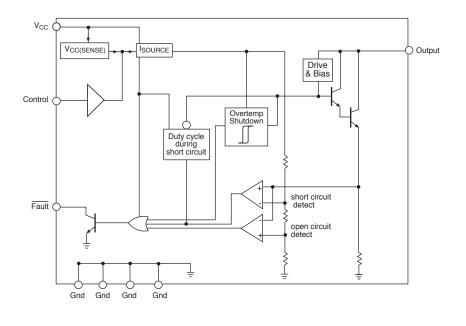


Single Lamp Driver IC

Description

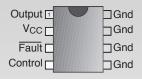

This ASIC provides up to 350mA of drive current for powering bulbs. The typical application for this part is for use in airbag systems using a type 194 bulb. On chip diagnostics provide open circuit and short circuit detection in the output on mode. In addition, the output

driver will turn on (sink current) when V_{CC} is low. Fault is an active-low output which reports in the output-on mode. Internal pull-up circuitry is provided to ensure the output pin turns on when the Control pin is floating.

Absolute Maximum Ratings

Storage Temperature65°C to 150°C
V _{CC} Fault, Control0.5V to 6V
ESD Capability (Human Body Model)2kV
Peak Transient Voltage (output off mode, output pin only)
(26V load Dump @ 14V V _{BAT})
Lead Temperature Soldering
Reflow (SMD styles only) 60 sec. max above 183°C, 230°C peak

Block Diagram



Features

- Fault Detection
 Open Circuit
 Short Circuit
 Over Temperature
- V_{CC} Sense: Output Turns On with Loss of V_{CC}
- Low Standby Current

Package Options

8 Lead SO (internally fused leads)

Cherry Semiconductor Corporation 2000 South County Trail, East Greenwich, RI 02818 Tel: (401)885-3600 Fax: (401)885-5786 Email: info@cherry-semi.com Web Site: www.cherry-semi.com

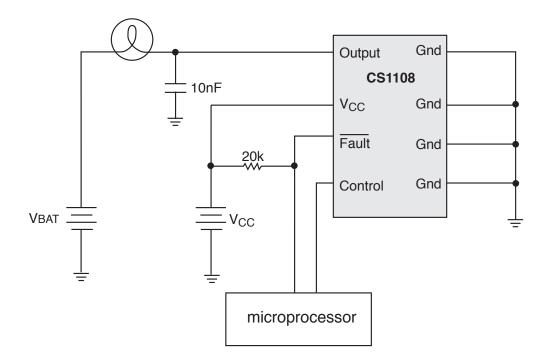
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNI
Supply Requirements					
V _{CC} Quiescent Current	Output ON		3	6	mA
V _{CC} Quiescent Current	Output OFF		100	250	μΑ
Output					
Leakage Current	$V_{BAT} = 14V$		16	100	μΑ
Saturation Voltage	$I_{OUTPUT} = 350 \text{mA}$ $I_{OUTPUT} = 180 \text{mA}$		1.1 0.9	1.5 1.3	V V
V _{OUTPUT} (self-bias)	V_{CC} < 4.5V, I $_{OUTPUT}$ < 200mA			3.5	V
Short Circuit Current Open Circuit Current	Output in the ON state	350 20	500 40	650 60	mA mA
Control - Input					
Input Voltage	Logic = High Logic = Low	2.0		0.8	V V
Input Current	$\begin{aligned} &\text{Logic} = V_{CC} \\ &\text{Logic} = 0V \end{aligned}$	-50	20 -20	40	μ Α μ Α
Fault Output - (Open Collecto	r)				
Output Low Voltage	$I_{FAULT} = 250\mu A \text{ (sink)}$		0.24	0.40	V
Overtemperature Shutdown					
T _J Output Disable Threshold	(guaranteed by design)	150	180	_	°C
T _I Hysteresis	(guaranteed by design)	5			°C

 $Note: A \ fault \ signal \ will \ be \ shown \ (at \ the \ fault \ pin) \ during \ inrush \ as \ the \ short \ circuit \ threshold \ is \ exceeded.$

Package Pin Description			
PACKAGE PIN #	PIN SYMBOL	FUNCTION	
8 Lead SO Narrow			
1	Output	Open collector output.	
2.	V_{CC}	5V regulated supply input.	
3	Fault	Open collector diagnostic output low during open load, short circuit and overtemperature conditions.	
4	Control	TTL compatible input.	
5, 6, 7, 8	Ground	Signal ground.	

Circuit Description

The CS1108 lamp driver IC provides up to 350mA of drive current in a low-side configuration. The Output driver pin is controlled through the TTL compatible Control input pin. A high condition on the Control pin turns the output pin on.

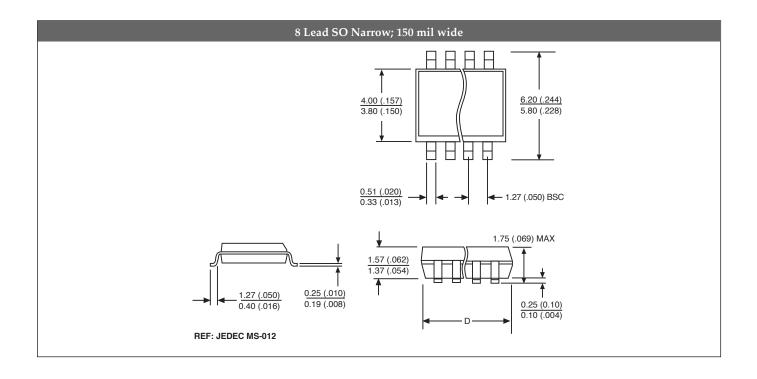

The Fault pin reports short circuit, open circuit, and overtemperature conditions on the IC. If a fault is present, the open collector output Fault pin will be low. Typical numbers for faults are: exceeding 500mA of drive current will report a short circuit. Less than 40mA (typical) will report an open circuit. A temperature fault will be reported when the die temperature exceeds 180°C (typical). Faults are only reported when the Control pin is high, due to the low quiescent current when the Control pin is low and the output device is turned off.

The CS1108 is designed to provide overcurrent protection by duty cycle control. When the lamp current exceeds the internally programmed current limit threshold (typically 500mA), the output enters duty cycle mode to reduce power dissipation of the IC to a safe level.

Typical lamps have a low resistance when off and the current will exceed the current limit threshold during the initial inrush period. During this inrush time, the IC will be operating in the duty cycle mode. Due to characteristics of lamps in this mode, they may appear dimly lit. This condition will persist for a brief time until the lamp resistance has increased enough to reduce it's current below the threshold. Once this occurs the lamp will appear at full brightness. During the inrush period the Fault pin will be forced low indicating that duty cycle mode is in operation.

Thermal protection has been designed into this IC. Should duty cycle mode operate for an extended amount of time and the power limitations of the IC are exceeded the IC die temperature will rise. Once the die temperature reaches the thermal temperature limit, the internal circuitry will shutoff the output and the lamp will turn off. Once the die temperature lowers below the thermal threshold then the output will be allowed to turn back on.

Applications Diagram



Package Specification

PACKAGE DIMENSIONS IN mm (INCHES)

	D			
Lead Count	Me	English		
	Max	Min_	Max	Min
8 Lead SO Narrow	5.00	4.80	.197	.189

PACKAGE THERMAL DATA			
Therm	al Data	8 Lead SO Narrow (internally fused leads)	
$R_{\Theta JC}$	typ	25	°C/W
$R_{\Theta JA}$	typ	110	°C/W

Ordering Information		
Part Number	Description	
CS1108EDF8	8 Lead SO Narrow (internally fused leads)	
CS1108EDFR8	8 Lead SO Narrow (internally fused leads) (tape & reel)	

Cherry Semiconductor Corporation reserves the right to make changes to the specifications without notice. Please contact Cherry Semiconductor Corporation for the latest available information.