Preferred Devices

NPN Silicon Power Transistors High Voltage Planar

The MJW18020 planar High Voltage Power Transistor is specifically Designed for motor control applications, high power supplies and UPS's for which the high reproducibility of DC and Switching parameters minimizes the dead time in bridge configurations.

Mains features include:

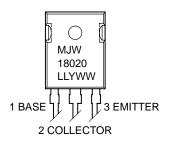
- High and Excellent Gain Linearity
- Fast and Very Tight Switching Times Parameters tsi and tfi
- Very Stable Leakage Current due to the Planar Structure
- High Reliability

Rating	Symbol	Value	Unit
Collector–Emitter Sustaining Voltage	V _{CEO}	450	Vdc
Collector-Base Breakdown Voltage	V _{CES}	1000	Vdc
Collector–Base Voltage	V _{CBO}	1000	Vdc
Emitter-Base Voltage	V _{EBO}	9.0	Vdc
Collector Current – Continuous – Peak (Note 1.)	I _C	30 45	Adc
Base Current – Continuous – Peak (Note 1.)	I _B	6.0 10	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P _D	250 2.0	Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	ů

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction–to–Case	$R_{\theta JC}$	0.5	°C/W
Thermal Resistance, Junction–to–Ambient	$R_{\theta JA}$	50	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	T _L	275	°C

^{1.} Pulse Test: Pulse Width = 5 μs , Duty Cycle \leq 10%.


ON Semiconductor™

http://onsemi.com

30 AMPERES 1000 VOLTS BV_{CES} 450 VOLTS BV_{CEO} 250 WATTS

MARKING DIAGRAM

MJW18020= Device Code

LL = Location Code

Y = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MJW18020	TO-247	30 Units/Rail

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage ($I_C = 100 \text{ mAdc}, I_B = 0$)	V _{CEO(sus)}	450	_	_	Vdc
Collector Cutoff Current $(V_{CE} = Rated V_{CEO}, I_B = 0)$	I _{CEO}	-	-	100	μAdc
Collector Cutoff Current (V_{CE} = Rated V_{CES} , V_{EB} = 0) (T_{C} =	I _{CES} = 125°C)	-	_	100 500	μAdc
Emitter Cutoff Current (V _{CE} = 9 Vdc, I _C = 0)	I _{EBO}	-	_	100	μAdc
ON CHARACTERISTICS					
$(I_C = 10 \text{ Adc } V_{CE} = 2 \text{ Vdc})$	h _{FE} = 125°C)	14 - 8	30 16	34	
$(I_C = 20 \text{ Adc V}_{CE} = 2 \text{ Vdc})$ (T _C =	= 125°C) = 125°C)	5 5.5 4	14 9 7	_ _ _	
$(I_C = 10 \text{ mAdc V}_{CE} = 5 \text{ Vdc})$		14	25	_	
Base–Emitter Saturation Voltage $(I_C = 10 \text{ Adc}, I_B = 2 \text{ Adc})$ $(I_C = 20 \text{ Adc}, I_B = 4 \text{ Adc})$	V _{BE(sat)}	_	0.97 1.15	1.25 1.5	Vdc
$(I_C = 20 \text{ Adc}, I_B = 4 \text{ Adc})$	V _{CE(sat)} = 125°C)	- - -	0.2 0.3 0.5	0.6 - 1.5	Vdc
(1C =	= 125°C)	_	0.9	2.0	
DYNAMIC CHARACTERISTICS					
Current Gain Bandwidth Product $(I_C = 1 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f_{test} = 1 \text{ MHz})$	f _T	_	13	_	MHz
Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f_{test} = 1 \text{ MHz})$	C _{ob}	-	300	500	pF
Input Capacitance (V _{EB} = 8.0)	C _{ib}	-	7000	9000	pF
SWITCHING CHARACTERISTICS: Resistive Load (D.C. = 109)	%, Pulse Width = 70 μs)			
Turn–On Time $ (I_C = 10 \text{ Adc}, I_{B1} = I_{B2} = Vcc = 125 \text{ V}) $		-	540	750	ns
Storage Time	t _s	_	4.75	6	μs
Fall Time	t _f	_	380	500	ns
Turn-Off Time	t _{Off}	_	5.2	6.5	μs
Turn–On Time $(I_C= 20 \text{ Adc}, I_{B1} = I_{B2} =$		_	965	1200	ns
Storage Time Vcc = 125 V)	t _s	_	2.9	3.5	μs
Fall Time	t _f	_	350	500	ns
Turn-Off Time	t _{Off}	_	3.25	4	μs
SWITCHING CHARACTERISTICS: Inductive Load (V _{clamp} = 3	00 V , Vcc = 15 V, L = 2	200 μΗ)	- II		1
Fall Time $(I_C = 10 \text{ Adc}, I_{B1} = I_{B2} =$			142	250	ns
Storage Time	t _{si}	-	4.75	6	μs
Crossover Time	t _C	_	320	500	ns
Fall Time $(I_C = 20 \text{ Adc}, I_{B1} = I_{B2} =$		_	350	500	ns
Storage Time	t _{si}	_	3.0	3.5	μs
Crossover Time	t _C	_	500	750	ns

TYPICAL CHARACTERISTICS

100

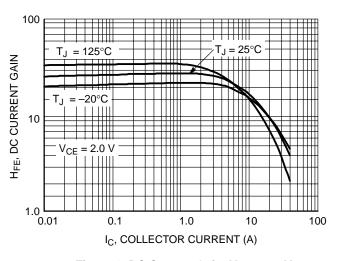
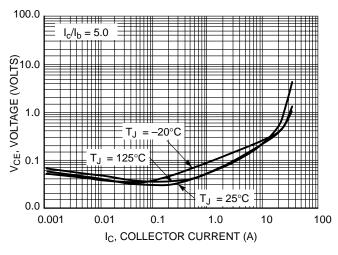



Figure 1. DC Current Gain, V_{CE} = 2.0 V

Figure 2. DC Current Gain, V_{CE} = 5.0 V

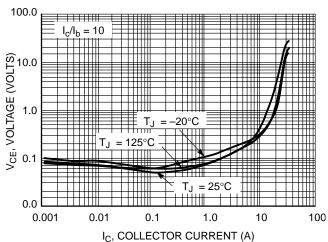
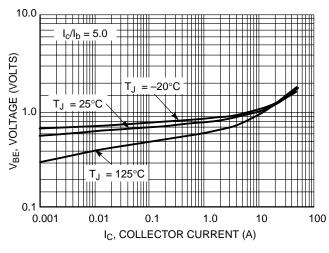



Figure 3. Typical Collector–Emitter Saturation Voltage, $I_C/I_B = 5.0$

Figure 4. Typical Collector–Emitter Saturation Voltage, $I_C/I_B = 10$

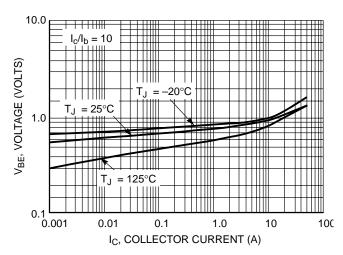


Figure 5. Typical Base–Emitter Saturation Voltage, $I_C/I_B = 5.0$

Figure 6. Typical Base–Emitter Saturation Voltage, $I_C/I_B = 10$

TYPICAL CHARACTERISTICS

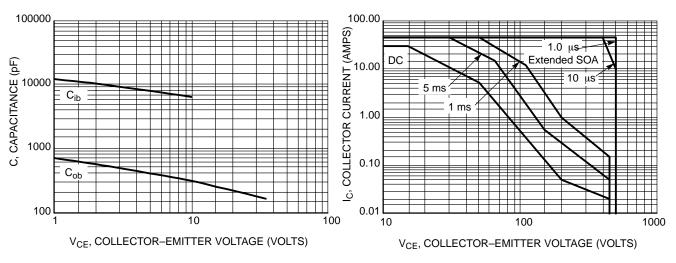


Figure 7. Typical Capacitance

Figure 8. Forward Bias Safe Operating Area

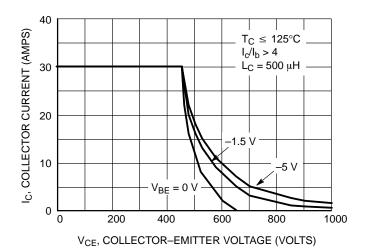
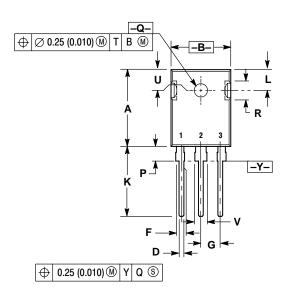
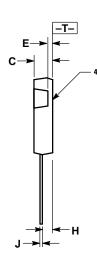




Figure 9. Reverse Bias Safe Operating Area

PACKAGE DIMENSIONS

TO-247 CASE 340K-01 **ISSUE C**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	19.7	20.3	0.776	0.799
В	15.3	15.9	0.602	0.626
С	4.7	5.3	0.185	0.209
D	1.0	1.4	0.039	0.055
Е	1.27 REF		0.050 REF	
F	2.0	2.4	0.079	0.094
G	5.5 BSC		0.216 BSC	
Н	2.2	2.6	0.087	0.102
J	0.4	0.8	0.016	0.031
K	14.2	14.8	0.559	0.583
L	5.5 NOM		0.217 NOM	
Р	3.7	4.3	0.146	0.169
Q	3.55	3.65	0.140	0.144
R	5.0 NOM		0.197 NOM	
U	5.5 BSC		0.217 BSC	
٧	3.0	3.4	0 118	0 134

STYLE 3:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi-Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.

MJW18020/D