




## • FEATURES

- ♦ 48 dBm IP3 at 2 GHz
- 34 dBm P-1dB at 2 GHz
- 14 dB Power Gain at 2 GHz



## DESCRIPTION AND APPLICATIONS

The FP4050 is an Aluminum Gallium Arsenide / Indium Gallium Arsenide (AlGaAs/InGaAs) Pseudomorphic High Electron Mobility Transistor (PHEMT), utilizing an Electron-Beam directwrite 0.50 um by 400 um Schottky barrier gate. The recessed "mushroom" gate structure minimizes parasitic gate-source and gate resistances. The FP4050 features Si3N4 passivation.

Typical applications include commercial and military high-performance power amplifiers, including SATCOM uplink transmitters, PCS/Cellular low-voltage high-efficiency output amplifiers, and medium-haul digital radio transmitters. This device is also suitable as a power stage for WLAN and ISM band spread spectrum applications.

| Parameter                                  | Symbol            | <b>Test Conditions</b>                                  | Min | Тур  | Max  | Units |  |
|--------------------------------------------|-------------------|---------------------------------------------------------|-----|------|------|-------|--|
| Output Power @<br>1 dB Compression         | P <sub>1dB</sub>  | $f=2~GHz;~V_{DS}=8V;~I_{DS}=50\%~I_{DSS}$               |     | 34   |      | dBm   |  |
| Power Gain @<br>1dB Compression            | G <sub>1dB</sub>  | $f = 2 \text{ GHz}; V_{DS} = 8V; I_{DS} = 50\% I_{DSS}$ |     | 14   |      | dB    |  |
| Saturated Drain-Source Current             | I <sub>DSS</sub>  | $V_{DS}=2V;\ V_{GS}=0V$                                 | 950 | 1100 | 1300 | mA    |  |
| Maximum Drain-Source Current               | I <sub>MAX</sub>  | $V_{DS} = 2V; V_{GS} = 1V$                              |     | 2200 |      | mA    |  |
| Transconductance                           | G <sub>M</sub>    | $V_{DS} = 2 \text{ V};  V_{GS} = 0 \text{ V}$           |     | 880  |      | mS    |  |
| Pinch-Off Voltage                          | VP                | $V_{DS} = 2 V; I_{DS} = 10 mA$                          |     | -1.2 |      | V     |  |
| Gate-Drain Breakdown<br>Voltage Magnitude  | V <sub>BDGD</sub> | $I_{GS} = 20 \text{ mA}$                                | 12  | 15   |      | V     |  |
| Gate-Source Breakdown<br>Voltage Magnitude | V <sub>BDGS</sub> | $I_{GS} = 20 \text{ mA}$                                | 12  | 15   |      | V     |  |
| Gate-Source Leakage<br>Current Magnitude   | I <sub>GSL</sub>  | $V_{GS} = -5 V$                                         |     |      | 0.2  | mA    |  |
| Thermal Resistivity                        | $\Theta_{\rm JC}$ |                                                         |     | 15   |      | °C/W  |  |

# • ELECTRICAL SPECIFICATIONS @ T<sub>Ambient</sub> = 22 ±3 ℃



#### RECOMMENDED CONTINUOUS OPERATING LIMITS

| Parameter                     | Symbol           | Nominal | Units |  |
|-------------------------------|------------------|---------|-------|--|
| Drain-Source Voltage          | V <sub>DS</sub>  | 8       | V     |  |
| Gate-Source Voltage           | V <sub>GS</sub>  | -1.0    | V     |  |
| Drain-Source Current          | I <sub>DS</sub>  | 500     | mA    |  |
| RF Input Power                | P <sub>IN</sub>  | 800     | mW    |  |
| Channel Operating Temperature | T <sub>CH</sub>  | 150     | °C    |  |
| Ambient Temperature           | T <sub>STG</sub> | -20/50  | °C    |  |

Note: Device should be operated at or below Recommended Continuous Operating Limits for reliable performance.

#### ABSOLUTE RATINGS

| Parameter                     | Symbol           | <b>Test Conditions</b>               | Min | Max | Units |
|-------------------------------|------------------|--------------------------------------|-----|-----|-------|
| Drain-Source Voltage          | V <sub>DS</sub>  | $T_{Ambient} = 22 \pm 3 \ ^{\circ}C$ |     | 10  | V     |
| Gate-Source Voltage           | V <sub>GS</sub>  | $T_{Ambient} = 22 \pm 3 \ ^{\circ}C$ |     | -5  | V     |
| Drain-Source Current          | I <sub>DS</sub>  | $T_{Ambient} = 22 \pm 3 \ ^{\circ}C$ |     | 800 | mA    |
| Gate Current                  | I <sub>G</sub>   | $T_{Ambient} = 22 \pm 3 \ ^{\circ}C$ |     | 180 | mA    |
| RF Input Power                | P <sub>IN</sub>  | $T_{Ambient} = 22 \pm 3 \ ^{\circ}C$ |     | TBD | mW    |
| Channel Operating Temperature | T <sub>CH</sub>  | $T_{Ambient} = 22 \pm 3 \ ^{\circ}C$ |     | 175 | °C    |
| Storage Temperature           | T <sub>STG</sub> | _                                    | -65 | 175 | °C    |

Note: Even temporary operating conditions that exceed the Absolute Maximum Ratings could result in permanent damage to the device.

### HANDLING PRECAUTIONS

To avoid damage to the devices care should be exercised during handling. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. These devices should be treated as Class 1A (0-500 V). Further information on ESD control measures can be found in MIL-STD-1686 and MIL-HDBK-263.

All information and specifications are subject to change without notice.