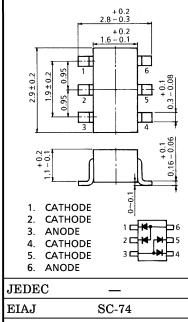
TOSHIBA DIODE SILICON EPITAXIAL PLANAR TYPE

H N 1 D 0 1 F

ULTRA HIGH SPEED SWITCHING APPLICATION.

Small Package


 $: V_{F(3)} = 0.92V \text{ (Typ.)}$ Low Forward Voltage Fast Reverse Recovery Time : $t_{rr} = 1.6$ ns (Typ.) Small Total Capacitance $: C_T = 2.2pF (Typ.)$

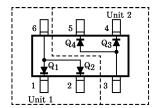
MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Maximum (Peak) Reverse Voltage	v_{RM}	85	V	
Reverse Voltage	$V_{\mathbf{R}}$	80	V	
Maximum (Peak) Forward Current	I_{FM}	300 (*)	mA	
Average Forward Current	IO	100 (*)	mA	
Surge Current (10ms)	I_{FSM}	2 (*)	Α	
Power Dissipation	P	300 (*)	mW	
Junction Temperature	T_{j}	125	°C	
Storage Temperature	$\mathrm{T_{stg}}$	-55~125	°C	

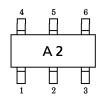
(*) This is the Maximum Ratings of single diode (Q_1 or Q_2 or Q3 or Q4). In the case of using Unit 1 and Unit 2 independently or simultaneously, the Maximum Ratings per diode is 75% of the single diode one.

Unit in mm

1-3K1A


Weight: 0.015g

TOSHIBA


ELECTRICAL CHARACTERISTICS (Q₁, Q₂, Q₃, Q₄ COMMON, Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Forward Voltage	V _{F(1)}	I _F =1mA	_	0.61	_	V
	$V_{F(2)}$	$I_F = 10 \text{mA}$	_	0.74	_	
	$V_{F(3)}$	$I_{\mathbf{F}} = 100 \text{mA}$	_	0.92	1.20	
Reverse Current —	I _{R (1)}	$V_R = 30V$	_	_	0.1	μ A
	$I_{R(2)}$	$V_R = 80V$	_	_	0.5	
Total Capacitance	C_{T}	$V_R = 0$, $f = 1$ MHz	_	2.2	4.0	pF
Reverse Recovery Time	t _{rr}	$I_{\mathbf{F}} = 10 \text{mA}$ (Fig.1)	_	1.6	4.0	ns

PIN ASSIGNMENT (TOP VIEW)

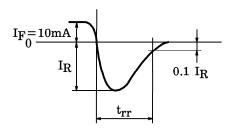
MARKING

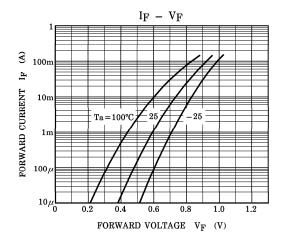
- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

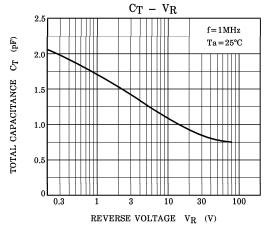
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

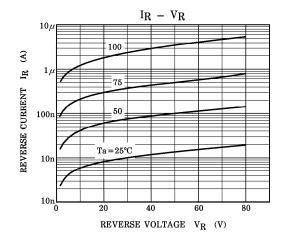
 The information contained herein is subject to change without notice.

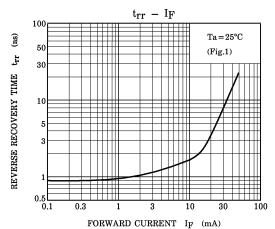
1997-08-18 1/2 TOSHIBA HN1D01F


Fig.1 REVERSE RECOVERY TIME (t_{rr}) TEST CIRCUIT


INPUT WAVEFORM


$-6V \longrightarrow IN \circ OUT \\ -6V \longrightarrow IN \circ OUT \\ \hline 50ns \longrightarrow IN \circ OSCILLOSCOPE$


PULSE GENERATOR ($R_{OUT} = 50\Omega$)


OUTPUT WAVEFORM

