

14-Output Clock Generator

AD9516-5

FEATURES

Low phase noise, phase-locked loop

Supports external VCO/VCXO to 2.4 GHz

1 differential or 2 single-ended reference inputs

Accepts CMOS, LVDS, or LVPECL references to 250 MHz

Reference monitoring capability

Auto and manual reference switchover/holdover modes with selectable revertive/nonrevertive switching

Glitch-free (hitless) switchover between references

Automatic recovery from holdover

Programmable delays in path to PFD

Digital or analog lock detect, selectable

Six 1.6 GHz LVPECL outputs arranged in 3 groups

Each group shares 1 to 32 dividers with coarse phase delay

Additive output jitter: 225 fs rms

Channel-to-channel skew paired outputs: <10 ps

Four 800 MHz LVDS clock outputs arranged in 2 groups

Each group shares 2 cascaded 1-to-32 dividers with coarse

phase delay

Additive output jitter: 275 fs rms

Fine delay adjust (AT) on each LVDS output

Each LVDS output can be configured as 2 CMOS outputs

(for $f_{OUT} \le 250 \text{ MHz}$)

Automatic synchronization of all outputs on power-up Manual synchronization of outputs as needed SPI-compatible serial control port 64-lead LFCSP

APPLICATIONS

Low jitter, low phase noise clock distribution
Clock generation and translation for SONET, 10Ge, 10G FC,
and other 10 Gbps protocols

Clocking high speed ADCs, DACs, DDCs, DUCs, MxFEs High performance wireless transceivers

ingli periormanee inneress transcen

High performance instrumentation

Broadband infrastructure

ATE and high performance instrumentation

GENERAL DESCRIPTION

The AD9516-5¹ provides a multioutput clock distribution function with subpicosecond jitter performance, along with an on-chip PLL that can be used with an external VCO/VCXO.

FUNCTIONAL BLOCK DIAGRAM

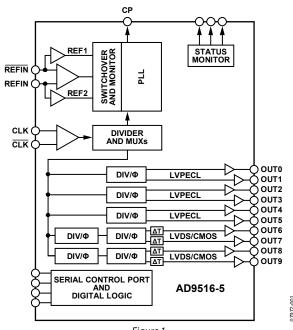


Figure 1.

The AD9516-5 emphasizes low jitter and phase noise to maximize data converter performance and is suitable for other applications with demanding phase noise and jitter requirements.

The AD9516-5 features six LVPECL outputs in three groups, along with four LVDS outputs in two groups. Any LVDS output can be reconfigured as two CMOS outputs. The LVPECL outputs operate to 1.6 GHz, the LVDS outputs operate to 800 MHz, and the CMOS outputs operate to 250 MHz.

Each pair of outputs has dividers that allow both the divide ratio and coarse delay (or phase) to be set. The range of division for the LVPECL outputs is 1 to 32. The LVDS/CMOS outputs allow a range of divisions up to a maximum of 1024.

The AD9516-5 is available in a 64-lead LFCSP and can be operated from a single 3.3 V supply. An external VCO, which requires an extended voltage range, can be accommodated by connecting the charge pump supply (VCP) to 5.5 V. A separate LVPECL power supply can be from 2.375 V to 3.6 V.

The AD9516-5 is specified for operation over the standard industrial range of -40° C to $+85^{\circ}$ C.

For applications requiring an integrated EEPROM, or needing additional outputs, the AD9520-5 and AD9522-5 are available.

¹ The AD9516 is used throughout to refer to all the members of the AD9516 family. However, when AD9516-5 is used, it refers to that specific member of the AD9516 family.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113 ©2009 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features
Applications1
General Description
Functional Block Diagram 1
Revision History 3
Specifications
Power Supply Requirements 4
PLL Characteristics 4
Clock Inputs
Clock Outputs
Timing Characteristics
Timing Diagrams 8
Clock Output Additive Phase Noise (Distribution Only; VCO Divider Not Used)9
Clock Output Absolute Time Jitter (Clock Generation Using External VCXO)10
Clock Output Additive Time Jitter (VCO Divider Not Used)
Clock Output Additive Time Jitter (VCO Divider Used) 11
Delay Block Additive Time Jitter11
Serial Control Port
PD, SYNC, and RESET Pins
LD, STATUS, REFMON Pins
Power Dissipation
Absolute Maximum Ratings15
Thermal Resistance
ESD Caution
Pin Configuration and Function Descriptions16
Typical Performance Characteristics
Terminology
Detailed Block Diagram23
Theory of Operation24
Operational Configurations
Mode1: Clock Distribution or External VCO < 1600 MHz24
Mode 2: High Frequency Clock Distribution— CLK or External VCO >1600 MHz26
Phase-Locked Loop (PLL)28
Configuration of the PLL
Phase Frequency Detector (PFD)28
Charge Pump (CP)29

PLL Reference Inputs	29
Reference Switchover	29
Reference Divider R	30
VCXO/VCO Feedback Divider N: P, A, B	30
Digital Lock Detect (DLD)	31
Analog Lock Detect (ALD)	31
Current Source Digital Lock Detect (CSDLD)	31
External VCXO/VCO Clock Input (CLK/CLK)	32
Holdover	32
Manual Holdover Mode	32
Automatic/Internal Holdover Mode	33
Frequency Status Monitors	34
Clock Distribution	35
Operating Modes	35
CLK Direct to LVPECL Outputs	35
Clock Frequency Division	36
VCO Divider	36
Channel Dividers—LVPECL Outputs	36
Channel Dividers—LVDS/CMOS Outputs	38
Synchronizing the Outputs—SYNC Function	41
Clock Outputs	42
LVPECL Outputs: OUT0 to OUT5	42
LVDS/CMOS Outputs: OUT6 to OUT9	43
Reset Modes	43
Power-On Reset—Start-Up Conditions When VS Is Applied	43
Asynchronous Reset via the RESET Pin	43
Soft Reset via 0x000[5]	43
Power-Down Modes	
Chip Power-Down via PD	43
PLL Power-Down	44
Distribution Power-Down	44
Individual Clock Output Power-Down	44
Individual Circuit Block Power-Down	44
Serial Control Port	45
Serial Control Port Pin Descriptions	45

General Operation of Serial Control Port	45
Communication Cycle—Instruction Plus Data	45
Write	45
Read	46
Instruction Word (16 Bits)	46
MSB/LSB First Transfers	46
Thermal Performance	49
Register Map Overview	50
Register Map Descriptions	54

Application Notes	72
Using the AD9516 Outputs for ADC Clock Application	
LVPECL Clock Distribution	72
LVDS Clock Distribution	73
CMOS Clock Distribution	73
Outline Dimensions	74
Ordering Guide	74

REVISION HISTORY

1/09—Revision 0: Initial Version

SPECIFICATIONS

Typical (typ) is given for VS = VS_LVPECL = 3.3 V \pm 5%; VS \leq VCP \leq 5.25 V; T_A = 25°C; RSET = 4.12 k Ω ; CPRSET = 5.1 k Ω , unless otherwise noted. Minimum (min) and maximum (max) values are given over full Vs and T_A (-40°C to +85°C) variation.

POWER SUPPLY REQUIREMENTS

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments			
VS	3.135	3.3	3.465	V	This is 3.3 V ± 5%			
VS_LVPECL	2.375		VS	V	This is nominally 2.5 V to 3.3 V \pm 5%			
VCP	VS		5.25	V	This is nominally 3.3 V to 5.0 V ± 5%			
RSET Pin Resistor		4.12		kΩ	Sets internal biasing currents; connect to ground			
CPRSET Pin Resistor		5.1		kΩ	Sets internal CP current range, nominally 4.8 mA (CP_lsb = 600 μA); actual			
					current can be calculated by: CP_lsb = 3.06/CPRSET; connect to ground			

PLL CHARACTERISTICS

Table 2.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
REFERENCE INPUTS					
Differential Mode (REFIN, REFIN)					Differential mode (can accommodate single-ended input by ac grounding undriven input)
Input Frequency	0		250	MHz	Frequencies below about 1 MHz should be dc-coupled; be careful to match V _{CM} (self-bias voltage)
Input Sensitivity		250		mV p-p	PLL figure of merit increases with increasing slew rate; see Figure 13
Self-Bias Voltage, REFIN	1.35	1.60	1.75	V	Self-bias voltage of REFIN ¹
Self-Bias Voltage, REFIN	1.30	1.50	1.60	V	Self-bias voltage of REFIN ¹
Input Resistance, REFIN	4.0	4.8	5.9	kΩ	Self-biased ¹
Input Resistance, REFIN	4.4	5.3	6.4	kΩ	Self-biased ¹
Dual Single-Ended Mode (REF1, REF2)					Two single-ended CMOS-compatible inputs
Input Frequency (AC-Coupled)	20		250	MHz	Slew rate > 50 V/µs
Input Frequency (DC-Coupled)	0		250	MHz	Slew rate > 50 V/μs; CMOS levels
Input Sensitivity (AC-Coupled)		0.8		V p-p	Should not exceed V _S p-p
Input Logic High	2.0			٧	
Input Logic Low			0.8	٧	
Input Current	-100		+100	μΑ	
Input Capacitance		2		pF	Each pin, REFIN (REF1)/REFIN (REF2)
PHASE/FREQUENCY DETECTOR (PFD)					
PFD Input Frequency			100	MHz	Antibacklash pulse width = 1.3 ns, 2.9 ns
			45	MHz	Antibacklash pulse width = 6.0 ns
Antibacklash Pulse Width		1.3		ns	0x017[1:0] = 01b
		2.9		ns	0x017[1:0] = 00b; 0x017[1:0] = 11b
		6.0		ns	0x017[1:0] = 10b
CHARGE PUMP (CP)					
I _{CP} Sink/Source					Programmable
High Value		4.8		mA	With CPRSET = $5.1 \text{ k}\Omega$
Low Value		0.60		mA	
Absolute Accuracy		2.5		%	$V_{CP} = VCP/2$
CPRSET Range		2.7/10		kΩ	
I _{CP} High Impedance Mode Leakage		1		nA	
Sink-and-Source Current Matching		2		%	$0.5 < V_{CP} < VCP - 0.5 V$
I _{CP} vs. V _{CP}		1.5		%	$0.5 < V_{CP} < VCP - 0.5 V$
I _{CP} vs. Temperature		2		%	$V_{CP} = VCP/2V$

Rev. 0 | Page 4 of 76

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
PRESCALER (PART OF N DIVIDER)					
Prescaler Input Frequency					
P = 1 FD			300	MHz	
P = 2 FD			600	MHz	
P = 3 FD			900	MHz	
P = 2 DM (2/3)			600	MHz	
P = 4 DM (4/5)			1000	MHz	
P = 8 DM (8/9)			2400	MHz	
P = 16 DM (16/17)			3000	MHz	
P = 32 DM (32/33)			3000	MHz	
Prescaler Output Frequency			300	MHz	A, B counter input frequency (prescaler input frequency divided by P)
PLL DIVIDER DELAYS					Register 0x019: R[5:3], N[2:0]; see Table 49
000		Off			
001		330		ps	
010		440		ps	
011		550		ps	
100		660		ps	
101		770		ps	
110		880		ps	
111		990		ps	
NOISE CHARACTERISTICS					
In-Band Phase Noise of the Charge Pump/Phase Frequency Detector (In-Band Means Within the LBW of the PLL)					The PLL in-band phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20 log(N) (where N is the value of the N divider)
@ 500 kHz PFD Frequency		-165		dBc/Hz	
@ 1 MHz PFD Frequency		-162		dBc/Hz	
@ 10 MHz PFD Frequency		-151		dBc/Hz	
@ 50 MHz PFD Frequency		-143		dBc/Hz	
PLL Figure of Merit (FOM)		-220		dBc/Hz	Reference slew rate > 0.25 V/ns; FOM $+10$ log(f _{PFD}) is an approximation of the PFD/CP in-band phase noise (in the flat region) inside the PLL loop bandwidth; when running closed loop, the phase noise, as observed at the VCO output, is increased by 20 log(N)
PLL DIGITAL LOCK DETECT WINDOW ²					Signal available at the LD, STATUS, and REFMON pins when selected by appropriate register settings
Required to Lock (Coincidence of Edges)					Selected by 0x017[1:0] and 0x018[4]
Low Range (ABP 1.3 ns, 2.9 ns)		3.5		ns	0x017[1:0] = 00b, 01b, 11b; 0x018[4] = 1b
High Range (ABP 1.3 ns, 2.9 ns)		7.5		ns	0x017[1:0] = 00b, 01b, 11b; 0x018[4] = 0b
High Range (ABP 6.0 ns)		3.5		ns	0x017[1:0] = 10b; 0x018[4] = 0b
To Unlock After Lock (Hysteresis) ²					
Low Range (ABP 1.3 ns, 2.9 ns)		7		ns	0x017[1:0] = 00b, 01b, 11b; 0x018[4] = 1b
High Range (ABP 1.3 ns, 2.9 ns)		15		ns	0x017[1:0] = 00b, 01b, 11b; 0x018[4] = 0b
High Range (ABP 6.0 ns)		11		ns	0x017[1:0] = 10b; 0x018[4] = 0b

¹ The REFIN and REFIN self-bias points are offset slightly to avoid chatter on an open input condition.
² For reliable operation of the digital lock detect, the period of the PFD frequency must be greater than the unlock-after-lock time.

CLOCK INPUTS

Table 3.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
CLOCK INPUTS (CLK, CLK)					Differential input
Input Frequency	O ¹		2.4	GHz	High frequency distribution (VCO divider enabled)
	01		1.6	GHz	Distribution only (VCO divider bypassed); this is the frequency range supported by the channel divider
Input Sensitivity, Differential		150		mV p-p	Measured at 2.4 GHz; jitter performance is improved with slew rates > 1 V/ns
Input Level, Differential			2	V p-p	Larger voltage swings can turn on the protection diodes and can degrade jitter performance
Input Common-Mode Voltage, V_{CM}	1.3	1.57	1.8	V	Self-biased; enables ac coupling
Input Common-Mode Range, V _{CMR}	1.3		1.8	V	With 200 mV p-p signal applied; dc-coupled
Input Sensitivity, Single-Ended		150		mV p-p	CLK ac-coupled; CLK ac-bypassed to RF ground
Input Resistance	3.9	4.7	5.7	kΩ	Self-biased
Input Capacitance		2		pF	

 $^{^{1}}$ Below about 1 MHz, the input should be dc-coupled. Care should be taken to match V_{CM} .

CLOCK OUTPUTS

Table 4.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL CLOCK OUTPUTS OUT0, OUT1, OUT2, OUT3, OUT4, OUT5					Termination = 50Ω to VS_LVPECL - 2 V Differential (OUT, OUT)
Output Frequency, Maximum	2400			MHz	Using direct to output; see Figure 20 for amplitude vs. frequency; the maximum output frequency is limited by the maximum frequency at the CLK inputs
Output High Voltage (V _{он})	VS_LVPECL – 1.12	VS_LVPECL – 0.98	VS_LVPECL – 0.84	V	Measured at dc; see Figure 20 for amplitude vs. frequency
Output Low Voltage (V _{OL})	VS_LVPECL – 2.03	VS_LVPECL – 1.77	VS_LVPECL — 1.49	V	Measured at dc; see Figure 20 for amplitude vs. frequency
Output Differential Voltage (Vod)	550	790	980	mV	Measured at dc; see Figure 20 for amplitude vs. frequency
LVDS CLOCK OUTPUTS					Differential termination 100 Ω @ 3.5 mA
OUT6, OUT7, OUT8, OUT9					Differential (OUT, OUT)
Output Frequency, Maximum	800			MHz	See Figure 21; the LVDS outputs can toggle at higher frequencies, but the output amplitude may not meet the V_{OD} specification
Differential Output Voltage (Vod)	247	360	454	mV	V _{OH} − V _{OL} measurement across a differential pair at the default amplitude setting with output driver not toggling; see Figure 21 for variation over frequency
Delta V _{OD}			25	mV	The absolute value of the difference between V _{OD} when the normal output is high vs. when the complementary output is high
Output Offset Voltage (Vos)	1.125	1.24	1.375	V	(V _{OH} + V _{OL})/2 across a differential pair at the default amplitude setting with output driver not toggling
Delta Vos			25	mV	The absolute value of the difference between Vos when the normal output is high vs. when the complementary output is high
Short-Circuit Current (Isa, IsB)		14	24	mA	Output shorted to GND

Rev. 0 | Page 6 of 76

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
CMOS CLOCK OUTPUTS					
OUT6A, OUT6B, OUT7A, OUT7B, OUT8A, OUT8B, OUT9A, OUT9B					Single-ended; termination = 10 pF
Output Frequency			250	MHz	See Figure 22
Output Voltage High (V _{OH})	VS - 0.1			V	1 mA load
Output Voltage Low (Vol)			0.1	V	1 mA load

TIMING CHARACTERISTICS

Table 5.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL					Termination = 50Ω to VS_LVPECL – 2 V; amplitude = 810 mV
Output Rise Time, t _{RP}		70	180	nc	20% to 80%, measured differentially
Output Fall Time, t _{FP}		70 70	180	ps	80% to 20%, measured differentially
PROPAGATION DELAY, t _{PECL} , CLK-TO-LVPECL OUTPUT		70	100	ps	80% to 20%, measured differentially
High Frequency Clock Distribution Configuration	835	005	1100	nc	Con Figure 22
		995	1180	ps	See Figure 33
Clock Distribution Configuration	773	933	1090	ps	See Figure 32
Variation with Temperature	-	8.0		ps/°C	
OUTPUT SKEW, LVPECL OUTPUTS ¹		_	4.5		
LVPECL Outputs That Share the Same Divider		5	15	ps	
LVPECL Outputs on Different Dividers		13	40	ps	
All LVPECL Outputs Across Multiple Parts			220	ps	
LVDS					Termination = 100Ω differential; 3.5 mA
Output Rise Time, t _{RL}		170	350	ps	20% to 80%, measured differentially ²
Output Fall Time, t _{FL}		160	350	ps	20% to 80%, measured differentially ²
PROPAGATION DELAY, t _{LVDS} , CLK-TO-LVDS OUTPUT					Delay off on all outputs
OUT6, OUT7, OUT8, OUT9					
For All Divide Values	1.4	1.8	2.1	ns	
Variation with Temperature		1.25		ps/°C	
OUTPUT SKEW, LVDS OUTPUTS ¹					Delay off on all outputs
LVDS Outputs That Share the Same Divider		6	62	ps	
LVDS Outputs on Different Dividers		25	150	ps	
All LVDS Outputs Across Multiple Parts			430	ps	
CMOS					Termination = open
Output Rise Time, t _{RC}		495	1000	ps	20% to 80%; C _{LOAD} = 10 pF
Output Fall Time, t _{FC}		475	985	ps	80% to 20%; C _{LOAD} = 10 pF
PROPAGATION DELAY, t _{CMOS} , CLK-TO-CMOS OUTPUT					Fine delay off
For All Divide Values	1.6	2.1	2.6	ns	,
Variation with Temperature		2.6		ps/°C	
OUTPUT SKEW, CMOS OUTPUTS ¹				<u> </u>	Fine delay off
CMOS Outputs That Share the Same Divider		4	66	ps	
All CMOS Outputs on Different Dividers		28	180	ps	
All CMOS Outputs Across Multiple Parts			675	ps	
DELAY ADJUST ³				Po	LVDS and CMOS
Shortest Delay Range ⁴					0x0A1 (0x0A4) (0x0A7) (0x0AA) [5:0] 1111111b
Zero Scale	50	315	680	ps	0x0A2 (0x0A5) (0x0A8) (0x0AB) [5:0] 000000b
Full Scale	540	880	1180	ps	0x0A2 (0x0A5) (0x0A6) (0x0AB) [5:0] 1011111b
Longest Delay Range ⁴	340	000	1100	P3	0x0A2 (0x0A3) (0x0A6) (0x0A6) [5:0] 10111116
Zero Scale	200	570	950	ns	0x0A2 (0x0A5) (0x0A8) (0x0AB) [5:0] 000000b
Quarter Scale				ps	
	1.72	2.31	2.89	ns	0x0A2 (0x0A5) (0x0A8) (0x0AB) [5:0] 001100b
Full Scale	5.7	8.0	10.1	ns	0x0A2 (0x0A5) (0x0A8) (0x0AB) [5:0] 1011111b

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
Delay Variation with Temperature					
Short Delay Range⁵					
Zero Scale		0.23		ps/°C	
Full Scale		-0.02		ps/°C	
Long Delay Range⁵					
Zero Scale		0.3		ps/°C	
Full Scale		0.24		ps/°C	

¹ This is the difference between any two similar delay paths while operating at the same voltage and temperature.
² Corresponding CMOS drivers set to OUTxA for noninverting, and OUTxB for inverting, x = 6, 7, 8, or 9.
³ The maximum delay that can be used is a little less than one-half the period of the clock. A longer delay disables the output.

Timing Diagrams

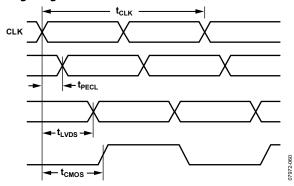


Figure 2. CLK/ $\overline{\text{CLK}}$ to Clock Output Timing, DIV = 1

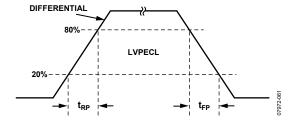


Figure 3. LVPECL Timing, Differential

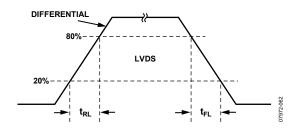


Figure 4. LVDS Timing, Differential

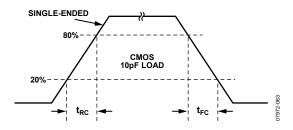


Figure 5. CMOS Timing, Single-Ended, 10 pF Load

⁴ Incremental delay; does not include propagation delay.

 $^{^{\}rm 5}$ All delays between zero scale and full scale can be estimated by linear interpolation.

CLOCK OUTPUT ADDITIVE PHASE NOISE (DISTRIBUTION ONLY; VCO DIVIDER NOT USED)

Table 6.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
CLK-TO-LVPECL ADDITIVE PHASE NOISE					Distribution section only; does not include PLL
CLK = 1 GHz, Output = 1 GHz					Input slew rate > 1 V/ns
Divider = 1					
@ 10 Hz Offset		-109		dBc/Hz	
@ 100 Hz Offset		-118		dBc/Hz	
@ 1 kHz Offset		-130		dBc/Hz	
@ 10 kHz Offset		-139		dBc/Hz	
@ 100 kHz Offset		-144		dBc/Hz	
@ 1 MHz Offset		-146		dBc/Hz	
@ 10 MHz Offset		-147		dBc/Hz	
@ 100 MHz Offset		-149		dBc/Hz	
CLK = 1 GHz, Output = 200 MHz					Input slew rate > 1 V/ns
Divider = 5					
@ 10 Hz Offset		-120		dBc/Hz	
@ 100 Hz Offset		-126		dBc/Hz	
@ 1 kHz Offset		-139		dBc/Hz	
@ 10 kHz Offset		-150		dBc/Hz	
@ 100 kHz Offset		-155		dBc/Hz	
@ 1 MHz Offset		-157		dBc/Hz	
>10 MHz Offset		–157		dBc/Hz	
CLK-TO-LVDS ADDITIVE PHASE NOISE		137		GDC/112	Distribution section only; does not include PLL
CLK = 1.6 GHz, Output = 800 MHz					Input slew rate > 1 V/ns
Divider = 2					imput siew rate > 1 V/iis
@ 10 Hz Offset		-103		dBc/Hz	
@ 100 Hz Offset		-103 -110		dBc/Hz	
@ 1 kHz Offset		-110 -120		dBc/Hz	
@ 10 kHz Offset		-120 -127		dBc/Hz	
@ 100 kHz Offset		-127 -133		dBc/Hz	
@ 1 MHz Offset		-133 -138		dBc/Hz	
@ 10 MHz Offset		-136 -147		dBc/Hz	
@ 100 MHz Offset					
•		-149		dBc/Hz	la mot alaccomata y 1 M/m a
CLK = 1.6 GHz, Output = 400 MHz					Input slew rate > 1 V/ns
Divider = 4		114		-ID - /I I-	
@ 10 Hz Offset		-114		dBc/Hz	
@ 100 Hz Offset		-122		dBc/Hz	
@ 1 kHz Offset		-132		dBc/Hz	
@ 10 kHz Offset		-140		dBc/Hz	
@ 100 kHz Offset		-146		dBc/Hz	
@ 1 MHz Offset		-150		dBc/Hz	
>10 MHz Offset		-155		dBc/Hz	
CLK-TO-CMOS ADDITIVE PHASE NOISE					Distribution section only; does not include PLL
CLK = 1 GHz, Output = 250 MHz					Input slew rate > 1 V/ns
Divider = 4					
@ 10 Hz Offset		-110		dBc/Hz	
@ 100 Hz Offset		-120		dBc/Hz	
@ 1 kHz Offset		-127		dBc/Hz	
@ 10 kHz Offset		-136		dBc/Hz	
@ 100 kHz Offset		-144		dBc/Hz	
@ 1 MHz Offset		-147		dBc/Hz	
>10 MHz Offset		-154		dBc/Hz	

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
CLK = 1 GHz, Output = 50 MHz					Input slew rate > 1 V/ns
Divider = 20					
@ 10 Hz Offset		-124		dBc/Hz	
@ 100 Hz Offset		-134		dBc/Hz	
@ 1 kHz Offset		-142		dBc/Hz	
@ 10 kHz Offset		-151		dBc/Hz	
@ 100 kHz Offset		-157		dBc/Hz	
@ 1 MHz Offset		-160		dBc/Hz	
>10 MHz Offset		-163		dBc/Hz	

CLOCK OUTPUT ABSOLUTE TIME JITTER (CLOCK GENERATION USING EXTERNAL VCXO)

Table 7.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL OUTPUT ABSOLUTE TIME JITTER					Application example based on a typical setup using an external 245.76 MHz VCXO (Toyocom TCO-2112); reference = 15.36 MHz; R DIV = 1
LVPECL = 245.76 MHz; PLL LBW = 125 Hz		54		fs rms	Integration bandwidth = 200 kHz to 5 MHz
		77		fs rms	Integration bandwidth = 200 kHz to 10 MHz
		109		fs rms	Integration bandwidth = 12 kHz to 20 MHz
LVPECL = 122.88 MHz; PLL LBW = 125 Hz		79		fs rms	Integration bandwidth = 200 kHz to 5 MHz
		114		fs rms	Integration bandwidth = 200 kHz to 10 MHz
		163		fs rms	Integration bandwidth = 12 kHz to 20 MHz
LVPECL = 61.44 MHz; PLL LBW = 125 Hz		124		fs rms	Integration bandwidth = 200 kHz to 5 MHz
		176		fs rms	Integration bandwidth = 200 kHz to 10 MHz
		259		fs rms	Integration bandwidth = 12 kHz to 20 MHz

CLOCK OUTPUT ADDITIVE TIME JITTER (VCO DIVIDER NOT USED)

Table 8.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL; rising edge of clock signal
CLK = 622.08 MHz; LVPECL = 622.08 MHz; Divider = 1		40		fs rms	Bandwidth = 12 kHz to 20 MHz
CLK = 622.08 MHz; LVPECL = 155.52 MHz; Divider = 4		80		fs rms	Bandwidth = 12 kHz to 20 MHz
CLK = 1.6 GHz; LVPECL = 100 MHz; Divider = 16		215		fs rms	Calculated from SNR of ADC method; DCC not used for even divides
CLK = 500 MHz; LVPECL = 100 MHz; Divider = 5		245		fs rms	Calculated from SNR of ADIC method; DCC on
LVDS OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL; rising edge of clock signal
CLK = 1.6 GHz; LVDS = 800 MHz; Divider = 2; VCO Divider Not Used		85		fs rms	Bandwidth = 12 kHz to 20 MHz
CLK = 1 GHz; LVDS = 200 MHz; Divider = 5		113		fs rms	Bandwidth = 12 kHz to 20 MHz
CLK = 1.6 GHz; LVDS = 100 MHz; Divider = 16		280		fs rms	Calculated from SNR of ADC method; DCC not used for even divides
CMOS OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL; rising edge of clock signal
CLK = 1.6 GHz; CMOS = 100 MHz; Divider = 16		365		fs rms	Calculated from SNR of ADC method; DCC not used for even divides

CLOCK OUTPUT ADDITIVE TIME JITTER (VCO DIVIDER USED)

Table 9.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL; uses rising edge of clock signal
CLK = 2.4 GHz; VCO DIV = 2; LVPECL = 100 MHz; Divider = 12; Duty-Cycle Correction = Off		210		fs rms	Calculated from SNR of ADC method
LVDS OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL; uses rising edge of clock signal
CLK = 2.4 GHz; VCO DIV = 2; LVDS = 100 MHz; Divider = 12; Duty-Cycle Correction = Off		285		fs rms	Calculated from SNR of ADC method
CMOS OUTPUT ADDITIVE TIME JITTER					Distribution section only; does not include PLL; uses rising edge of clock signal
CLK = 2.4 GHz; VCO DIV = 2; CMOS = 100 MHz; Divider = 12; Duty-Cycle Correction = Off		350		fs rms	Calculated from SNR of ADC method

DELAY BLOCK ADDITIVE TIME JITTER

Table 10.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
DELAY BLOCK ADDITIVE TIME JITTER ¹					Incremental additive jitter
100 MHz Output					
Delay (1600 μA, 1C) Fine Adjust 000000		0.54		ps rms	
Delay (1600 μA, 1C) Fine Adjust 101111		0.60		ps rms	
Delay (800 μA, 1C) Fine Adjust 000000		0.65		ps rms	
Delay (800 μA, 1C) Fine Adjust 101111		0.85		ps rms	
Delay (800 μA, 4C) Fine Adjust 000000		0.79		ps rms	
Delay (800 μA, 4C) Fine Adjust 101111		1.2		ps rms	
Delay (400 μA, 4C) Fine Adjust 000000		1.2		ps rms	
Delay (400 μA, 4C) Fine Adjust 101111		2.0		ps rms	
Delay (200 μA, 1C) Fine Adjust 000000		1.3		ps rms	
Delay (200 μA, 1C) Fine Adjust 101111		2.5		ps rms	
Delay (200 μA, 4C) Fine Adjust 000000		1.9		ps rms	
Delay (200 μA, 4C) Fine Adjust 101111		3.8		ps rms	

¹ This value is incremental; that is, it is in addition to the jitter of the LVDS or CMOS output without the delay. To estimate the total jitter, the LVDS or CMOS output jitter should be added to this value using the root sum of the squares (RSS) method.

SERIAL CONTROL PORT

Table 11.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
CS (INPUT)					CS has an internal 30 kΩ pull-up resistor
Input Logic 1 Voltage	2.0			V	
Input Logic 0 Voltage			8.0	V	
Input Logic 1 Current			3	μΑ	
Input Logic 0 Current		110		μΑ	
Input Capacitance		2		pF	
SCLK (INPUT)					SCLK has an internal 30 kΩ pull-down resistor
Input Logic 1 Voltage	2.0			V	
Input Logic 0 Voltage			8.0	V	
Input Logic 1 Current		110		μΑ	
Input Logic 0 Current			1	μΑ	
Input Capacitance		2		pF	

Rev. 0 | Page 11 of 76

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
SDIO (WHEN INPUT)					
Input Logic 1 Voltage	2.0			V	
Input Logic 0 Voltage			8.0	V	
Input Logic 1 Current		10		nA	
Input Logic 0 Current		20		nA	
Input Capacitance		2		pF	
SDIO, SDO (OUTPUTS)					
Output Logic 1 Voltage	2.7			V	
Output Logic 0 Voltage			0.4	V	
TIMING					
Clock Rate (SCLK, 1/t _{CLK})			25	MHz	
Pulse Width High, t _{HIGH}	16			ns	
Pulse Width Low, t _{LOW}	16			ns	
SDIO to SCLK Setup, t _{DS}	2			ns	
SCLK to SDIO Hold, t _{DH}	1.1			ns	
SCLK to Valid SDIO and SDO, t_{DV}			8	ns	
\overline{CS} to SCLK Setup and Hold, ts , th	2			ns	
CS Minimum Pulse Width High, t _{PWH}	3			ns	

PD, SYNC, AND RESET PINS

Table 12.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
INPUT CHARACTERISTICS					Each of these pins has an internal 30 k Ω pull-up resistor
Logic 1 Voltage	2.0			V	
Logic 0 Voltage			0.8	V	
Logic 1 Current		110		μΑ	
Logic 0 Current			1	μΑ	
Capacitance		2		pF	
RESET TIMING					
Pulse Width Low	50			ns	
SYNC TIMING					
Pulse Width Low	1.5			High speed clock cycles	High speed clock is CLK input signal

LD, STATUS, REFMON PINS

Table 13.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
OUTPUT CHARACTERISTICS					When selected as a digital output (CMOS); there are other modes in which these pins are not CMOS digital outputs; see Table 49, 0x017, 0x01A, and 0x01B
Output Voltage High, V _{OH}	2.7			٧	
Output Voltage Low, Vol			0.4	٧	
MAXIMUM TOGGLE RATE		100		MHz	Applies when mux is set to any divider or counter output, or PFD up/down pulse; also applies in analog lock detect mode; usually debug mode only; beware that spurs may couple to output when any of these pins are toggling
ANALOG LOCK DETECT Capacitance		3		pF	On-chip capacitance; used to calculate RC time constant for analog lock detect readback; use a pull-up resistor

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
REF1, REF2, AND CLK FREQUENCY STATUS MONITOR					
Normal Range	1.02			MHz	Frequency above which the monitor indicates the presence of the reference
Extended Range	8			kHz	Frequency above which the monitor indicates the presence of the reference
LD PIN COMPARATOR					
Trip Point		1.6		٧	
Hysteresis		260		mV	

POWER DISSIPATION

Table 14.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
POWER DISSIPATION, CHIP					The values in this table include all power supplies, unless otherwise noted; the power deltas for individual drivers are at dc; see Figure 7, Figure 8, and Figure 9 for power dissipation vs. output frequency
Power-On Default		1.0	1.2	W	No clock; no programming; default register values; does not include power dissipated in external resistors; this configuration has the following blocks already powered up: VCO divider, six channel dividers, three LVPECL drivers, and two LVDS drivers
Full Operation; CMOS Outputs at 225 MHz		1.5	2.1	W	f _{CLK} = 2.25 GHz; VCO divider = 2; all channel dividers on; six LVPECL outputs @ 562.5 MHz; eight CMOS outputs (10 pF load) @ 225 MHz; all 4 fine delay blocks on, maximum current; does not include power dissipated in external resistors
Full Operation; LVDS Outputs at 225 MHz		1.5	2.1	W	f_{CLK} = 2.25 GHz; VCO divider = 2; all channel dividers on; six LVPECL outputs @ 562.5 MHz; four LVDS outputs @ 225 MHz; all 4 fine delay blocks on: maximum current; does not include power dissipated in external resistors
PD Power-Down		75	185	mW	PD pin pulled low; does not include power dissipated in terminations
PD Power-Down, Maximum Sleep		31		mW	\overline{PD} pin pulled low; PLL power-down 0x010[1:0] = 01b; SYNC power-down 0x230[2] = 1b; REF for distribution power-down 0x230[1] = 1b
VCP Supply		4	4.8	mW	PLL operating; typical closed-loop configuration (this number is included in all other power measurements)
AD9516 Core		220		mW	AD9516 core only, all drivers off, PLL off, VCO divider off, and delay blocks off; the power consumption of the configuration of the user can be derived from this number and the power deltas that follow
POWER DELTAS, INDIVIDUAL FUNCTIONS					Power delta when a function is enabled/disabled
VCO Divider		30		mW	VCO divider on/off
REFIN (Differential)		20		mW	All references off to differential reference enabled
REF1, REF2 (Single-Ended)		4		mW	All references off to REF1 or REF2 enabled; differential reference not enabled
PLL		75		mW	PLL off to PLL on, normal operation; no reference enabled
Channel Divider		30		mW	Divider bypassed to divide-by-2 to divide-by-32
LVPECL Channel (Divider Plus Output Driver)		120		mW	No LVPECL output on to one LVPECL output on (that is, enabling OUT0 with OUT1 off; Divider 0 enabled)
LVPECL Driver		90		mW	Second LVPECL output turned on, same channel (that is, enabling OUT0 with OUT1 already on)
LVDS Channel (Divider Plus Output Driver)		140		mW	No LVDS output on to one LVDS output on (that is, enabling OUT8 with OUT9 off with Divider 4.1 enabled and Divider 4.2 bypassed)
LVDS Driver		50		mW	Second LVDS output turned on, same channel (that is, enabling OUT8 with OUT9 already on)

Parameter	Min	Тур	Max Unit		Test Conditions/Comments		
CMOS Channel (Divider Plus Output Driver)		100		mW	Static; no CMOS output on to one CMOS output on (that is, enabling OUT8A starting with OUT8 and OUT9 off)		
CMOS Driver (Second in Pair)		0		mW	Static; second CMOS output, same pair, turned on (that is, enabling OUT8A with OUT8B already on)		
CMOS Driver (First in Second Pair)		30		mW	Static; first output, second pair, turned on (that is, enabling OUT9A with OUT9B off and OUT8A and OUT8B already on)		
Fine Delay Block		50		mW	Delay block off to delay block enabled; maximum current setting		

ABSOLUTE MAXIMUM RATINGS

Table 15.

	With	
Parameter or Pin	Respect To	Rating
VS, VS_LVPECL	GND	-0.3 V to +3.6 V
VCP	GND	−0.3 V to +5.8 V
REFIN, REFIN	GND	-0.3 V to VS + 0.3 V
REFIN	REFIN	−3.3 V to +3.3 V
RSET	GND	-0.3 V to VS + 0.3 V
CPRSET	GND	-0.3 V to VS + 0.3 V
CLK, CLK	GND	-0.3 V to VS + 0.3 V
CLK	CLK	−1.2 V to +1.2 V
SCLK, SDIO, SDO, \overline{CS}	GND	-0.3 V to VS + 0.3 V
OUT0, OUT0, OUT1, OUT1,	GND	-0.3 V to VS + 0.3 V
OUT2, $\overline{\text{OUT2}}$, OUT3, $\overline{\text{OUT3}}$,		
OUT4, <u>OUT4</u> , OUT5, <u>OUT5</u> ,		
OUT6, <u>OUT6,</u> OUT7, <u>OUT7</u> ,		
OUT8, OUT8, OUT9, OUT9		
SYNC	GND	-0.3 V to VS + 0.3 V
REFMON, STATUS, LD	GND	-0.3 V to VS + 0.3 V
Junction Temperature ¹		150°C
Storage Temperature Range		−65°C to +150°C
Lead Temperature (10 sec)		300°C

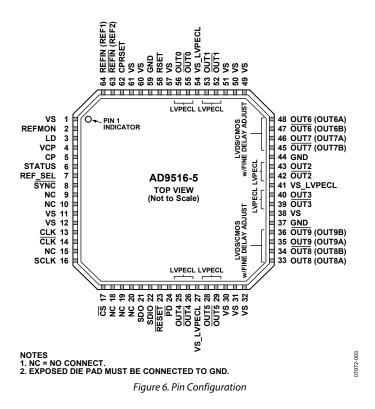
¹ See Table 16 for θ_{IA}.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Thermal impedance measurements were taken on a 4-layer board in still air in accordance with EIA/JESD51-7.

Table 16.


Package Type	θ _{JA}	Unit
64-Lead LFCSP (CP-64-4)	22	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 17. Pin Function Descriptions

Pin No.	Input/ Output	Pin Type	Mnemonic	Description		
1, 11, 12, 30, 31, 32, 38, 49, 50, 51, 57, 60, 61	I	Power	VS	3.3 V Power Pins.		
2	0	3.3 V CMOS	REFMON	Reference Monitor (Output). This pin has multiple selectable outputs; see Table 49 0x01B.		
3	0	3.3 V CMOS	LD	Lock Detect (Output). This pin has multiple selectable outputs; see Table 49 0x01A.		
4	1	Power	VCP	Power Supply for Charge Pump (CP); VS < VCP < 5.25 V.		
5	0	Loop filter	СР	Charge Pump (Output). This pin connects to an external loop filter. This pin can be left unconnected if the PLL is not used.		
6	0	3.3 V CMOS	STATUS	Status (Output). This pin has multiple selectable outputs; see Table 49, 0x017.		
7	I	3.3 V CMOS	REF_SEL	Reference Select. Selects REF1 (low) or REF2 (high). This pin has an internal 30 kG pull-down resistor.		
8	I	3.3 V CMOS	SYNC	Manual Synchronizations and Manual Holdover. This pin initiates a manual synchronization and is also used for manual holdover. Active low. This pin has an internal 30 k Ω pull-up resistor.		
9, 10, 15, 18, 19, 20			NC	No Connection. These pins can be left floating.		
13	I	Differential clock input	CLK	Along with $\overline{\text{CLK}}$, this is the differential input for the clock distribution section.		
14	I	Differential clock input	CLK	Along with CLK, this is the differential input for the clock distribution section. If a single-ended input is connected to the CLK pin, connect a 0.1 µF bypass capacitor from CLK to ground.		

Pin No.	Input/ Output	Pin Type	Mnemonic	Description		
16	I	3.3 V CMOS	SCLK	Serial Control Port Data Clock Signal.		
17	1	3.3 V CMOS	<u>cs</u>	Serial Control Port Chip Select; Active Low. This pin has an internal 30 k Ω pull-up resistor.		
21	0	3.3 V CMOS	SDO	Serial Control Port Unidirectional Serial Data Output.		
22	I/O	3.3 V CMOS	SDIO	Serial Control Port Bidirectional Serial Data Input/Output.		
23	1	3.3 V CMOS	RESET	Chip Reset; Active Low. This pin has an internal 30 k Ω pull-up resistor.		
24	1	3.3 V CMOS	PD	Chip Power-Down; Active Low. This pin has an internal 30 $k\Omega$ pull-up resistor.		
25	0	LVPECL	OUT4	LVPECL Output; One Side of a Differential LVPECL Output.		
26	0	LVPECL	OUT4	LVPECL Output; One Side of a Differential LVPECL Output.		
27, 41, 54	I	Power	VS_LVPECL	Extended Voltage 2.5 V to 3.3 V LVPECL Power Pins.		
28	0	LVPECL	OUT5	LVPECL Output; One Side of a Differential LVPECL Output.		
29	0	LVPECL	OUT5	LVPECL Output; One Side of a Differential LVPECL Output.		
33	0	LVDS or CMOS	OUT8 (OUT8A)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.		
34	0	LVDS or CMOS	OUT8 (OUT8B)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.		
35	0	LVDS or CMOS	OUT9 (OUT9A)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.		
36	0	LVDS or CMOS	OUT9 (OUT9B)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.		
37, 44, 59	1	GND	GND	Ground Pins.		
39	0	LVPECL	OUT3	LVPECL Output; One Side of a Differential LVPECL Output.		
40	0	LVPECL	OUT3	LVPECL Output; One Side of a Differential LVPECL Output.		
42	0	LVPECL	OUT2	LVPECL Output; One Side of a Differential LVPECL Output.		
43	0	LVPECL	OUT2	LVPECL Output; One Side of a Differential LVPECL Output.		
45	0	LVDS or CMOS	OUT7 (OUT7B)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.		
46	0	LVDS or CMOS	OUT7 (OUT7A)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.		
47	0	LVDS or CMOS	OUT6 (OUT6B)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.		
48	0	LVDS or CMOS	OUT6 (OUT6A)	LVDS/CMOS Output; One Side of a Differential LVDS Output, or a Single-Ended CMOS Output.		
52	0	LVPECL	OUT1	LVPECL Output; One Side of a Differential LVPECL Output.		
53	0	LVPECL	OUT1	LVPECL Output; One Side of a Differential LVPECL Output.		
55	0	LVPECL	OUT0	LVPECL Output; One Side of a Differential LVPECL Output.		
56	0	LVPECL	OUT0	LVPECL Output; One Side of a Differential LVPECL Output.		
58	0	Current set resistor	RSET	Resistor Connected Here Sets Internal Bias Currents. Nominal Value = $4.12 \text{ k}\Omega$.		
62	0	Current set resistor	CPRSET	Resistor Connected Here Sets the CP Current Range. Nominal Value = 5.1 kC This resistor can be omitted if the PLL is not used.		
63	1	Reference input	REFIN (REF2)	Along with REFIN, this is the differential input for the PLL reference. Alternatively, this pin is a single-ended input for REF2. This pin can be left unconnected when the PLL is not used.		
64	I	Reference input	REFIN (REF1)	Along with REFIN, this is the differential input for the PLL reference. Alternatively, this pin is a single-ended input for REF1. This pin can be left unconnected when the PLL is not used.		
EPAD		GND	GND	The exposed pad must be connected to GND.		

TYPICAL PERFORMANCE CHARACTERISTICS

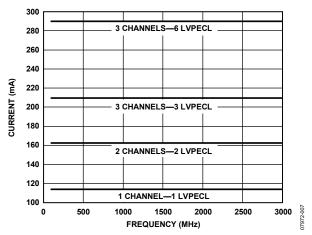


Figure 7. Current vs. Frequency, Direct to Output, LVPECL Outputs

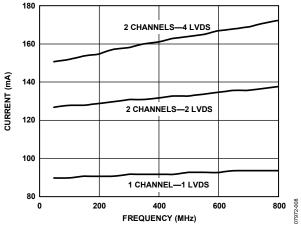


Figure 8. Current vs. Frequency—LVDS Outputs

Figure 9. Current vs. Frequency—CMOS Outputs with 10 pF load

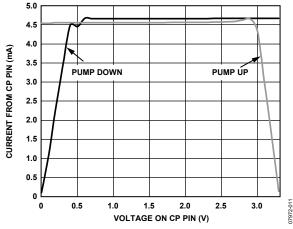


Figure 10. Charge Pump Characteristics @ VCP = 3.3 V

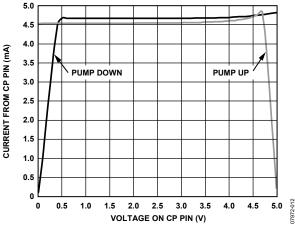


Figure 11. Charge Pump Characteristics @ VCP = 5.0 V

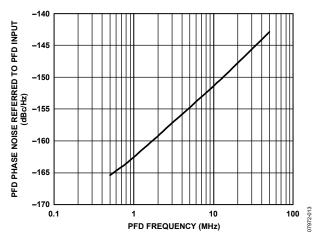


Figure 12. PFD Phase Noise Referred to PFD Input vs. PFD Frequency

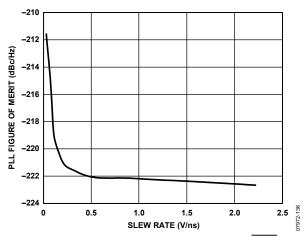


Figure 13. PLL Figure of Merit vs. Slew Rate at REFIN/REFIN

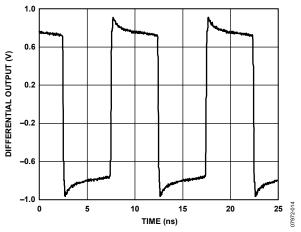


Figure 14. LVPECL Output (Differential) @ 100 MHz

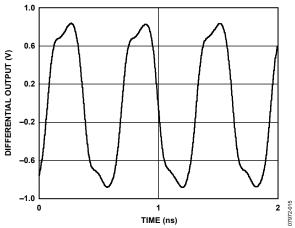


Figure 15. LVPECL Output (Differential) @ 1600 MHz

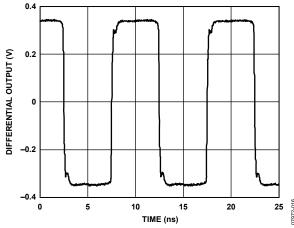


Figure 16. LVDS Output (Differential) @ 100 MHz

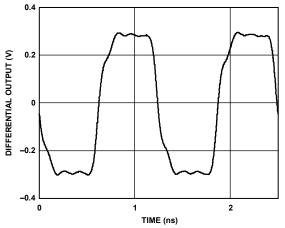


Figure 17. LVDS Output (Differential) @ 800 MHz

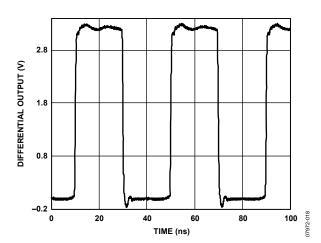


Figure 18. CMOS Output @ 25 MHz

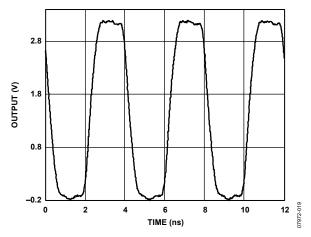


Figure 19. CMOS Output @ 250 MHz

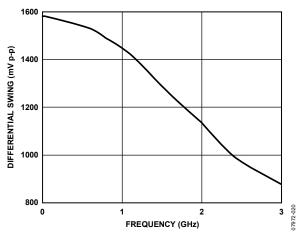


Figure 20. LVPECL Differential Swing vs. Frequency

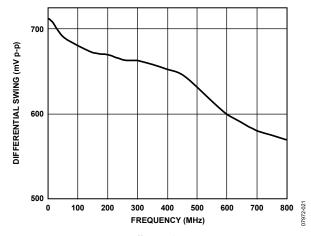


Figure 21. LVDS Differential Swing vs. Frequency

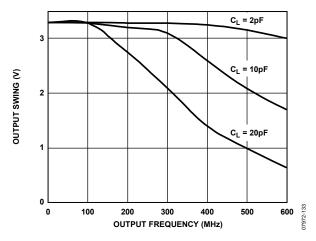


Figure 22. CMOS Output Swing vs. Frequency and Capacitive Load

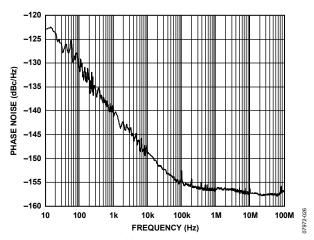


Figure 23. Phase Noise (Additive) LVPECL @ 245.76 MHz, Divide-by-1

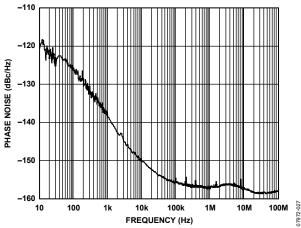


Figure 24. Phase Noise (Additive) LVPECL @ 200 MHz, Divide-by-5

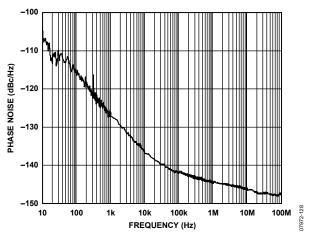


Figure 25. Phase Noise (Additive) LVPECL @ 1600 MHz, Divide-by-1

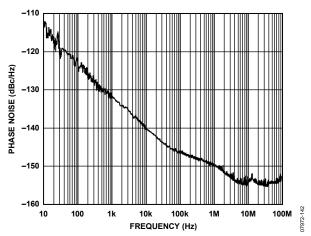


Figure 26. Phase Noise (Additive) LVDS @ 200 MHz, Divide-by-1

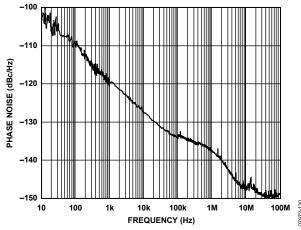


Figure 27. Phase Noise (Additive) LVDS @ 800 MHz, Divide-by-2

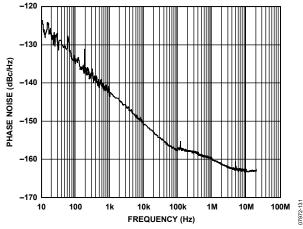


Figure 28. Phase Noise (Additive) CMOS @ 50 MHz, Divide-by-20

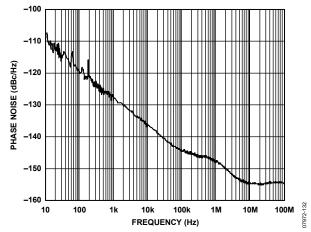


Figure 29. Phase Noise (Additive) CMOS @ 250 MHz, Divide-by-4

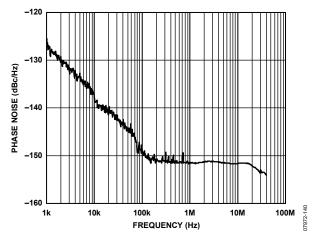


Figure 30. Phase Noise (Absolute), External VCXO (Toyocom TCO-2112) @ 245.76 MHz; PFD = 15.36 MHz; LBW = 250 Hz; LVPECL Output = 245.76 MHz

TERMINOLOGY

Phase Jitter and Phase Noise

An ideal sine wave has a continuous and even progression of phase with time from 0° to 360° for each cycle. Actual signals, however, have a variation from the ideal phase progression over time. This variation is called phase jitter. Although many causes can contribute to phase jitter, one major cause is random noise, which is characterized statistically as Gaussian (normal) in distribution.

This phase jitter leads to a spreading out of the energy of the sine wave in the frequency domain, producing a continuous power spectrum. This power spectrum is usually reported as a series of values whose units are dBc/Hz at a given offset in frequency from the sine wave (carrier). The value is a ratio (expressed in decibels) of the power contained within a 1 Hz bandwidth with respect to the power at the carrier frequency. For each measurement, the offset from the carrier frequency is also given.

It is meaningful to integrate the total power contained within some interval of offset frequencies (for example, 10 kHz to 10 MHz). This is called the integrated phase noise over that frequency offset interval and can be readily related to the time jitter due to the phase noise within that offset frequency interval.

Phase noise has a detrimental effect on the performance of ADCs, DACs, and RF mixers. It lowers the achievable dynamic range of the converters and mixers, although they are affected in somewhat different ways.

Time Jitter

Phase noise is a frequency domain phenomenon. In the time domain, the same effect is exhibited as time jitter. When observing a sine wave, the time of successive zero crossings varies. In a square wave, the time jitter is a displacement of the edges from their ideal (regular) times of occurrence. In both cases, the variations in timing from the ideal are the time jitter. Because these variations are random in nature, the time jitter is specified in seconds root mean square (rms) or 1 sigma of the Gaussian distribution.

Time jitter that occurs on a sampling clock for a DAC or an ADC decreases the signal-to-noise ratio (SNR) and dynamic range of the converter. A sampling clock with the lowest possible jitter provides the highest performance from a given converter.

Additive Phase Noise

Additive phase noise is the amount of phase noise that is attributable to the device or subsystem being measured. The phase noise of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system phase noise when used in conjunction with the various oscillators and clock sources, each of which contributes its own phase noise to the total. In many cases, the phase noise of one element dominates the system phase noise. When there are multiple contributors to phase noise, the total is the square root of the sum of squares of the individual contributors.

Additive Time Jitter

Additive time jitter is the amount of time jitter that is attributable to the device or subsystem being measured. The time jitter of any external oscillators or clock sources is subtracted. This makes it possible to predict the degree to which the device impacts the total system time jitter when used in conjunction with the various oscillators and clock sources, each of which contributes its own time jitter to the total. In many cases, the time jitter of the external oscillators and clock sources dominates the system time jitter.

DETAILED BLOCK DIAGRAM

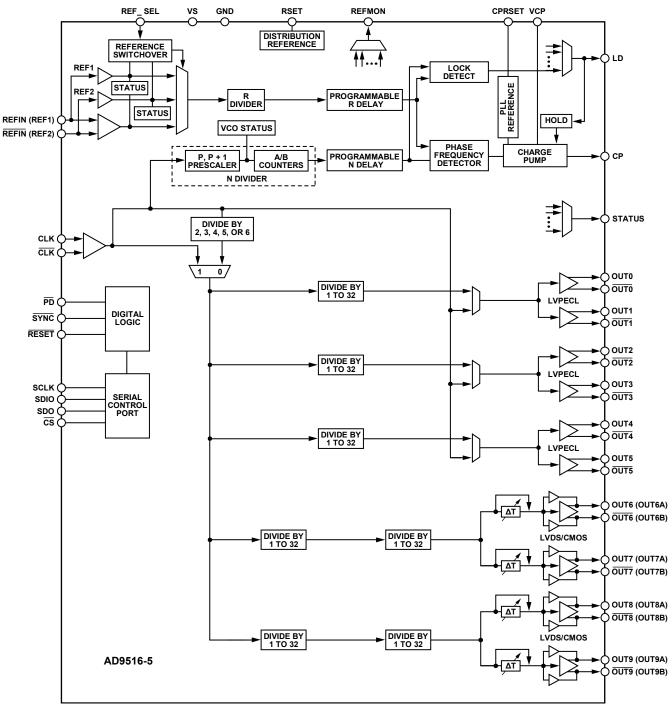


Figure 31. Detailed Block Diagram

THEORY OF OPERATION

OPERATIONAL CONFIGURATIONS

The AD9516 can be configured in several ways. These configurations must be set up by loading the control registers (see Table 47 and Table 48 through Table 57). Each section or function must be individually programmed by setting the appropriate bits in the corresponding control register or registers.

Mode1: Clock Distribution or External VCO < 1600 MHz

Mode 1 bypasses the VCO divider. It can only be used when the external clock source is less than 1600 MHz due to the maximum input frequency allowed at the channel dividers.

For clock distribution applications where the external clock is <1600 MHz, the register settings shown in Table 18 should be used.

Table 18. Settings for Clock Distribution < 1600 MHz

Register	Description
0x010[1:0] = 01b	PLL asynchronous power-down (PLL off)
0x1E1[0] = 1b	Bypass the VCO divider as source for
	distribution section

When using the internal PLL with an external VCO <1600 MHz, the PLL must be turned on.

Table 19. Settings for Using Internal PLL with External VCO < 1600 MHz

Register	Description
0x1E1[0] = 1b	Bypass the VCO divider as source for distribution section
0x010[1:0] = 00b	PLL normal operation (PLL on) along with other appropriate PLL settings in 0x010 to 0x01E

An external VCO/VCXO requires an external loop filter that must be connected between CP and the tuning pin of the VCO/VCXO. This loop filter determines the loop bandwidth and stability of the PLL. Make sure to select the proper PFD polarity for the VCO/VCXO being used.

Table 20. Setting the PFD Polarity

Register	Description
0x010[7] = 0	PFD polarity positive (higher control voltage produces higher frequency)
0x010[7] = 1	PFD polarity negative (higher control voltage produces lower frequency)

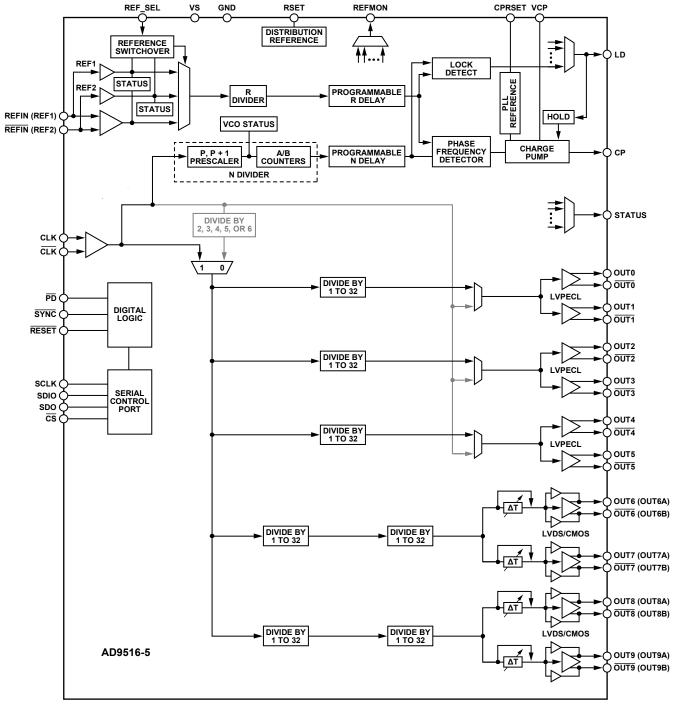


Figure 32. Clock Distribution or External VCO < 1600 MHz (Mode 1)

Mode 2: High Frequency Clock Distribution—CLK or External VCO > 1600 MHz

The AD9516 power-up default configuration has the PLL powered off and the routing of the input set so that the CLK/ CLK input is connected to the distribution section through the VCO divider (divide-by-2/divide-by-3/divide-by-4/divide-by-5/divide-by-6). This is a distribution-only mode that allows for an external input up to 2400 MHz (see Table 3). The maximum frequency that can be applied to the channel dividers is 1600 MHz; therefore, higher input frequencies must be divided down before reaching the channel dividers. This input routing can also be used for lower input frequencies, but the minimum divide is 2 before the channel dividers.

When the PLL is enabled, this routing also allows the use of the PLL with an external VCO or VCXO with a frequency <2400 MHz. In this configuration, the external VCO/VCXO feeds directly into the prescaler.

The register settings shown in Table 21 are the default values of these registers at power-up or after a reset operation. If the contents of the registers are altered by prior programming after power-up or reset, these registers may also be set intentionally to these values.

Table 21. Default Settings of Some PLL Registers

Register	Description
0x010[1:0] = 01b	PLL asynchronous power-down (PLL off)
0x1E0[2:0] = 010b	Set VCO divider = 4
0x1E1[0] = 0b	Use the VCO divider

When using the internal PLL with an external VCO, the PLL must be turned on.

Table 22. Settings When Using an External VCO

Register	Description
0x010[1:0] = 00b	PLL normal operation (PLL on).
0x010 to 0x01D	PLL settings. Select and enable a reference input; set R, N (P, A, B), PFD polarity, and Icp according to the intended loop configuration.

An external VCO requires an external loop filter that must be connected between CP and the tuning pin of the VCO. This loop filter determines the loop bandwidth and stability of the PLL. Make sure to select the proper PFD polarity for the VCO being used.

Table 23. Setting the PFD Polarity

O	•
Register	Description
0x010[7] = 0b	PFD polarity positive (higher control voltage produces higher frequency)
0x010[7] = 1b	PFD polarity negative (higher control voltage produces lower frequency)

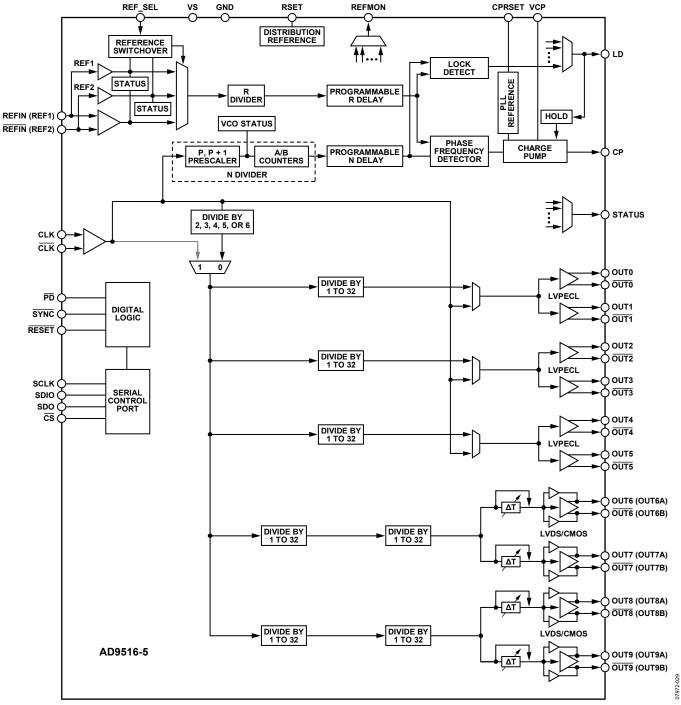


Figure 33. High Frequency Clock Distribution—CLK or External VCO > 1600 MHz (Mode 2)

Phase-Locked Loop (PLL)

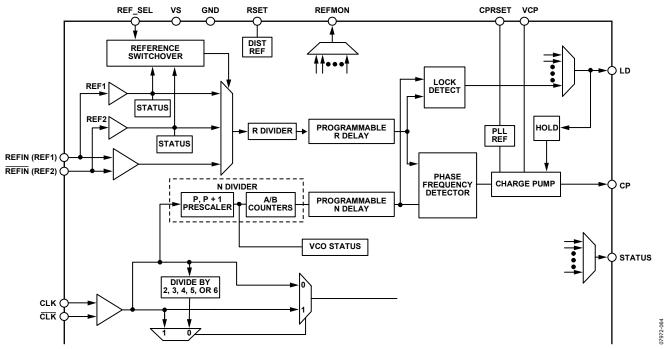


Figure 34. PLL Functional Block Diagram

The AD9516 includes on-chip PLL blocks that can be used with an external VCO or VCXO to create a complete phase-locked loop. The PLL requires an external loop filter, which usually consists of a small number of capacitors and resistors. The configuration and components of the loop filter help to establish the loop bandwidth and stability of the PLL.

The AD9516 PLL is useful for generating clock frequencies from a supplied reference frequency. This includes conversion of reference frequencies to much higher frequencies for subsequent division and distribution. In addition, the PLL can be used to clean up jitter and phase noise on a noisy reference. The exact choice of PLL parameters and loop dynamics is application specific. The flexibility and depth of the AD9516 PLL allow the part to be tailored to function in many different applications and signal environments.

Configuration of the PLL

Configuration of the PLL is accomplished by programming the various settings for the R divider, N divider, PFD polarity, and charge pump current. The combination of these settings determines the PLL loop bandwidth. These are managed through programmable register settings and by the design of the external loop filter.

Successful PLL operation and satisfactory PLL loop performance are highly dependent on proper configuration of the PLL settings, and the design of the external loop filter is crucial to the proper operation of the PLL.

ADIsimCLK™ is a free program that can help with the design and exploration of the capabilities and features of the AD9516, including the design of the PLL loop filter. ADIsimCLK Version 1.2 (or later) can be used for modeling the AD9516 loop filter. It is available at www.analog.com/clocks.

Phase Frequency Detector (PFD)

The PFD takes inputs from the R divider and N divider and produces an output proportional to the phase and frequency difference between them. The PFD includes a programmable delay element that controls the width of the antibacklash pulse. This pulse ensures that there is no dead zone in the PFD transfer function and minimizes phase noise and reference spurs. The antibacklash pulse width is set by 0x017[1:0].

An important limit to keep in mind is the maximum frequency allowed into the PFD. The maximum input frequency into the PFD is a function of the antibacklash pulse setting, as specified in Table 2, Phase/Frequency Detector (PFD) parameter.

Charge Pump (CP)

The charge pump is controlled by the PFD. The PFD monitors the phase and frequency relationship between its two inputs, and tells the CP to pump up or pump down to charge or discharge the integrating node (part of the loop filter). The integrated and filtered CP current is transformed into a voltage that drives the tuning node of the external VCO to move the VCO frequency up or down. The CP can be set (0x010[6:4]) for high impedance (allows holdover operation), for normal operation (attempts to lock the PLL loop), for pump-up, or for pump-down (test modes). The CP current is programmable in eight steps from (nominally) 0.6 mA to 4.8 mA. The exact value of the CP current LSB is set by the CPRSET resistor, which is nominally 5.1 k Ω . Doubling the CPRSET resistor allows the charge pump current to be programmed from (nominally) 0.3 mA to 2.4 mA

PLL External Loop Filter

An example of an external loop filter for a PLL is shown in Figure 35. A loop filter must be calculated for each desired PLL configuration. The values of the components depend on the VCO frequency, the K_{VCO} , the PFD frequency, the charge pump current, the desired loop bandwidth, and the desired phase margin. The loop filter affects the phase noise, the loop settling time, and the loop stability. A basic knowledge of PLL theory is necessary for understanding loop filter design. ADIsimCLK can help with the calculation of a loop filter according to the application requirements.

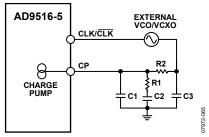


Figure 35. Example of External Loop Filter for PLL

PLL Reference Inputs

The AD9516 features a flexible PLL reference input circuit that allows a fully differential input or two separate single-ended inputs. The input frequency range for the reference inputs is specified in Table 2. Both the differential and the single-ended inputs are self-biased, allowing for easy ac coupling of input signals.

The differential input and the single-ended inputs share two pins, REFIN (REF1) and \overline{REFIN} (REF2). The desired reference input type is selected and controlled by 0x01C (see Table 47 and Table 49).

When the differential reference input is selected, the self-bias level of the two sides is offset slightly (see Table 2) to prevent chattering of the input buffer when the reference is slow or missing. The specification for this voltage level is found in Table 2. The input hysteresis increases the voltage swing required of the driver to overcome the offset.

The single-ended inputs can be driven by either a dc-coupled CMOS level signal or an ac-coupled sine wave or square wave. Each single-ended input can be independently powered down when not needed to increase isolation and reduce power. Either a differential or a single-ended reference must be specifically enabled. All PLL reference inputs are off by default.

The differential reference input is powered down whenever the PLL is powered down, or when the differential reference input is not selected. The single-ended buffers power down when the PLL is powered down, and when their individual power-down registers are set. When the differential mode is selected, the single-ended inputs are powered down.

In differential mode, the reference input pins are internally self-biased so that they can be ac-coupled via capacitors. It is possible to dc couple to these inputs. If the differential REFIN is driven by a single-ended signal, the unused side (\overline{REFIN}) should be decoupled via a suitable capacitor to a quiet ground. Figure 36 shows the equivalent circuit of REFIN.

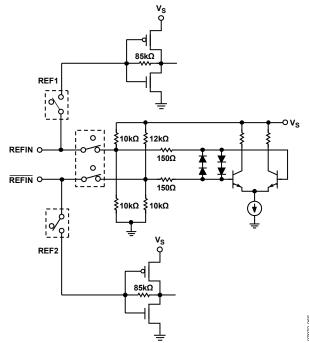


Figure 36. REFIN Equivalent Circuit

Reference Switchover

The AD9516 supports dual single-ended CMOS inputs, as well as a single differential reference input. In the dual single-ended reference mode, the AD9516 supports automatic and manual PLL reference clock switching between REF1 (on Pin REFIN) and REF2 (on Pin REFIN). This feature supports networking and other applications that require redundant references. When using reference switchover, the single-ended reference inputs should be dc-coupled CMOS levels and never be allowed to go to high impedance. If these inputs are allowed to go to high impedance, noise may cause the buffer to chatter, causing a false detection of the presence of a reference.

There are several configurable modes of reference switchover. The switchover can be performed manually or automatically.

Manual switchover is performed either through Register 0x01C or by using the REF_SEL pin. The automatic switchover occurs when REF1 disappears. The switchover deglitch feature ensures that the PLL does not receive rising edges that are far out of alignment with the newly selected reference.

There are two automatic reference switchover modes (0x01C):

- Prefer REF1. Switch from REF1 to REF2 when REF1 disappears. Return to REF1 from REF2 when REF1 returns.
- Stay on REF2. Automatically switch to REF2 if REF1 disappears but do not switch back to REF1 if it reappears. The reference can be set back to REF1 manually at an appropriate time.

In automatic mode, REF1 is monitored by REF2. If REF1 disappears (two consecutive falling edges of REF2 without an edge transition on REF1), REF1 is considered missing. On the next subsequent rising edge of REF2, REF2 is used as the reference clock to the PLL. If 0x01C[3] = 0b (default), when REF1 returns (four rising edges of REF1 without two falling edges of REF2 between the REF1 edges), the PLL reference switches back to REF1. If 0x01C[3] = 1b, the user can control when to switch back to REF1. This is done by programming the part to manual reference select mode (0x01C[4] = 0b) and by ensuring that the registers and/or the REF_SEL pin are set to select the desired reference. Automatic mode can be reenabled when REF1 is reselected.

Manual switchover requires a valid clock on the reference input being switched to or that the deglitching feature be disabled (0x01C[7]).

Reference Divider R

The reference inputs are routed to the reference divider, R. R (a 14-bit counter) can be set to any value from 0 to 16,383 by writing to 0x011 and 0x012. (Both R = 0 and R = 1 give divide-by-1.) The output of the R divider goes to one of the PFD inputs to be compared with the VCO frequency divided by the N divider. The frequency applied to the PFD must not exceed the maximum allowable frequency. The antibacklash pulse setting should also be set according to Table 2 for a given PFD frequency.

The R divider has its own reset. R divider can be reset using the shared reset bit of the R, A, and B counters. It can also be reset by a $\overline{\text{SYNC}}$ operation.

VCXO/VCO Feedback Divider N: P, A, B

The N divider is a combination of a prescaler (P) and two counters, A and B. The total divider value is

$$N = (P \times B) + A$$

where *P* can be 2, 4, 8, 16, or 32.

Prescaler

The prescaler of the AD9516 allows for two modes of operation: a fixed divide (FD) mode of 1, 2, or 3, and a dual modulus (DM)

mode where the prescaler divides by P and (P + 1) {2 and 3, 4 and 5, 8 and 9, 16 and 17, or 32 and 33}. The prescaler modes of operation are given in Table 49, 0x016[2:0]. Not all modes are available at all frequencies (see Table 2).

When operating the AD9516 in dual modulus mode, P/(P+1), the equation used to relate the input reference frequency to the VCO output frequency is

$$f_{VCO} = (f_{REF}/R) \times (P \times B + A) = f_{REF} \times N/R$$

However, when operating the prescaler in FD Mode 1, FD Mode 2, or FD Mode 3, the A counter is not used (A=0) and the equation simplifies to

$$f_{VCO} = (f_{REF}/R) \times (P \times B) = f_{REF} \times N/R$$

When A = 0, the divide is a fixed divide of P = 2, 4, 8, 16, or 32.

By using combinations of DM and FD modes, the AD9516 can achieve values of N all the way down to N=1. Table 24 shows how a 10 MHz reference input may be locked to any integer multiple of N.

Note that the same value of N can be derived in different ways, as illustrated by the case of N = 12. The user can choose a fixed divide mode P = 2 with B = 6, use the dual modulus mode 2/3 with A = 0, B = 6, or use the dual modulus mode 4/5 with A = 0, B = 3.

A and B Counters

The B counter must be ≥ 3 or bypassed, and unlike the R counter, A=0 is actually zero.

The maximum input frequency to the A/B counter is reflected in the maximum prescaler output frequency (\sim 300 MHz) specified in Table 2. This is the prescaler input frequency (external VCO or CLK) divided by P. For example, dual-modulus P = 8/9 mode is not allowed if the external VCO frequency is >2400 MHz because the frequency going to the A counter and B counter is too high.

When the B counter is bypassed (B = 1), the A counter should be set to zero, and the overall resulting divide is equal to the prescaler setting, P. The possible divide ratios in this mode are 1, 2, 3, 4, 8, 16, and 32.

Although manual reset is not normally required, the A/B counters have their own reset bit. Alternatively, the A and B counters can be reset using the shared reset bit of the R, A, and B counters. Note that these reset bits are not self-clearing.

R, A, and B Counters: SYNC Pin Reset

The R, A, and B counters can also be reset simultaneously through the $\overline{\text{SYNC}}$ pin. This function is controlled by 0x019[7:6] (see Table 49). The $\overline{\text{SYNC}}$ pin reset is disabled by default.

R and N Divider Delays

Both the R and N dividers feature a programmable delay cell. These delays can be enabled to allow adjustment of the phase relationship between the PLL reference clock and the VCO or CLK. Each delay is controlled by three bits. The total delay range is about 1 ns. See 0x019 in Table 49.

f _{REF} (MHz)	R	P	Α	В	N	f _{vco} (MHz)	Mode	Notes
10	1	1	X1	1	1	10	FD	P = 1, $B = 1$ (bypassed)
10	1	2	X ¹	1	2	20	FD	P = 2, $B = 1$ (bypassed)
10	1	1	X ¹	3	3	30	FD	P = 1, B = 3
10	1	1	X ¹	4	4	40	FD	P = 1, B = 4
10	1	1	X ¹	5	5	50	FD	P = 1, B = 5
10	1	2	X ¹	3	6	60	FD	P = 2, B = 3
10	1	2	0	3	6	60	DM	P = 2 and $P + 1 = 3$, $A = 0$, $B = 3$
10	1	2	1	3	7	70	DM	P = 2 and $P + 1 = 3$, $A = 1$, $B = 3$
10	1	2	2	3	8	80	DM	P = 2 and $P + 1 = 3$, $A = 2$, $B = 3$
10	1	2	1	4	9	90	DM	P = 2 and $P + 1 = 3$, $A = 1$, $B = 4$
10	1	2	X ¹	5	10	100	FD	P = 2, B = 5
10	1	2	0	5	10	100	DM	P = 2 and $P + 1 = 3$, $A = 0$, $B = 5$
10	1	2	1	5	11	110	DM	P = 2 and $P + 1 = 3$, $A = 1$, $B = 5$
10	1	2	X ¹	6	12	120	FD	P = 2, B = 6
10	1	2	0	6	12	120	DM	P = 2 and $P + 1 = 3$, $A = 0$, $B = 6$
10	1	4	0	3	12	120	DM	P = 4 and $P + 1 = 5$, $A = 0$, $B = 3$
10	1	4	1	3	13	130	DM	P = 4 and $P + 1 = 5$, $A = 1$, $B = 3$

Table 24. How a 10 MHz Reference Input May Be Locked to Any Integer Multiple of N

Digital Lock Detect (DLD)

By selecting the proper output through the mux on each pin, the DLD function is available at the LD, STATUS, and REFMON pins. The digital lock detect circuit indicates a lock when the time difference of the rising edges at the PFD inputs is less than a specified value (the lock threshold). The loss of a lock is indicated when the time difference exceeds a specified value (the unlock threshold). Note that the unlock threshold is wider than the lock threshold, which allows some phase error in excess of the lock window to occur without chattering on the lock indicator.

The lock detect window timing depends on the value of the CPRSET resistor, as well as three settings: the digital lock detect window bit (0x018[4]), the antibacklash pulse width bit (0x017[1:0], see Table 2), and the lock detect counter (0x018[6:5]). The lock and unlock detection values in Table 2 are for the nominal value of CPRSET = $5.11 \text{ k}\Omega$. Doubling the CPRSET value to $10 \text{ k}\Omega$ doubles the values in Table 2.

A lock is not indicated until there is a programmable number of consecutive PFD cycles with a time difference less than the lock detect threshold. The lock detect circuit continues to indicate a lock until a time difference greater than the unlock threshold occurs on a single subsequent cycle. For the lock detect to work properly, the period of the PFD frequency must be greater than the unlock threshold. The number of consecutive PFD cycles required for a lock is programmable (0x018[6:5]).

Note that it is possible in certain low (<500 Hz) loop bandwidth, high phase margin cases that the DLD can chatter during acquisition, which can cause the AD9516 to automatically enter and exit holdover. To avoid this problem, it is recommended to make provisions for a capacitor to ground on the LD pin so that current source digital lock detect (CSDLD) mode can be used.

Analog Lock Detect (ALD)

The AD9516 provides an ALD function that can be selected for use at the LD pin. There are two versions of ALD.

- N-channel open-drain lock detect. This signal requires a pullup resistor to the positive supply, VS. The output is normally high with short, low going pulses. Lock is indicated by the minimum duty cycle of the low going pulses.
- P-channel open-drain lock detect. This signal requires a pulldown resistor to GND. The output is normally low with short, high going pulses. Lock is indicated by the minimum duty cycle of the high going pulses.

The analog lock detect function requires an RC filter to provide a logic level indicating lock vs. unlock.

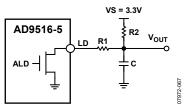


Figure 37. Example of Analog Lock Detect Filter, Using N-Channel Open-Drain Driver

Current Source Digital Lock Detect (CSDLD)

During the PLL locking sequence, it is normal for the DLD signal to toggle a number of times before remaining steady when the PLL is completely locked and stable. There may be applications where it is desirable to have DLD asserted only after the PLL is solidly locked. This is possible by using the current source digital lock detect function.

¹ X = don't care.

The current source lock detect provides a current of 110 μA when DLD is true and shorts to ground when DLD is false. If a capacitor is connected to the LD pin, it charges at a rate determined by the current source during the DLD true time but is discharged nearly instantly when DLD is false. By monitoring the voltage at the LD pin (top of the capacitor), LD = high happens only after the DLD is true for a sufficiently long time. Any momentary DLD false resets the charging. By selecting a properly sized capacitor, it is possible to delay a lock detect indication until the PLL is stably locked and the lock detect does not chatter.

To use current source digital lock detect, do the following:

- Place a capacitor to ground on the LD pin
- Set 0x01A[5:0] = 0x04
- Enable the LD pin comparator (0x01D[3] = 1)

The LD pin comparator senses the voltage on the LD pin, and the comparator output can be made available at the REFMON pin control (0x01B[4:0]) or the STATUS pin control (0x017[7:2]). The internal LD pin comparator trip point and hysteresis are given in Table 13. The voltage on the capacitor can also be sensed by an external comparator connected to the LD pin. In this case, enabling the on-board LD pin comparator is not necessary.

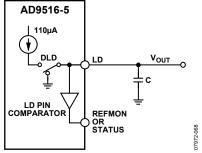


Figure 38. Current Source Lock Detect

External VCXO/VCO Clock Input (CLK/CLK)

CLK is a differential input that can be used to drive the AD9516 clock distribution section. This input can receive up to 2.4 GHz. The pins are internally self-biased, and the input signal should be ac-coupled via capacitors.

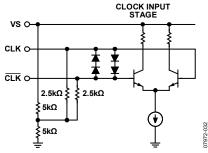


Figure 39. CLK Equivalent Input Circuit

The CLK/CLK input can be used either as a distribution only input (with the PLL off), or as a feedback input for an external VCO/VCXO using the PLL. The CLK/CLK input can be used for frequencies up to 2.4 GHz.

Holdover

The AD9516 PLL has a holdover function. Holdover is implemented by putting the charge pump into a high impedance state. This is useful when the PLL reference clock is lost. Holdover mode allows the VCO to maintain a relatively constant frequency even though there is no reference clock. Without this function, the charge pump is placed into a constant pump-up or pump-down state, resulting in a large VCO frequency shift. Because the charge pump is placed in a high impedance state, any leakage that occurs at the charge pump output or the VCO tuning node causes a drift of the VCO frequency. This can be mitigated by using a loop filter that contains a large capacitive component because this drift is limited by the current leakage induced slew rate ($I_{\rm LEAK}/C$) of the VCO control voltage.

Both a manual holdover mode, using the $\overline{\text{SYNC}}$ pin, and an automatic holdover mode are provided. To use either function, the holdover function must be enabled (0x01D[0] and 0x01D[2]).

Manual Holdover Mode

A manual holdover mode can be enabled that allows the user to place the charge pump into a high impedance state when the SYNC pin is asserted low. This operation is edge sensitive, not level sensitive. The charge pump enters a high impedance state immediately. To take the charge pump out of a high impedance state, take the SYNC pin high. The charge pump then leaves the high impedance state synchronously with the next PFD rising edge from the reference clock. This prevents extraneous charge pump events from occurring during the time between SYNC going high and the next PFD event. This also means that the charge pump stays in a high impedance state if there is no reference clock present.

The B counter (in the N divider) is reset synchronously with the charge pump leaving the high impedance state on the reference path PFD event. This helps align the edges out of the R and N dividers for faster settling of the PLL. Because the prescaler is not reset, this feature works best when the B and R numbers are close because this results in a smaller phase difference for the loop to settle out.

When using this mode, the channel dividers should be set to ignore the \overline{SYNC} pin (at least after an initial \overline{SYNC} event). If the dividers are not set to ignore the \overline{SYNC} pin, any time \overline{SYNC} is taken low to put the part into holdover, the distribution outputs turn off.

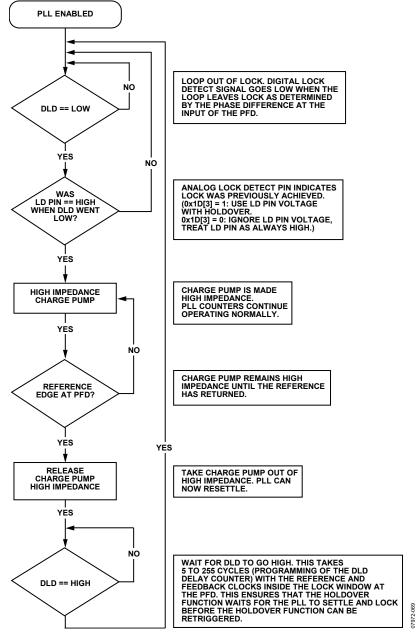


Figure 40. Flowchart of Automatic/Internal Holdover Mode

Automatic/Internal Holdover Mode

When enabled, the automatic/internal holdover mode automatically puts the charge pump into a high impedance state when the loop loses lock. The assumption is that the only reason that the loop loses lock is due to the PLL losing the reference clock; therefore, the holdover function puts the charge pump into a high impedance state to maintain the VCO frequency as close as possible to the original frequency before the reference clock disappeared.

A flowchart of the internal/automatic holdover function operation is shown in Figure 40.

The holdover function senses the logic level of the LD pin as a condition to enter holdover. The signal at LD can be from the DLD, ALD, or current source digital LD (CSDLD) mode. It is possible to disable the LD comparator (0x01D[3]), which causes the holdover function to always sense LD as being high. If DLD is used, it is possible for the DLD signal to chatter while the PLL is reacquiring lock. The holdover function may retrigger, thereby preventing the holdover mode from terminating. Use of the current source lock detect mode is recommended to avoid this situation (see the Current Source Digital Lock Detect section).

When in holdover mode, the charge pump stays in a high impedance state as long as there is no reference clock present.

As in the external holdover mode, the B counter (in the N divider) is reset synchronously with the charge pump leaving the high impedance state on the reference path PFD event. This helps align the edges out of the R and N dividers for faster settling of the PLL and reduces frequency errors during settling. Because the prescaler is not reset, this feature works best when the B and R numbers are close because this results in a smaller phase difference for the loop to settle out.

After leaving holdover, the loop then reacquires lock and the LD pin must go high (if 0x01D[3] = 1) before it can reenter holdover.

The holdover function always responds to the state of the currently selected reference (0x01C). If the loop loses lock during a reference switchover (see the Reference Switchover section), holdover is triggered briefly until the next reference clock edge at the PFD.

The following registers affect the automatic/internal holdover function:

- 0x018[6:5]—lock detect counter. This changes how many
 consecutive PFD cycles with edges inside the lock detect
 window are required for the DLD indicator to indicate
 lock. This impacts the time required before the LD pin can
 begin to charge, as well as the delay from the end of a
 holdover event until the holdover function can be reengaged.
- 0x018[3]—disable digital lock detect. This bit must be set to a 0 to enable the DLD circuit. Internal/automatic holdover does not operate correctly without the DLD function enabled.
- 0x01A[5:0]—lock detect pin control. Set this to 000100b to
 put it in the current source lock detect mode if using the
 LD pin comparator. Load the LD pin with a capacitor of an
 appropriate value.
- 0x01D[3]—LD pin comparator enable. 1 = enable; 0 = disable. When disabled, the holdover function always senses the LD pin as high.
- 0x01D[1]— external holdover control.
- 0x01D[0] and 0x01D[2]—holdover enable. If holdover is disabled, both external and automatic/internal holdover are disabled.

In the following example, automatic holdover is configured with:

- Automatic reference switchover, prefer REF1.
- Digital lock detect: five PFD cycles, high range window.
- Automatic holdover using the LD pin comparator.

The following registers are set (in addition to the normal PLL registers):

- 0x018[6:5] = 00b; lock detect counter = five cycles.
- 0x018[4] = 0b; digital lock detect window = high range.
- 0x018[3] = 0b; disable DLD normal operation.
- 0x01A[5:0] = 000100b; program LD pin control to current source lock detect mode.
- 0x01C[4] = 1b; enable automatic reference switchover.
- 0x01C[3] = 0b; prefer REF1.
- 0x01C[2:1] = 11b; enable REF1 and REF2 input buffers.
- 0x01D[3] = 1b; enable LD pin comparator.
- 0x01D[2] = 1b; enable the holdover function.
- 0x01D[1] = 0b; use external holdover mode.
- 0x01D[0] = 1b; holdover enable.

Frequency Status Monitors

The AD9516 contains three frequency status monitors that are used to indicate if the PLL reference (or references in the case of single-ended mode) and the VCO have fallen below a threshold frequency. Figure 41 is a diagram that shows their location in the PLL.

The PLL reference monitors have two threshold frequencies: normal and extended (see Table 13). The reference frequency monitor thresholds are selected in 0x01F.

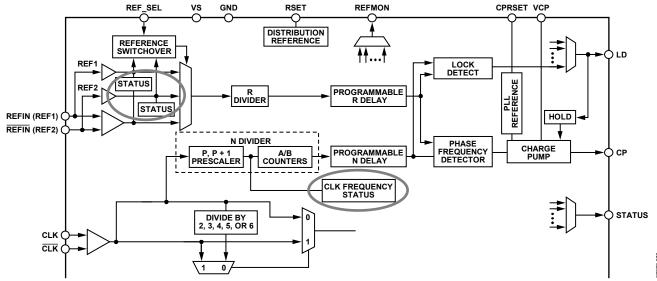


Figure 41. Reference and CLK Status Monitors

CLOCK DISTRIBUTION

A clock channel consists of a pair (or double pair, in the case of CMOS) of outputs that share a common divider. A clock output consists of the drivers that connect to the output pins. The clock outputs have either LVPECL or LVDS/CMOS signal levels at the pins.

The AD9516 has five clock channels: three channels are LVPECL (six outputs); two channels are LVDS/CMOS (up to four LVDS outputs, or up to eight CMOS outputs).

Each channel has its own programmable divider that divides the clock frequency applied to its input. The LVPECL channel dividers contain a divider that can divide by any integer from 1 to 32. Each LVDS/CMOS channel divider contains two cascaded dividers that can be set to divide by any integer from 1 to 32. The total division of the channel is the product of the divide value of the two cascaded dividers. This allows divide values of $(1 \text{ to } 32) \times (1 \text{ to } 32)$, or up to 1024 (notice that this is not all values from 1 to 1024 but only the set of numbers that are the product of the two dividers).

The VCO divider can be set to divide by 2, 3, 4, 5, or 6 and must be used if the external clock signal connected to the CLK input is greater than 1600 MHz.

The channel dividers allow for a selection of various duty cycles, depending on the currently set division. That is, for any specific division, D, the output of the divider can be set to high for N+1 input clock cycles and low for M+1 input clock cycles (where D=N+M+2). For example, a divide-by-5 can be high for one divider input cycle and low for four cycles, or a divide-by-5 can be high for three divider input cycles and low for two cycles. Other combinations are also possible.

The channel dividers include a duty-cycle correction function that can be disabled. In contrast to the selectable duty cycle just described, this function can correct a non-50% duty cycle caused by an odd division. However, this requires that the division be set by M=N+1.

In addition, the channel dividers allow a coarse phase offset or delay to be set. Depending on the division selected, the output can be delayed by up to 31 input clock cycles. The divider outputs can also be set to start high or to start low.

Operating Modes

There are two clock distribution operating modes. These operating modes are shown in Table 25.

It is not necessary to use the VCO divider if the CLK frequency is less than the maximum channel divider input frequency (1600 MHz); otherwise, the VCO divider must be used to reduce the frequency going to the channel dividers.

Table 25. Clock Distribution Operating Modes

Mode	0x1E1[0]	VCO Divider
2	0	Used
1	1	Not used

CLK Direct to LVPECL Outputs

It is possible to connect the CLK directly to the LVPECL outputs, OUT0 to OUT5. However, the LVPECL outputs may not be able to provide full a voltage swing at the highest frequencies.

To connect the LVPECL outputs directly to the CLK input, the VCO divider must be selected as the source to the distribution section even if no channel uses it.

Table 26. Settings for Routing VCO Divider Input Directly to LVPECL Outputs

Register Setting	Selection	
0x1E1[0] = 0b	VCO divider selected	
0x192[1] = 1b	Direct to output OUT0, OUT1	
0x195[1] = 1b	Direct to output OUT2, OUT3	
0x198[1] = 1b	Direct to output OUT4, OUT5	

Clock Frequency Division

The total frequency division is a combination of the VCO divider (when used) and the channel divider. When the VCO divider is used, the total division from the VCO or CLK to the output is the product of the VCO divider (2, 3, 4, 5, and 6) and the division of the channel divider. Table 27 and Table 28 indicate how the frequency division for a channel is set. For the LVPECL outputs, there is only one divider per channel. For the LVDS/ CMOS outputs, there are two dividers (X.1, X.2) cascaded per channel.

Table 27. Frequency Division for Divider 0 to Divider 2

VCO Divider Setting	Channel Divider Setting	CLK Direct to Output Setting	Frequency Division
2 to 6	Don't care	Enable	1
2 to 6	Bypass	Disable	$(2 \text{ to } 6) \times (1)$
2 to 6	2 to 32	Disable	$(2 \text{ to } 6) \times (2 \text{ to } 32)$
VCO Divider Bypassed	Bypass	No	1
VCO Divider Bypassed	2 to 32	No	2 to 32

Table 28. Frequency Division for Divider 3 and Divider 4

VCO Divider	Channel Divider Setting		Resulting Frequency	
Setting	X.1	X.2	Division	
2 to 6	Bypass	Bypass	$(2 \text{ to } 6) \times (1) \times (1)$	
2 to 6	2 to 32	Bypass	$(2 \text{ to } 6) \times (2 \text{ to } 32) \times (1)$	
2 to 6	2 to 32	2 to 32	(2 to 6) × (2 to 32) × (2 to 32)	
Bypass	1	1	1	
Bypass	2 to 32	1	$(2 \text{ to } 32) \times (1)$	
Bypass	2 to 32	2 to 32	2 to 32 × (2 to 32)	

The channel dividers feeding the LVPECL output drivers contain one 2-to-32 frequency divider. This divider provides for division by 1 to 32. Division by 1 is accomplished by bypassing the divider. The dividers also provide for a programmable duty cycle, with optional duty-cycle correction when the divide ratio is odd. A phase offset or delay in increments of the input clock cycle is selectable. The channel dividers operate with a signal at their inputs up to 1600 MHz. The features and settings of the dividers are selected by programming the appropriate setup and control registers (see Table 47 through Table 57).

VCO Divider

The VCO divider provides frequency division between the external CLK input and the clock distribution channel dividers. The VCO divider can be set to divide by 2, 3, 4, 5, or 6 (see Table 55, 0x1E0[2:0]).

Channel Dividers—LVPECL Outputs

Each pair of LVPECL outputs is driven by a channel divider. There are three channel dividers (0, 1, and 2) driving six LVPECL outputs (OUT0 to OUT5). Table 29 gives the register locations used for setting the division and other functions of these dividers. The division is set by the values of M and N. The divider can be bypassed (equivalent to divide-by-1, divider circuit is powered down) by setting the bypass bit. The duty-cycle correction can be enabled or disabled according to the setting of the DCCOFF bits.

Table 29. Setting D_x for Divider 0, Divider 1, and Divider 2

Divider	Low Cycles M	High Cycles N	Bypass	DCCOFF
0	0x190[7:4]	0x190[3:0]	0x191[7]	0x192[0]
1	0x193[7:4]	0x193[3:0]	0x194[7]	0x195[0]
2	0x196[7:4]	0x196[3:0]	0x197[7]	0x198[0]

Note that the value stored in the register equals the number of cycles minus one. For example, 0x190[7:4] = 0001b equals two low cycles (M = 2) for Divider 0.

Channel Frequency Division (0, 1, and 2)

For each channel (where the channel number is x: 0, 1, or 2), the frequency division, D_x , is set by the values of M and N (four bits each, representing decimal 0 to 15), where

Number of Low Cycles =
$$M + 1$$

Number of High Cycles = $N + 1$

The cycles are cycles of the clock signal currently routed to the input of the channel dividers (VCO divider out or CLK).

When a divider is bypassed, $D_X = 1$.

Otherwise, $D_X = (N + 1) + (M + 1) = N + M + 2$. This allows each channel divider to divide by any integer from 1 to 32.

Duty Cycle and Duty-Cycle Correction (0, 1, and 2)

The duty cycle of the clock signal at the output of a channel is a result of some or all of the following conditions:

- What the M and N values for the channel are.
- If the DCC is enabled.
- If the VCO divider is used.
- The CLK input duty cycle.

The DCC function is enabled by default for each channel divider. However, the DCC function can be disabled individually for each channel divider by setting the DCCOFF bit for that channel.

Certain M and N values for a channel divider result in a non-50% duty cycle. A non-50% duty cycle can also result with an even division, if $M \neq N$. The duty-cycle correction function automatically corrects non-50% duty cycles at the channel divider output to 50% duty cycle. Duty-cycle correction requires the following channel divider conditions:

- An even division must be set as M = N
- An odd division must be set as M = N + 1

When not bypassed or corrected by the DCC function, the duty cycle of each channel divider output is the numerical value of (N + 1)/(N + M + 2) expressed as a %.

The duty cycle at the output of the channel divider for various configurations is shown in Table 30 to Table 32.

Table 30. Duty Cycle with VCO Divider, Input Duty Cycle Is 50%

VCO	Dx	Output Duty Cycle		
Divider	N + M + 2	DCCOFF = 1	DCCOFF = 0	
Even	1 (divider bypassed)	50%	50%	
Odd = 3	1 (divider bypassed)	33.3%	50%	
Odd = 5	1 (divider bypassed)	40%	50%	
Even, Odd	Even	(N + 1)/ (N + M + 2)	50%, requires M = N	
Even, Odd	Odd	(N + 1)/ (N + M + 2)	50%, requires M = N + 1	

Table 31. Duty Cycle with VCO Divider, Input Duty Cycle Is X%

vco	Dx	Output Duty Cycle		
Divider	N + M + 2	DCCOFF = 1	DCCOFF = 0	
Even	1 (divider bypassed)	50%	50%	
Odd = 3	1 (divider bypassed)	33.3%	(1 + X%)/3	
Odd = 5	1 (divider bypassed)	40%	(2 + X%)/5	
Even	Even	(N + 1)/ (N + M + 2)	50%, requires M = N	
	Odd	(N + 1)/ (N + M + 2)	50%, requires $M = N + 1$	
Odd = 3	Even	(N + 1)/ (N + M + 2)	50%, requires M = N	
Odd = 3	Odd	(N + 1)/ (N + M + 2)	(3N + 4 + X%)/(6N + 9), requires M = N + 1	
Odd = 5	Even	(N + 1)/ (N + M + 2)	50%, requires M = N	
Odd = 5	Odd	(N + 1)/ (N + M + 2)	(5N + 7 + X%)/(10N + 15), requires M = N + 1	

Table 32. Channel Divider Output Duty Cycle When the VCO Divider Is Not Used

Input Clock	Dx	Output Duty Cycle	
Duty Cycle	N+M+2	DCCOFF = 1	DCCOFF = 0
Any	Channel divider bypassed	1 (divider bypassed)	Same as input duty cycle
Any	Even	(N + 1)/ (M + N + 2)	50%, requires M = N
50%	Odd	(N + 1)/ (M + N + 2)	50%, requires M = N + 1
X%	Odd	(N + 1)/ (M + N + 2)	$(N + 1 + X\%)/(2 \times N + 3)$, requires $M = N + 1$

If the CLK input is routed directly to the output, the duty cycle of the output is the same as the CLK input.

Phase Offset or Coarse Time Delay (0, 1, and 2)

Each channel divider allows for a phase offset, or a coarse time delay, to be programmed by setting register bits (see Table 33). These settings determine the number of cycles (successive rising edges) of the channel divider input frequency by which to offset, or delay, the rising edge of the output of the divider. This delay is with respect to a nondelayed output (that is, with a phase offset of zero). The amount of the delay is set by five bits loaded into the phase offset (PO) register plus the start high (SH) bit for each channel divider. When the start high bit is set, the delay is also affected by the number of low cycles (M) programmed for the divider.

It is necessary to use the SYNC function to make phase offsets effective (see the Synchronizing the Outputs—SYNC Function section).

Table 33. Setting Phase Offset and Division for Divider 0, Divider 1, and Divider 2

Divider	Start High (SH)	Phase Offset (PO)	Low Cycles M	High Cycles N
0	0x191[4]	0x191[3:0]	0x190[7:4]	0x190[3:0]
1	0x194[4]	0x194[3:0]	0x193[7:4]	0x193[3:0]
2	0x197[4]	0x197[3:0]	0x196[7:4]	0x196[3:0]

Note that the value stored in the register equals the number of cycles minus one. For example, 0x190[7:4] = 0001b equals two low cycles (M = 2) for Divider 0.

Let

 Δ_t = delay (in seconds).

 Δ_c = delay (in cycles of clock signal at input to D_X).

 T_X = period of the clock signal at the input of the divider, D_X (in seconds).

 $\Phi =$

 $16 \times SH[4] + 8 \times PO[3] + 4 \times PO[2] + 2 \times PO[1] + 1 \times PO[0]$

The channel divide-by is set as N = high cycles and M = low cycles.

Case 1

For $\Phi \leq 15$:

 $\Delta_t = \Phi \times T_X$

 $\Delta_{c} = \Delta_{t}/T_{X} = \Phi$

Case 2

For $\Phi \ge 16$:

$$\Delta_t = (\Phi - 16 + M + 1) \times T_X$$

 $\Delta_c = \Delta_t/T_X$

By giving each divider a different phase offset, output-to-output delays can be set in increments of the channel divider input clock cycle. Figure 42 shows the results of setting such a coarse offset between outputs.

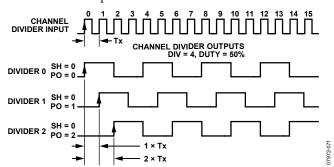


Figure 42. Effect of Coarse Phase Offset (or Delay)

Channel Dividers—LVDS/CMOS Outputs

Channel Divider 3 and Channel Divider 4 each drive a pair of LVDS outputs, giving four LVDS outputs (OUT6 to OUT9). Alternatively, each of these LVDS differential outputs can be configured individually as a pair (A and B) of CMOS single-ended outputs, providing for up to eight CMOS outputs. By default, the B output of each pair is off but can be turned on as desired.

Channel Divider 3 and Channel Divider 4 each consist of two cascaded, 1 to 32, frequency dividers. The channel frequency division is $D_{X.1} \times D_{X.2}$ or up to 1024. Both of the dividers also have DCC enabled by default, but this function can be disabled, if desired, by setting the DCCOFF bit of the channel. A coarse phase offset or delay is also programmable (see the Phase Offset or Coarse Time Delay (Divider 3 and Divider 4) section). The channel dividers operate up to 1600 MHz. The features and settings of the dividers are selected by programming the appropriate setup and control registers (see Table 47 and Table 48 through Table 57).

Table 34. Setting Division (Dx) for Divider 3 and Divider 4

Div	ider	М	N	Bypass	DCCOFF
3	3.1	0x199[7:4]	0x199[3:0]	0x19C[4]	0x19D[0]
	3.2	0x19B[7:4]	0x19B[3:0]	0x19C[5]	0x19D[0]
4	4.1	0x19E[7:4]	0x19E[3:0]	0x1A1[4]	0x1A2[0]
	4.2	0x1A0[7:4]	0x1A0[3:0]	0x1A1[5]	0x1A2[0]

Note that the value stored in the register equals the number of cycles minus one. For example, 0x199[7:4] = 0001b equals two low cycles (M = 2) for Divider 3.1.

Channel Frequency Division (Divider 3 and Divider 4)

The division for each channel divider is set by the bits in the registers for the individual dividers (X.Y = 3.1, 3.2, 4.1, and 4.2).

Number of Low Cycles = $M_{X.Y} + 1$

Number of High Cycles = $N_{X,Y}$ + 1

When both X.1 and X.2 are bypassed, $D_X = 1 \times 1 = 1$.

When only X.2 is bypassed, $D_X = (N_{X.1} + M_{X.1} + 2) \times 1$.

When both X.1 and X.2 are not bypassed, $D_X = (N_{X.1} + M_{X.1} + 2) \times (N_{X.2} + M_{X.2} + 2)$.

By cascading the dividers, channel division up to 1024 can be obtained. However, not all integer value divisions from 1 to 1024 are obtainable; only the values that are the product of the separate divisions of the two dividers $(D_{X_1} \times D_{X_2})$ can be realized.

If only one divider is needed when using Divider 3 and Divider 4, use the first one (X.1) and bypass the second one (X.2). Do not bypass X.1 and use X.2.

Duty Cycle and Duty-Cycle Correction (Divider 3 and Divider 4)

The same duty cycle and DCC considerations apply to Divider 3 and Divider 4 as to Divider 0, Divider 1, and Divider 2 (see Duty Cycle and Duty-Cycle Correction (0, 1, and 2)); however, with these channel dividers, the number of possible configurations is more complex.

Duty-cycle correction on Divider 3 and Divider 4 requires the following channel divider conditions:

- An even $D_{X,Y}$ must be set as $M_{X,Y} = N_{X,Y}$ (low cycles = high cycles).
- An odd D_{XY} must be set as $M_{XY} = N_{XY} + 1$ (the number of low cycles must be one greater than the number of high cycles).
- If only one divider is bypassed, it must be the second divider, X.2.
- If only one divider has an even divide by, it must be the second divider, X.2.

The possibilities for the duty cycle of the output clock from Divider 3 and Divider 4 are shown in Table 35 through Table 39.

Table 35. Divider 3 and Divider 4 Duty Cycle; VCO Divider Used; Duty Cycle Correction Off (DCCOFF = 1)

-	, ,	•	•
vco	D _{X.1}	D _{X.2}	
Divider	$N_{X.1} + M_{X.1} + 2$	$N_{X.2} + M_{X.2} + 2$	Output Duty Cycle
Even	Bypassed	Bypassed	50%
Odd = 3	Bypassed	Bypassed	33.3%
Odd = 5	Bypassed	Bypassed	40%
Even	Even, Odd	Bypassed	$(N_{X,1} + 1)/$
			$(N_{X.1} + M_{X.1} + 2)$
Odd	Even, Odd	Bypassed	$(N_{X.1} + 1)/$
			$(N_{X,1} + M_{X,1} + 2)$
Even	Even, Odd	Even, Odd	$(N_{X,2} + 1)/$
0.1.1			$(N_{X.2} + M_{X.2} + 2)$
Odd	Even, Odd	Even, Odd	$(N_{X,2} + 1)/$
			$(N_{X.2} + M_{X.2} + 2)$

Table 36. Divider 3 and Divider 4 Duty Cycle; VCO Divider Not Used; Duty Cycle Correction Off (DCCOFF = 1)

Input Clock	D _{X.1}	D _{X.2}	Output
Duty Cycle	$N_{X.1} + M_{X.1} + 2$	$N_{X,2} + M_{X,2} + 2$	Duty Cycle
50%	Bypassed	Bypassed	50%
X%	Bypassed	Bypassed	X%
50%	Even, Odd	Bypassed	$(N_{X.1} + 1)/$
			$(N_{X.1} + M_{X.1} + 2)$
X%	Even, Odd	Bypassed	$(N_{X.1} + 1)/$
			$(N_{X.1} + M_{X.1} + 2)$
50%	Even, Odd	Even, Odd	$(N_{X.2} + 1)/$
			$(N_{X.2} + M_{X.2} + 2)$
X%	Even, Odd	Even, Odd	$(N_{X,2} + 1)/$
			$(N_{X,2} + M_{X,2} + 2)$

Table 37. Divider 3 and Divider 4 Duty Cycle; VCO Divider Used; Duty Cycle Correction On (DCCOFF = 0); VCO Divider Input Duty Cycle = 50%

1/60	D _{X.1}	D _{X.2}	Output
VCO Divider	N _{X.1} + M _{X.1} + 2	N _{X.2} + M _{X.2} + 2	Duty Cycle
Even	Bypassed	Bypassed	50%
Odd	Bypassed	Bypassed	50%
Even	Even $(N_{X.1} = M_{X.1})$	Bypassed	50%
Odd	Even $(N_{X,1} = M_{X,1})$	Bypassed	50%
Even	Odd $(M_{X,1} = N_{X,1} + 1)$	Bypassed	50%
Odd	Odd $(M_{X,1} = N_{X,1} + 1)$	Bypassed	50%
Even	Even $(N_{X,1} = M_{X,1})$	Even $(N_{X.2} = M_{X.2})$	50%
Odd	Even $(N_{X,1} = M_{X,1})$	Even $(N_{X.2} = M_{X.2})$	50%
Even	Odd $(M_{X,1} = N_{X,1} + 1)$	Even $(N_{X.2} = M_{X.2})$	50%
Odd	Odd $(M_{X,1} = N_{X,1} + 1)$	Even $(N_{X.2} = M_{X.2})$	50%
Even	Odd $(M_{X,1} = N_{X,1} + 1)$	Odd $(M_{X,2} = N_{X,2} + 1)$	50%
Odd	Odd $(M_{X,1} = N_{X,1} + 1)$	Odd $(M_{X,2} = N_{X,2} + 1)$	50%

Table 38. Divider 3 and Divider 4 Duty Cycle; VCO Divider Used; Duty Cycle Correction On (DCCOFF = 0); VCO Divider Input Duty Cycle = X%

vco	D _{X.1}	D _{X.2}	Output
Divider	$N_{X.1} + M_{X.1} + 2$	$N_{X.2} + M_{X.2} + 2$	Duty Cycle
Even	Bypassed	Bypassed	50%
Odd = 3	Bypassed	Bypassed	(1 + X%)/3
Odd = 5	Bypassed	Bypassed	(2 + X%)/5
Even	Even $(N_{X.1} = M_{X.1})$	Bypassed	50%
Odd	Even $(N_{X,1} = M_{X,1})$	Bypassed	50%
Even	Odd $(M_{X,1} = N_{X,1} + 1)$	Bypassed	50%
Odd = 3	Odd $(M_{X,1} = N_{X,1} + 1)$	Bypassed	(3N _{X.1} + 4 + X%)/ (6N _{X.1} + 9)
Odd = 5	Odd $(M_{X,1} = N_{X,1} + 1)$	Bypassed	(5N _{X.1} + 7 + X%)/ (10N _{X.1} + 15)
Even	Even $(N_{X,1} = M_{X,1})$	Even $(N_{X,2} = M_{X,2})$	50%
Odd	Even $(N_{X,1} = M_{X,1})$	Even $(N_{X,2} = M_{X,2})$	50%
Even	Odd $(M_{X,1} = N_{X,1} + 1)$	Even $(N_{X,2} = M_{X,2})$	50%
Odd	Odd $(M_{X,1} = N_{X,1} + 1)$	Even $(N_{X,2} = M_{X,2})$	50%
Even	Odd $(M_{X,1} = N_{X,1} + 1)$	Odd $(M_{X,2} = N_{X,2} + 1)$	50%
Odd = 3	Odd $(M_{X,1} = N_{X,1} + 1)$	Odd $(M_{X,2} = N_{X,2} + 1)$	(6N _{X.1} N _{X.2} + 9N _{X.1} + 9N _{X.2} + 13 + X%)/ (3(2N _{X.1} + 3) (2N _{X.2} + 3))
Odd = 5	Odd $(M_{X,1} = N_{X,1} + 1)$	Odd $(M_{X,2} = N_{X,2} + 1)$	$ \begin{array}{l} (10N_{x_1}N_{x_2} + 15N_{x_1} + \\ 15N_{x_2} + 22 + X\%)/\\ (5(2\ N_{x_1} + 3)\\ (2\ N_{x_2} + 3)) \end{array} $

Table 39. Divider 3 and Divider 4 Duty Cycle; VCO Divider Not Used; Duty Cycle Correction On (DCCOFF = 0)

Input Clock	D _{X.1}	D _{X.2}	
Duty			Output
Cycle	$N_{X.1} + M_{X.1} + 2$	$N_{X.2} + M_{X.2} + 2$	Duty Cycle
50%	Bypassed	Bypassed	50%
50%	Even $(N_{X.1} = M_{X.1})$	Bypassed	50%
X%	Bypassed	Bypassed	X% (High)
X%	Even $(N_{X.1} = M_{X.1})$	Bypassed	50%
50%	Odd $(M_{X,1} = N_{X,1} + 1)$	Bypassed	50%
X%	Odd $(M_{X,1} = N_{X,1} + 1)$	Bypassed	$(N_{X.1} + 1 + X\%)/$ $(2N_{X.1} + 3)$
	Odd $(M_{X,1} = N_{X,1} + 1)$	Bypassed	$(N_{X.1} + 1 + X\%)/$ $(2N_{X.1} + 3)$
50%	Even $(N_{X.1} = M_{X.1})$	Even $(N_{X.2} = M_{X.2})$	50%
X%	Even $(N_{X,1} = M_{X,1})$	Even $(N_{X,2} = M_{X,2})$	50%
50%	Odd $(M_{X,1} = N_{X,1} + 1)$	Even $(N_{X,2} = M_{X,2})$	50%
X%	Odd $(M_{X,1} = N_{X,1} + 1)$	Even $(N_{X,2} = M_{X,2})$	50%
50%	Odd $(M_{X,1} = N_{X,1} + 1)$	Odd $(M_{X,2} = N_{X,2} + 1)$	50%
X%	Odd $(M_{X,1} = N_{X,1} + 1)$	Odd $(M_{X,2} = N_{X,2} + 1)$	(2N _{x.1} N _{x.2} + 3N _{x.1} + 3N _{x.2} + 4 + X%)/ ((2N _{x.1} + 3)(2N _{x.2} + 3))

Phase Offset or Coarse Time Delay (Divider 3 and Divider 4)

Divider 3 and Divider 4 can be set to have a phase offset or delay. The phase offset is set by a combination of the bits in the phase offset and start high registers (see Table 40).

Table 40. Setting Phase Offset and Division for Divider 3 and Divider 4

Div	vider	Start High (SH)	Phase Offset (PO)	Low Cycles M	High Cycles N
3	3.1	0x19C[0]	0x19A[3:0]	0x199[7:4]	0x199[3:0]
	3.2	0x19C[1]	0x19A[7:4]	0x19B[7:4]	0x19B[3:0]
4	4.1	0x1A1[0]	0x19F[3:0]	0x19E[7:4]	0x19E[3:0]
	4.2	0x1A1[1]	0x19F[7:4]	0x1A0[7:4]	0x1A0[3:0]

Note that the value stored in the register equals the number of cycles minus one. For example, 0x199[7:4] = 0001b equals two low cycles (M = 2) for Divider 3.1.

Let:

 Δ_t = delay (in seconds).

$$\Phi_{xy} = 16 \times SH[0] + 8 \times PO[3] + 4 \times PO[2] + 2 \times PO[1] + 1 \times PO[0].$$

 $T_{X,1}$ = period of the clock signal at the input to $D_{X,1}$ (in seconds). $T_{X,2}$ = period of the clock signal at the input to $D_{X,2}$ (in seconds).

Case

When
$$\Phi_{x.1} \le 15$$
 and $\Phi_{x.2} \le 15$:
 $\Delta_t = \Phi_{x.1} \times T_{x.1} + \Phi_{x.2} \times T_{x.2}$

Case 2

When
$$\Phi_{x,1} \le 15$$
 and $\Phi_{x,2} \ge 16$:
 $\Delta_t = \Phi_{X,1} \times T_{X,1} + (\Phi_{X,2} - 16 + M_{X,2} + 1) \times T_{X,2}$

Case 3

When
$$\Phi_{X.1} \ge 16$$
 and $\Phi_{X.2} \le 15$:
 $\Delta_t = (\Phi_{X.1} - 16 + M_{X.1} + 1) \times T_{X.1} + \Phi_{X.2} \times T_{X.2}$

Case 4

When
$$\Phi_{X,1} \ge 16$$
 and $\Phi_{X,2} \ge 16$:
$$\Delta_t = (\Phi_{X,1} - 16 + M_{X,1} + 1) \times T_{X,1} + (\Phi_{X,2} - 16 + M_{X,2} + 1) \times T_{X,2}$$

Fine Delay Adjust (Divider 3 and Divider 4)

Each AD9516 LVDS/CMOS output (OUT6 to OUT9) includes an analog delay element that can be programmed to give variable time delays (Δ_t) in the clock signal at that output.

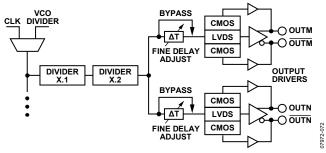


Figure 43. Fine Delay (OUT6 to OUT9)

The amount of delay applied to the clock signal is determined by programming four registers per output (see Table 41).

Table 41. Setting Analog Fine Delays

OUTPUT (LVDS/CMOS)	Ramp Capacitors	Ramp Current	Delay Fraction	Delay Bypass
OUT6	0x0A1[5:3]	0x0A1[2:0]	0x0A2[5:0]	0x0A0[0]
OUT7	0x0A4[5:3]	0x0A4[2:0]	0x0A5[5:0]	0x0A3[0]
OUT8	0x0A7[5:3]	0x0A7[2:0]	0x0A8[5:0]	0x0A6[0]
OUT9	0x0AA[5:3]	0x0AA[2:0]	0x0AB[5:0]	0x0A9[0]

Calculating the Fine Delay

The following values and equations are used to calculate the delay of the delay block.

$$I_{RAMP}$$
 (μ A) = 200 × (Ramp Current + 1)
Number of Capacitors = Number of Bits = 0 in Ramp Capacitors + 1
Example: $101 = 1 + 1 = 2$; $110 = 1 + 1 = 2$; $100 = 2 + 1 = 3$; $001 = 2 + 1 = 3$; $111 = 0 + 1 = 1$.
Delay Range (ns) = $200 \times ((No. \text{ of Caps} + 3)/(I_{RAMP})) \times 1.3286$
Offset (ns) = $0.34 + (1600 - I_{RAMP}) \times 10^{-4} + (\frac{No. \text{ of Caps} - 1}{2})$

Offset (ns) =
$$0.34 + (1600 - I_{RAMP}) \times 10^{-4} + \left(\frac{No. of Caps - 1}{I_{RAMP}}\right) \times 6$$

Delay Full Scale (ns) = Delay Range + Offset

Fine Delay (ns) =

 $Delay\ Range \times Delay\ Fraction \times (1/63) + Offset$

Note that only delay fraction values up to 47 decimal (101111b; 0x02F) are supported.

In no case can the fine delay exceed one-half of the output clock period. If a delay longer than half of the clock period is attempted, the output stops clocking.

The delay function adds some jitter greater than that specified for the nondelayed output. This means that the delay function should be used primarily for clocking digital chips, such as FPGA, ASIC, DUC, and DDC. An output with this delay enabled may not be suitable for clocking data converters. The jitter is higher for long full scales because the delay block uses a ramp and trip points to create the variable delay. A slower ramp time produces more time jitter.

Synchronizing the Outputs—SYNC Function

The AD9516 clock outputs can be synchronized to each other. Outputs can be individually excluded from synchronization. Synchronization consists of setting the nonexcluded outputs to a preset set of static conditions and subsequently releasing these outputs to continue clocking at the same instant with the preset conditions applied. This allows for the alignment of the edges of two or more outputs or for the spacing of edges according to the coarse phase offset settings for two or more outputs.

Synchronization of the outputs is executed in several ways:

- The SYNC pin is forced low and then released (manual sync).
- By setting and then resetting any one of the following three bits: the soft SYNC bit (0x230[0]), the soft reset bit (0x000[5] [mirrored]), and the power-down distribution reference bit (0x230[1]).
- Synchronization of the outputs can be executed as part of the chip power-up sequence.
- The RESET pin is forced low and then released (chip reset).
- The PD pin is forced low and then released (chip power-down).

The most common way to execute the SYNC function is to use the SYNC pin to do a manual synchronization of the outputs. This requires a low going signal on the SYNC pin, which is held low and then released when synchronization is desired. The timing of the SYNC operation is shown in Figure 44 (using VCO divider) and Figure 45 (VCO divider not used). There is an uncertainty of up to one cycle of the clock at the input to the channel divider due to the asynchronous nature of the SYNC signal with respect to the clock edges inside the AD9516. The delay from the SYNC rising edge to the beginning of synchronized output clocking is between 14 and 15 cycles of clock at the channel divider input, plus either one cycle of the VCO divider input (see Figure 44), or one cycle of the CLK input (see Figure 45), depending on whether the VCO divider is used. Cycles are counted from the rising edge of the signal.

Another common way to execute the SYNC function is by setting and resetting the soft SYNC bit at 0x230[0] (see Table 47 through Table 57 for details). Both setting and resetting of the soft SYNC bit require an update all registers (0x232[0] = 1) operation to take effect.

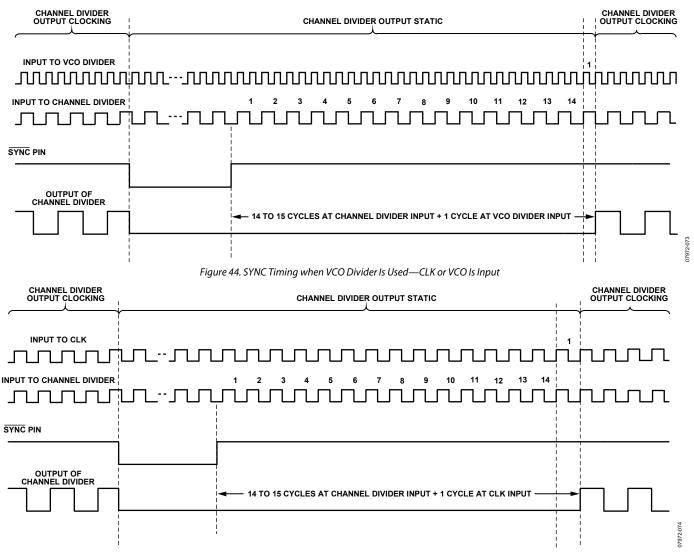


Figure 45. SYNC Timing when VCO Divider Is Not Used—CLK Input Only

A SYNC operation brings all outputs that have not been excluded (by the nosync bit) to a preset condition before allowing the outputs to begin clocking in synchronicity. The preset condition takes into account the settings in each of the channel's start high bit and its phase offset. These settings govern both the static state of each output when the SYNC operation is happening and the state and relative phase of the outputs when they begin clocking again upon completion of the SYNC operation. Between outputs and after synchronization, this allows for the setting of phase offsets.

The AD9516 outputs are in pairs, sharing a channel divider per pair (two pairs of pairs, four outputs, in the case of CMOS). The synchronization conditions apply to both outputs of a pair.

Each channel (a divider and its outputs) can be excluded from any SYNC operation by setting the nosync bit of the channel. Channels that are set to ignore SYNC (excluded channels) do not set their outputs static during a SYNC operation, and their outputs are not synchronized with those of the nonexcluded channels.

Clock Outputs

The AD9516 offers three output level choices: LVPECL, LVDS, and CMOS. OUT0 to OUT5 are LVPECL differential outputs; and OUT6 to OUT9 are LVDS/CMOS outputs. These outputs can be configured as either LVDS differential or as pairs of single-ended CMOS outputs.

LVPECL Outputs: OUT0 to OUT5

The LVPECL differential voltage (V_{OD}) is selectable (from 400 mV to 960 mV, see 0x0F0:5[3:2]. The LVPECL outputs have dedicated pins for power supply (VS_LVPECL), allowing a separate power supply to be used. VS_LVPECL can be from 2.5 V to 3.3 V.

The LVPECL output polarity can be set as noninverting or inverting, which allows for the adjustment of the relative polarity of outputs within an application without requiring a board layout change. Each LVPECL output can be powered down or powered up as needed. Because of the architecture of the LVPECL output stages, there is the possibility of electrical overstress and breakdown under certain power-down conditions.

For this reason, the LVPECL outputs have several power-down modes. This includes a safe power-down mode that continues to protect the output devices while powered down, although it consumes somewhat more power than a total power-down. If the LVPECL output pins are terminated, it is best to select the safe power-down mode. If the pins are not connected (unused), it is acceptable to use the total power-down mode.

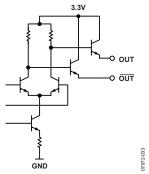


Figure 46. LVPECL Output Simplified Equivalent Circuit

LVDS/CMOS Outputs: OUT6 to OUT9

OUT6 to OUT9 can be configured as either an LVDS differential output or as a pair of CMOS single-ended outputs. The LVDS outputs allow for selectable output current from \sim 1.75 mA to \sim 7 mA.

The LVDS output polarity can be set as noninverting or inverting, which allows for the adjustment of the relative polarity of outputs within an application without requiring a board layout change. Each LVDS output can be powered down if not needed to save power.

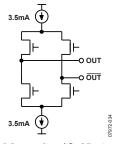


Figure 47. LVDS Output Simplified Equivalent Circuit with 3.5 mA Typical Current Source

OUT6 to OUT9 can also be CMOS outputs. Each LVDS output can be configured to be two CMOS outputs. This provides for up to eight CMOS outputs: OUT6A, OUT6B, OUT7A, OUT7B, OUT8A, OUT8B, OUT9A, and OUT9B. When an output is configured as CMOS, the CMOS Output A is automatically turned on. The CMOS Output B can be turned on or off independently. The relative polarity of the CMOS outputs can also be selected for any combination of inverting and noninverting. See Table 52, 0x140[7:5], 0x141[7:5], 0x142[7:5], and 0x143[7:5].

Each LVDS/CMOS output can be powered down as needed to save power. The CMOS output power-down is controlled by the same bit that controls the LVDS power-down for that output. This power-down control affects both the CMOS A and CMOS B outputs. However, when the CMOS A output is powered up, the CMOS B output can be powered on or off separately.

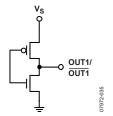


Figure 48. CMOS Equivalent Output Circuit

RESET MODES

The AD9516 has several ways to force the chip into a reset condition that restores all registers to their default values and makes these settings active.

Power-On Reset—Start-Up Conditions When VS Is Applied

A power-on reset (POR) is issued when the VS power supply is turned on. The POR pulse duration is <100 ms and initializes the chip to the power-on conditions that are determined by the default register settings. These are indicated in the Default Value (Hex) column of Table 47. At power-on, the AD9516 also executes a SYNC operation, which brings the outputs into phase alignment according to the default settings. It is recommended that the user not toggle SCLK during the reset pulse.

Asynchronous Reset via the RESET Pin

An asynchronous hard reset is executed by momentarily pulling RESET low. A reset restores the chip registers to the default settings. It is recommended that the user not toggle SCLK for 20 ns after RESET goes high.

Soft Reset via 0x000[5]

A soft reset is executed by writing 0x000[5] and 0x000[2] = 1b. This bit is not self-clearing; therefore, it must be cleared by writing 0x000[5] and 0x000[2] = 0b to reset it and complete the soft reset operation. A soft reset restores the default values to the internal registers. The soft reset bit does not require an update registers command (0x232 = 0x01) to be issued.

POWER-DOWN MODES

Chip Power-Down via PD

The AD9516 can be put into a power-down condition by pulling the \overline{PD} pin low. Power-down turns off most of the functions and currents inside the AD9516. The chip remains in this power-down state until \overline{PD} is brought back to logic high. When woken up, the AD9516 returns to the settings programmed into its registers prior to the power-down, unless the registers are changed by new programming while the \overline{PD} pin is held low.

The PD power-down shuts down the currents on the chip, except the bias current necessary to maintain the LVPECL outputs in a safe shutdown mode. This is needed to protect the LVPECL output circuitry from damage that can be caused by certain termination and load configurations when tristated. Because this is not a complete power-down, it can be called sleep mode.

When the AD9516 is in a \overline{PD} power-down, the chip is in the following state:

- The PLL is off (asynchronous power-down).
- The CLK input buffer is off.
- All dividers are off.
- All LVDS/CMOS outputs are off.
- All LVPECL outputs are in safe off mode.
- The serial port is active and responds to commands.

If the AD9516 clock outputs must be synchronized to each other, a SYNC is required upon exiting power-down (see the Synchronizing the Outputs—SYNC Function section).

PLL Power-Down

The PLL section of the AD9516 can be selectively powered down. There are three PLL operating modes set by 0x010[1:0], as shown in Table 49.

In asynchronous power-down mode, the device powers down as soon as the registers are updated.

In synchronous power-down mode, the PLL power-down is gated by the charge pump to prevent unwanted frequency jumps. The device goes into power-down on the occurrence of the next charge pump event after the registers are updated.

Distribution Power-Down

The distribution section can be powered down by writing 0x230[1] = 1b. This turns off the bias to the distribution section. If the LVPECL power-down mode is normal operation (00b), it is possible for a low impedance load on that LVPECL output to draw significant current during this power-down. If the LVPECL power-down mode is set to 11b, the LVPECL output is not protected from reverse bias and can be damaged under certain termination conditions.

Individual Clock Output Power-Down

Any of the clock distribution outputs can be powered down individually by writing to the appropriate registers. The register map details the individual power-down settings for each output. The LVDS/CMOS outputs can be powered down, regardless of their output load configuration.

The LVPECL outputs have multiple power-down modes (see Table 53) that give some flexibility in dealing with the various output termination conditions. When the mode is set to 10b, the LVPECL output is protected from reverse bias to 2 VBE + 1 V. If the mode is set to 11b, the LVPECL output is not protected from reverse bias and can be damaged under certain termination conditions. This setting also affects the operation when the distribution block is powered down with 0x230[1] = 1b (see the Distribution Power-Down section).

Individual Circuit Block Power-Down

Other AD9516 circuit blocks (such as CLK, REF1, and REF2) can be powered down individually. This gives flexibility in configuring the part for power savings whenever certain chip functions are not needed.

SERIAL CONTROL PORT

The AD9516 serial control port is a flexible, synchronous, serial communications port that allows an easy interface with many industry-standard microcontrollers and microprocessors. The AD9516 serial control port is compatible with most synchronous transfer formats, including both the Motorola SPI® and Intel® SSR® protocols. The serial control port allows read/write access to all registers that configure the AD9516. Single or multiple byte transfers are supported, as well as MSB first or LSB first transfer formats. The AD9516 serial control port can be configured for a single bidirectional I/O pin (SDIO only) or for two unidirectional I/O pins (SDIO/SDO). By default, the AD9516 is in bidirectional mode, long instruction (long instruction is the only instruction mode supported).

SERIAL CONTROL PORT PIN DESCRIPTIONS

SCLK (serial clock) is the serial shift clock. This pin is an input. SCLK is used to synchronize serial control port reads and writes. Write data bits are registered on the rising edge of this clock, and read data bits are registered on the falling edge. This pin is internally pulled down by a 30 k Ω resistor to ground.

SDIO (serial data input/output) is a dual-purpose pin and acts as an input only (unidirectional mode) or as both an input/output (bidirectional mode). The AD9516 defaults to the bidirectional I/O mode (0x000[7] = 0).

SDO (serial data output) is used only in the unidirectional I/O mode (0x000[7]) as a separate output pin for reading back data.

 $\overline{\text{CS}}$ (chip select bar) is an active low control that gates the read and write cycles. When $\overline{\text{CS}}$ is high, SDO and SDIO are in a high impedance state. This pin is internally pulled up by a 30 k Ω resistor to VS.

Figure 49. Serial Control Port

GENERAL OPERATION OF SERIAL CONTROL PORT

 \overline{A} write or a read operation to the AD9516 is initiated by pulling \overline{CS} low.

 $\overline{\text{CS}}$ stall high is supported in modes where three or fewer bytes of data (plus instruction data) are transferred (see Table 42). In these modes, $\overline{\text{CS}}$ can temporarily return high on any byte boundary, allowing time for the system controller to process the next byte. $\overline{\text{CS}}$ can go high on byte boundaries only and during either part (instruction or data) of the transfer.

During this period, the serial control port state machine enters a wait state until all data is sent. If the system controller decides to abort the transfer before all of the data is sent, the state machine must be reset \underline{by} either completing the remaining transfers or by returning the \overline{CS} low for at least one complete SCLK cycle (but less than eight SCLK cycles). Raising the \overline{CS} on a nonbyte boundary terminates the serial transfer and flushes the buffer.

In streaming mode (see Table 42), any number of data bytes can be transferred in a continuous stream. The register address is automatically incremented or decremented (see the MSB/LSB First Transfers section). $\overline{\text{CS}}$ must be raised at the end of the last byte to be transferred, thereby ending the stream mode.

Communication Cycle—Instruction Plus Data

There are two parts to a communication cycle with the AD9516. The first writes a 16-bit instruction word into the AD9516, coincident with the first 16 SCLK rising edges. The instruction word provides the AD9516 serial control port with information regarding the data transfer, which is the second part of the communication cycle. The instruction word defines whether the upcoming data transfer is a read or a write, the number of bytes in the data transfer, and the starting register address for the first byte of the data transfer.

Write

If the instruction word is for a write operation, the second part is the transfer of data into the serial control port buffer of the AD9516. Data bits are registered on the rising edge of SCLK.

The length of the transfer (1, 2, or 3 bytes or streaming mode) is indicated by two bits (W1:W0) in the instruction byte. When the transfer is 1, 2, or 3 bytes, but not streaming, \overline{CS} can be raised after each sequence of eight bits to stall the bus (except after the last byte, where it ends the cycle). When the bus is stalled, the serial transfer resumes when \overline{CS} is lowered. Raising \overline{CS} on a nonbyte boundary resets the serial control port. During a write, streaming mode does not skip over reserved or unused registers; therefore, the user must know what bit pattern to write to the reserved registers to preserve proper operation of the part. It does not matter what data is written to unused registers.

Because data is written into a serial control port buffer area, not directly into the actual control registers of the AD9516, an additional operation is needed to transfer the serial control port buffer contents to the actual control registers of the AD9516, thereby causing them to become active. The update registers operation consists of setting 0x232[0] = 1b (this bit is self-clearing). Any number of bytes of data can be changed before executing an update registers. The update registers simultaneously actuates all register changes that have been written to the buffer since any previous update.

Read

If the instruction word is for a read operation, the next $N \times 8$ SCLK cycles clock out the data from the address specified in the instruction word, where N is 1 to 3 as determined by W1:W0. If N=4, the read operation is in streaming mode, continuing until \overline{CS} is raised. Streaming mode does not skip over reserved or blank registers. The readback data is valid on the falling edge of SCLK.

The default mode of the AD9516 serial control port is the bidirectional mode. In bidirectional mode, both the sent data and the readback data appear on the SDIO pin. It is also possible to set the AD9516 to unidirectional mode (SDO enable register, 0x000[7]). In unidirectional mode, the readback data appears on the SDO pin.

A readback request reads the data that is in the serial control port buffer area, or the data in the active registers (see Figure 50). Readback of the buffer or active registers is controlled by 0x004[0].

The AD9516 supports only the long instruction mode; therefore, 0x000[4:3] must be set to 11b (this register uses mirrored bits). Long instruction mode is the default at power-up or reset.

The AD9516 uses Register Address 0x000 to Register Address 0x232.

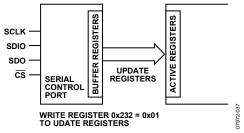


Figure 50. Relationship Between Serial Control Port Buffer Registers and Active Registers of the AD9516

INSTRUCTION WORD (16 BITS)

The MSB of the instruction word is R/\overline{W} , which indicates whether the instruction is a read or a write. The next two bits [W1:W0] indicate the length of the transfer in bytes. The final 13 bits are the address [A12:A0] at which to begin the read or write operation.

For a write, the instruction word is followed by the number of bytes of data indicated by Bits[W1:W0], see Table 42.

Table 42. Byte Transfer Count

W1	W0	Bytes to Transfer
0	0	1
0	1	2
1	0	3
1	1	Streaming mode

Bits[A12:A0] select the address within the register map that is written to or read from during the data transfer portion of the communications cycle. Only Bits[A9:A0] are needed to cover the range of the 0x232 registers used by the AD9516. Bits[A12:A10] must always be 0b. For multibyte transfers, this address is the starting byte address. In MSB first mode, subsequent bytes increment the address.

MSB/LSB FIRST TRANSFERS

The AD9516 instruction word and byte data can be MSB first or LSB first. Any data written to 0x000 must be mirrored; the upper four bits ([7:4]) must mirror the lower four bits ([3:0]). This makes it irrelevant whether LSB first or MSB first is in effect. As an example of this mirroring, see the default setting for this register: 0x000, which mirrors Bit 4 and Bit 3. This sets the long instruction mode (default, and is the only mode supported).

The default for the AD9516 is MSB first.

When LSB first is set by 0x000[1] and 0x000[6], it takes effect immediately, because it only affects the operation of the serial control port and does not require that an update be executed.

When MSB first mode is active, the instruction and data bytes must be written from MSB to LSB. Multibyte data transfers in MSB first format start with an instruction byte that includes the register address of the most significant data byte. Subsequent data bytes must follow in order from the high address to the low address. In MSB first mode, the serial control port internal address generator decrements for each data byte of the multibyte transfer cycle.

When LSB first is active, the instruction and data bytes must be written from LSB to MSB. Multibyte data transfers in LSB first format start with an instruction byte that includes the register address of the least significant data byte followed by multiple data bytes. The internal byte address generator of the serial control port increments for each byte of the multibyte transfer cycle.

The AD9516 serial control port register address decrements from the register address just written toward 0x000 for multibyte I/O operations if the MSB first mode is active (default). If the LSB first mode is active, the register address of the serial control port increments from the address just written toward 0x232 for multibyte I/O operations.

Streaming mode always terminates when it hits Address 0x232. Note that unused addresses are not skipped during multibyte I/O operations.

Table 43. Streaming Mode (No Addresses Are Skipped)

Write Mode	Address Direction	Stop Sequence
LSB first	Increment	0x230, 0x231, 0x232, stop
MSB first	Decrement	0x001, 0x000, 0x232, stop

MSB	MSB										LSB				
l15	l14	I13	l12	l11	I10	19	18	17	16	15	14	13	12	l1	10
R/W	W1	W0	A12 = 0	A11 = 0	A10 = 0	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0

cs	
SCLK DON'T CARE \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	∫\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
SDIO DON'T CARE) R/W W1 W0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0	D7 D6 D5 D4 D3 D2 D1 D0 (DON'T CARE
16-BIT INSTRUCTION HEADER REGISTER (N) DATA	REGISTER (N – 1) DATA

Figure 51. Serial Control Port Write—MSB First, 16-Bit Instruction, Two Bytes of Data

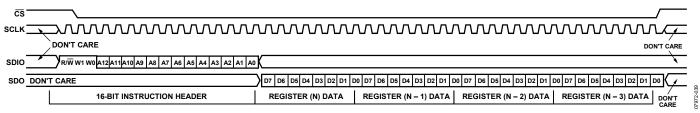
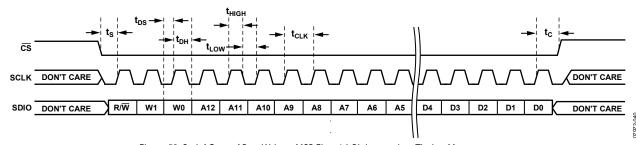



Figure 52. Serial Control Port Read—MSB First, 16-Bit Instruction, Four Bytes of Data

 $\textit{Figure 53. Serial Control Port Write} \\ -- \textit{MSB First, 16-Bit Instruction, Timing Measurements} \\$

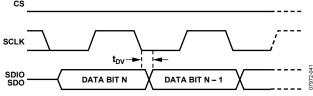


Figure 54. Timing Diagram for Serial Control Port Register Read

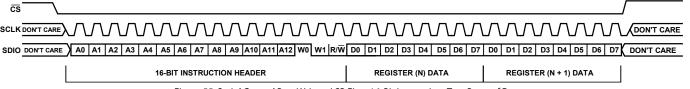
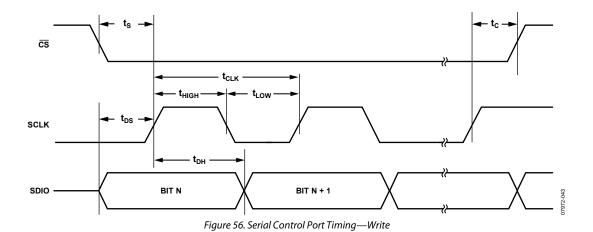



Figure 55. Serial Control Port Write—LSB First, 16-Bit Instruction, Two Bytes of Data

Table 45. Serial Control Port Timing

Table 43. Serial Co	ontrol 1 of t 1 mining
Parameter	Description
t _{DS}	Setup time between data and the rising edge of SCLK
t _{DH}	Hold time between data and the rising edge of SCLK
t _{CLK}	Period of the clock
t_{S}	Setup time between the CS falling edge and the SCLK rising edge (start of communication cycle)
tc	Setup time between the SCLK rising edge and the $\overline{\text{CS}}$ rising edge (end of communication cycle)
t _{HIGH}	Minimum period that SCLK should be in a logic high state
t _{LOW}	Minimum period that SCLK should be in a logic low state
t_{DV}	SCLK to valid SDIO and SDO (see Figure 54)

THERMAL PERFORMANCE

Table 46. Thermal Parameters for 64-Lead LFCSP

Symbol	Thermal Characteristic Using a JEDEC JESD51-7 Plus JEDEC JESD51-5 2S2P Test Board	Value (°C/W)
θ_{JA}	Junction-to-ambient thermal resistance, 0.0 m/sec airflow per JEDEC JESD51-2 (still air)	22.0
θ_{JMA}	Junction-to-ambient thermal resistance, 1.0 m/sec airflow per JEDEC JESD51-6 (moving air)	19.2
θ_{JMA}	Junction-to-ambient thermal resistance, 2.0 m/sec airflow per JEDEC JESD51-6 (moving air)	17.2
Ψ_{JB}	Junction-to-board characterization parameter, 1.0 m/sec airflow per JEDEC JESD51-6 (moving air) and JEDEC JESD51-8	11.6
θ_{JC}	Junction-to-case thermal resistance (die-to-heat sink) per MIL-Std 883, Method 1012.1	1.3
Ψ_{JT}	Junction-to-top-of-package characterization parameter, 0 m/sec airflow per JEDEC JESD51-2 (still air)	0.1

The AD9516 is specified for a case temperature (T_{CASE}). To ensure that T_{CASE} is not exceeded, an airflow source can be used.

Use the following equation to determine the junction temperature on the application PCB:

$$T_J = T_{CASE} + (\Psi_{JT} \times PD)$$

where:

 T_{J} is the junction temperature (°C).

 T_{CASE} is the case temperature (°C) measured by the user at the top center of the package.

 Ψ_{JT} is the value from Table 46.

PD is the power dissipation (see the total power dissipation in Table 14.)

Values of θ_{JA} are provided for package comparison and PCB design considerations. θ_{JA} can be used for a first-order approximation of T_J by the equation

$$T_J = T_A + (\theta_{JA} \times PD)$$

where T_A is the ambient temperature (°C).

Values of θ_{JC} are provided for package comparison and PCB design considerations when an external heat sink is required.

Values of Ψ_{JB} are provided for package comparison and PCB design considerations.

REGISTER MAP OVERVIEW

Register addresses that are not listed in Table 47 (as well as ones marked unused) are not used and writing to those registers has no effect. The user should only write the default value to the register addresses marked reserved.

Table 47. Register Map Overview

Addr (Hex)	Parameter	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default Value (Hex)
Serial P	ort Configuration	n								
000	Serial port configuration	SDO active	LSB first	Soft reset	Long instruction	Long instruction	Soft reset	LSB first	SDO active	18
001					Unu	ised			•	•
002					Reserved (Read-only)				
to 003										
004	Read back control				Unused				Read back active registers	00
PLL										
010	PFD and charge pump	PFD polarity								7D
011	R Counter		•		14-Bit R Div	ider Bits[7:0] (LSB)	•		01
012		Unu	ised			14-Bit R Divider	Bits[13:8] (MSE	3)		00
013	A counter	Unu	ised			6-Bit A	counter			00
014	B counter				13-Bit B Cou	nter Bits[7:0] (LSE	3)			03
015		Unused 13-Bit B Counter Bits[12:8] (MSB)						00		
016	PLL Control 1	Set CP pin to VCP/2	Reset R counter	Reset A and B counters	Reset all counters	B counter bypass		Prescaler P		06
017	PLL Control 2		STATUS pin control Antibacklash pulse width					sh pulse width	00	
018	PLL Control 3	Unused Lock detect counter Digital lock detect digital lock detect window detect						06		
019	PLL Control 4	R, A, B cou	nters SYNC reset		R path delay			N path delay	′	00
01A	PLL Control 5	Unused	Reference frequency monitor threshold			LD pin	control			00
01B	PLL Control 6	CLK frequency monitor	REF2 (REFIN) frequency monitor	REF1 (REFIN) frequency monitor		RE	FMON pin con	trol		00
01C	PLL Control 7	Disable switchover deglitch	Select REF2	Use REF_SEL pin	Automatic reference switchover	Stay on REF2	REF2 power on	REF1 power on	Differential reference	00
01D	PLL Control 8		Unused		PLL status register disable	LD pin comparator enable	Holdover enable	External holdover control	Holdover enable	00
01E	PLL Control 9	Unused						00		
01F	PLL Readback (read-only)	Unu	ised	Holdover active	REF2 selected	CLK frequency > threshold	REF2 frequency > threshold	REF1 frequency > threshold	Digital lock detect	
020 to 04F					Unu	sed	•	•		•

(Hex)	Parameter	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default Value (Hex)		
	elay Adjust: OUT	6 to OUT9					I			1		
0A0	OUT6 delay bypass				Unused				OUT6 delay bypass	01		
0A1	OUT6 delay full-scale	Un	nused	C	UT6 ramp capa	citors		OUT6 ramp cui	rrent	00		
0A2	OUT6 delay fraction	Un	nused			OUT6 de	lay fraction			00		
0A3	OUT7 delay bypass		1		Unused		OUT7 delay bypass	01				
0A4	OUT7 delay full-scale	Un	nused	C	OUT7 ramp capa	icitors		OUT7 ramp cui	rrent	00		
0A5	OUT7 delay fraction	Un	nused			OUT7 de	lay fraction			00		
0A6	OUT8 delay bypass				Unused	OUT8 delay bypass	01					
0A7	OUT8 delay full-scale	Un	nused	C	OUT8 ramp capa	icitors		OUT8 ramp cui	rrent	00		
8A0	OUT8 delay fraction	Un	nused			OUT8 de	lay fraction			00		
0A9	OUT9 delay bypass		<u>.</u>		Unused				OUT9 delay bypass	01		
0AA	OUT9 delay full-scale	Un	used	C	OUT9 ramp capa	icitors		OUT9 ramp cui	rrent	00		
0AB	OUT9 delay fraction	Unused OUT9 delay fraction								00		
0AC to 0EF					Un	used						
	Outputs				T	T				T		
0F0	OUT0		Unused		OUT0 invert	OUTO LVPECL differential voltage		·	ower-down	08		
0F1	OUT1		Unused		OUT1 invert		OUT1 LVPECL differential voltage		ower-down	A		
0F2	OUT2		Unused		OUT2 invert		OUT2 LVPECL OU' differential voltage		OUT2 power-down			
0F3	OUT3		Unused		OUT3 invert		LVPECL al voltage	OUT3 p	ower-down	0A		
0F4	OUT4		Unused		OUT4 invert		LVPECL al voltage	OUT4 p	ower-down	08		
0F5	OUT5		Unused		OUT5 invert		LVPECL al voltage	OUT5 p	OUT5 power-down			
0F6					Un	used						
to 13F												
	MOS Outputs											
140	OUT6	OUT6 CMO	S output polarity	/	OUT6	OUT6 select	OUT6 L	VDS output	OUT6	42		
				OUT6 CMOS output polarity		LVDS/CMOS		urrent	power-down	<u>_</u> _		
141	OUT7		OUT7 CMOS output polarit				OUT7 CMOS B	OUT7 select LVDS/CMOS		VDS output urrent	OUT7 power-down	43
142	OUT8	OUT8 CMO	S output polarity	′	OUT8 CMOS B	OUT8 select LVDS/CMOS	OUT8 LVDS output current		OUT8 power-down	42		
143	OUT9	OUT9 CMO	S output polarity	1	OUT9 CMOS B	OUT9 select LVDS/CMOS		VDS output urrent	OUT9 power-down	43		
144 to					Un	used			•	•		

Addr (Hex)	Parameter	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default Value (Hex)
	Channel Divide	rs								, , ,
190	Divider 0 (PECL)		Divider	0 low cycles			Divider 0	high cycles		00
191		Divider 0 bypass	Divider 0 nosync	Divider 0 force high	Divider 0 start high		Divider 0 phase offset			80
192				U	nused			Divider 0 direct to output	Divider 0 DCCOFF	00
193	Divider 1 (PECL)		Divider	1 low cycles			Divider 1	high cycles		BB
194		Divider 1 Divider 1 Divider 1 Divider 1 bypass nosync force high start hig					Divider 1 p	ohase offset		00
195				U	nused	1		Divider 1 direct to output	Divider 1 DCCOFF	00
196	Divider 2 (PECL)		Divider	2 low cycles			Divider 2	high cycles		00
197		Divider 2 bypass					Divider 2 p	ohase offset		00
198		Unused Divider 2 direct to output						Divider 2 DCCOFF	00	
LVDS/C	MOS Channel Di	viders								
199	Divider 3 (LVDS/CMOS)	Low Cycles Divider 3.1 Phase Offset Divider 3.2					High Cycle	22		
19A							Phase Offse	00		
19B		Low Cycles Divider 3.2				High Cycles Divider 3.2				11
19C		Res	erved	Bypass Divider 3.2	Bypass Divider 3.1	Divider 3 nosync	Divider 3 force high	Start High Divider 3.2	Start High Divider 3.1	00
19D				·	Unused			•	Divider 3 DCCOFF	00
19E	Divider 4 (LVDS/CMOS)		Low Cycl	es Divider 4.1			High Cycle	s Divider 4.1		22
19F			Phase Offs	set Divider 4.2			Phase Offse	et Divider 4.1		00
1A0			Low Cycle	es Divider 4.2	_		High Cycle	s Divider 4.2		11
1A1		Reserved		Bypass Divider 4.2	Bypass Divider 4.1	Divider 4 nosync	Divider 4 force high	Start High Divider 4.2	Start High Divider 4.1	00
1A2					Unused				Divider 4 DCCOFF	00
1A3					Reserved (read-only)				
1A4					Unu	sed				
to 1DF										
	vider and CLK In	put					T			T ==
1E0	VCO divider	Unused VCO divider Reserved Power- Reserved Bynass							02	
1E1	Input CLKs	Reserved Power- down clock input section					Reserved Bypass VCO divider			
1E2					Unu	sed				
to 22A										

Addr (Hex)	Parameter	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Defaul Value (Hex)
System	1								•	-
230	Power-down and SYNC		Reserved Power-down down SYNC distribution reference						00	
231					I	Jnused				00
Update	All Registers									
232	Update all registers				Unused				Update all registers (self-clearing bit)	00

REGISTER MAP DESCRIPTIONS

Table 48 through Table 57 provide a detailed description of each of the control register functions. The registers are listed by hexadecimal address. Reference to a specific bit or range of bits within a register is indicated by the brackets. For example, [3] refers to Bit 3, and [5:2] refers to the range of bits from Bit 5 through Bit 2.

Table 48. Serial Port Configuration

Reg. Addr (Hex)	Bit(s)	Name	Description
000	[7]	SDO active	Selects unidirectional or bidirectional data transfer mode.
			[7] = 0; SDIO pin used for write and read; SDO set high impedance; bidirectional mode (default).
			[7] = 1; SDO used for read; SDIO used for write; unidirectional mode.
000	[6]	LSB first	MSB or LSB data orientation.
			[6] = 0; data-oriented MSB first; addressing decrements (default).
			[6] = 1; data-oriented LSB first; addressing increments.
000	[5]	Soft reset	Soft reset.
			[5] = 1 (not self-clearing). Soft reset; restores default values to internal registers. Not self-clearing. Must be cleared to 0b to complete reset operation.
000	[4]	Long instruction	Short/long instruction mode (this part uses long instruction mode only, so this bit should always be $= 1$).
			[4] = 0; 8-bit instruction (short).
			[4] = 1; 16-bit instruction (long) (default).
000	[3:0]	Mirror [7:4]	Bits[3:0] should always mirror [7:4] so that it does not matter whether the part is in MSB or LSB first mode (see Register 0x000[6]). User should set bits as follows:
			[0] = [7].
			[1] = [6].
			[2] = [5].
			[3] = [4].
004	[0]	Read back active registers	Select register bank used for a readback.
			[0] = 0; read back buffer registers (default).
			[0] = 1; read back active registers.

Table 49. PLL

	C 47.1		1			
Reg. Addr						
(Hex)	Bit(s)	Name		cription		
010	[7]	PFD polarity	Sets	the PFD p	olarity.	
			[7] =	0; positive	e (higher co	ontrol voltage produces higher frequency) (default).
			[7] =	: 1; negativ	e (higher o	control voltage produces lower frequency).
010	[6:4]	CP current	Char	rge pump	current (wi	th CPRSET = 5.1 k Ω).
			[6]	[5]	[4]	I _{CP} (mA)
			0	0	0	0.6
			0	0	1	1.2
			0	1	0	1.8
			0	1	1	2.4
			1	0	0	3.0
			1	0	0	3.6 4.2
			1	1	1	4.8 (default)
010	[3:2]	CP mode	Char	rae pump	<u>ا '</u> operating ı	
			[3]	[2]		ump Mode
			0	0		edance state.
			0	1		rce current (pump up).
			1	0		current (pump down).
			1	1	Normal or	peration (default).
010	[1:0]	PLL power-	PLL (operating	mode.	
		down	[1]	[0]	Mode	
			0	0	Normal or	peration.
			0	1		nous power-down (default).
			1	0	Normal or	
011	[7.0]	4.4.5%	1	1		ous power-down.
011	[7:0]	14-Bit R Divider	Rdiv	/ider LSBs-	—lower eig	yht bits (default: 0x01).
		Bits[7:0]				
		(LSB)				
012	[5:0]	14-Bit	R div	ider MSBs	—upper si	x bits (default: 0x00).
		R Divider Bits[13:8]				
		(MSB)				
013	[5:0]	6-Bit	A co	unter (par	t of N divid	ler) (default: 0x00).
		A counter				
014	[7:0]	13-Bit	Всо	unter (par	t of N divid	er)—lower eight bits (default: 0x00).
		B Counter Bits[7:0]				
		(LSB)				
015	[4:0]	13-Bit	Всо	unter (par	t of N divid	er)—upper five bits (default: 0x00).
		B Counter				
		Bits[12:8] (MSB)				
016	[7]	Set CP pin	Set t	he CP nin	to one-hali	f of the VCP supply voltage.
		to VCP/2		-		ion (default).
					set to VCP/	
016	[6]	Reset R				r). This register is not self-clearing.
		counter		0; normal		
			[6] =	: 1; reset R	counter.	

Reg.										
Addr			L .							
		Name	Descri							
016	[5]	Reset A and B								
		counters					_	ster is	s not self-clea	ring.
216	F 43	5 . "				B cou				<u> </u>
016	[4]	Reset all					s. This re	giste	r is not self-cle	earing.
		counters	[4] = 0;							
04.6	F0.1						ounters.			
016	[3]	B counter					valid onl	y wh	en operating t	the prescaler in FD mode.
		bypass	[3] = 0;						-	
								•		e prescaler setting to determine the divide for the N divider.
016	[2:0]	Prescaler P							= fixed divide	•
			[2]	[1]	[0]	Mode	•		scaler	
			0	0	0	FD			de-by-1.	
			0	0	1	FD			de-by-2.	
			0	1	0	DM			•	livide-by-3 when A \neq 0; divide-by-2 when A = 0.
			0	1	1	DM			-	livide-by-5 when A \neq 0; divide-by-4 when A = 0.
			1	0	0	DM			•	livide-by-9 when A \neq 0; divide-by-8 when A = 0.
			1	0	1	DM			-	divide-by-17 when A \neq 0; divide-by-16 when A = 0.
			1	1	0	DM			-	divide-by-33 when A \neq 0; divide-by-32 when A = 0 (default).
			1	1	1	FD		Divi	de-by-3.	
017	[7:2]	STATUS	Selects	the S	TATU:	S pin si	gnal.			
		pin control							Level or	
			[7]	[6]	[5]	[4]	[3]	[2]	Dynamic Signal	Signal at STATUS Pin
			0	0	0	0	0	0	LVL	Ground (dc) (default).
			0	0		_	_	_		N divider output (after the delay).
			0	0	0	0	0	1	DYN	
			_	-	0		1	0	DYN	R divider output (after the delay).
			0	0	0	0		1	DYN DYN	A divider output.
			0	0	0	1	0	0		Prescaler output.
			0	0	0	1	0	1	DYN	PFD up pulse. PFD down pulse.
			0	0	0 X	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 X	DYN	· ·
			U	Х	^	^	X	^	LVL	Ground (dc); for all other cases of 0x0XXXX not specified.
			1	0	0	0			1371	The selections that follow are the same as REFMON.
				0	0	0	0	0	LVL	Ground (dc).
				0	0	0	1		DYN	REF1 clock (differential reference when in differential mode).
				0	0	0	1	0	DYN	REF2 clock (N/A in differential mode).
				0	0	0		1	DYN	Selected reference to PLL (differential reference when in differential mode).
			1	0	0	1	0	0	DYN	Unselected reference to PLL (not available in differential mode).
			1	0	0	1	0	1	LVL	Status of selected reference (status of differential reference); active high.
			1	0	0	1	1	0	LVL	Status of unselected reference (not available in differential mode); active high.
			1	0	0	1	1	1	LVL	Status REF1 frequency (active high).
			1	0	1	0	0	0	LVL	Status REF2 frequency (active high).
			1	0	1	0	0	1	LVL	(Status REF1 frequency) AND (status REF2 frequency).
			1	0	1	0	1	0	LVL	(DLD) AND (status of selected reference) AND (status of CLK).
			1	0	1	0	1	1	LVL	Status of CLK frequency (active high).
			1	0	1	1	0	0	LVL	Selected reference (low = REF1, high = REF2).
			1	0	1	1	0	1	LVL	Digital lock detect (DLD); active high.
			1	0	1	1	1	0	LVL	Holdover active (active high).
	l		<u>. </u>	ı <u> </u>	<u>' </u>	<u>. </u>	1.	٠,	1	

Reg. Addr										
	Bit(s)	Name	Descri	iption	ı					
			[7]	[6]	[5]	[4]	[3]	[2]	Level or Dynamic Signal	Signal at STATUS Pin
			1	0	1	1	1	1	LVL	LD pin comparator output (active high).
			1	1	0	0	0	0	LVL	VS (PLL supply).
			1	1	0	0	0	1	DYN	REF1 clock (differential reference when in differential mode).
			1	1	0	0	1	0	DYN	REF2 clock (not available in differential mode).
			1	1	0	0	1	1	DYN	Selected reference to PLL (differential reference when in
				1	0		0	0	DYN	differential mode). Unselected reference to PLL (not available when in
			1			1				differential mode).
			1	1	0	1	0	1	LVL	Status of selected reference (status of differential reference); active low.
			1	1	0	1	1	0	LVL	Status of unselected reference (not available in differential mode); active low.
			1	1	0	1	1	1	LVL	Status of REF1 frequency (active low).
			1	1	1	0	0	0	LVL	Status of REF2 frequency (active low).
			1	1	1	0	0	1	LVL	(Status of REF1 frequency) AND (Status of REF2 frequency).
			1	1	1	0	1	0	LVL	(DLD) AND (Status of selected reference) AND (Status of CLK).
			1	1	1	0	1	1	LVL	Status of CLK Frequency (active low).
			1	1	1	1	0	0	LVL	Selected reference (low = REF2, high = REF1).
			1	1	1	1	0	1	LVL	Digital lock detect (DLD) (active low).
			1	1	1	1	1	0	LVL	Holdover active (active low).
			1	1	1	1	1	1	LVL	LD pin comparator output (active low).
017	[1:0]	Antibacklash pulse width		[0]			ash Pul	se Wie	dth (ns)	
		puise width	0	0		defaul	t)			
			0	1	1.3					
			1	0	6.0					
010	[C E]		1	1	2.9			(DED	1 11	
018	[6:5]	Lock detect counter	Requir a locke				ımber o	t PFD	cycles with e	dges inside lock detect window before the DLD indicates
		counter	[6]	[5]			s to Det	ermi	ne Lock	
			0	0		efault)	3 10 200		ic Lock	
			0	1	16	craart,				
			1	0	64					
			1	1	255					
018	[4]	Digital lock								s to the PFD are less than the lock detect window time, the
		detect window	_			-		flag re	emains set un	til the time difference is greater than the loss-of-lock threshold.
		Williaow	[4] = 0	_	_		uit).			
010	[2]	D: 11	[4] = 1							
018	[3]	Disable digital	Digital			•		,	1.6 10	
		lock detect					•	ition (default).	
010	[7.6]	D A D	[3] = 1							
019	[7:6]	R, A, B counters	[7]	[6]		Action		CVNIC	(dofavil+)	
		SYNC pin	0	0			_		(default).	
		reset	0				ronous			
			1	0		•	onous r		=	
010	נה סי	D (I I. I.	1	<u> </u>	l.		hing on			
019	[5:3]	R path delay					ble 2 (d			
019	[2:0]	N path delay	[Z:U] IN	rain	veiay,	, see 1a	ble 2 (d	erault	UXU).	

Reg. Addr (Hex)	Bit(s)	Name	Des	cripti	on					
)1A	[6]	Reference frequency monitor threshold	Sets the [6] =	the rock from the contract of	eferen equen	cy monit cy valid if	tor's dete	ection ncy is	n threshold above the	or's detection threshold frequency. This does not affect I (see Table 13, REF1, REF2, and CLK frequency status monitor). higher frequency threshold (default).
)1 A	[E.O]	I D nin	_		•	•		icy is	above the	lower frequency threshold.
)1A	[5:0]	LD pin control				in signal.			Level or Dynamic	
			[5]	[4]	[3]	[2]	[1]	[0]	Signal	Signal at LD Pin
			0	0	0	0	0	0	LVL	Digital lock detect (high = lock, low = unlock) (default).
			0	0	0	0	0	1	DYN	P-channel, open-drain lock detect (analog lock detect).
			0	0	0	0	1	0	DYN	N-channel, open-drain lock detect (analog lock detect).
			0	0	0	0	1	1	HIZ	High-Z LD pin.
			0	0	0	1	0	0	CUR	Current source lock detect (110 µA when DLD is true).
			0	Х	Х	Х	Х	Х	LVL	Ground (dc); for all other cases of 0x0XXXX not specified.
			1		0				1.70	The selections that follow are the same as REFMON.
				0	0	0	0	0	LVL DYN	Ground (dc). REF1 clock (differential reference when in differential mode).
			1	0	0	0	10	1		
			1	0	0	0	1	0	DYN DYN	REF2 clock (N/A in differential mode). Selected reference to PLL (differential reference when in differential mode).
			1	0	0	1	0	0	DYN	Unselected reference to PLL (not available in differential mode).
			1	0	0	1	0	1	LVL	Status of selected reference (status of differential reference); active high.
			1	0	0	1	1	0	LVL	Status of unselected reference (not available in differential mode); active high.
			1	0	0	1	1	1	LVL	Status REF1 frequency (active high).
			1	0	1	0	0	0	LVL	Status REF2 frequency (active high).
			1	0	1	0	0	1	LVL	(Status REF1 frequency) AND (status REF2 frequency).
			1	0	1	0	1	0	LVL	(DLD) AND (status of selected reference) AND (status of CLK).
			1	0	1	0	1	1	LVL	Status of CLK frequency (active high).
			1	0	1	1	0	0	LVL	Selected reference (low = REF1, high = REF2).
			1	0	1	1	0	1	LVL	Digital lock detect (DLD); active high.
			1	0	1	1	1	0	LVL	Holdover active (active high).
			1	0	1	1	1	1	LVL	N/A—do not use.
			1	1	0	0	0	0	LVL	VS (PLL supply).
			1	1	0	0	0	1	DYN	REF1 clock (differential reference when in differential mode).
			1	1	0	0	1	0	DYN	REF2 clock (not available in differential mode).
			1	1	0	0	1	1	DYN	Selected reference to PLL (differential reference when in differential mode).
			1	1	0	1	0	0	DYN	Unselected reference to PLL (not available when in differentia mode).
			1	1	0	1	0	1	LVL	Status of selected reference (status of differential reference); active low.
			1	1	0	1	1	0	LVL	Status of unselected reference (not available in differential mode); active low.
]1	0	1		1	LVL	Status of REF1 frequency (active low).
			1	1	1	0	0	0	LVL	Status of REF2 frequency (active low).
			[]	1	1	0	0	1	LVL	(Status of REF1 frequency) AND (Status of REF2 frequency).
			1	1	1	0	1	0	LVL	(DLD) AND (Status of selected reference) AND (Status of CLK).
			1	1	1	0	1	1	LVL	Status of CLK frequency (active low).
			1	1	1	1	0	0	LVL	Selected reference (low = REF2, high = REF1).
			1	1	1	1	0	1	LVL	Digital lock detect (DLD); active low.

Reg. Addr										
(Hex)	Bit(s)	Name	Desc	riptic	on					
			[5]	[4]	[3]	[2]	[1]	[0]	Level or Dynamic Signal	Signal at LD Pin
			1	1	1	1	1	0	LVL	Holdover active (active low).
			1	1	1	1	1	1	LVL	N/A—do not use.
)1B	[7]	CLK	Enab	le or	disable	CLK free	gueno	v moni		1.4.1. 00.101.000
		frequency					•	•	(default).	
		monitor				K freque	•			
)1B	[6]	REF2 (REFIN)								
		frequency					•	•	or (default).	
		monitor				F2 frequ				
)1B	[5]	REF1 (REFIN)								r both REF1 (single-ended) and REFIN (differential) inputs
		frequency				fferentia				
		monitor	[5] =	0; dis	able RE	F1 (REFI	N) fre	quency	monitor (default).
			[5] =	1; en	able RE	F1 (REFI	N) fre	quency	monitor.	
01B	[4:0]	REFMON pin	Selec	cts the	e REFM	ON pin s	ignal.			
		control						Level	-	
			[A]	[2]	[2]	[4]	[0]	Dynan		and at DEFMON Riv
			[4] 0	[3]	[2]	[1]	[0]	Signal LVL		nal at REFMON Pin und (dc) (default).
			-	0	0	0	-	DYN		and (ac) (defauit). 1 clock (differential reference when in differential mode).
			0	0	0	1	1 0	DYN		2 clock (N/A in differential mode).
			0	0	0	'	1	DYN		cted reference to PLL (differential reference when in differential
			0		0	'	ļ ·	DIN	mod	
			0	0	1	0	0	DYN		elected reference to PLL (not available in differential mode).
			0	0	1	0	1	LVL		us of selected reference (status of differential reference); ve high.
			0	0	1	1	0	LVL		us of unselected reference (not available in differential mode); ve high.
			0	0	1	1	1	LVL	Stat	us REF1 frequency (active high).
			0	1	0	0	0	LVL		us REF2 frequency (active high).
			0	1	0	0	1	LVL		tus REF1 frequency) AND (status REF2 frequency).
			0	1	0	1	0	LVL	1 -	D) AND (status of selected reference) AND (status of CLK).
			0	1	0	1	1	LVL		us of CLK frequency (active high).
			0	1	1	0	0	LVL		cted reference (low = REF1, high = REF2).
			0	1	1	0	1	LVL		tal lock detect (DLD); active low.
			0	1	1		0	LVL		dover active (active high).
			0	0	0	0	1 0	LVL LVL	-	oin comparator output (active high). PLL supply).
			1	0	0	0	1	DYN		1 clock (differential reference when in differential mode).
			1	0	0	1	0	DYN		2 clock (not available in differential mode).
			1							<u> </u>
			1	0	0		1	DYN	mod	•
			1	0	1	0	0 1	DYN LVL	Stat	elected reference to PLL (not available when in differential mode). us of selected reference (status of differential reference);
			1	0	1	1	0	LVL	Stat	ve low. us of unselected reference (not available in differential mode);
			1	0	1	1	1	LVL		ve low. us of REF1 frequency (active low).
			1	1	0	0	0	LVL		us of REF2 frequency (active low).

Reg. Addr									
	Bit(s)	Name	Desc	riptio	n				
			[4]	[3]	[2]	[1]	[0]	Level or Dynamic Signal	Signal at REFMON Pin
			1	1	0	0	1	LVL	(Status of REF1 frequency) AND (Status of REF2 frequency).
			1	1	0	1	0	LVL	(DLD) AND (Status of selected reference) AND (Status of CLK) .
			1	1	0	1	1	LVL	Status of CLK frequency (active low).
			1	1	1	0	0	LVL	Selected reference (low = REF2, high = REF1).
			1	1	1	0	1	LVL	Digital lock detect (DLD); active low.
			1	1	1	1	0	LVL	Holdover active (active low).
			1	1	1	1	1	LVL	LD pin comparator output (active low).
1C	[7]	Disable	Disab	le or	enable	the sw	itcho	ver deglitch	
		switchover						litch circuit (
		deglitch					_	glitch circuit.	
)1C	[6]	Select REF2						reference fo	r PLL.
			_			1 (defa			
			[6] =	1; sele	ect REF	2.			
01C	[5]	Use REF_SEL	If Reg	ister	0x01C	[4] = 0 (manu	ıal), set meth	od of PLL reference selection.
		pin	[5] =	0; use	Regist	er 0x0	1C[6] ((default).	
			[5] =	1; use	REF_S	EL pin.			
01C	[4]	Automatic	_					e switchover	. Single-ended reference mode must be selected by
		reference			(01C[0				,
		switchover	[4] =	0; ma	nual re	ference	e swite	chover (defa	ult).
			[4] =	1; aut	omatio	refere	nce sv	vitchover.	
01C	[3]	Stay on REF2	Stay o	on RE	F2 afte	r switc	nover.	ı	
			[3] =	0; retu	urn to l	REF1 au	ıtoma	tically when	REF1 status is good again (default).
			[3] =	1; stay	y on RE	F2 afte	r swit	chover. Do n	ot automatically return to REF1.
01C	[2]	REF2	Wher	auto	matic	referen	ce sw	itchover is di	sabled, this bit turns the REF2 power on.
		power on	[2] =	0; REF	2 pow	er off (defaul	t).	
					2 pow				
01C	[1]	REF1	Wher	n auto	matic	referen	ce sw	itchover is di	sabled, this bit turns the REF1 power on.
		power on			-	er off (defaul	t).	
					1 pow				
01C	[0]	Differential							l or single-ended. Single-ended must be selected for the
		reference						and REF2 to	
					_			e mode (defa	ult).
210	F 4 1	DIII -t-t				l refere			
01D	[4]	PLL status					-	er readback.	
		register disable				registe		ble (default).	
01D	[2]		_						is is used with the LD pin current source lock detect mode.
טוט	[3]	LD pin comparator							mode, this enables the use of the voltage on the LD pin to
		enable							cked state (see Figure 40). Otherwise, this can be used with
			the R	EFMC)N and	STATU	S pins	to monitor t	he voltage on the LD pin.
			[3] = 0	0; disa	able LC) pin co	mpar	ator; internal	/automatic holdover controller treats this pin as true/high (default)
			[3] =	1; ena	ble LD	pin co	mpara	ator.	
)1D	[2]	Holdover	Along	with	0x01[0[0] en	ables	the holdover	function.
		enable	[2] =	0; hol	dover	disable	d (def	ault).	
			[2] =	1; hol	dover	enable	d.		
01D	[1]	External	Enabl	les th	e exter	nal hol	d con	trol through	the SYNC pin. (This disables the internal holdover mode.)
		holdover						_	ver controlled by automatic holdover circuit (default).
		control							r controlled by SYNC pin.

Reg. Addr (Hex)	Bit(s)	Name	Description
01D	[0]	Holdover	Along with 0x01D[2] enables the holdover function.
		enable	[0] = 0; holdover disabled (default).
			[0] = 1; holdover enabled.
01F	[5]	Holdover active	Readback register: indicates if the part is in the holdover state (see Figure 40). This is not the same as holdover enabled.
			[5] = 0; not in holdover.
			[5] = 1; holdover state active.
01F	[4]	REF2	Readback register: indicates which PLL reference is selected as the input to the PLL.
		selected	[4] = 0; REF1 selected (or differential reference if in differential mode).
			[4] = 1; REF2 selected.
01F	[3]	CLK frequency >	Readback register: indicates if the CLK frequency is greater than the threshold (see Table 13, REF1, REF2, and CLK frequency status monitor).
		threshold	[3] = 0; CLK frequency is less than the threshold.
			[3] = 1; CLK frequency is greater than the threshold.
01F	[2]	REF2 frequency >	Readback register: indicates if the frequency of the signal at REF2 is greater than the threshold frequency set by Register 0x01A[6].
		threshold	[2] = 0; REF2 frequency is less than threshold frequency.
			[2] = 1; REF2 frequency is greater than threshold frequency.
01F	[1]	REF1 frequency >	Readback register: indicates if the frequency of the signal at REF2 is greater than the threshold frequency set by Register 0x01A[6].
		threshold	[1] = 0; REF1 frequency is less than threshold frequency.
			[1] = 1; REF1 frequency is greater than threshold frequency.
01F	[0]	Digital lock	Readback register: digital lock detect.
		detect	[0] = 0; PLL is not locked.
			[0] = 1; PLL is locked.

Table 50. Fine Delay Adjust: OUT6 to OUT9

Reg. Addr (Hex)	Bit(s)	Name	Des	scrii	otio	n
0A0	[0]	OUT6 delay bypass	Вур	ass	or u	use the delay function. delay function.
						ass delay function (default).
0A1	[5:3]	OUT6 ramp capacitors	Sele cap	ects acit	the ors	number of ramp capacitors used by the delay function. The combination of the number of and the ramp current sets the full-scale delay.
			[5]	[4]	[3]	Number of Capacitors
			0	0	0	4 (default)
			0	0	1	3
			0	1	0	3
			0	1	1	2
			1	0	0	3
			1	0	1	2
			1	1	0	2
			1	1	1	1

Reg. Addr (Hex)	Bit(s)	Name	Des	scri	ptio	n
0A1	[2:0]	OUT6 ramp current	Rar	np o	urre	nt for the delay function. The combination of the number of capacitors and the ramp current -scale delay.
			[2]	[1]	[0]	Current (µA)
			0	0	0	200 (default)
			0	0	1	400
			0	1	0	600
			0	1	1	800
			1	0	0	1000
			1	0	1	1200
			1	1	0	1400
			1	1	1	1600
0A2	[5:0]	OUT6 delay fraction				fraction of the full-scale delay desired (6-bit binary). 000000 gives zero delay. values up to 47 decimals (1011111b; 0x02F) are supported (default: 0x00).
0A3	[0]	OUT7 delay bypass				se the delay function.
						delay function.
						ass delay function (default).
0A4	[5:3]	OUT7 ramp				number of ramp capacitors used by the delay function. The combination of the number of the
		capacitors				and the ramp current sets the full-scale delay.
					-	Number of Capacitors
			0	0	0	4 (default)
			0	0	1	3
			0	1	0	3
			0	1	1	2
			1	0	0	3
			1	0	1	2
			1	1	0	
014	[0.0]	OUT7	I	<u> </u>		
0A4	[2:0]	OUT7 ramp current				nt for the delay function. The combination of the number of capacitors and the ramp the full-scale delay.
		carrent	[2]			Current (µA)
			0	0	0	200 (default)
			0	0	1	400
			0	1	0	600
			0	1	1	800
			1	0	0	1000
			1	0	1	1200
			1	1	0	1400
			1	1	1	1600
0A5	[5:0]	OUT7 delay fraction				fraction of the full-scale delay desired (6-bit binary). 000000 give zero delay. values up to 47 decimals (101111b; 0x02F) are supported (default: 0x00).
0A6	[0]	OUT8 delay bypass		•		se the delay function.
			1 .			delay function.
						ass delay function (default).

Reg. Addr			
	Bit(s)	Name	Description
A7	[5:3]	OUT8 ramp	Selects the number of ramp capacitors used by the delay function. The combination of the number of
		capacitors	capacitors and the ramp current sets the full-scale delay.
			[5] [4] [3] Number of Capacitors
			0 0 0 4 (default)
			0 0 1 3
			0 1 0 3
			0 1 1 2
			1 0 0 3
			1 0 1 2
			1 1 0 2
			1 1 1 1
A7	[2:0]	OUT8 ramp current	Ramp current for the delay function. The combination of the number of capacitors and the ramp current sets the full-scale delay.
		current	[2] [1] [0] Current (µA)
			0 0 0 200 (default)
			0 0 1 400
			0 1 0 600
			0 1 1 800
			1 0 0 1000
			1 0 1 1200
			1 1 0 1400
			1 1 1 1600
)A8	[5:0]	OUT8 delay	Selects the fraction of the full-scale delay desired (6-bit binary). 000000 gives zero delay.
		fraction	Only delay values up to 47 decimals (1011111b; 0x02F) are supported (default: 0x00).
)A9	[0]	OUT9 delay bypass	Bypass or use the delay function.
			[0] = 0; use delay function.
	1	0.170	[0] = 1; bypass delay function (default).
)AA	[5:3]	OUT9 ramp capacitors	Selects the number of ramp capacitors used by the delay function. The combination of the number of capacitors and the ramp current sets the full-scale delay.
		capacitors	[5] [4] [3] Number of Capacitors
			0 0 0 4 (default)
			0 0 1 3
			0 1 0 3
			1 0 0 3
			1 0 1 2
			1 1 0 2
			1 1 1 1
AA	[2:0]	OUT9 ramp current	Ramp current for the delay function. The combination of the number of capacitors and the ramp
			current sets the delay full scale.
			[2] [1] [0] Current Value (μA)
			0 0 0 200 (default)
			0 0 1 400
			0 1 0 600
			0 1 1 800
			1 0 0 1000
			1 0 1 1200
			1 1 0 1400
			1 1 1600
)AB	[5:0]	OUT9 delay	Selects the fraction of the full-scale delay desired (6-bit binary). 000000 gives zero delay.
		fraction	Only delay values up to 47 decimals (1011111b; 0x02F) are supported (default: 0x00).

Table 51. LVPECL Outputs

Reg. Addr										
Hex)	Bit(s)	Name	Des	criptio	n					
F0	[4]	OUT0 invert	Sets	the ou	tput polarity.					
			[4] =	0; nor	ninverting (default).					
				: 1; inve	-					
OFO	[3:2]	OUTO LVPECL			PECL output differential voltage (VoD).					
		differential voltage	[3]	[2]	V _{OD} (mV)					
		voltage	0	0	400					
			0	1	600					
			1	0	780 (default)					
			1	1	960					
F0	[1:0]	OUT0 power- down	_		wer-down modes.					
		down	[1]	[0]	Mode	Output				
			0	0	Normal operation (default).	On				
			0	1	Partial power-down, reference on; use only if there are no external load resistors.	Off				
			1	0	Partial power-down, reference on, safe LVPECL power-down.	Off				
		0.15	1	1	Total power-down, reference off; use only if there are no external load resistors.	Off				
)F1	[4]	OUT1 invert			tput polarity.					
					ninverting (default).					
	ra a1	01174 11/0561		: 1; inv	_					
)F1	[3:2]	OUT1 LVPECL differential		_	PECL output differential voltage (VoD).					
		voltage	[3]	[2]	V _{OD} (mV)					
			0	0	400					
			0		600					
			1	0	780 (default)					
\ \ \ \ 1	[1.0]	OUT1	1 1 960							
F1	[1:0]	1.								
		down	[1]	[0]	Mode	Output				
			0	0	Normal operation.	On				
			0	1	Partial power-down, reference on; use only if there are no external load resistors. Partial power-down, reference on, safe LVPECL power-down (default).	Off				
			1	0	Total power-down, reference off; use only if there are no external load resistors.	Off Off				
)F2	[4]	OUT2 invert	Soto	tho or	itput polarity.	OII				
1 2	[4]	OO12 IIIVert			ninverting (default).					
					erting.					
)F2	[3:2]	OUT2 LVPECL			PECL output differential voltage (V _{op}).					
1 2	[3.2]	differential	[3]	[2]	V _{OD} (mV)					
		voltage	0	0	400					
			0	1	600					
			1	0	780 (default)					
			1	1	960					
F2	[1:0]	OUT2 power-	I VPF	CL po	wer-down modes.					
	[1.0]	down	[1]	[0]	Mode	Output				
			0	0	Normal operation (default).	On				
			0	1	Partial power-down, reference on; use only if there are no external load resistors.	Off				
			1	0	Partial power-down, reference on, safe LVPECL power-down.	Off				
	1		1	1	Total power-down, reference off; use only if there are no external load resistors.	Off				
			11		1 - F - C - C - C - C - C - C - C - C - C	1				
)F3	[4]	OUT3 invert	Sets	the or	tput polarity.					
F3	[4]	OUT3 invert			itput polarity. ninverting (default).					

Reg. Addr											
Hex)		Name		criptio							
DF3	[3:2]	OUT3 LVPECL differential			PECL output differential voltage (VoD).						
		voltage	[3]	[2]	V _{OD} (mV)						
			0	0	400						
			0	1	600						
			1	0	780 (default)						
			1	1	960						
DF3	[1:0]	OUT3			wer-down modes.						
		power-down	[1]	[0]	Mode	Output					
			0	0	Normal operation.	On					
			0	1	Partial power-down, reference on; use only if there are no external load resistors.	Off					
			1	0	Partial power-down, reference on, safe LVPECL power-down (default).	Off					
			1	1	Total power-down, reference off; use only if there are no external load resistors.	Off					
OF4	[4]	OUT4 invert	Sets	the ou	tput polarity.						
			[4] =	0; non	inverting (default).						
			[4] =	1; inve	erting.						
0F4	[3:2]	OUT4 LVPECL	Sets	the LV	ECL output differential voltage (V _{OD}).						
		differential	[3]	[2]	V _{OD} (mV)						
		voltage	0	0	400						
			0	1	600						
			1	0	780 (default)						
			1	1	960						
)F4	[1:0]	OUT4 power-	IVPF	CL po	wer-down modes.						
	[]	down	[1]	[0]	Mode	Output					
			0	0	Normal operation.	On					
			0	1	Partial power-down, reference on; use only if there are no external load resistors.	Off					
			1	0	Partial power-down, reference on, safe LVPECL power-down.	Off					
			1	1	Total power-down, reference off; use only if there are no external load resistors.	Off					
OF5	[4]	OUT5 invert	Sate	the ou	tput polarity.	Oli					
JI J	נדן	OOTSTIIVET			inverting (default).						
				1; inve							
OF5	[3:2]	OUT5 LVPECL			PECL output differential voltage (V _{OD}).						
		differential	[3]	[2]	V _{OD} (mV)						
		voltage	0	0	400						
			0	1	600						
			1	0	780 (default)						
055	[1 0]	OLITE DOWNER]	[]	960 wer-down modes.						
0F5	[1:0]	OUT5 power- down				0					
		337711	[1]	[0]	Mode	Output					
			0	0	Normal operation.	On					
			0	1	Partial power-down, reference on; use only if there are no external load resistors.	Off					
			1	0	Partial power-down, reference on, safe LVPECL power-down (default).	Off					
			1	1	Total power-down, reference off; use only if there are no external load resistors.	Off					

Table 52. LVDS/CMOS Outputs

Reg. Addr										
(Hex)	Bit(s)	Name	Des	criptic	n					
140	[7:5]		In Cl	In CMOS mode, [7:5] select the output polarity of each CMOS output.						
						nly [5] determin				
			[7]	[6]		OUT6A (CMOS		OUT6B (CMOS)	OUT6 (LVDS)	
			0	0		Noninverting		Inverting	Noninverting	
			0	1		Noninverting		Noninverting	Noninverting (default)	
			1	0		Inverting		Inverting	Noninverting	
			1	1		Inverting		Noninverting	Noninverting	
			0	0		Inverting	I	Noninverting	Inverting	
			0	1		Inverting		Inverting	Inverting	
			1	0		Noninverting		Noninverting	Inverting	
			1	1		Noninverting		Inverting	Inverting	
140	[4]	OUT6 CMOS B							effect in LVDS mode.	
			l l			ne CMOS B out		default).		
			_			ne CMOS B outp				
140	[3]	OUT6 select LVDS/CMOS				MOS logic level	ls.			
				0; LVE		ault).				
				1; CM						
140	[2:1]	OUT6 LVDS output current		<u> </u>				le. This has no effect ir		
			[2]	[1]		` ′		mmended Terminati	on (Ω)	
			0	0	1.75		100			
			0	1	3.5			default)		
			1	0	5.25	5	50			
			1	1	7		50			
140	[0]	OUT6 power-down			vn out	put (LVDS/CMC				
140	[0]	OUT6 power-down	[0] =	0; pov	vn out ver on	put (LVDS/CMC (default).				
		·	[0] = [0] =	0; pov 1; pov	vn out ver on ver off	put (LVDS/CMC (default). f.	OS).			
-	[7:5]	OUT6 power-down OUT7 output polarity	[0] = [0] =	: 0; po\ : 1; po\ MOS m	vn out ver on ver off node, [put (LVDS/CMC) (default). f. 7:5] select the c	OS).	ut polarity of each CM	OS output.	
-		·	[0] = [0] = In Ci In L\	: 0; pov : 1; pov MOS m /DS mo	vn out wer on wer off node, [ode, or	put (LVDS/CMC) (default). f. 7:5] select the c nly [5] determir	outpunes LV	/DS polarity.		
-		·	[0] = [0] = In Ci In L\ [7]	0; pov 1; pov MOS m /DS mo	vn out ver on ver off node, [ode, or	put (LVDS/CMC) (default). f. 7:5] select the conly [5] determin	outpunes LV	/DS polarity. OUT7B (CMOS)	OUT7 (LVDS)	
-		·	[0] = [0] = In Ci In L\ [7] 0	: 0; pov : 1; pov MOS m /DS mo	vn out wer on wer off node, [ode, or [5]	put (LVDS/CMC) (default). f. 7:5] select the conly [5] determin OUT7A (CMC) Noninverting	outpunes LV	/DS polarity. OUT7B (CMOS) Inverting	OUT7 (LVDS) Noninverting	
-		·	[0] = [0] = In Ci In L\ [7]	0; pov 1; pov MOS m /DS mo [6]	vn out ver on ver off node, [ode, or	put (LVDS/CMC) (default). f. 7:5] select the conly [5] determin OUT7A (CMC) Noninverting	outpunes LV	/DS polarity. OUT7B (CMOS) Inverting Noninverting	OUT7 (LVDS) Noninverting Noninverting (default)	
-		·	[0] = [0] = In Ci In L\ [7] 0	0; pov 1; pov MOS m /DS mo [6] 0	vn out wer on wer off node, [ode, or [5] 0	put (LVDS/CMC) (default). f. 7:5] select the conly [5] determin OUT7A (CMC) Noninverting Noninverting Inverting	outpunes LV	/DS polarity. OUT7B (CMOS) Inverting Noninverting Inverting	OUT7 (LVDS) Noninverting Noninverting (default) Noninverting	
-		·	[0] = [0] = In Ci In L\ [7] 0	0; pov 1; pov MOS m /DS mo [6] 0	vn out wer on wer off node, [ode, or [5] 0 0	put (LVDS/CMC) (default). f. 7:5] select the only [5] determine OUT7A (CMC) Noninverting Noninverting Inverting Inverting	outpunes LV	/DS polarity. OUT7B (CMOS) Inverting Noninverting Inverting Noninverting	OUT7 (LVDS) Noninverting Noninverting (default)	
-		·	[0] = [0] = In Cl In L\ [7] 0 0 1 1	0; pov 1; pov MOS m /DS mo [6] 0 1	vn out wer on wer off node, [ode, or [5] 0 0	put (LVDS/CMC) (default). f. 7:5] select the only [5] determine OUT7A (CMC) Noninverting Noninverting Inverting Inverting Inverting	outpunes LV	/DS polarity. OUT7B (CMOS) Inverting Noninverting Inverting Noninverting Noninverting	OUT7 (LVDS) Noninverting Noninverting (default) Noninverting Noninverting	
-		·	[0] = [0] = In CI In LV [7] 0 0 1 1 0 0	0; pov 1; pov MOS m /DS mo [6] 0 1	vn out wer on wer off node, [ode, or [5] 0 0	put (LVDS/CMC) (default). f. 7:5] select the only [5] determine OUT7A (CMC) Noninverting Noninverting Inverting Inverting	outpunes LV	/DS polarity. OUT7B (CMOS) Inverting Noninverting Inverting Noninverting	OUT7 (LVDS) Noninverting Noninverting Noninverting Noninverting Inverting	
-		·	[0] = [0] = In CI In LV [7] 0 0 1 1 0 0	0; pov 1; pov MOS m /DS mo [6] 0 1 0 1	vn out wer on wer off node, [ode, or [5] 0 0	rput (LVDS/CMC) (default). f. 7:5] select the conty [5] determing Noninverting Noninverting Inverting Inverting Inverting Inverting Inverting	outpunes LV	/DS polarity. OUT7B (CMOS) Inverting Noninverting Inverting Noninverting Noninverting Inverting Inverting	OUT7 (LVDS) Noninverting Noninverting Noninverting Noninverting Inverting Inverting	
141		·	[0] = [0] =	0; pov 1; pov MOS m /DS mo [6] 0 1 0 1 0 1	vn out wer on wer off ode, [ode, or [5] 0 0 0 1 1 1 1	put (LVDS/CMC) (default). f. 7:5] select the conly [5] determing Noninverting Noninverting Inverting Inverting Inverting Inverting Noninverting Noninverting Noninverting Noninverting	outpunes LV	/DS polarity. OUT7B (CMOS) Inverting Noninverting Noninverting Noninverting Inverting Noninverting Noninverting Noninverting Inverting Inverting Inverting	OUT7 (LVDS) Noninverting Noninverting Noninverting Noninverting Inverting Inverting Inverting	
141	[7:5]	OUT7 output polarity	[0] = [0] =	0; pov 1; pov MOS m /DS mo [6] 0 1 0 1 0 1 0 1 0 1	vn out wer on wer off ode, [ode, or [5] 0 0 0 1 1 1 1 node, t	put (LVDS/CMC) (default). f. 7:5] select the conly [5] determing Noninverting Noninverting Inverting Inverting Inverting Inverting Noninverting Noninverting Noninverting Noninverting	outpu	/DS polarity. OUT7B (CMOS) Inverting Noninverting Noninverting Noninverting Inverting Noninverting Inverting Noninverting S B output. There is no	OUT7 (LVDS) Noninverting Noninverting Noninverting Noninverting Inverting Inverting Inverting Inverting Inverting	
141	[7:5]	OUT7 output polarity	[0] = [0] =	0; pov 1; pov MOS m /DS mo [6] 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1	vn out wer on wer off node, [ode, or [5] 0 0 0 1 1 1 1 node, t	rput (LVDS/CMC (default). f. 7:5] select the conty [5] determing Noninverting Inverting Invertin	output (cMO:	/DS polarity. OUT7B (CMOS) Inverting Noninverting Noninverting Noninverting Inverting Noninverting Inverting Noninverting S B output. There is no	OUT7 (LVDS) Noninverting Noninverting Noninverting Noninverting Inverting Inverting Inverting Inverting Inverting	
141	[7:5]	OUT7 output polarity	[0] = [0] =	0; pov 1; pov MOS m /DS mo [6] 0 1 0 1 0 1 0 1 0 1 0; turi	vn out wer on wer off node, [ode, or [5] 0 0 0 1 1 1 1 1 node, t n off th	put (LVDS/CMC) (default). f. 7:5] select the conly [5] determing Noninverting Inverting	output.	/DS polarity. OUT7B (CMOS) Inverting Noninverting Noninverting Noninverting Inverting Noninverting Inverting Noninverting S B output. There is no	OUT7 (LVDS) Noninverting Noninverting Noninverting Noninverting Inverting Inverting Inverting Inverting Inverting	
141	[7:5]	OUT7 output polarity OUT7 CMOS B	[0] = [0] =	0; pov 1; pov MOS m /DS mo [6] 0 1 0 1 0 1 0 1 0 1 0; turn ct LVD	vn out wer on wer off node, [ode, or [5] 0 0 0 1 1 1 1 1 node, t n off th s or Cf	rput (LVDS/CMC (default). f. 7:5] select the conly [5] determing Noninverting Inverting Inverting Inverting Inverting Noninverting Noninverting Noninverting Noninverting Enterting Noninverting Noninverting Noninverting Noninverting Noninverting Enterting Noninverting Noninverting Noninverting Noninverting Noninverting Noninverting Enterting Noninverting Noninverting Noninverting Noninverting Noninverting Noninverting Noninverting	output.	/DS polarity. OUT7B (CMOS) Inverting Noninverting Noninverting Noninverting Inverting Noninverting Inverting Noninverting S B output. There is no	OUT7 (LVDS) Noninverting Noninverting Noninverting Noninverting Inverting Inverting Inverting Inverting Inverting	
141	[7:5]	OUT7 output polarity OUT7 CMOS B	[0] = [0] =	0; pov 1; pov MOS m /DS mo [6] 0 1 0 1 0 1 0 1 0 1 0; turi	vn out wer on wer off node, [ode, or [5] 0 0 0 1 1 1 1 node, t n off th n on th S or CI OS (def	rput (LVDS/CMC (default). f. 7:5] select the conly [5] determing Noninverting Inverting Inverting Inverting Inverting Noninverting Noninverting Noninverting Noninverting Enterting Noninverting Noninverting Noninverting Noninverting Noninverting Enterting Noninverting Noninverting Noninverting Noninverting Noninverting Noninverting Enterting Noninverting Noninverting Noninverting Noninverting Noninverting Noninverting Noninverting	output.	/DS polarity. OUT7B (CMOS) Inverting Noninverting Noninverting Noninverting Inverting Noninverting Inverting Noninverting S B output. There is no	OUT7 (LVDS) Noninverting Noninverting Noninverting Noninverting Inverting Inverting Inverting Inverting Inverting	
141 141	[7:5] [4]	OUT7 output polarity OUT7 CMOS B OUT7 select LVDS/CMOS	[0] = [0] =	0; pov 1; pov MOS m /DS mo [6] 0 1 0 1 0 1 0 1 0; turn 1; turn ct LVD 0; LVE	vn out wer on wer off node, [ode, or [5] 0 0 0 1 1 1 1 1 node, t n off th n on th S or CI OS (def	put (LVDS/CMC) (default). f. 7:5] select the conly [5] determing Noninverting Inverting Inverting Inverting Inverting Noninverting Noninverting Noninverting Energy Noninverting Noninverting Noninverting Moslogic level Fault).	outputous LVOS)	/DS polarity. OUT7B (CMOS) Inverting Noninverting Noninverting Noninverting Inverting Noninverting Inverting Soutput. There is not default).	OUT7 (LVDS) Noninverting Noninverting Noninverting Inverting Inverting Inverting Inverting Inverting Inverting Inverting Inverting Inverting	
141 141	[7:5]	OUT7 output polarity OUT7 CMOS B	[0] = [0] =	0; pov 1; pov MOS m /DS mo [6] 0 1 0 1 0 1 0 1 0; turn 1; turn ct LVD 0; LVE	vn out wer on wer off node, [ode, or [5] 0 0 0 1 1 1 1 1 node, t n off th n on th S or CI OS (def OS. currer	put (LVDS/CMC (default). f. 7:5] select the conly [5] determing Noninverting Inverting Inverting Inverting Inverting Voninverting Noninverting Noninverting Noninverting Noninverting Eurn on/off the conce CMOS B output CMOS B output CMOS B output CMOS Iogic level fault).	output (coput.	/DS polarity. OUT7B (CMOS) Inverting Noninverting Inverting Noninverting Inverting Noninverting Inverting S B output. There is not default).	OUT7 (LVDS) Noninverting Noninverting Noninverting Inverting Inverting Inverting Inverting Inverting Inverting Inverting Output	
141	[7:5] [4]	OUT7 output polarity OUT7 CMOS B OUT7 select LVDS/CMOS	[0] = [0] =	0; pov 1; pov MOS m /DS mov [6] 0 1 0 1 0 1 0 1 0 1 0 1 0; turn ct LVD 0; LVE 1; CM putput	vn out wer on wer off node, [ode, or [5] 0 0 0 1 1 1 1 1 node, t n off th n on th S or CI OS (def OS. currer Currer	rput (LVDS/CMC (default). f. 7:5] select the conly [5] determing Noninverting Inverting Inverting Inverting Noninverting Noninverting Noninverting Noninverting Noninverting Noninverting Mos B output the CMOS B	outpunes LV OS) CMOS put (coput.	/DS polarity. OUT7B (CMOS) Inverting Noninverting Noninverting Noninverting Inverting Noninverting Inverting Soutput. There is not default).	OUT7 (LVDS) Noninverting Noninverting Noninverting Inverting Inverting Inverting Inverting Inverting Inverting Inverting Output	
141	[7:5] [4]	OUT7 output polarity OUT7 CMOS B OUT7 select LVDS/CMOS	[0] = [0] =	0; pov 1; pov MOS m /DS m [6] 0 1 0 1 0 1 0 1 0 1; turn ct LVD 0; LVE 1; CM output	vn out wer on wer off node, [ode, or [5] 0 0 0 0 1 1 1 1 1 node, t n off th n on th S or CI OS (def OS. currer 1.75	rput (LVDS/CMC (default). f. 7:5] select the conly [5] determing Noninverting Inverting Inverting Inverting Noninverting Noninverting Noninverting Noninverting Noninverting Eurn on/off the one CMOS B output The CMOS B output MOS logic level fault).	output (coput. ls.	/DS polarity. OUT7B (CMOS) Inverting Noninverting Noninverting Noninverting Inverting Noninverting Inverting S B output. There is not default).	OUT7 (LVDS) Noninverting Noninverting Noninverting Noninverting Inverting Inverting Inverting Inverting Output Ou	
141 141 141	[7:5] [4]	OUT7 output polarity OUT7 CMOS B OUT7 select LVDS/CMOS	[0] = [0] =	0; pov 1; pov MOS m /DS mov [6] 0 1 0 1 0 1 0 1 0 1 0; turn ct LVD 0; LVE 1; CM output	vn out wer on wer off node, [ode, or [5] 0 0 0 1 1 1 1 1 node, t n off th n on th S or CI OS (def OS. currer Currer	rput (LVDS/CMC (default). f. 7:5] select the conly [5] determing Noninverting Inverting Inverting Inverting Inverting Noninverting Noninverting Noninverting Word on the condition of the conditi	output (coput. ls.	/DS polarity. OUT7B (CMOS) Inverting Noninverting Inverting Noninverting Inverting Noninverting Inverting S B output. There is not default).	OUT7 (LVDS) Noninverting Noninverting Noninverting Noninverting Inverting Inverting Inverting Inverting Output Ou	

Reg. Addr										
(Hex)	Bit(s)	Name	Des	Description						
141	[0]	OUT7 power-down	Pow	er-dov	vn o	utput (LVDS/CM	OS).			
				= 0; po\						
						off (default).				
142	[7:5]	OUT8 output polarity				, [7:5] select the only [5] determi		out polarity of each CMOS outp LVDS polarity.	out.	
			[7]	[6]	[5]	OUT8A (CM	IOS)	OUT8B (CMOS)	OUT8 (LVDS)	
			0	0	0	Noninvertin	g	Inverting	Noninverting	
			0	1	0	Noninvertin	g	Noninverting	Noninverting (default)	
			1	0	0	Inverting		Inverting	Noninverting	
			1	1	0	Inverting		Noninverting	Noninverting	
			0	0	1	Inverting		Noninverting	Inverting	
			0	1	1	Inverting		Inverting	Inverting	
			1	0	1	Noninvertin	g	Noninverting	Inverting	
			1	1	1	Noninvertin	g	Inverting	Inverting	
142	[4]	OUT8 CMOS B	In C	MOS m	node			OS B output. There is no effect	in LVDS mode.	
				[4] = 0; turn off the CMOS B output (default).						
				-		the CMOS B out		, · · · · · · · · · · · · · · · · · · ·		
142	·									
	,		[3] = 0; LVDS (default).							
				= 1; CM						
142							S mo	de This has no effect in CMOS	mode	
1 12	[2.1]	oo to Ev D3 output current		[2] [1] Current (mA) Recommended Termination (Ω)						
			0			1.75	100	ommended fermination (12)		
			0			3.5		(default)		
			1			5.25	50	(delauit)		
			'		,	J.2J 7	50			
142	[0]	OUT8 power-down	Pow	or dov	1	utput (LVDS/CM				
142	[O]	Oo 18 power-down				on (default).	O3).			
				= 0; po\ = 1; po\						
143	[7,[]	OUTO autout a devitu	_					unt real exiter of each CNACS auto		
143	[7:5]	OUT9 output polarity				, [7:5] select the only [5] determi		out polarity of each CMOS outp VDS polarity	out.	
			[7]	[6]	[5]	OUT9A (CM		OUT9B (CMOS)	OUT9 (LVDS)	
			0	0	0	Noninverting		Inverting	Noninverting	
			0	1	0	Noninverting	-	Noninverting	Noninverting (default)	
			1	0	0	Inverting	9	Inverting	Noninverting (deladit)	
				1	0	Inverting		Noninverting	Noninverting	
			0	0	1			Noninverting	Inverting	
			0	1	1	Inverting		Inverting	3	
			1		1	Inverting	~		Inverting	
				1	1	Noninverting	_	Noninverting	Inverting	
1.42	F 4.7	OLITO CMOC P	I C	II NOC	11	Noninverting		Inverting	Inverting	
143	[4]	OUT9 CMOS B						OS B output. There is no effect	IN LVDS mode.	
						the CMOS B out	•	aerault).		
1.12	F27	OUTO 1 11/05/51405				the CMOS B out				
143	[3]	OUT9 select LVDS/CMOS				CMOS logic leve	ls.			
						efault).				
			[3] =	[3] = 1; CMOS.						

Reg. Addr								
(Hex)	Bit(s)	Name	Des	cripti	ion			
143	[2:1]	OUT9 LVDS output current	Set	outpu	ıt current level in	LVDS mode. This has no effect in CMOS mode.		
			[2]	[1]	Current (mA)	Recommended Termination (Ω)		
			0	0	1.75	100		
			0	1	3.5	100 (default)		
			1	0	5.25	50		
			1	1	7	50		
143	[0]	OUT9 power-down	Power-down output (LVDS/CMOS).					
			[0] =	[0] = 0; power on.				
			[0] =	: 1; pc	ower off (default)			

Table 53. LVPECL Channel Dividers

Reg. Addr (Hex)	Bit(s)	Name	Description
190	[7:4]	Divider 0 low cycles	Number of clock cycles (minus 1) of the Divider 0 input during which the Divider 0 output stays low. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x0).
190	[3:0]	Divider 0 high cycles	Number of clock cycles (minus 1) of the Divider 0 input during which the Divider 0 output stays high. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x0).
191	[7]	Divider 0 bypass	Bypass and power-down the divider; route input to divider output. [7] = 0; use divider. [7] = 1; bypass divider (default).
191	[6]	Divider 0 nosync	Nosync. [6] = 0; obey chip-level SYNC signal (default). [6] = 1; ignore chip-level SYNC signal.
191	[5]	Divider 0 force high	Force divider output to high. This requires that nosync also be set. [5] = 0; divider output forced to low (default). [5] = 1; divider output forced to high.
191	[4]	Divider 0 start high	Selects clock output to start high or start low. [4] = 0; start low (default). [4] = 1; start high.
191	[3:0]	Divider 0 phase offset	Phase offset (default: 0x0).
192	[1]	Divider 0 direct to output	Connect OUT0 and OUT1 to Divider 0 or directly to CLK input. [1] = 0: OUT0 and OUT1 are connected to Divider 0 (default). [1] = 1; If 0x1E1[0] = 0, the CLK is routed directly to OUT0 and OUT1. If 0x1E1[0] = 1, there is no effect.
192	[0]	Divider 0 DCCOFF	Duty-cycle correction function. [0] = 0; enable duty-cycle correction (default). [0] = 1; disable duty-cycle correction.
193	[7:4]	Divider 1 low cycles	Number of clock cycles (minus 1) of the Divider 1 input during which the Divider 1 output stays low. A value of 0x7 means the divider is low for eight input clock cycles (default: 0xB).
193	[3:0]	Divider 1 high cycles	Number of clock cycles (minus 1) of the Divider 1 input during which the Divider 1 output stays high. A value of 0x7 means the divider is low for eight input clock cycles (default: 0xB).
194	[7]	Divider 1 bypass	Bypass and power-down the divider; route input to divider output. [7] = 0; use divider (default). [7] = 1; bypass divider.
194	[6]	Divider 1 nosync	Nosync. [6] = 0; obey chip-level SYNC signal (default). [6] = 1; ignore chip-level SYNC signal.

Reg. Addr (Hex)	Bit(s)	Name	Description
194	[5]	Divider 1 force high	Force divider output to high. This requires that nosync also be set.
			[5] = 0; divider output forced to low (default).
			[5] = 1; divider output forced to high.
194	[4]	Divider 1 start high	Selects clock output to start high or start low.
			[4] = 0; start low (default).
			[4] = 1; start high.
194	[3:0]	Divider 1 phase offset	Phase offset (default: 0x0).
195	[1]	Divider 1 direct to output	Connect OUT2 and OUT3 to Divider 1 or directly to CLK input.
			[1] = 0; OUT2 and OUT3 are connected to Divider 1 (default).
			[1] = 1;
			If 0x1E1[0] = 0, the CLK is routed directly to OUT2 and OUT3.
405	[0]	Di il ADCCOFF	If 0x1E1[0] = 1, there is no effect.
195	[0]	Divider 1 DCCOFF	Duty-cycle correction function.
			[0] = 0; enable duty-cycle correction (default).
406	F= 43	B: : 1	[0] = 1; disable duty-cycle correction.
196	[7:4]	Divider 2 low cycles	Number of clock cycles (minus 1) of the Divider 2 input during which the Divider 2 output stays low. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x0).
196	[3:0]	Divider 2 high cycles	Number of clock cycles (minus 1) of the Divider 2 input during which the Divider 2 output stays high. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x0).
197	[7]	Divider 2 bypass	Bypass and power down the divider; route input to divider output.
			[7] = 0; use divider (default).
			[7] = 1; bypass divider.
197	[6]	Divider 2 nosync	Nosync.
			[6] = 0; obey chip-level SYNC signal (default).
			[6] = 1; ignore chip-level SYNC signal.
197	[5]	Divider 2 force high	Force divider output to high. This requires that nosync also be set.
			[5] = 0; divider output forced to low (default).
			[5] = 1; divider output forced to high.
197	[4]	Divider 2 start high	Selects clock output to start high or start low.
			[4] = 0; start low (default).
			[4] = 1; start high.
197	[3:0]	Divider 2 phase offset	Phase offset (default: 0x0).
198	[1]	Divider 2 direct to output	Connect OUT4 and OUT5 to Divider 2 or directly to CLK input.
			[1] = 0; OUT4 and OUT5 are connected to Divider 2 (default).
			[1] = 1;
			If 0x1E1[0] = 0, the CLK is routed directly to OUT4 and OUT5. If 0x1E1[0] = 1, there is no effect.
198	[0]	Divider 2 DCCOFF	Duty-cycle correction function.
			[0] = 0; enable duty-cycle correction (default).
			[0] = 1; disable duty-cycle correction.

Table 54. LVDS/CMOS Channel Dividers

Reg. Addr (Hex)	Bit(s)	Name	Description
199	[7:4]	Low Cycles Divider 3.1	Number of clock cycles (minus 1) of the Divider 3.1 input during which the Divider 3.1 output stays low. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x2).
199	[3:0]	High Cycles Divider 3.1	Number of clock cycles (minus 1) of the Divider 3.1 input during which the Divider 3.1 output stays high. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x2).
19A	[7:4]	Phase Offset Divider 3.2	Refer to LVDSCMOS channel divider function description (default: 0x0).
19A	[3:0]	Phase Offset Divider 3.1	Refer to LVDSCMOS channel divider function description (default: 0x0).

Reg. Addr			
(Hex)	Bit(s)	Name	Description
19B	[7:4]	Low Cycles Divider 3.2	Number of clock cycles (minus 1) of the Divider 3.2 input during which the Divider 3.2 output stays low. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x1).
19B	[3:0]	High Cycles Divider 3.2	Number of clock cycles (minus 1) of the Divider 3.2 input during which the Divider 3.2 output stays high. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x1).
19C	[5]	Bypass Divider 3.2	Bypass (and power-down) 3.2 divider logic, route clock to 3.2 output.
			[5] = 0; do not bypass (default).
			[5] = 1; bypass.
19C	[4]	Bypass Divider 3.1	Bypass (and power-down) 3.1 divider logic, route clock to 3.1 output.
			[4] = 0; do not bypass (default).
			[4] = 1; bypass.
19C	[3]	Divider 3 nosync	Nosync.
			[3] = 0; obey chip-level SYNC signal (default).
			[3] = 1; ignore chip-level SYNC signal.
19C	[2]	Divider 3 force high	Force Divider 3 output high. Requires that nosync also be set.
			[2] = 0; force low (default).
			[2] = 1; force high.
19C	[1]	Start High Divider 3.2	Divider 3.2 start high/low.
			[1] = 0; start low (default).
			[1] = 1; start high.
19C	[0]	Start High Divider 3.1	Divider 3.1 start high/low.
			[0] = 0; start low (default).
			[0] = 1; start high.
19D	[0]	Divider 3 DCCOFF	Duty-cycle correction function.
			[0] = 0; enable duty-cycle correction (default).
			[0] = 1; disable duty-cycle correction.
19E	[7:4]	Low Cycles Divider 4.1	Number of clock cycles (minus 1) of the Divider 4.1 input during which the Divider 4.1 output
			stays low. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x2).
19E	[3:0]	High Cycles Divider 4.1	Number of clock cycles (minus 1) of the Divider 4.1 input during which the Divider 4.1 output stays high. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x2).
19F	[7:4]	Phase Offset Divider 4.2	Refer to LVDSCMOS channel divider function description (default: 0x0).
19F	[3:0]	Phase Offset Divider 4.1	Refer to LVDSCMOS channel divider function description (default: 0x0).
1A0	[7:4]	Low Cycles Divider 4.2	Number of clock cycles (minus 1) of the Divider 4.2 input during which the Divider 4.2 output stays low. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x1).
1A0	[3:0]	High Cycles Divider 4.2	Number of clock cycles (minus 1) of the Divider 4.2 input during which the Divider 4.2 output stays high. A value of 0x7 means the divider is low for eight input clock cycles (default: 0x1).
1A1	[5]	Bypass Divider 4.2	Bypass (and power down) 4.2 divider logic, route clock to 4.2 output.
			[5] = 0; do not bypass (default).
			[5] = 1; bypass.
1A1	[4]	Bypass Divider 4.1	Bypass (and power down) 4.1 divider logic, route clock to 4.1 output.
			[4] = 0; do not bypass (default).
			[4] = 1; bypass.
1A1	[3]	Divider 4 nosync	Nosync.
			[3] = 0; obey chip-level SYNC signal (default).
			[3] = 1; ignore chip-level SYNC signal.
1A1	[2]	Divider 4 force high	Force Divider 4 output high. Requires that nosync also be set.
			[2] = 0; force low (default).
			[2] = 1; force high.
1A1	[1]	Start High Divider 4.2	Divider 4.2 start high/low.
			[1] = 0; start low (default).
			[1] = 1; start high.

Reg. Addr (Hex)	Bit(s)	Name	Description
1A1	[0]	Start High Divider 4.1	Divider 4.1 start high/low.
			[0] = 0; start low (default).
			[0] = 1; start high.
1A2	[0]	Divider 4 DCCOFF	Duty-cycle correction function.
			[0] = 0; enable duty-cycle correction (default).
			[0] = 1; disable duty-cycle correction.

Table 55. VCO Divider and CLK Input

Reg. Addr		oo 2777447 unu 0227 mpur						
	Bit(s)	Name	Description					
1E0	[2:0]	VCO divider	[2] [1] [0] Divide					
			0	0	0	2		
			0	0	1	3		
			0	1	0	4 (default)		
			0	1	1	5		
			1	0	0	6		
			1	0	1	Output static		
			1	1	0	Output static		
			1	1	1	Output static		
1E1	[4]	Power-down clock input section	Power down the	e clock input sec	tion (including	CLK buffer, VCO divider, and CLK tree).		
			[4] = 0; normal operation (default).					
			[4] = 1; power-down.					
1E1	[0]	Bypass VCO divider	Bypass or use the VCO divider.					
			[0] = 0; use VCO	divider (default).			
			[0] = 1; bypass \	/CO divider.				

Table 56. System

Reg. Addr (Hex)	Bit(s)	Name	Description
230	[2]	Power-down SYNC	Power down the SYNC function.
			[2] = 0; normal operation of the SYNC function (default).
			[2] = 1; power-down SYNC circuitry.
230	[1]	Power-down distribution reference	Power down the reference for distribution section.
			[1] = 0; normal operation of the reference for the distribution section (default).
			[1] = 1; power down the reference for the distribution section.
230	[0]	Soft SYNC	The soft SYNC bit works the same as the SYNC pin, except that the polarity of the bit is reversed; that is, a high level forces selected channels into a predetermined static state, and a 1-to-0 transition triggers a SYNC. [0] = 0; same as SYNC high (default).
			$[0] = 1$; same as $\overline{\text{SYNC}}$ low.

Table 57. Update All Registers

Reg. Addr	D ://	_	
(Hex)	Bit(s)	Name	Description
232		registers	This bit must be set to 1 to transfer the contents of the buffer registers into the active registers. This happens on the next SCLK rising edge. This bit is self-clearing; that is, it does not have to be set back to 0. [0] = 1 (self-clearing); update all active registers to the contents of the buffer registers.

APPLICATION NOTES

USING THE AD9516 OUTPUTS FOR ADC CLOCK APPLICATIONS

Any high speed ADC is extremely sensitive to the quality of its sampling clock. An ADC can be thought of as a sampling mixer, and any noise, distortion, or timing jitter on the clock is combined with the desired signal at the analog-to-digital output. Clock integrity requirements scale with the analog input frequency and resolution, with higher analog input frequency applications at ≥ 14 -bit resolution being the most stringent. The theoretical SNR of an ADC is limited by the ADC resolution and the jitter on the sampling clock. Considering an ideal ADC of infinite resolution where the step size and quantization error can be ignored, the available SNR can be expressed approximately by

$$SNR(dB) = 20 \times \log \left(\frac{1}{2\pi f_A t_J} \right)$$

where:

 f_A is the highest analog frequency being digitized. t_I is the rms jitter on the sampling clock.

Figure 57 shows the required sampling clock jitter as a function of the analog frequency and effective number of bits (ENOB).

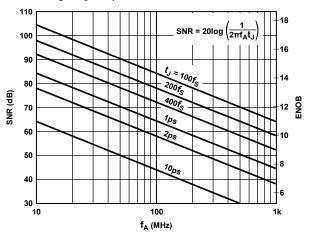


Figure 57. SNR and ENOB vs. Analog Input Frequency

See the AN-756 Application Note and the AN-501 Application Note at www.analog.com.

Many high performance ADCs feature differential clock inputs to simplify the task of providing the required low jitter clock on a noisy PCB. (Distributing a single-ended clock on a noisy PCB can result in coupled noise on the sample clock. Differential distribution has inherent common-mode rejection that can provide superior clock performance in a noisy environment.) The AD9516 features both LVPECL and LVDS outputs that provide differential clock outputs, which enable clock solutions that maximize converter SNR performance. The input requirements of the ADC (differential or single-ended, logic level, and termination) should be considered when selecting the best clocking/converter solution.

LVPECL CLOCK DISTRIBUTION

The LVPECL outputs of the AD9520 provide the lowest jitter clock signals available from the AD9520. The LVPECL outputs (because they are open emitter) require a dc termination to bias the output transistors. The simplified equivalent circuit in Figure 46 shows the LVPECL output stage.

In most applications, a LVPECL far-end Thevenin termination (see Figure 58) or Y-termination (see Figure 59) is recommended. In both cases, V_S of the receiving buffer should match VS_LVPECL. If it does not match, ac coupling is recommended (see Figure 60).

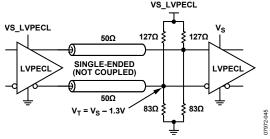


Figure 58. DC-Coupled 3.3 V LVPECL Far-End Thevenin Termination

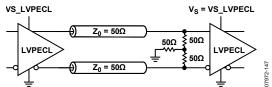


Figure 59, DC-Coupled 3.3 V LVPECL Y-Termination

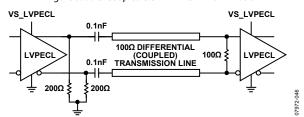


Figure 60. AC-Coupled LVPECL with Parallel Transmission Line

LVPECL Y-termination is an elegant termination scheme that uses the fewest components and offers both odd- and even-mode impedance matching. Even-mode impedance matching is an important consideration for closely coupled transmission lines at high frequencies. Its main drawback is that it offers limited flexibility for varying the drive strength of the emitter-follower LVPECL driver. This can be an important consideration when driving long trace lengths but is usually not an issue. In the case where VS_LVPECL = 2.5 V, the 50 Ω termination resistor connected to ground in Figure 59 should be changed to 19 Ω .

Thevenin-equivalent termination uses a resistor network to provide 50 Ω termination to a dc voltage that is below V_{OL} of the LVPECL driver. In this case, VS_LVPECL on the AD9520 should equal V_{S} of the receiving buffer. Although the resistor combination shown results in a dc bias point of VS_LVPECL - 2 V, the actual common-mode voltage is VS_LVPECL - 1.3 V because there is additional current flowing from the AD9520 LVPECL driver through the pull-down resistor.

The circuit is identical for the case where VS_LVPECL = 2.5 V, except that the pull-down resistor is 62.5 Ω and the pull-up is 250 Ω .

LVDS CLOCK DISTRIBUTION

The AD9516 provides four clock outputs (OUT6 to OUT9) that are selectable as either CMOS or LVDS level outputs. LVDS is a differential output option that uses a current mode output stage. The nominal current is 3.5 mA, which yields 350 mV of output swing across a 100 Ω resistor. The LVDS output meets or exceeds all ANSI/TIA/EIA-644 specifications.

A recommended termination circuit for the LVDS outputs is shown in Figure 61.

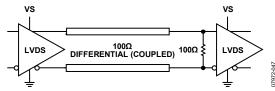


Figure 61. LVDS Output Termination

See the AN-586 Application Note at www.analog.com for more information on LVDS.

CMOS CLOCK DISTRIBUTION

The AD9516 provides four clock outputs (OUT6 to OUT9) that are selectable as either CMOS or LVDS level outputs. When selected as CMOS, each output becomes a pair of CMOS outputs, each of which can be individually turned on or off and set as noninverting or inverting. These outputs are 3.3 V CMOS compatible.

Whenever single-ended CMOS clocking is used, some general guidelines should be followed.

Point-to-point nets should be designed such that a driver has only one receiver on the net, if possible. This allows for simple termination schemes and minimizes ringing due to possible mismatched impedances on the net. Series termination at the source is generally required to provide transmission line matching and/or to reduce current transients at the driver. The value of the resistor is dependent on the board design and timing requirements (typically 10 Ω to 100 Ω is used). CMOS outputs are also limited in terms of the capacitive load or trace length that they can drive. Typically, trace lengths less than 3 inches are recommended to preserve signal rise/fall times and preserve signal integrity.

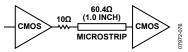


Figure 62. Series Termination of CMOS Output

Termination at the far end of the PCB trace is a second option. The CMOS outputs of the AD9516 do not supply enough current to provide a full voltage swing with a low impedance resistive, farend termination, as shown in Figure 63. The far-end termination network should match the PCB trace impedance and provide the desired switching point. The reduced signal swing may still meet receiver input requirements in some applications. This can be useful when driving long trace lengths on less critical nets.

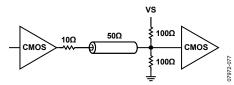


Figure 63. CMOS Output with Far-End Termination

Because of the limitations of single-ended CMOS clocking, consider using differential outputs when driving high speed signals over long traces. The AD9516 offers both LVPECL and LVDS outputs that are better suited for driving long traces where the inherent noise immunity of differential signaling provides superior performance for clocking converters.

OUTLINE DIMENSIONS

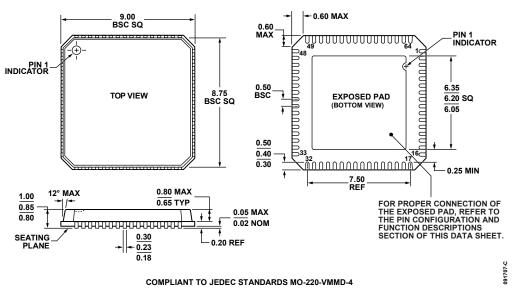


Figure 64. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] 9 mm × 9 mm Body, Very Thin Quad (CP-64-4) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD9516-5BCPZ ¹	−40°C to +85°C	64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-64-4
AD9516-5BCPZ-REEL7 ¹	-40°C to +85°C	64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)	CP-64-4
AD9516-5/PCBZ ¹		Evaluation Board	

¹ Z = RoHS Compliant Part.

NOTES

٨	N	Q	5	1	ß.	-5
п	v	J	J	•	U.	J

NOTES