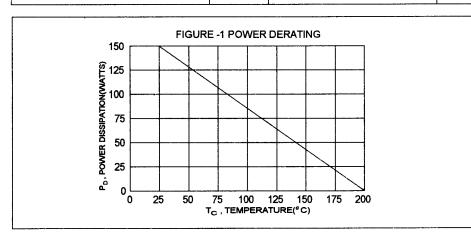


MEDIUM-POWER COMPLEMENTARY SILICON TRANSISTORS

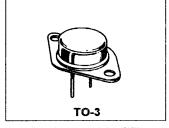
...designed for use as output devices in complementary general purpose amplifier applications.

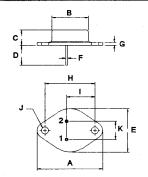
FEATURES:


- * High Gain Darlington Performance
- * DC Current Gain hFE = 3500(Typ) @ I_C = 10 A * Monolithic Construction with Built-in Base-Emitter Shunt Resistor

MAXIMUM RATINGS

Characteristic	Symbol	MJ4030 MJ4033	MJ4031 MJ4034	MJ4032 MJ4035	Unit
Collector-Emitter Voltage	V _{CEO}	60	80	100	V
COllector-Base Voltage	V _{сво}	60	80	100	V
Emitter-Base Voltage	V _{EBO}	5.0			V
Collector Current-Continuous -Peak	I _C	16 20			Α
Base Current	l _B	0.5			Α
Total Power Dissipation @T _c = 25°C Derate above 25°C	P _D		150 0.857		W/°C
Operating and Storage Junction Temperature Range	T _J ,T _{STG}	- 65 to +200			°C


THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance Junction to Case	Rθjc	1.17	°C/W

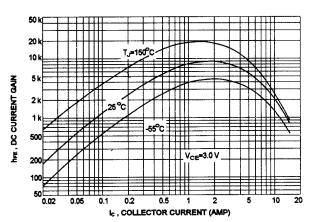
PNP	NPN
MJ4030	MJ4033
MJ4031	MJ4034
MJ4032	MJ4035

16 AMPERE COMPLEMENTARY SILICON POWER **DARLINGTON TRANSISTOR** 60-100 VOLTS **150 WATTS**

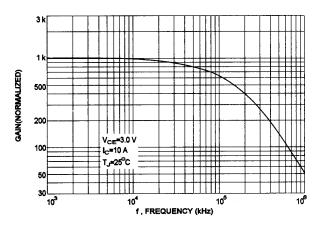
PIN 1.BASE 2.EMITTER COLLECTOR(CASE)

DIM	MILLIMETERS			
Dilvi	MIN	MAX		
Α	38.75	39.96		
В	19.28	22.23		
С	7.96	9.28		
D	11.18	12.19		
Ε	25.20	26.67		
F	0.92	1.09		
G	1.38	1.62		
Н	29.90	30.40		
ı	16.64	17.30		
J	3,88	4.36		
K	10.67	11.18		

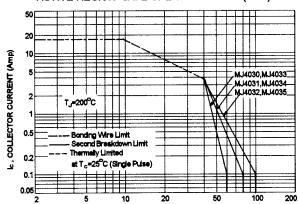
ELECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}C$ unless otherwise noted)


Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector - Emitter Sustaining Voltage (1) (I _C = 100 mA, I _B = 0) MJ4030,MJ4033 MJ4031,MJ4034 MJ4032,MJ4035	V _{CEO(sus)}	60 80 100		V
Collector Cutoff Current (V _{CE} = 30 V, I _B = 0) MJ4030,MJ4033 (V _{CE} = 40 V, I _B = 0) MJ4031,MJ4034 (V _{CE} = 50 V, I _B = 0) MJ4032,MJ4035	I _{CEO}		3.0 3.0 3.0	mA
Collector-Emitter Leakage Current $ (V_{\text{CE}} = 60 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}) \\ (V_{\text{CE}} = 80 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}) \\ (V_{\text{CE}} = 80 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}) \\ (V_{\text{CE}} = 60 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 80 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{BE}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{E}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{E}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{E}} = 1.0 \text{k ohm}, T_{\text{c}} = 150^{\circ}\text{C}) \\ (V_{\text{CE}} = 100 \text{ V}, R_{\text{E}} = 1.0 \text{k ohm}, T_{\text{c}} = 1$	^I CER		1.0 1.0 1.0 5.0 5.0 5.0	mA
Emitter Cutoff Current (V _{EB} = 5.0 V,I _C = 0)	IEBO		5.0	mA

ON CHARACTERISTICS (1)

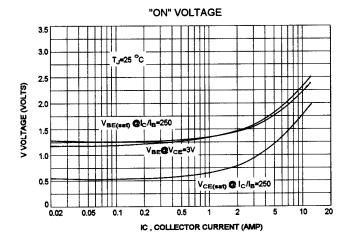

DC Current Gain (I _C = 10 A, V _{CE} = 3.0 V)	hFE	1000		
Collector-Emitter Saturation Voltage (I _C = 10 A, I _B = 40 mA) (I _C = 16 A, I _B = 80 mA)	V _{CE(sat)}		2.5 4.0	V
Base-Emitter On Voltage (I _C = 10 A, V _{CE} = 3.0 V)	V _{BE(on)}		3.0	V

⁽¹⁾ Pulse Test: Pulse width = 300 us, Duty Cycle $\leq 2.0\%$


DC CURRENT GAIN

SMALL-SIGNAL CURRENT GAIN

ACTIVE-REGION SAFE OPERATING AREA (SOA)



of a transistor:average junction temperature and second breakdown safe operating area curves indicate $$\rm I_{c^{-}}V_{CE}$$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate.

There are two limitation on the power handling ability

At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

VCE, COLLECTOR EMITTER VOLTAGE (VOLTS)

