Cross point mixer for telephones BU8241F / BU8241FS / BU8242F / BU8244F

The BU8241F, BU8241FS, BU8242F, and BU8244F are ICs developed for use with cordless telephones, and are equipped with switching and mixing functions. In addition, these ICs are provided with an internal power save function which enables the circuit to be run on line current if the power supply fails, by connecting a switch between the circuit and a new handset, reducing line current consumption. A series of these ICs is also under development, based on the number of circuits.

Product	No. of circuits
BU8241F / BU8241FS	8×8 matrix
BU8242F	6×6 matrix
BU8244F	4×4 matrix

-Applications

Telephones, telephone answering machines, cordless telephones

-Features

1) Eight input signals are selected and mixed by a cross-point, and output to eight pins (BU8241F/ BU8241FS).
2) A power save mode enables the circuit to run on line current if the power supply fails.
1. Line current consumption reduced

$$
(\operatorname{ldod} 2=580 \mu \mathrm{~A})
$$

2. IN1 \rightarrow OUT1 and IN2 \rightarrow OUT2 only are on

OBlock diagram

BU8241F/BU8241FS

BU8242F

Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power supply voltage	VDD	7	V
Input voltage	VIN	GND $-0.3 \sim V_{\text {DD }}+0.3$	V
Output voltage	Vout	GND - $0.3 \sim \mathrm{~V}_{\text {DD }}+0.3$	V
Power dissipation	Pd	550 (BU8241F / BU8242F) *1	mW
		800 (BU8241FS) *2	
		500 (BU8244F) *3	
Operating temperature	Topr	$-25 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

*1 Reduced by 5.5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
$* 2$ Reduced by 8 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
$* 3$ Reduced by 5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.

Recommended operating range $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Range	Unit	Conditions
Power supply voltage	V_{DD}	$2.7 \sim 5.5$	V	
Input voltage	$\nu_{\text {in }}$	$\leqq 0$	dBV	
Clock frequency	fCLK	$\leqq 1$	MHz	Duty 50%
Output load resistance	RL	$10 \leqq$	$\mathrm{k} \Omega$	Complete analog signal output terminal

Electrical characteristics（unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ ）

Parameter	Symbol	Min．	Typ．	Max．	Unit	Conditions
Supply current 1	ldD1	3.2	4.8	8.0	mA	Normal operation，with output pins open＊1
		1.5	2.5	4.0	mA	Normal operation，with output pins open＊2
Supply current 2	IdD2	400	580	760	$\mu \mathrm{A}$	In power save mode，with output pins open，at $V_{D D}=3 \mathrm{~V}$
Input high level voltage	V_{H}	0.8 VdD	－	Vdo	V	DIN，CLK，LATCH，and PS pins
Input low level voltage	VIL	GND	－	0.2 Vdo	V	DIN，CLK，LATCH，and PS pins
Input high level current		－	－	2	$\mu \mathrm{A}$	DIN，CLK，LATCH，and PS pins
Input low level current	IIL	－	－	2	$\mu \mathrm{A}$	DIN，CLK，LATCH，and PS pins
Output saturation high level voltage	VOH	$0.9 \mathrm{~V}_{\mathrm{DD}}$	－	－	V	$\mathrm{l}_{\text {о }}=-100 \mu \mathrm{~A}$ ，SOUT pin
Output saturation low level voltage	VoL	－	－	$0.1 \mathrm{~V}_{\text {dD }}$	V	Iol $=100 \mu \mathrm{~A}$ ，SOUT pin
VB pin voltage	Vve	2.13	2.50	2.88	V	No load
Input impedance	ZıN	48	80	112	k Ω	$f_{\text {in }}=1 \mathrm{kHz}, \quad v \text { in }=0 \mathrm{dBV},$ all analog input pins
〈Cross－point unit〉						
Gain	GT	－1	0	1	dB	$\mathrm{fin}_{\text {in }}=1 \mathrm{kHz}, \quad \nu$ in $=0 \mathrm{dBV}$
Distortion	DT	－	0.1	0.5	\％	$\mathrm{fin}_{\text {in }}=1 \mathrm{kHz}, \quad v$ in $=-10 \mathrm{dBV}$
Maximum output level	ν OM	0	3	－	dBV	$\mathrm{f}_{\mathrm{in}}=1 \mathrm{kHz}, \mathrm{THD}=5 \%$
Noise level 1	NT1	－	－80	-70	dBV	BPF $=400$ to 30 kHz ，4－channel mixing
Noise level 2	NT2	－	－90	－	dBV	BPF $=400$ to 30 kHz ，any one channel
Muting ratio	ν MR	－	－90	－80	dB	$\mathrm{fin}_{\text {in }}=1 \mathrm{kHz}, v$ in $=0 \mathrm{dBV}, \mathrm{BPF}=1 \mathrm{kHz} * 3$
Crosstalk	$\cup \mathrm{CT}$	－	－80	－70	dB	$\mathrm{fin}_{\text {in }}=1 \mathrm{kHz}, \quad v$ in $=0 \mathrm{dBV}, \mathrm{BPF}=1 \mathrm{kHz} * 4$
Minimum operating power supply voltage	VMin．	－	－	2.4	V	Operation is guaranteed at these values， but the characteristics noted on this table are not guaranteed．
〈Shift register and data latch unit〉						
Data setup time	tSU	100	－	－	nsec	DIN \rightarrow CLK
Data hold time	tH	100	－	－	nsec	CLK \rightarrow DIN
Clock latch time	tCL	100	－	－	nsec	CLK \rightarrow LATCH

＊1 Applicable to the BU8241F ，BU8241FS and BU8242F．
＊2 Applicable to the BU8244F．
＊3 On／Off ratio for the same channel．
＊4 Signal leakage between different channels．

- Pin descriptions

-Circuit operation
Sections (1) to (3) below describe operation using the BU8241F and BU8241FS as examples.
(1) Analog signals pass through an input amplifier and are supplied to eight switches.
The analog input signals are turned on and off by the switches and can thus be directed to any desired output amplifier. Using mixing resistors connected to the outputs of the switches, and feedback resistors, each output amplifier can output a signal that is a mix of up to eight input signals.
(2) The switch states are set using a 64-bit shift register and data latch.
The shift register reads the data at the rising edge of the shift clock, and stores it until the next data is read at the rising edge of the next shift clock.

After the 64 data bits have been read, supply of the rising edge of the clock is stopped, the LATCH pin is set to HIGH, and the switches are set. (See Figure 2 for the timing waveform.)
To change a switch setting, new setting data and shift clocks must be supplied for 64 bits of data, and the LATCH pin set to HIGH. If the LATCH pin is set to HIGH before 64 shift clocks have been supplied, or after more than 64 have been supplied, the switches cannot be set properly. (See Table 1 for the logic of switch settings.) Table. 1 Switch Sn stage (Note 6)

Data Dn (Note 6)	Switch Sn state (Note 6)
H	ON
L	OFF

(Note 11) Equivalent to $n=1 \sim 64$

Fig. 2 Timing waveform
(3) The power save mode is set as long as the PS pin is kept HIGH. (See Table 2 for the power save setting logic.) In the power save mode, the following are fixed: IN1 \rightarrow OUT1 (S1 = ON) and IN2 \rightarrow OUT2 (S10 = ON). (The other 62 switches are off.) In addition, the line current is reduced. When the PS pin goes from HIGH to LOW, the IC state switches from the power save mode back to normal operation. At that point, the state of the switch remains in the power save mode (only S1 and S10 are on). (See Figure 3 for the timing waveform in the power save mode.)
(4) With the BU8242F, of the 64 data bits, the following should be input at LOW level: $D_{3}, D_{4}, D_{11}, D_{12}, D_{17}$ to D_{32}, $D_{35}, D_{36}, D_{43}, D_{44}, D_{51}, D_{52}, D_{59}$, and D_{60}.
(5) With the BU8244F, DIN is 16 bits.

The ON path in the power save mode is the same for the BU8241F and BU8241FS, but the pertinent switches are S1 and S6.
Table. 2 Power save setting theory

Fig. 3 Power save mode timing waveform

-Application example

The BU8241F and BU8241FS are shown in this example.

Fig. 4
-Selecting attached components

1) Components related to power supply and bias

Fig. 5 Power supply and bias circuit
C602: Vod bias capacitor; normally $10 \mu \mathrm{~F}$
C603: VB decoupling capacitor; normally $10 \mu \mathrm{~F}$
2) Components related to input pins

Fig. 6 Input circuit
C605 to C612: DC cutoff capacitor. A value should be selected which does not attenuate voice signals in the high band ($300 \mathrm{~Hz} \sim$).
R605 to R612: Resistor which sets the input level. This should normally be left open.
The constants shown in Figure 8 are set to match the oscillator output impedance.
3) Components related to output pins

Fig. 7 Output circuit

C613 to C620: DC cutoff capacitor. A value should be selected which does not attenuate voice signals in the high band ($300 \mathrm{~Hz} \sim$).
R613 to R620: Output load resistors. This should normally be left open.
If using R615 to R620, select values that result in a total input impedance of $10 \mathrm{k} \Omega$ or greater on the output side. If the total impedance is less than $10 \mathrm{k} \Omega$, the load on the output amplifier of the cross-point mixer will be excessive, and signals may be lost.

-Operation notes

(1) Turning on the power supply

When the power supply is turned on, the shift register is in an indeterminate state. After turning on the power supply, switch settings should be entered by supplying shift clock pulses to shift 64 bits of data into the shift register, and then setting the LATCH pin to HIGH. (For the BU8244, send 16 clock pulses.)
(2) Setting serial data

If the number of bits shifted or clock pulses applied is less than or more than the number stated above, the switches will not be set properly. Never apply shift clock pulses when the LATCH pin is HIGH. Doing so will change the data latch contents.
(3) Drive impedance

The input impedance Zin is $80 \pm 32 \mathrm{k} \Omega$.
To suppress input gain and loss, we recommend using the drive impedance shown in the table below.
If the level is to be attenuated at the input pin, make sure the level is not affected by the internal resistance of the IC, as shown in Figure 10. This can cause gain and/or loss.

Gain/loss	Drive impedance
$1 \mathrm{~dB} \max$.	$4 \mathrm{k} \Omega \max$.
$0.5 \mathrm{~dB} \max$.	$2 \mathrm{k} \Omega \max$.

(4) Gain and noise when mixing signals

Increasing the number of signals mixed in a single output (increasing the number of switches connected to the same output amplifier that are on) causes a slight drop in gain. With the BU8241 and BU8241FS/ BU8242F, increasing the number of signals mixed in a single output (increasing the number of switches connected to the same output amplifier that are on) causes a slight increase in the noise level in terms of logic. If noise is a problem, we recommend limiting the number of signals mixed in a single output.
(5) Output load capacitance

The capacitance connected to GND in relation to an output pin (the output load capacitance) should be kept to 50 pF or lower. (BU8241F/BU8241FS/ BU8242F)

Fig. 8 Attenuation circuit with input

Electrical characteristic curves

Fig. 9 Supply current vs. power supply voltage

Fig. 10 Supply current vs.power supply voltage (power save mode)

Fig. 11 Gain vs. power supply voltage

- Electrical characteristic curves

Fig. 12 Maximum output level vs. power supply voltage

Fig. 13 Noise level vs.power supply voltage

Fig. 14 Mute ratio vs. power supply voltage

Fig. 15 Crosstalk vs.power supply voltage

Fig. 16 Input/output characteristic

Fig. 17 Output level when muted vs. input voltage

Fig. 18 Output leakage level vs. input voltage

External dimensions (Units: mm)

