digital signals for each of RGB primary colors, synchronous signals

(Hsync, Vsync), dot clock (CLK)

Supply voltages 3.3 V [5.0 V] Backlight Backlight-less

Power consumption 1.0 W (TYP. at 3.3V)

Note: Measuring light conditions

Lamp Cold Cathode Fluorescent Lamp

Chromaticity coordinates x=0.320, y=0.325 typical

Luminance 1500cd/m²

GENERAL SPECIFICATIONS

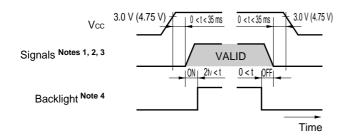
Item	Specification	Unit
Module size	264.0 ± 0.5 (H) × 187.8 ± 0.5 (V) × 8.8 (D)TYP.	mm
Display area	211.2 (H) × 158.4 (V)	mm
Number of dots	640 × 3 (H) × 480 (V)	dot
Number of pixels	640 (H) × 480 (V)	pixel
Dot pitch	0.11 (H) × 0.33 (V)	mm
Pixel pitch	0.33 (H) × 0.33 (V)	mm
Pixel arrangement	RGB (Red, Green, Blue) vertical stripe	-
Display colors	262,144	color
Weight	Module: 330 (MAX.)	g

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Remarks
Supply voltage	Vcc	-0.3 to 6.5	V	Ta= 25°C
Input voltage	Vı	-0.3 to 6.5	V	V _I – Vcc < 3.0
Storage temp.	Тѕт	-30 to 85	°C	Note 4
Operating temp.	Тор1	-25 to 85	°C	Non-destructive Note 4
Operating temp.	Top2	-10 to 70	°C	Screen image should be recognized. Note 2
		≤ 95% relative humidity	-	Ta≤ 40°C
Humidity	RH	≤ 85% relative humidity	-	40 < Ta≤50°C
	KH	≤ (T _a = 50°C, 85% relative humidity) Absolute humidity.	-	Ta> 50°C
Incident light intensity	II	< 20,000	cd/m ²	at CF side, Ta = 25°C Notes 1, 4
Environment light intensity	_	< 20,000	lx	at TFT side, Ta= 25°C Notes 1, 5, 6
Gamma resistor	R	3 k Max	Ω	Should not be used by "Open"

- Notes 1. Measured at the center of display area (Front side)
 - 2. Guarantee the optical characteristics at 25 degree C only.
 - 3. No condensation
 - **4.** In case of that the module is exposed at high temperature in operation or storage, the polarizer film may peel off from the panel in the edge of the display area.
 - It is recommended not to use the module under such environment continuously. It is estimated that the polarizer may peel off after the operation at 85 degree C with 120 hours in accumulation.
 - 5. Incident light (Backlight) should be located from CF(Color Filter) side only.
 - **6.** Avoid to use the module in the environment which the strong light exposes the module surface directly.

ELECTRICAL CHARACTERISTICS


(1) Logic, LCD driving

Ta = 25°C

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
Supply voltage	Vcc	3.0 (4.75)	3.3 (5.0)	3.6 (5.25)	V	Vcc = 3.3 V (Vcc = 5.0 V)
Logic input Low voltage	VIL	0	-	Vcc × 0.3	V	
Logic input High voltage	ViH	Vcc × 0.7	-	Vcc	V	
Supply current	Icc	- -	325 Note (250)	400 (300)	mA	Vcc = 3.3 V (Vcc = 5.0 V)

Note Checkered flag pattern (in EIAJ ED-2522)

SUPPLY VOLTAGE SEQUENCE

- Notes 1. Signals: CLK, Hsync, Vsync, DE, DATA (R0-R5, G0-G5, B0-B5)
 - 2. The supply voltage for input signals should be the same as Vcc.
 - 3. Apply VDDB within the LCD operation period. When the backlight turns on before LCD operation or the LCD operation turns off before the backlight turns off, the display may momentarily become white.
 - 4. When the power is off, please keep whole signals low level or high impedance.

INTERFACE AND PIN CONNECTION

(1) Interface signals, power supply

 Module side connector
 Mating connector

 CN1 ... IL-Z-10PL1-SMTY
 IL-Z-10S-S125C3

 CN2 ... IL-Z-13PL1-SMTY
 IL-Z-103-S125C3

 CN3 ... IL-Z-11PL1-SMTY
 IL-Z-11S-S125C3

Supplier: Japan Aviation Electronics Industry Limited (JAE)

		T
Pin No.	Symbol	Function
1	GND	Ground
2	CLK	Dot clock
3	Hsync	Horizontal sync.
4	Vsync	Vertical sync.
5	GND	Ground
6	R0	Red data (LSB)
7	R1	Red data
8	R2	Red data
9	R3	Red data
10	R4	Red data
11	R5	Red data (MSB)
12	GND	Ground
13	G0	Green data (LSB)
14	G1	Green data
15	G2	Green data
16	G3	Green data
17	G4	Green data
18	G5	Green data (MSB)

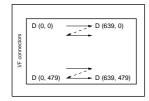
Pin No.	Symbol	Function
19	GND	Ground
20	В0	Blue data (LSB)
21	B1	Blue data
22	B2	Blue data
23	В3	Blue data
24	B4	Blue data
25	B5	Blue data (MSB)
26	GND	Ground
27	DE	Data enable
28	Vcc	Power supply
29	Vcc	Power supply
30	MODE	Input signal mode Note 1
31	HRV	Horizontal scanning direction
32	VRV	Vertical scanning direction
33	γ 1	Gamma setting
34	γ2	Gamma setting

LSB: Least Significant Bit MSB: Most Significant Bit

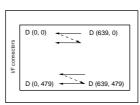
Notes 1. MODE setting

L or Open = DE mode, H = Fixed timing mode

2. HRV setting

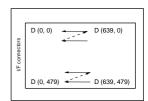

L or Open = Normal horizontal scanning (Pull down resistor 47 k ohm), H = Reversed horizontal scanning

3. VRV setting


L or Open = Normal vertical scanning (Pull down resistor 47 k ohm), H = Reversed vertical scanning

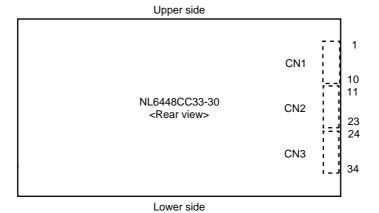
<View from TFT panel side>

$$VRV = L$$


HRV = H VRV = L

HRV = LVRV = H

HRV = HVRV = H


4. Gamma correction

Mating variable resistor : 2.2 k $\Omega \pm 5\%$

5. GND is connected to the frame of LCD module.

<Connector location>

(2) Pin function

Symbol	In/Out	Logic	Description
R0-R5 G0-G5 B0-B5	ln	Positive	Data for Red, Green and Blue
Vsync	In	Negative	Vertical synchronous signal
Hsync	In	Negative	Horizontal synchronous signal
CLK	In	Negative	Dot clock input Data is valid at the negative edge of CLK signal.
Mode	-	-	DE mode = High, Fixed mode = Low or Open
DE	In	Positive	Data enable During DE is "High", Data is valid.
γ 1, 2	-	-	Connect 2.2 k ohm valiable resistor for changing the optimum gamma compensation curve viewing angle.
HRV VRV	-	-	Signals for selecting scan direction HRV = Horizontal scan direction VRV = Vertical scan direction
Vcc	In	_	Power supply for logic and LCD drivers
GND	_	_	Ground for logic

DISPLAY COLORS vs. INPUT DATA SIGNALS

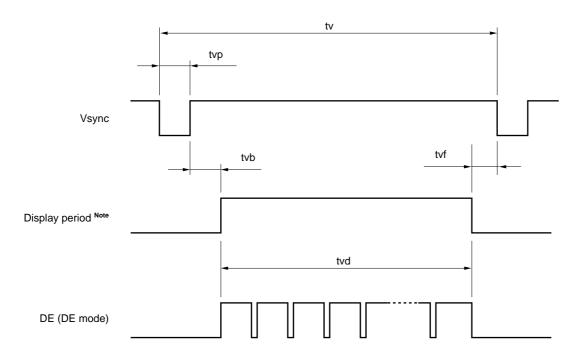
Diamlay and							Da	ta sigr	nal (0:	Low	level	, 1: H	ligh le	vel)					
Display col	ors	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	В4	В3	B2	B1	В0
Basic colors	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Red grayscale	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	dark	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	↑										 						 		
	\downarrow																		
	bright	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Green grayscale	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	↑										 						 		
	\downarrow										İ						İ		
	bright	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
		0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Blue grayscale	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	↑										 						 		
	\downarrow										İ						İ		
	bright	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Colors are developed in combination with 6-bit signals (64 steps in grayscale) of each primary red, Remark green, and blue color.

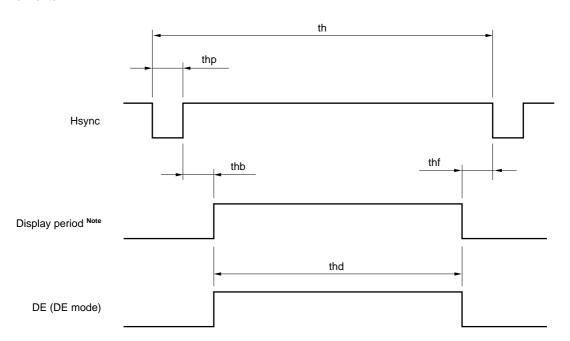
This process can result in up to 262,144 (64 \times 64 \times 64) colors.

INPUT SIGNAL TIMING

(1) Input signal specifications (DE mode is default.)

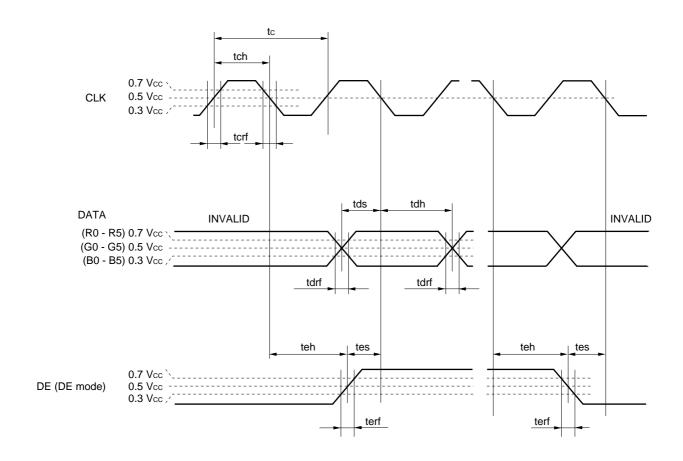

	Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
CLK	Frequency	1/tc	21.0	25.175	29.0	MHz	39.72 ns (TYP.)
	Duty	tch/tc	0.4	0.5	0.6	-	
	Rise, fall	tcrf	-	_	10	ns	
Hsync	Period	th	30.0	31.778	33.6	μs	31.468 kHz (TYP.)
			-	800	-	CLK	
	Display period	thd		640		CLK	
	Front-porch	thf		16		CLK	Fixed mode
			2	16	I		DE mode
	Pulse width	thp	-	96	ı	CLK	Fixed mode
			10	96	I		DE mode
	Back-porch	thb	-	48	-	CLK	Fixed mode
			4	48	ı		DE mode
		thp + thb		144		CLK	Fixed mode
			14	144	-		DE mode
	CLK-Hsync timing	thch	12	-	ı	ns	
	Hsync-CLK timing	thcs	8	-	-	ns	
	Hsync-Vsync timing	tvh	1	-	-	CLK	
	Vsync-Hsync timing	tvs	30	-	-	ns	
	Rise, fall	thrf	-	-	10	ns	
Vsync	Period	tv	16.1	16.683	17.2	ms	59.94 Hz (TYP.)
			_	525	ı	Н	
	Display period	tvd	480			Н	
	Front-porch	t∨f	12		Н	Fixed mode	
			1	12	I		DE mode
	Pulse width	tvp	_	2	ı	Н	Fixed mode
			1	2	I		DE mode
	Back-porch	tvb	-	31	I	Н	Fixed mode
			4	31	ı		DE mode
		tvp + tvb		33		Н	Fixed mode
			5	33	ı		DE mode
	Rise, fall	tvrf	_	_	10	ns	
DATA	CLK-DATA timing	tds	8	-	-	ns	
R0-R5 G0-G5	DATA-CLK timing	tdh	12	-	-	ns	
B0-B5	Rise, fall	tdrf	-	_	10	ns	
DE	DE-CLK timing	tes	8	-	-	ns	
	CLK-DE timing	teh	12	_	_	ns	
	Rise, fall	terf	-	-	10	ns	

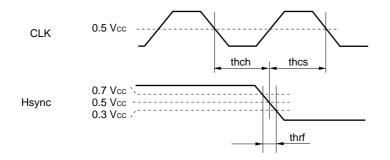
Caution All of parameters should be kept in the specified range.

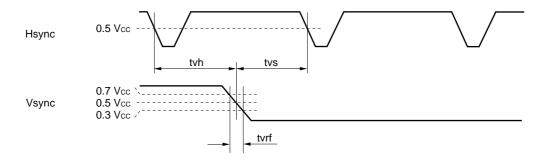


(2) Definition of input signal timing

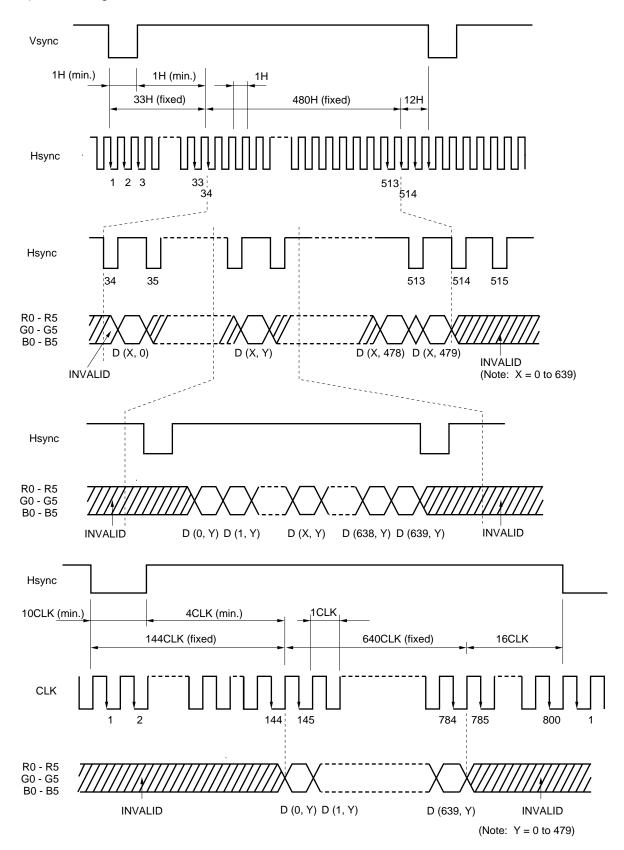
<Vertical>

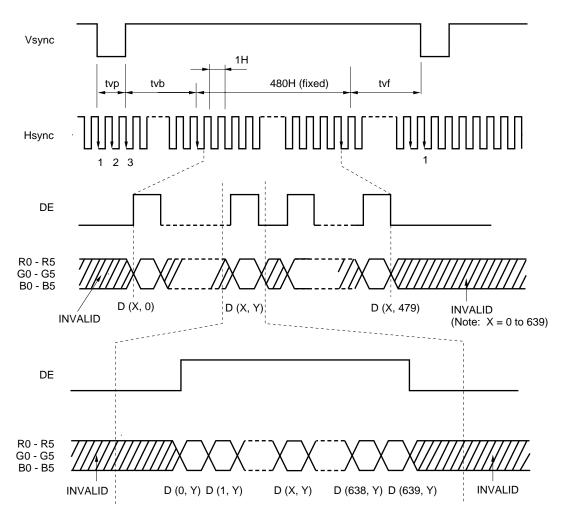

<Horizontal>

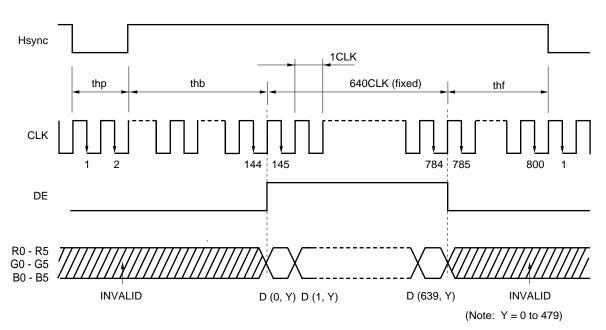



Note These do not exist as signals.

Remark Set the total of thp + thb and tvp + tvb as the table of input signal timing, otherwise display position is shifted to right or left side, or to up or down side.




(3) Input signal timing chart


a) Fixed timing mode

b) DE mode

12 www.DataSheet4U.net

DOT DEFECT SPECIFICATIONS

a) Inspection conditions

Distance : The distance between the inspector's eye and the LCD panel is 20 cm.

Illumination : The distance between a 20 W fluorescent lamp and the LCD panel is 25 - 30 cm.

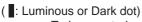
Temperature: Room temperature (25+/-5 C)

Viewing angle:

Display specifications : $-20^{\circ} \le \theta X \le +20^{\circ}$, $0^{\circ} \le \theta Y \le +20^{\circ}$ Appearance specifications : $-45^{\circ} \le \theta X \le +45^{\circ}$, $-45^{\circ} \le \theta Y \le +45^{\circ}$

Measuring light condition: Lamp Cold Cathode Fluorescent Lamp

Chromaticity coordinates (x=0.320, y=0.325 typical)


Luminance 1500cd/m²

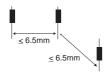
b) Display specifications

	Item	Specifications						
Lir	ne defect	Not allowed						
		Color	Distance between the same color dots	Quantity				
	Luminaua data	Red, Green, Blue	-	R + G + B ≤ 6				
	Luminous dots	Green	-	G ≤ 3				
	Note 2	Red, Green, Blue	≤ 6.5 mm	R, G, B ≤ 0				
Dot defects			Linked two or more dots Note 4	R, G, B ≤ 0				
Note 1		Color	Distance between the same color dots	Quantity				
			-	R + G + B ≤ 12 R, G, B ≤ 7				
	Dark dots	Black	Linked two dots Note 4	≤ 1 pair				
	Note 3		Linked three or more dots Note 4	<u>≤</u> 0				
			≤ 6.5 mm Note 5	≤ 0				
	Luminous dots + Dark dots							


Notes 1. Dot defects: Defect area >1/3 dot

- 2. Luminous dots are measured while the screen is black.
- 3. Dark dos are measured while the screen is illuminated with Red, Green, or Blue.
- 4. Linkage means that linked two or more dots.

To be counted



5. \leq 6.5mm is considered with:

(: Luminous or Dark dot)

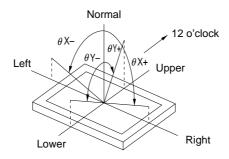
	To be counted	To be uncounted
Luminous dots	Same color	Different color
Dark dots	Same screen	Different screen

c) Appearance specifications

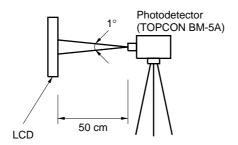
		Specifications	
Item	Measurement crite	eria	Quantity
	Average diameter	(φ) mm	Allowed value
Other objects	ф	≤ 0.2	All allowed
Stains Dusts	0.2 < ¢	< 0.3	≤ 10 points
(Dot shape)	0.3 ≤ ♦	≤ 0.5	≤3 points
	0.5 < ♦		0.75.51
	Linked other	er objects	0 point
	Width (W)mm	Length (L)mm	
Other objects Stains	W < 0.05	-	All allaward
Dusts		L < 0.7	All allowed
(Line shape)	0.05 ≤ W ≤ 0.1	0.7≤ L ≤ 1.0	4 points
		1.0 < L	0 = = 1=1
	0.1 < W	_	0 point
Polarizer Bubbles	Average di	ameter (ф) mm	
Wrinkles Dent	φ ≤	≤ 2 points	
Panel dent	φ ≤	0.5	≤ 2 points
Polarizer scratch	Remarkable scratch	es	0 point
Form	Specified labels and pa	arts should be located	

OPTICAL CHARACTERISTICS

 $T_a = 25 \pm 5$ °C, Vcc = 3.3 V, Nomal scan

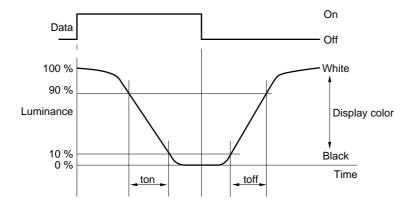

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit
Viewing I	Horizontal	θX+	$CR > 5$, $\theta Y = \pm 0^{\circ}$	30	-	-	deg.
angle		θХ-	$CR > 5$, $\theta Y = \pm 0^{\circ}$	30	-	_	deg.
range	Vertical	θY+	$CR > 5$, $\theta X = \pm 0^{\circ}$	20	-	_	deg.
		θY-	$CR > 5$, $\theta X = \pm 0^{\circ}$	20	_	-	deg.
Contrast rati	0	CR	$\theta X = \pm 0^{\circ}, \ \theta Y = -5^{\circ}$	80	150	-	-
Color gamut		С	at center, to NTSC	40	10 43 - %		%
Response tii	me	ton	White to black	-	15	-	ms
response in		toff	Black to white	-	55	-	1115
	Red	Rx Ry	at display center	-	0.590 0.357	_	_
Chromoticity	Green	Gx Gy	at display center	-	0.319 0.538	-	-
Chromaticity	Blue	Bx By	at display center	-	0.157 0.150	-	-
	White V		at display center	-	0.334 0.367	_	-
Transmittance		Т	at display center, with white	5.5	6.3	-	%
Gamma corre	Gamma correction		γ1- γ 2:0 Ω	-	0.4	-	-
- Ca		γ	γ1-γ2:2kΩ	_	4.3	_	

Remarks 1. The contrast ratio is calculated by using the following formula.


Contrast ratio (CR) =
$$\frac{\text{Luminance with all pixels in white}}{\text{Luminance with all pixels in black}}$$

The Luminance is measured in darkroom.

2. Definitions of viewing angle are as follows.



3. The luminance is measured after 20 minutes from the module works, with all pixels in white. Typical value is measured after luminance saturation.

4. Definition of response time is as follows.

The output of photodetector is measured when the brightness changes from "white" to "black" and "black" to "white". The response time is defined as 90 to 10 % for turn-on and 10 to 90 % for turn-off.

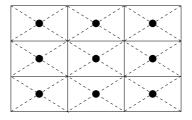
5. For the measurements of color gamut, chromaticity and transmittance, the following backlight lamp is used.

Color temperature : 6000 K 1500 cd/m^2 Luminance:

Chromaticity: x=0.320, y=0.325

6. Measuring viewing angle is perpendicular to the center of screen.

$$\theta X = \pm 0^{\circ}$$
, $\theta Y = \pm 0^{\circ}$, at center



RELIABILITY TEST

Test item	Test condition
High temperature/humidity operation Note 1	65 ± 2°C, 85% relative humidity 240 hours Display data is black.
Heat cycle (operation) Note 1	<1> -25°C ± 3°C ··· 1 hour 85°C ± 3°C ··· 1 hour <2> 50 cycles, 5 hours/cycle <3> Display data is black.
Thermal shock (non-operation) Note 1	<1> -30°C ± 3°C ··· 30 minutes 85°C ± 3°C ··· 30 minutes <2> 16 cycles <3> Temperature transition time within 5 minutes
Vibration (non-operation) Notes 1, 2	<1> 5 - 100 Hz, 2G 1 minute/cycle X, Y, Z direction <2> 120 times each direction
Mechanical shock (non-operation) Notes 1, 2	<1> 55 G, 11 ms X, Y, Z direction <2> 5 times each direction
ESD (operation) Notes 1, 3	150 pF, 150 Ω , \pm 10 kV 9 places on a panel 10 times each place at one-second intervals

Notes 1. Display function is checked by the same condition as LCD module out-going inspection.

- 2. Physical damage.
- **3.** Discharge points "•" are shown in the figure.

GENERAL CAUTIONS

Next figures and sentence are very important. Please understand these contents as follows.

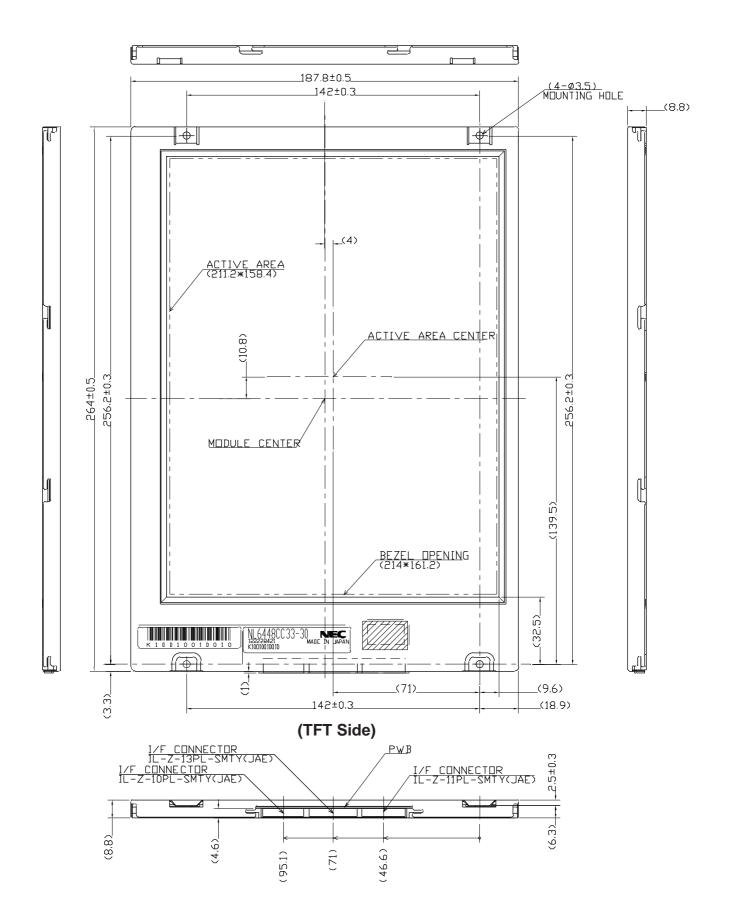
CAUTION

This figure is a mark that you will get hurt and/or the module will have damages when you make a mistake to operate.

This figure is a mark that you will get an electric shock when you make a mistake to operate.

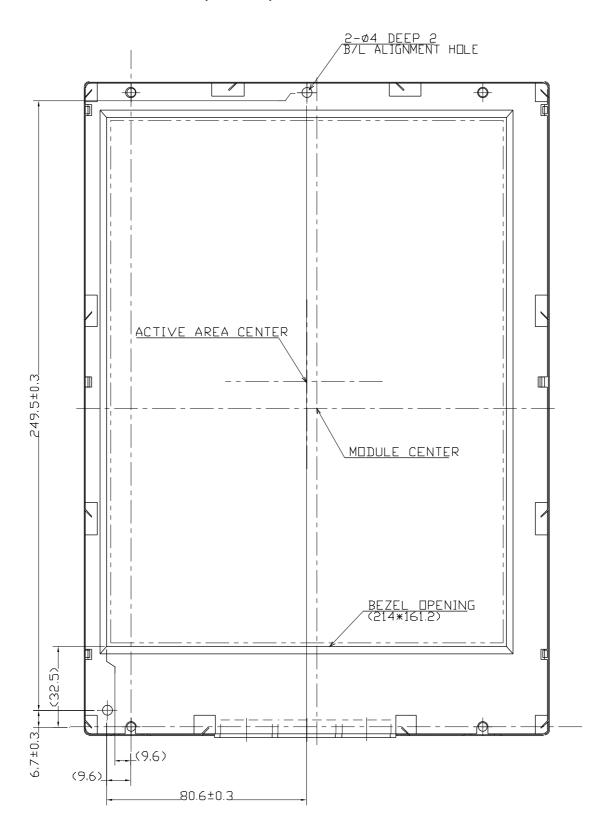
This figure is a mark that you will get hurt when you make a mistake to operate

CAUTION


- (1) Caution when taking out the module
 - a) Pick the pouch only, in taking out module from a carrier box.
- (2) Cautions for handling the module
 - a) As the electrostatic discharges may break the LCD module, handle the LCD module with care against electrostatic discharges.
 - b) _____
- As the LCD panel is made from fragile glass material, impulse and pressure to the LCD module should be avoided.
- c) As the surface of polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
- d) Do not pull the interface connectors in or out while the LCD module is operating.
- e) Put the module display side down on a horizontal plane.
- f) Handle connectors and cables with care.
- g) When the module is operating, do not lose CLK, Hsync or Vsync signal. If any one of these signals is lost, the LCD panel would be damaged.
- h) The torque to mounting screw should never exceed 0.294 N·m (3 kgf·cm).
- (3) Cautions for the atmosphere
 - a) Dew drop atmosphere should be avoided.
 - b) Do not store and/or operate the LCD module in a high temperature and/or high humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
 - c) Do not operate the LCD module in a high magnetic field.
- (4) Caution for the module characteristics
 - a) Do not apply fixed pattern data signal for a long time to the LCD module. It may cause image sticking.
 Please use screen savers if the display pattern is fixed more than one hour.
- (5) Other cautions
 - a) Do not disassemble and/or reassemble LCD module.
 - b) Do not readjust variable resistors etc.
 - c) When returning the module for repair or etc, please pack the module not to be broken. We recommend to the original shipping packages.

Liquid Crystal Display has the following specific characteristics. There are not defects or malfunctions.

- The display condition of LCD module may be affected by the ambient temperature.
- Uneven brightness and/or small spots may be noticed depending on different display patterns.



OUTLINE DRAWING: Front view (Unit: mm)

OUTLINE DRAWING: Rear View (Unit: mm)

(Color Filter Side)

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents. Copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its Electronic Components, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC Electronic Components, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC?s Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.