SANbox2-16 Fibre Channel Switch

Installation Guide

Information furnished in this manual is believed to be accurate and reliable. However, QLogic Corporation assumes no responsibility for its use, nor for any infringements of patents or other rights of third parties which may result from its use. QLogic Corporation reserves the right to change product specifications at any time without notice. Applications described in this document for any of these products are for illustrative purposes only. QLogic Corporation makes no representation nor warranty that such applications are suitable for the specified use without further testing or modification. QLogic Corporation assumes no responsibility for any errors that may appear in this document.

QLogic, SANbox, SANbox2, SANblade, SANsurfer, and Multistage are trademarks or registered trademarks of QLogic Corporation.
Java and Solaris are registered trademarks of Sun Microsystems, Inc.
Pentium is a registered trademark of Intel Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft, Windows NT, and Windows 2000, and Internet Explorer are registered trademarks of Microsoft Corporation.
Netscape Navigator is a registered trademark of Netscape Communications Corporation.
Red Hat is a registered trademark of Red Hat Software Inc.
SANmark is a registered trademark of the Fibre Channel Industry Association.
All other brand and product names are trademarks or registered trademarks of their respective owners.

Document Revision History

Revision A, Release, June, 2003

Table of Contents

Section 1 Introduction
1.1 Intended Audience 1-1
1.2 Related Materials 1-2
1.3 Safety Notices 1-3
1.4 Sicherheitshinweise 1-3
1.5 Notes informatives relatives à la sécurité 1-3
1.6 Communications Statements 1-4
1.6.1 Federal Communications Commission (FCC) Class A Statement 1-4
1.6.2 Canadian Department of Communications Class A Compliance Statement 1-4
1.6.3 Avis de conformité aux normes du ministère des Communications du Canada 1-5
1.6.4 CE Statement 1-5
1.6.5 VCCI Class A Statement 1-6
1.6.6 BSMI Class A Statement 1-6
1.7 Laser Safety Information 1-7
1.8 Electrostatic Discharge Sensitivity (ESDS) Precautions 1-7
1.9 Accessible Parts 1-8
1.10 Pièces Accessibles 1-8
1.11 Zugängliche Teile 1-8
1.12 General Public License 1-9
1.12 .1 Preamble 1-9
1.12.2 Terms And Conditions For Copying, Distribution And Modification 1-10
1.12.3 How to Apply These Terms to Your New Programs 1-14
1.13 Technical Support 1-16
1.13.1 Availability 1-16
1.13.2 Training 1-16
1.13 .3 Contact Information 1-16
Section 2 General Description
2.1 Chassis Controls and LEDs 2-2
2.1.1 Power Switches 2-2
2.1.2 Maintenance Button 2-2
2.1.3 Chassis LEDs 2-3
2.1.3.1 Over Temperature LED (Amber) 2-3
2.1.3.2 Fan Fail LED (Amber) 2-3
2.1.3.3 Heartbeat LED (Amber) 2-4
2.1.3.4 Input Power LED (Green) 2-4
2.2 Fibre Channel Ports 2-4
2.2.1 Port LEDs 2-5
2.2.1.1 Logged-In LED 2-5
2.2.1.2 Activity LED 2-5
2.2.2 Small Form-Factor Pluggable (SFP) Transceivers 2-6
2.2.3 Port Modes 2-6
2.2.3.1 Fabric Ports 2-7
2.2.3.2 Translated Loop Port 2-7
2.2.3.3 Expansion Port 2-7
2.3 Ethernet Port 2-8
2.4 Serial Port. 2-8
2.5 Power Supplies 2-9
2.6 Fans 2-10
2.7 Switch Management 2-11
Section 3 Planning
3.1 Devices 3-1
3.2 Multiple Chassis Fabrics 3-2
3.2.1 Domain ID, Principal Priority, and Domain ID Lock 3-2
3.2.2 Common Topologies 3-3
3.2.2.1 Cascade Topology 3-3
3.2.2.2 Mesh Topology 3-4
3.2.2.3 Multistage Topology 3-5
3.3 Performance 3-6
3.3.1 Distance 3-6
3.3.2 Bandwidth 3-7
3.3.3 Latency 3-7
3.4 Device Access 3-8
3.4.1 Soft Zones 3-9
3.4.2 Access Control List Hard Zones 3-9
3.4.3 Virtual Private Fabric Hard Zones 3-10
3.5 Fabric Management 3-10
3.6 Security 3-11
Section 4 Installation
4.1 Site Requirements 4-1
4.1.1 Fabric Management Workstation 4-1
4.1.2 Switch Power Requirements 4-1
4.1.3 Environmental Conditions 4-2
4.2 Installing a Switch 4-2
4.2.1 Mount the Switch 4-3
4.2.2 Install SFP Transceivers 4-4
4.2.3 Connect the Switch to AC Power 4-5
4.2.4 Connect the Management Workstation to the Switch 4-8
4.2.4.1 Ethernet Connection 4-9
4.2.4.2 Serial Connection 4-9
4.2 .5 Install SANbox Manager 4-10
4.2.6 SANsurfer Management Suite Disk - Windows Installation 4-11
4.2.7 SANsurfer Management Suite Disk - Linux Installation 4-12
4.2.8 SANsurfer Management Suite Disk - Solaris Installation 4-13
4.2.9 SANbox2 Installation Disk - Windows Installation 4-14
4.2.10 SANbox2 Installation Disk - Linux Installation 4-14
4.2.11 SANbox2 Installation Disk - Solaris Installation 4-14
4.2.12 Configure the Switch 4-15
4.2.13 Configure the Ports. 4-16
4.2.14 Cable Devices to the Switch 4-16
4.3 Install Firmware 4-17
4.3.1 Using SANbox Manager to Install Firmware 4-17
4.3.2 Using the CLI to Install Firmware 4-18
4.3.3 Using FTP and the CLI to Install Firmware 4-19
4.4 Powering Down a Switch 4-20
Section 5 Diagnostics/Troubleshooting
5.1 POST Diagnostics 5-1
5.1.1 Heartbeat LED Blink Patterns 5-1
5.1.1.1 Normal (all pass) 5-1
5.1.1.2 Maintenance Mode Pattern 5-2
5.1.1.3 Internal Firmware Failure Blink Pattern 5-2
5.1.1.4 Fatal Error Blink Pattern 5-2
5.1.1.5 Configuration File System Error Blink Pattern 5-2
5.1.2 Logged-In LED Indications 5-5
5.1.2.1 E_Port Isolation 5-6
5.1.2.2 Excessive Port Errors 5-7
5.2 Chassis Diagnostics 5-9
5.2.1 Chassis Over Temperature LED is Illuminated 5-10
5.2.2 Input Power LED Is Extinguished 5-10
5.2.3 Fan Fail LED is Illuminated. 5-10
5.2.4 Output Power LED Is Extinguished 5-11
5.2.5 Power Supply Over Temperature LED is Illuminated 5-11
5.3 Recovering a Switch. 5-12
5.3.1 Maintenance - Exit 5-13
5.3.2 Maintenance - Image Unpack 5-13
5.3.3 Maintenance - Reset Network Config 5-14
5.3.4 Maintenance - Reset Password File 5-14
5.3.5 Maintenance - Copy Log Files 5-14
5.3.6 Maintenance - Remove Switch Config. 5-14
5.3.7 Maintenance - Remake Filesystem 5-14
5.3.8 Maintenance - Reset Switch 5-15
5.3.9 Maintenance - Show Firmware Versions 5-15
5.3.10 Maintenance - Set Active Image 5-15
Section 6 Removal/Replacement
6.1 SFP Transceivers 6-2
6.2 Power Supplies 6-3
6.3 Fans 6-4
Appendix A Specifications
A. 1 Fabric Specifications A-1
A. 2 Maintainability A-2
A. 3 Fabric Management A-3
A. 4 Dimensions. A-3
A. 5 Electrical A-3
A. 6 Environmental A-4
A. 7 Regulatory Certifications A-5
A. 8 Shortwave Laser SFP 1G/2G (multi-mode) A-6
A. 9 Longwave Laser SFP 1G/2G (single-mode) A-7
Appendix B Command Line Interface
B. 1 Logging On to a Switch B-1
B. 2 Command Syntax B-2
B. 3 Commands B-3
Admin Command B-4
Alias Command B-5
Config Command B-7
Date Command B-10
Fallback Command. B-11
Hardreset Command B-12
Help Command B-13
History Command B-14
Hotreset Command B-15
Image Command B-16
Lip Command B-17
Passwd Command B-18
Ping Command B-19
Ps Command B-20
Quit Command B-21
Reset Command B-22
Set Command B-27
Set Config Command B-29
Set Log Command B-39
Set Port Command B-42
Set Setup Command B-43
Show Command B-48
Show Config Command B-60
Show Log Command B-63
Show Perf Command B-65
Show Setup Command. B-67
Shutdown Command B-70
Test Command B-71
Uptime Command. B-74
User Command B-75
Whoami Command B-77
Zone Command B-78
Zoneset Command B-82
Zoning Command B-85
Glossary
Index
Figures
Figure Page
2-1 SANbox2-16 Fibre Channel Switch. 2-1
2-2 Chassis Controls and LEDS 2-2
2-3 Chassis LEDs 2-3
2-4 Fibre Channel Ports 2-4
2-5 Port LEDs 2-5
2-6 SFP Transceiver 2-6
2-7 Ethernet Port 2-8
2-8 Serial Port and Pin Identification 2-8
2-9 Power Supply Components 2-9
2-10 Fans 2-10
3-1 Cascade-with-a-Loop Topology 3-3
3-2 Mesh Topology 3-4
3-3 Multistage Topology 3-5
4-1 SANbox2-16 Fibre Channel Switch. 4-2
4-2 Installing Rack Mount Brackets 4-4
4-3 Ethernet and Serial Cable Connections 4-8
5-1 Logged-In LED 5-5
5-2 Logged-In LED Indications 5-5
5-3 Chassis and Power Supply LEDs 5-9
6-1 SFP Transceiver Installation 6-2
6-2 Power Supply Removal 6-3
6-3 Fan Removal 6-4
6-4 Fan Installation for Switch Model SB2A-16B 6-5
Tables
Table Page
2-1 Serial Port Pin Identification 2-9
3-1 Port-to-Port Transmission Combinations 3-7
3-2 Port-to-Port Latency 3-7
4-1 Management Workstation Requirements 4-1
B-1 Command-Line Completion B-2
B-2 Commands Listed by Authority Level B-3
B-3 Switch Configuration Defaults B-23
B-4 Port Configuration Defaults B-23
B-5 Alarm Threshold Configuration Defaults B-24
B-6 Zoning Configuration Defaults B-25
B-7 SNMP Configuration Defaults B-25
B-8 System Configuration Defaults B-26
B-9 Set Config Port Parameters B-29
B-10 Set Config Switch Parameters B-32
B-11 Set Config Threshold Parameters B-34
B-12 Set Config Zoning Parameters B-35
B-13 SNMP Configuration Settings B-43
B-14 System Configuration Settings B-44
B-15 Show Port Parameters B-50

Section 1 Introduction

This manual describes the features and installation of the SANbox2-16 Fibre Channel switch, firmware version 2.0. This manual is organized as follows:

- Section 1 describes the intended audience, related materials, safety notices, communications statements, laser safety information, electrostatic discharge sensitivity precautions, accessible parts, general program license, and technical support.
- Section 2 is an overview of the switch. It describes indicator LEDs and all user controls and connections.
- Section 3 describes the factors to consider when planning a fabric.
- Section 4 explains how to install and configure the switch.
- Section 5 describes the diagnostic methods and troubleshooting procedures.
- Section 6 describes the removal/replacement procedures for all field replaceable units (FRUs).
■ Appendix A lists the switch specifications.
■ Appendix B describes the Telnet command line interface.
Please read the communications statements and laser safety information later in this section. Use this manual with the SANbox2-8c/16 Switch Management User's Guide.

1.1
 Intended Audience

This manual introduces users to the switch and explains its installation and service. It is intended for users who are responsible for installing and servicing network equipment.

1.2
 Related Materials

The following manuals and materials are referenced in the text and/or provide additional information.

■ SANbox2-8c/16 Switch Management User's Guide, Publication Number 59022-06.

- Fibre Channel-Arbitrated Loop (FC-AL-2) Rev. 6.8.

■ Fibre Channel-Private Loop SCSI Direct Attach (FC-PLDA) NCITS TR-19:1998

■ Fibre Channel-10-bit Interface Rev. 2.3.

- Definitions of Managed Objects for the Fabric Element in Fibre Channel Standard (draft-ietf-ipfc-fabric-element-mib-04.txt).
The Fibre Channel Standards are available from:
Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112-5776 Phone: (800) 854-7179 or (303) 397-7956
Fax: (303) 397-2740.

1.3

Safety Notices

A Warning notice indicates the presence of a hazard that has the potential of causing personal injury.

4-3, 4-5, 6-1
A Caution notice indicates the presence of a hazard that has the potential of causing damage to the equipment.

4-3, 5-14, 6-4

1.4
 Sicherheitshinweise

Ein Warnhinweis weist auf das Vorhandensein einer Gefahr hin, die möglicherweise Verletzungen zur Folge hat.

4-3, 4-6, 6-1
Ein Vorsichtshinweis weist auf das Vorhandensein einer Gefahr hin, die möglicherweise Geräteschäden zur Folge hat.

4-3, 5-14, 6-4

1.5
 Notes informatives relatives à la sécurité

Une note informative Avertissement indique la présence d'un risque pouvant entraîner des blessures.

4-3, 4-5, 6-1
Une note informative Attention indique la présence d'un risque pouvant entraîner des dégâts matériels.

4-3, 5-14, 6-4
1.6

Communications Statements

The following statements apply to this product. The statements for other products intended for use with this product appear in their accompanying manuals.

1.6.1

Federal Communications Commission (FCC) Class A Statement

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy, and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area may cause unacceptable interference, in which case the user will be required to correct the interference at their own expense.
Neither the provider nor the manufacturer is responsible for any radio or television interference caused by unauthorized changes or modifications to this equipment. Unauthorized changes or modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- This device may not cause harmful interference, and
- This device must accept any interference received, including interference that may cause undesired operation.

1.6.2
 Canadian Department of Communications Class A Compliance Statement

This equipment does not exceed Class A limits for radio emissions for digital apparatus, set out in Radio Interference Regulation of the Canadian Department of Communications. Operation in a residential area may cause unacceptable interference to radio and TV reception requiring the owner or operator to take whatever steps necessary to correct the interference.

1.6.3
 Avis de conformité aux normes du ministère des Communications du Canada

Cet équipement ne dépasse pas les limites de Classe A d'émission de bruits radioélectriques por les appareils numériques, telles que prescrites par le Réglement sur le brouillage radioélectrique établi par le ministère des Communications du Canada. L'exploitation faite en milieu résidentiel peut entraîner le brouillage des réceptions radio et télé, ce qui obligerait le propriétaire ou l'opérateur à prendre les dispositions nécwssaires pour en éliminer les causes.

1.6.4
 CE Statement

The CE symbol on the equipment indicates that this system complies with the EMC (Electromagnetic Compatibility) directive of the European Community (89/336/EEC) and to the Low Voltage (Safety) Directive (73/23/EEC). Such marking indicates that this system meets or exceeds the following technical standards:

■ EN60950/A11:1997 - "Safety of Information Technology Equipment, Including Electrical Business Equipment".
■ EN60825-1/A11:1996 - "Safety of Laser Products, Part 1".

- EN55022:1998 - "Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment".
■ EN55024-1:1998 - "Electromagnetic compatibility - Generic immunity standard Part 1: Residential commercial, and light industry."
■ IEC1000-4-2:1995 - "Electrostatic Discharge Immunity Test"
■ IEC1000-4-3:1995 - "Radiated, Radio-Frequency, Electromagnetic Field Immunity Test"
■ IEC1000-4-4:1995 - "Electrical Fast Transient/Burst Immunity Test"
■ IEC1000-4-5:1995 - "Surge Immunity Test"
■ IEC1000-4-6:1996 - "Immunity To Conducted Disturbances, Induced By Radio-Frequency Fields"

■ IEC1000-4-8:1993 - "Power Frequency Magnetic Field Immunity Test"
■ IEC1000-4-11:1994 - "Voltage Dips, Short Interruptions And Voltage Variations Immunity Tests"
■ EN61000-3-2:1995 - "Limits For Harmonic Current Emissions (Equipment Input Current Less Than/Equal To 16 A Per Phase)" Class A

- EN61000-3-3:1995 - "Limitation Of Voltage Fluctuations And Flicker In Low-Voltage Supply Systems For Equipment With Rated Current Less Than Or Equal To 16 A"

1．6．5

VCCI Class A Statement

この装置は，情報処理装置等電波障害自主規制協議会（VCCI）の基準 に基づくクラス A 情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ず るよう要求されることがあります。

This is a Class A product based on the standard of the Voluntary Control Council For Interference by Information Technology Equipment（VCCI）．If this equipment is used in a domestic environment，radio disturbance may arise．When such trouble occurs，the user may be required to take corrective actions．

1．6．6

BSMI Class A Statement

> 警告使用者:
> 這是甲類的謍訊䗪品, 在居住的環境中快用時, 可能會造成射

Warning：
This is a Class A product．In a domestic environment，this product may cause radio interference in which case the user will be required to take adequate measures．

1.7

Laser Safety Information

This product may use Class 1 laser optical transceivers to communicate over the fiber optic conductors. The U.S. Department of Health and Human Services (DHHS) does not consider Class 1 lasers to be hazardous. The International Electrotechnical Commission (IEC) 825 Laser Safety Standard requires labeling in English, German, Finnish, and French stating that the product uses Class 1 lasers. Because it is impractical to label the transceivers, the following label is provided in this manual.

```
CLASS 1 LASER PRODUCT
```

LASER KLASSE 1
LUOKAN 1 LASERLAITE
APPAREIL A LASER DE CLASSE 1
TO IEC 825 (1984) + CENELEC HD 482 S1

1.8
 Electrostatic Discharge Sensitivity (ESDS) Precautions

The assemblies used in the switch chassis are ESD sensitive. Observe ESD handling procedures when handling any assembly used in the switch chassis.

1.9

Accessible Parts

The Field Replaceable Units (FRUs) in the SANbox2-16 switch are the following:
■ Small Form-Factor Pluggable (SFP) optical transceivers
■ Power supplies
■ Fans
Refer to Section 6 Removal/Replacement for more information.

1.10

Pièces Accessibles

Les pièces remplaçables, Field Replaceable Units (FRU), du commutateur SANbox2-16 Fibre Channel Switch sont les suivantes:

■ Interfaces aux media d'interconnexion appelés SFP transceivers.

- Alimentation(s) de courant
- Ventilateurs

Se reporter à la Section 6 (Procédures de retrait et remplacement) pour plus de renseignements.

1.11
 Zugängliche Teile

Nur die folgenden Teile im SANbox2-16 Fibre Channel Switch können kundenseitig ersetzt werden:
■ Schnittstellen für die Zwischenverbindungsträger, SFP transceivers genannt.

- Netzteil(e)

■ Gehäuselüfte
Weitere Informationen finden Sie im Abshcnitt 6 (Ausbauen der ersetzbaren Teile).

1.12

General Public License

QLogic Fibre Channel switches are powered by the Linux operating system. A machine-readable copy of the Linux source code is available upon written request to the following address. A nominal fee will be charged for reproduction, shipping, and handling costs in accordance with the General Public License.

```
QLogic Corporation
6321 Bury Drive
Eden Prairie, MN 55346-1739
Attention: Technical Support - Source Request
```

Warning: Installation of software or files not authorized by QLogic will immediately and irrevocably void all warranty and service contracts on the affected units.
The following general public license has been reproduced with permission from:
GNU General Public License
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
1.12.1

Preamble
The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
1.12 .2

Terms And Conditions For Copying, Distribution And Modification

1. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.
2. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.
3. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.
c. If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.
4. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
c. Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.
5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
6. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.
7. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties to this License.
8. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.
9. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.
10. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.
11. Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this

License, you may choose any version ever published by the Free Software Foundation.
12. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.
NO WARRANTY
13. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
14. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

1.12.3

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.
one line to give the program's name and an idea of what it does.
Copyright (C) yyyy name of author
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names: Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker.
signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License.
1.13

Technical Support

Customers should contact their authorized maintenance provider for technical support of their QLogic switch products. QLogic-direct customers may contact QLogic Technical Support; others will be redirected to their authorized maintenance provider.

Visit the QLogic support Web site listed in Contact Information for the latest firmware and software updates.
1.13.1

Availability
QLogic Technical Support is available from 7:00 AM to 7:00 PM Central Standard Time, Monday through Friday, excluding QLogic-observed holidays.
1.13 .2

Training

QLogic offers certification training for the technical professional for both the SANblade HBAs and the SANbox2 switches. From the training link at www.qlogic.com, you may choose Electronic-Based Training or schedule an intensive "hands-on" Certification course.

Technical Certification courses include installation, maintenance and troubleshooting QLogic SAN products. Upon demonstrating knowledge using live equipment, QLogic awards a certificate identifying the student as a Certified Professional. The training professionals at QLogic may be reached by email at tech.training@qlogic.com.

1.13 .3

Contact Information

Address:	QLogic Switch Products Inc. 6321 Bury Drive Eden Prairie, Minnesota 55346 USA
Telephone:	$+1952-932-4040$
Fax:	$+1952-932-4018$
Email:	support@qlogic.com
Technical Service	tech.training@qlogic.com
Technical Training	http://support.qlogic.com

Section 2 General Description

This section describes the features and capabilities of the SANbox2-16 Fibre Channel switch. The following topics are described:

- Chassis controls and LEDs
- Fibre channel ports
- Ethernet port
- Serial port

■ Power supplies

- Fans
- Switch management

Fabrics are managed with the SANbox Manager switch management application (version 2.00) and the Command Line Interface (CLI). Refer to the SANbox2-8c/16 Switch Management User's Guide for information about using the SANbox Manager application. Refer to Appendix B Command Line Interface for more information about the command line interface.

Figure 2-1. SANbox2-16 Fibre Channel Switch
2.1

Chassis Controls and LEDs

Chassis controls include the power supply On/Off switches and the Maintenance button as shown in Figure 2-2. The Maintenance button is used to recover a disabled switch. The chassis LEDs provide information about the switch's operational status. The chassis LEDs include the Over Temperature LED, Fan Fail LED, Heartbeat LED, and the Input Power LED.

Figure 2-2. Chassis Controls and LEDS

2.1.1
 Power Switches

Each power supply has an On/Off switch that controls power to the switch logic circuitry. To apply power to the switch, place both switches in the On position.

2.1.2
 Maintenance Button

The Maintenance button is a momentary switch on the front panel. Its purpose is to place the switch in maintenance mode. Maintenance mode sets the IP address to 10.0.0.1 and provides access to the switch for maintenance purposes when flash memory or the resident configuration file is corrupted. Refer to "Recovering a Switch" on page 5-12 for information about maintenance mode.

To place the switch in maintenance mode, do the following:

1. Isolate the switch from the fabric. Open a Telnet session, and enter the Shutdown command. Refer to "Shutdown Command" on page B-70.
2. Place both power supply switches in the Off position.
3. Press and hold the Maintenance button with a pointed tool for a few seconds, then place one of the power supply switches in the On position. You can release the Maintenance button after the Input Power LED illuminates. When the switch is in maintenance mode, the Heartbeat LED
illuminates continuously. Refer to "Chassis LEDs" on page 2-3 for information about the Input Power LED and the Heartbeat LED.
To return to normal operation, power cycle the switch.

2.1.3

Chassis LEDs

The chassis LEDs shown in Figure 2-3 provide status information about switch operation. Refer to "Port LEDs" on page 2-5 for information about port LEDs. Refer to "Power Supplies" on page 2-9 for information about power supply LEDs.

Figure 2-3. Chassis LEDs

2.1.3.1

Over Temperature LED (Amber)

The Over Temperature LED provides status information about the air temperature inside the switch. This LED illuminates to indicate that the switch logic circuitry is overheating. Refer to Section 5 Diagnostics/Troubleshooting for information about troubleshooting over temperature conditions.

2.1.3.2

Fan Fail LED (Amber)

The Fan Fail LED indicates operational status of all fans. This LED illuminates if the speed of any fan falls below the normal range. Removing a fan will not illuminate the Fan Fail LED. Refer to Section 5 Diagnostics/Troubleshooting for information about troubleshooting fan failure conditions.

2.1.3.3

Heartbeat LED (Amber)

The Heartbeat LED indicates the status of the internal switch processor and the results of the Power On Self Test (POST). Following a normal power-up, the Heartbeat LED blinks about once per second to indicate that the switch passed the POST and that the internal switch processor is running. In maintenance mode, the Heartbeat LED illuminates continuously. Refer to "Heartbeat LED Blink Patterns" on page 5-1 for more information about Heartbeat LED blink patterns.

2.1.3.4

Input Power LED (Green)

The Input Power LED indicates the voltage status at the switch logic circuitry. This LED illuminates when the switch logic circuitry is receiving the proper DC voltages.

2.2

Fibre Channel Ports

The SANbox2-16 switch has 16 Fibre Channel ports numbered $0-15$ as shown in Figure 2-4. Each of these ports is served by a Small Form-Factor Pluggable (SFP) optical transceiver. The port LEDs are located to the right of their respective ports and provide port login and activity status information. The ports self discover the proper mode when connected to public devices and other switches. You can also configure any port to support a loop of private target devices.

Figure 2-4. Fibre Channel Ports

2.2.1

Port LEDs

Each Fibre Channel port has its own Logged-In LED and Activity LED as shown in Figure 2-5.

Figure 2-5. Port LEDs

2.2.1.1

Logged-In LED

The Logged-in LED indicates the logged-in or initialization status of the connected devices. After successful completion of the POST, the switch extinguishes all Logged-In LEDs. Following a successful loop initialization or port login, the switch illuminates the corresponding logged-in LED. This shows that the port is properly connected and able to communicate with its attached devices. The Logged-In LED remains illuminated as long as the port is initialized or logged in. If the port connection is broken or an error occurs that disables the port, the Logged-In LED will flash. Refer to "Logged-In LED Indications" on page 5-5 for more information about the Logged-In LED.

2.2.1.2

Activity LED

The Activity LED indicates that data is passing through the port. Each frame that the port transmits or receives causes this LED to illuminate for 50 milliseconds. This makes it possible to observe the transmission of a single frame. When extending credits, the Activity LED for a donor port will reflect the traffic of the recipient port. Refer to "Distance" on page 3-6 for more information about extended credits and donor ports.

2.2.2
 Small Form-Factor Pluggable (SFP) Transceivers

An SFP transceiver, like the one shown in Figure 2-6, converts electrical signals to and from optical laser signals to transmit and receive data. SFP transceivers plug into the ports; duplex fiber optic cables plug into the transceivers which then connect to the devices. A port is capable of transmitting at 1 Gbps or 2 Gbps ; however, the transceiver must be capable of 2 Gbps for the port to deliver at that rate.

The SFP transceivers are hot swappable. This means that you can remove or install an SFP transceiver while the switch is operating without harming the switch or the transceiver. However, communication with the connected device will be interrupted. Refer to "SFP Transceivers" on page 6-2 for information about installing and removing SFP optical transceivers.

Figure 2-6. SFP Transceiver

2.2.3
 Port Modes

SANbox2-16 switches support the following port modes:

- Generic ports (GL_Port and G_Port)
- Fabric ports (FL_Port and F_Port)

■ Translated loop ports (TL_Port)

- Expansion ports (E_Port)

Switches come from the factory with all ports configured as GL_Ports. GL_Ports self-configure in the following ways:

■ FL_Port when connected to a loop of public devices
■ F_Port when connected to a single public device. If the device is a single device on a loop, the GL_Port will attempt to configure first as an F_Port, then if that fails, as an FL_Port.

■ E_Port when connected to another FC-SW-2 compliant switch

G_Ports self-configure in the following ways:
■ F_Port when connected to a public device

- E_Port when connected to another FC-SW-2 compliant switch

A TL_Port supports private loop devices and must be configured explicitly. Refer to the SANbox2-8c/16 Switch Management User's Guide for more information about defining port modes.

2.2.3.1

Fabric Ports

An FL_Port can support a loop of up to 126 public devices. An FL_Port can also configure itself during the fabric login process as an F_Port when connected to a single public device (N_Port).

2.2.3.2

Translated Loop Port
A TL_Port supports a loop of up 124 private target devices with the ability to communicate with up to 63 "off-loop" public devices. The TL_Port acts as a proxy for the off-loop device translating private frames into and from public frames. The set of off-loop devices are maintained in the TL_Port's translation entries list. The switch firmware automatically creates an entry in the translation entries list for each off-loop initiator device that attempts to establish communication. Soft or VPF zoning can be used to limit the number of potential initiators to 63. Zone membership must be done by worldwide name, or domain ID and port ID. TL_Ports connect to devices that conform to the Fibre Channel-Private Loop SCSI Direct Attach (FC-PLDA) standard. Devices connected to TL_Ports are registered with the Name Server.

2.2.3.3

Expansion Port

E_Ports enable you to expand the fabric by connecting SANbox2-16 switches with other FC-SW-2 compliant switches. SANbox2-16 switches self-discover all inter-switch connections. Refer to "Multiple Chassis Fabrics" on page 3-2 for more information about multiple chassis fabrics.

2.3

Ethernet Port

The Ethernet port shown in Figure 2-7 is an RJ-45 connector that provides a connection to a management workstation. A management workstation can be a Windows, Solaris ${ }^{\text {TM }}$, or a Linux® workstation that is used to configure and manage the switch fabric. You can manage the switch over an Ethernet connection using SANbox Manager, the Command Line Interface (CLI), or SNMP. The switch through which the fabric is managed is called the fabric management switch.

Figure 2-7. Ethernet Port

2.4
 Serial Port

The SANbox2-16 switch is equipped with an RS-232 serial port for maintenance purposes. The serial port location is shown in Figure 2-8. You can manage the switch through the serial port using the CLI.

Figure 2-8. Serial Port and Pin Identification

The serial port connector requires a null-modem F/F DB9 cable. The pins on the switch RS-232 connector are shown in Figure 2-8 and identified in Table 2-1. Refer to "Connect the Management Workstation to the Switch" on page 4-8 for information about connecting the management workstation through the serial port.

Table 2-1. Serial Port Pin Identification

Pin Number	Description
1	Carrier Detect (DCD)
2	Receive Data (RxD)
3	Transmit Data (TxD)
4	Data Terminal Ready (DTR)
5	Signal Ground (GND)
6	Data Set Ready (DSR)
7	Request to Send (RTS)
8	Clear to Send (CTS)
9	Ring Indicator (RI)

2.5

Power Supplies

The power supplies convert standard 110 or 230 VAC to DC voltages for the various switch circuits. Each power supply has an AC power receptacle, an On/Off switch, and two status LEDs as shown in Figure 2-9. After connecting a power supply to an AC voltage source and placing the power switch in the On position, the power supply is energized and DC voltage is delivered to the switch logic circuitry. Refer to Section 6 Removal/Replacement for information about replacing a power supply.

Figure 2-9. Power Supply Components

Each power supply is capable of providing all of the switch's power needs. During normal operation, each power supply provides half of the demand. If one power supply goes offline, the second power supply steps up and provides the difference.

The power supplies are hot swappable and interchangeable. Hot swappable means that you can remove and replace one power supply while the switch is in operation without disrupting service.

Each power supply has two status LEDs: an Output Power LED (green) and an Over Temperature LED (amber):

■ The Output Power LED illuminates to indicate that the power supply is producing DC voltage at the proper levels.

- The Over Temperature LED illuminates to indicate that the power supply is overheating. When a power supply overheats, the switch extinguishes the Output Power LED and shuts down the power supply. Refer to Section 5 Diagnostics/Troubleshooting for information about troubleshooting over temperature conditions.

2.6

Fans
The switch is equipped with two fans as shown in Figure 2-10. If one fan should fail, the other fan is capable of providing the necessary cooling until the failed fan can be replaced. The fans are hot swappable and interchangeable. Refer to "Fans" on page 6-4 for information about removing and replacing the fans. Air flow can be front-to-back or back-to-front depending on the switch model.

Figure 2-10. Fans

2.7
 Switch Management

SANbox Manager is a workstation-based Java ${ }^{\circledR}$ application that provides a graphical user interface for fabric management. This application runs on a Windows®, Solaris ${ }^{\text {TM }}$, or Linux ${ }^{\circledR}$ workstation. The management workstation connects to the fabric directly through one switch's Ethernet port and provides in-band management for all other switches in the fabric. Refer to the SANbox2-8c/16 Switch Management User's Guide for information about the SANbox Manager application and its use.

In addition to SANbox Manager, the switch supports the following management tools:

- Telnet command line interface (CLI)
- File Transfer Protocol (FTP)
- Simple Network Management Protocol (SNMP)

The command line interface provides monitoring and configuration functions by which the administrator can manage the fabric and its switches. The CLI is available over an Ethernet connection or a serial connection. Refer to Appendix B Command Line Interface for more information.
FTP provides the command line interface for exchanging files between the switch and the management workstation. These files include firmware image files, configuration files, and log files.
SNMP provides monitoring and trap functions for the fabric. SANbox2 firmware supports SNMP versions 1 and 2, the Fibre Alliance Management Information Base (FA-MIB) version 4.0, and the Fabric Element Management Information Base (FE-MIB) RFC 2837. Traps can be formatted using SNMP version 1 or 2.

Switch Management

Notes

Section 3
 Planning

Consider the following when planning a fabric:

- Devices

- Multiple chassis fabrics
- Performance
- Device access
- Fabric management
- Fabric security

3.1 Devices

When planning a fabric, consider the number of devices and the anticipated demand. This will determine the number of ports that are needed and in turn the number of switches. Consider how many and what types of switches are needed.

The switch uses SFP optical transceivers, but the device host bus adapters you are using may not. Consider whether the device adapters use SFP transceivers or Gigabit Interface Converters (GBIC), and choose fiber optic cable accordingly. Use LC-type cable connectors for SFP transceivers and SC-type cable connectors for GBIC transceivers.
Consider the distribution of public and private devices as well as targets and initiators. Public devices have full Fibre Channel addressing capability, and therefore can communicate with any other public device on the fabric. An F_Port supports a single public device. An FL_Port can support up to 126 public devices in an arbitrated loop.

Private devices do not have full Fibre Channel addressing capability, only the Arbitrated Loop Physical Address (ALPA) portion. A TL_Port provides a proxy for a loop of up to 124 private target devices allowing communication with up to 63 off-loop public initiator devices. Consider the number of private devices in the fabric and the number of off-loop devices with which the private devices must communicate.

3.2
 Multiple Chassis Fabrics

By connecting switches together you can expand the number of available ports for devices. Each switch in the fabric is identified by a unique domain ID, and the fabric will automatically resolve domain ID conflicts. Because the ports are self-configuring, you can connect SANbox2-16 and other FC-SW-2 compliant switches together in a wide variety of topologies.

3.2.1

Domain ID, Principal Priority, and Domain ID Lock

The following switch configuration settings affect multiple chassis fabrics:

- Domain ID

■ Principal priority

- Domain ID lock

The domain ID is a unique number from 1-239 that identifies each switch in a fabric. The principal priority is a number $(1-255)$ that determines the principal switch which manages domain ID assignments for the fabric. The switch with the highest principal priority (1 is high, 255 is low) becomes the principal switch. If the principal priority is the same for all switches in a fabric, the switch with the lowest WWN becomes the principal switch.

The domain ID lock allows (False) or prevents (True) the reassignment of the domain ID on that switch. Switches come from the factory with the domain ID set to 1 , the domain ID lock set to False, and the principal priority set to 254 . Refer to the SANbox2-8c/16 Switch Management User's Guide for information about changing the domain ID using SANbox Manager. Refer to the "Set Config Command" on page B-29 for information about changing the default domain ID, domain ID lock, and principal priority parameters.

An unresolved domain ID conflict means that the switch with the higher WWN will isolate as a separate fabric, and the Logged-In LEDs on both switches will flash green to show the affected ports. If you connect a new switch to an existing fabric with its domain ID unlocked, and a domain ID conflict occurs, the new switch will isolate as a separate fabric. However, you can remedy this by resetting the new switch or taking it offline then back online. The principal switch will reassign the domain ID and the switch will join the fabric.

Note: Domain ID reassignment is not reflected in zoning that is defined by domain ID/port number pair or Fibre Channel address. You must reconfigure zones that are affected by domain ID reassignment. To prevent zoning definitions from becoming invalid under these conditions, lock the domain IDs using SANbox Manager or the Set Config Switch command.

3 - Planning

3.2.2

Common Topologies

The SANbox2-16 switch supports three commonly used fabric topologies:
$\begin{array}{cl}\text { - } & \text { Cascade } \\ \text { ■ } & \text { Mesh } \\ \text { ■ } & \text { Multistage } ®\end{array}$

3.2.2.1

Cascade Topology

A cascade topology describes a fabric in which the switches are connected in series. If you connect the last switch back to the first switch, you create a cascade-with-a-loop topology as shown in Figure 3-1. The loop reduces latency because any switch can route traffic in the shortest direction to any switch in the loop. The loop also provides failover should a switch fail.

The cascade fabric shown in Figure 3-1 has the following characteristics:
■ Each chassis link contributes up to $200 \mathrm{MB} /$ s of bandwidth between chassis, $400 \mathrm{MB} / \mathrm{s}$ in full duplex. However, because of the sequential structure, that bandwidth will be shared by traffic between devices on other chassis.

- Latency between any two ports is no more than three chassis hops.
- 48 Fibre Channel ports are available for devices.

Figure 3-1. Cascade-with-a-Loop Topology

3.2.2.2

Mesh Topology

A mesh topology describes a fabric in which each chassis has at least one port directly connected to each other chassis in the fabric. The example mesh fabric shown in Figure 3-2 has the following characteristics:

■ Each link contributes up to $200 \mathrm{MB} / \mathrm{s}$ of bandwidth between switches, 400 MB / s in full duplex. Because of multiple parallel paths, there is less competition for this bandwidth than with a cascade or a Multistage topology.

- Latency between any two device ports is no more than two chassis hops.

■ 40 Fibre Channel ports are available for devices.

Figure 3-2. Mesh Topology

3 - Planning

3.2.2.3

Multistage Topology

A Multistage topology describes a fabric in which two or more edge switches connect to one or more core switches. Each additional core switch increases the bandwidth to each edge switch by $200 \mathrm{MB} / \mathrm{s}$. The Multistage fabric shown in Figure 3-3 has the following characteristics:

■ Each link contributes up to $200 \mathrm{MB} / \mathrm{s}$ of bandwidth between chassis. Competition for this bandwidth is less than that of a cascade topology, but greater than that of the mesh topology.
■ Latency between any two device ports is three chassis hops.

- 52 Fibre Channel ports are available for devices

Figure 3-3. Multistage Topology

3.3

Performance

The SANbox2-16 switch supports class 2 and class 3 Fibre Channel service at transmission rates of 1 Gbps or 2 Gbps with a maximum frame size of 2148 bytes. A port can transmit or receive at 1 Gbps or 2 Gbps depending on the device to which it is connected. The port discovers the transmission speed prior to login when the connected device powers up. Related performance characteristics include the following:

- Distance
 - Bandwidth
 - Latency

3.3.1

Distance

Consider the physical distribution of devices and switches in the fabric. Choose SFP transceivers that are compatible with the cable type, distance, Fibre Channel revision level, and the device host bus adapter. Refer to
Appendix A Specifications for more information about cable types and SFP transceivers.

Each port is supported by a data buffer with a 12 credit capacity; that is, 12 maximum sized frames. For fibre optic cables, this enables full bandwidth over a distance of 20 kilometers at $1 \mathrm{Gbps}(0.6$ credits $/ \mathrm{Km}$), or 10 kilometers at 2 Gbps (1.2 credits $/ \mathrm{Km}$). Beyond this distance, however, there is some loss of efficiency because the transmitting port must wait for an acknowledgement before sending the next frame.

Longer distances can be spanned at full bandwidth by extending credits on G_Ports and F_Ports. Each port can donate up to 11 credits to a pool from which a recipient port can borrow. For example, you can configure a recipient port to borrow up to 66 credits from 6 ports for a total of 78 credits. This will support communication over approximately 130 Km at $1 \mathrm{Gbps}(78 \div 0.6)$ or 65 Km at 2 Gbps (78 $\div 1.2$).

You can configure recipient and donor ports using SANbox Manager or the Set Config command. Refer to "Set Config Command" on page B-29 for more information.

3.3.2
 Bandwidth

Bandwidth is a measure of the volume of data that can be transmitted at a given transmission rate. A port can transmit or receive at 1 Gbps or 2 Gbps depending on the device to which it is connected. The switch supports all transmission rate combinations as shown in Table 3-1.

Table 3-1. Port-to-Port Transmission Combinations

Source Port Rate	Destination Port Rate	Maximum Bandwdith
1 Gbps	1 Gbps	100 MB
1 Gbps	2 Gbps	100 MB
$1 \mathrm{Gbps} \times 2$ ports	2 Gbps	200 MB
2 Gbps	$1 \mathrm{Gbps} \times 2$ ports	100 MB each port ${ }^{1}$
2 Gbps	2 Gbps	200 MB

'Bandwidth will be less for larger sequence sizes.

In multiple chassis fabrics, each link between chassis contributes 100 or 200 megabytes of bandwidth between those chassis. When additional bandwidth is needed between devices, increase the number of links between the connecting switches. The switch guarantees in-order-delivery with any number of links between chassis.

3.3.3
 Latency

Latency is a measure of how fast a frame travels from one port to another. The factors that affect latency include transmission rate and the source/destination port relationship as shown in Table 3-2.

Table 3-2. Port-to-Port Latency

Source/Destination Rates	Same Switch I
1 Gbps - 1 Gbps	$<1 \mu \mathrm{sec}$
$2 \mathrm{Gbps}-2 \mathrm{Gbps}$	$<0.4 \mu \mathrm{sec}$

3.4

Device Access

Consider device access needs within the fabric. Access is controlled by the use of zones and zone sets. Some zoning strategies include the following:

Separate devices that use different operating systems.

- Separate devices that have no need to communicate with other devices in the fabric or have classified data.
- Separate devices into department, administrative, or other functional group.
- Group TL_Port private target devices with initiators to allow automatic discovery.
- Reserve a path and its bandwidth from one port to another.

A zone is a named group of devices that can communicate with each other. Membership in a zone can be defined by switch port number, port Fibre Channel address, or by device worldwide name (WWN). Devices can communicate only with devices that are members of the same zone. A zone can be a member of more than one zone set. Several zone sets can be defined for a fabric, but only one zone set can be active at one time. The active zone set determines the current fabric zoning.

A zoning database is maintained on each switch consisting of all inactive zone sets, the active zone set, all zones, aliases, and their membership. The switch supports the following maximum limits:

256 zone sets
■ 256 zones per zone set
■ 1000 total zones
■ 2000 members per zone

- 256 aliases
- 2000 members per alias

■ 2000 total number of alias and zone members
The following zone types are supported:
■ Soft zone
■ Access Control List (ACL) - hard zone
■ Virtual Private Fabric (VPF) - hard zone

3.4.1

Soft Zones

Soft zoning divides the fabric for purposes of controlling discovery. Members of the same soft zone automatically discover and communicate freely with all other members of the same zone. The soft zone boundary is not secure; traffic across soft zones can occur if addressed correctly. The following rules apply to soft zones:

- Soft zones that include members from multiple switches need not include the ports of the inter-switch links.
- Soft zone boundaries yield to ACL and VPF zone boundaries.
- Soft zones can overlap; that is, a port can be a member of more than one soft zone.

■ Membership can be defined by Fibre Channel address, domain ID and port number, or worldwide name.

■ Soft zoning supports all port modes.

3.4.2

Access Control List Hard Zones

Access Control List (ACL) zoning divides the fabric for purposes of controlling discovery and inbound traffic. ACL zoning is a type of hard zoning that is hardware enforced. This type of zoning is useful for controlling access to certain devices without totally isolating them from the fabric. Members can communicate with each other and transmit outside the ACL zone, but cannot receive inbound traffic from outside the zone. The following rules apply to ACL zones:

The ACL zone boundary is secure against inbound traffic.

- ACL zones can overlap; that is, a port can be a member of more than one ACL zone.
- ACL zones that include members from multiple switches need not include the ports of the inter-switch links.
- ACL zone boundaries supersede soft zone boundaries, but yield to VPF zone boundaries.
- Membership can be defined only by domain ID and port ID.
- ACL zoning supports all port modes except TL_Port.

3.4.3

Virtual Private Fabric Hard Zones

Virtual Private Fabric (VPF) zoning divides the fabric for purposes of controlling discovery and both inbound and outbound traffic. This type of zoning is useful for providing security and reserving paths between devices to guarantee bandwidth. VPF zoning is a type of hard zoning that is hardware enforced. Members can only transmit to and receive from members of the same VPF zone. The VPF zone boundary is secure against both inbound and outbound traffic. The following rules apply to VPF zones:

- VPF zones that include members from multiple switches must include the ports of the inter-switch links.
- VPF zones cannot overlap; that is, a port can be a member of only one VPF zone.
- VPF zone boundaries supersede both soft and ACL zone boundaries.
- Membership can be defined only by domain ID and port ID.

■ VPF zoning supports all port modes.

3.5

Fabric Management

The SANbox Manager application and CLI execute on a management workstation that provides for the configuration, control, maintenance of the fabric. Supported platforms include Windows, Windows NT, Solaris, and Linux. The SANbox Manager application can manage multiple fabrics. Consider how many fabrics will be managed, how many management workstations are needed, and whether the fabrics will be managed with the CLI or SANbox Manager.
A switch supports a combined maximum of 19 logins reserved as follows:

- 4 sessions for internal applications such as management server and SNMP
- 15 sessions for SANbox Manager inband and out-of-band logins, Application Programming Interface (API) inband and out-of-band logins and Telnet logins. Of these 15, there can be a combined maximum of 10 SANbox Manager and API logins. Additional logins will be refused.

3.6
 Security

Security is available in the form of user authentication, inter-switch security, and inband management. User authentication validates user accounts for both Telnet and SANbox Manager sessions. A user account consists of an account name, a password, an authority level, and an expiration date. If an account has Admin authority, all management tasks can be performed by that account in both SANbox Manager and the Telnet command line interface. Otherwise only monitoring tasks are available. Consider your management needs and determine the number of user accounts, their authority needs, and expiration dates.

Account names and passwords are required only if fabric security is enabled. Fabric security is controlled by the SecurityEnabled parameter which is set by the Set Setup System command. Fabric security must be configured the same for all switches in the fabric. Refer to the "Set Setup Command" on page B-43 for more information. Switches come from the factory with fabric security disabled. Consider your user accounts and determine whether user authentication is necessary.

Inter-switch link security controls whether connections are permitted with other switches. You can configure a SANbox2-16 switch to connect with FC-SW-2 compliant switches only, SANbox2 switches only, or to reject all connections regardless of switch type. Refer to the "Set Config Command" on page B-29 for more ISL security information and a Set Config Port example. Consider the types of switches in your fabric and where connections are needed.

Inband management is the ability to manage switches across inter-switch links using SANbox Manager, SNMP, IPFC, management server, or the application programming interface. The switch comes from the factory with inband management enabled. If you disable inband management on a particular switch, you can no longer communicate with that switch by means other than a direct Ethernet or serial connection. Consider how you want to manage the fabric and what switches you do not want managed through another switch.

Security

Notes

Section 4 Installation

This section describes how to install and configure the SANbox2-16 switch. It also describes how to load new firmware and how to recover a disabled switch.

4.1

Site Requirements

Consider the following items when installing a SANbox2-16 switch:

- Fabric management workstation
- Power requirements
- Environmental conditions
4.1.1

Fabric Management Workstation
The requirements for fabric management workstations running SANbox Manager are described in Table 4-1:

Table 4-1. Management Workstation Requirements

Operating System	■ Windows® NT, 2000, 95/98 Linux® 7.2 Red Hat® Solaris ${ }^{\text {TM }}$
Memory	128 MB or more
Disk Space	150 MB per installation
Processor	300 MHz or faster
Hardware	CD-ROM drive, RS-232 serial port, RJ-45 Ethernet port
Internet Browser	Microsoft® Internet Explorer® or Netscape Navigator®

Telnet workstations require an RJ-45 Ethernet port or an RS-232 serial port and an operating system with a Telnet client.
4.1.2

Switch Power Requirements
Operating voltage requirements are as follows:
90 to 137 VAC; 47 to 63 Hz
180 to 265 VAC; 47 to 63 Hz

4.1.3

Environmental Conditions

Consider the factors that affect the climate in your facility such as equipment heat dissipation and ventilation. The switch requires the following operating conditions:

■ Operating temperature range: $10^{\circ}-40^{\circ} \mathrm{C}\left(50^{\circ}-104^{\circ} \mathrm{F}\right)$
■ Relative humidity: $25-80 \%$, non-condensing

4.2

Installing a Switch

Unpack the switch and accessories. The SANbox2-16 product is shipped with the components shown in Figure 4-1:

■ SANbox2-16 Fibre Channel Switch (1) with firmware installed

- Power cords (2)

■ Rubber feet (4)

- Rack mount brackets (2)

■ CD-ROM containing the SANbox Manager switch management application, release notes, and documentation.

Figure 4-1. SANbox2-16 Fibre Channel Switch

Installing a SANbox2-16 switch involves the following steps:

1. Mount the switch.
2. Install SFP transceivers.
3. Connect the switch to the AC power source.
4. Connect the management workstation to the switch.
5. Install the SANbox Manager application.
6. Configure the switch.
7. Configure the ports.
8. Cable devices to the switch.
4.2.1

Mount the Switch
The switch can be placed on a flat surface and stacked or mounted in a 19" EIA rack. The top of each chassis has dimples to receive the rubber feet of a second chassis stacked on top. Without the rubber feet, the switch occupies 1 U of space in an EIA rack. Mounting rails are required for rack installation and are available through QLogic Corporation.

WARNING!! Mount switches in the rack so that the weight is distributed evenly. An unevenly loaded rack can become unstable possibly resulting in equipment damage or personal injury.

CAUTION! If the switch is mounted in a closed or multi-unit rack assembly, make sure that the operating temperature inside the rack enclosure does not exceed the maximum rated ambient temperature. Refer to "Environmental" on page A-4.
The switch must rest on rails or a shelf in the rack or cabinet. Allow 16 cm (6.5 in) minimum clearance at the front and rear of the rack for service access and ventilation.
Do not restrict chassis air flow. Allow 16 cm (6.5 in) minimum clearance at the front and rear of the rack for service access and ventilation.
Multiple rack-mounted units connected to the AC supply circuit may overload that circuit or overload the AC supply wiring. Consider the power source capacity and the total power usage of all switches on the circuit. Refer to "Electrical" on page A-3.
Reliable grounding in the rack must be maintained from the switch chassis to the AC power source.

When mounting the switch in a rack, ensure that the 19-inch rack meets the following standard specifications:

- ANSI/EIA RS-230 Standard, entitled Cabinets, Racks, Panels, and Associated Equipment
■ MIL-STD- 189, entitled Racks, Electrical Equipment, 19-Inch and Associated Panels

The brackets shown in Figure 4-2 are provided with the switch so that the switch can be secured on a shelf. The brackets alone are not designed to support the weight of the switch.

Figure 4-2. Installing Rack Mount Brackets

4.2.2
 Install SFP Transceivers

The switch has been validated with transceivers that support a variety of interconnection media. To install, insert the transceiver into the port and gently press until it snaps in place. To remove a transceiver, gently press the transceiver into the port to release the tension, then pull on the release tab or lever and remove the transceiver. Different transceiver manufacturers have different release mechanisms. Consult the documentation for your transceiver.

Note: The SFP transceiver will fit only one way. If the SFP does not install under gentle pressure, flip it over and try again.

4.2.3
 Connect the Switch to AC Power

WARNING!!
This product is supplied with a 3-wire power cable and plug for the user's safety. Use this power cable in conjunction with a properly grounded outlet to avoid electrical shock. An electrical outlet that is not correctly wired could place hazardous voltage on metal parts of the switch chassis. It is the responsibility of the customer to ensure that the outlet is correctly wired and grounded to prevent electrical shock.
You may require a different power cable in some countries because the plug on the cable supplied with the equipment will not fit your electrical outlet. In this case, you must supply your own power cable. The cable you use must meet the following requirements:

- For 125 Volt electrical service, the cable must be rated at 10 Amps and be approved by UL and CSA.

■ For 250 Volt electrical service: The cable must be rated at 10 Amps, meet the requirements of H05VV-F, and be approved by VDE, SEMKO, and DEMKO.

AVERTISSEMENT!!

Pour la sécurité de l'utilisateur, l'appareil est livré avec un câble d'alimentation trifilaire et une fiche. Pour éviter toute secousse électrique, enficher ce câble à une prise correctement mise à la terre. Une prise électrique dont les fils sont mal branchés peut créer une tension dangereuse dans les pièces métalliques du châssis switch. Pour éviter toute secousse électrique, s'assurer que les fils sont correctement branchés et que la prise est bien mise à la terre.
Dans certains pays les prises électriques sont de modèle différent; on ne peut y enficher le câble de l'appareil. On doit donc en utiliser un autre ayant les caractéristiques suivantes:
■ Alimentation 125 V : Câble pour courant nominal de 10 A , agréé LAC et CSA.
■ Alimentation 250 V : Câble pour courant nominal de 10 A , conforme au H05VV-F, et agréé VDE, SEMKO et DEMKO.

WARNUNG!!

Dieses Produkt wird mit einem 3-adrigen Netzkabel mit Stecker geliefert. Dieses Kabel erfüllt die Sicherheitsanforderungen und sollte an einer vorschriftsmäßigen Schukosteckdose angeschlossen werden, um die Gefahr eines elektrischen Schlages zu vermeiden.Elektrosteckdosen, die nicht richtig verdrahtet sind, können gefährliche Hochspannung an den Metallteilen des switch-Gehäuses verursachen. Der Kunde trägt die Verantwortung für eine vorschriftsmäßige Verdrahtung und Erdung der Steckdose zur Vermeidung eines elektrischen Schlages.
In manchen Ländern ist eventuell die Verwendung eines anderen Kabels erforderlich, da der Stecker des mitgelieferten Kabels nicht in die landesüblichen Steckdosen paßt. In diesem Fall müssen Sie sich ein Kabel besorgen, daß die folgenden Anforderungen erfüllt:
■ Für 125 Volt-Netze: 10 Ampere Kabel mit UL- und CSA-Zulassung.

■ Für 250 Volt-Netze: 10 Ampere Kabel gemäß den Anforderungen der H05VV-F und VDE-, SEMKO- und DEMKO-Zulassung.

To energize the switch, do the following:

1. Connect the power cords to the AC power receptacles on the front of the switch chassis.
2. Connect each power cord to a 3-wire, grounded, AC outlet that delivers power in accordance with the power requirements in Appendix A Specifications.

Note: To provide redundancy in the event of an AC power circuit failure, connect the switch power supplies to separate AC circuits.
3. Place one or both power On/Off switches in the On position to energize the switch logic circuitry. Confirm that the Input Power LED on the switch chassis is illuminated indicating that the switch logic circuitry is receiving DC voltage. If not, contact your authorized maintenance provider.

4 - Installation Installing a Switch
4. Confirm that the Output Power LEDs on both power supplies are illuminated. If not, do the following:
a. Check voltage at the AC power source.
b. Inspect the power cord.
c. Replace the power supply.
5. Observe the Heartbeat LED to determine the results of the Power On Self Test (POST). The POST tests the condition of firmware, memories, data-paths, and switch logic circuitry and passes a blink code to the Heartbeat LED. If the Heartbeat LED blinks steadily about once per second, the POST was successful, and you can continue with the installation process. Any other blink pattern appears indicates that an error has occurred. Refer to "Heartbeat LED Blink Patterns" on page 5-1 for more information about the error blink pattern.

4.2 .4

Connect the Management Workstation to the Switch

Connect the management workstation to the switch in one of three ways:

- Indirect Ethernet connection from the management workstation to the switch RJ-45 Ethernet connector through an Ethernet switch or a hub. This requires a 10/100 Base-T straight cable as shown in Figure 4-3. With this method, you can manage the switch with the SANbox Manager application or Command Line Interface.

■ Direct Ethernet connection from the management workstation to the switch RJ-45 Ethernet connector. This requires a 10/100 Base-T cross-over cable as shown in Figure 4-3. With this method, you can manage the switch with the SANbox Manager application or Command Line Interface.

- Serial port connection from the management workstation to the switch RS-232 serial port connector. This requires a null modem F/F DB9 cable as shown in Figure 4-3. With this method, you can manage the switch with Command Line Interface.

Figure 4-3. Ethernet and Serial Cable Connections

4.2.4.1

Ethernet Connection

To establish an Ethernet connection, do the following:

1. Connect a $10 / 100$ Base-T cross-over cable from an RJ-45 port on the management workstation directly to the RJ-45 Ethernet port; or a 10/100 Base-T straight cable indirectly over an Ethernet network.
2. Open a command line window.
3. Open a Telnet session by entering the following command with the switch IP address. The default IP address is 10.0.0.1
```
telnet 10.0.0.1
```

4. Log in to the switch. If fabric security is disabled, account names and passwords are not enforced. Refer to the "Set Setup Command" on page B-43 for information about setting fabric security. The default account name and password are (admin, password).
```
SANbox2 Login: admin
Password: ********
```

4.2.4.2

Serial Connection
To establish a serial port connection, do the following:

1. Connect a null modem F/F DB9 cable from a COM port on the management workstation to the RS-232 serial port on the switch.
2. Configure the connection according to your platform:

- For Windows:
a. Open the HyperTerminal application on a Windows platform. Choose the Start button, select Programs, Accessories, HyperTerminal, and HyperTerminal.
b. Enter a name for the switch connection and choose an icon in the Connection Description window. Choose the OK button.
c. Select the COM port in the Connect To window and choose the OK button.
d. Enter the following COM Port settings in the COM Properties window and choose the OK button.
- Bits per second: 9600
- Data Bits: 8
] Parity: None
- Stop Bits: 1
- Flow Control: None

■ For Linux:
a. Set up minicom to use the serial port. Create or modify the /etc/minirc.dfl file with the following content:

```
pr portdev/ttyS0
pu minit
pu mreset
pu mhangup
```

b. Verify that all users have permission to run minicom. Review the /etc/minicom/users file and confirm that the line "ALL" exists or that there are specific user entries.
c. Enter the following command at the Linux prompt:
minicom

- For Solaris:

a. Set up Solaris to use the serial port. Modify the /etc/remote file to include the following lines:

```
sanbox2:\
:dv=/dev/term/a:br#9600:el=C^S^\^U^D :ie%$:oe=^D :
```

b. Enter the following command at the Solaris prompt:

```
# tip sanbox2
```

3. Log in to the switch. If fabric security is disabled, account names and passwords are not enforced. Refer to the "Set Setup Command" on page B-43 for information about setting fabric security. The default account name and password are (admin, password).
```
SANbox2 Login: admin
Password: ********
```

4.2.5

Install SANbox Manager

You can install SANbox Manager on the Windows, Linux, and Solaris platforms. Your switch was shipped with either a SANsurfer® Management Suite Disk or a SANbox2 Installation Disk. Refer to the following installation instructions that correspond to your situation:

■ SANsurfer Management Suite Disk - Windows Installation
■ SANsurfer Management Suite Disk - Linux Installation

- SANsurfer Management Suite Disk - Solaris Installation

■ SANbox2 Installation Disk - Windows Installation
■ SANbox2 Installation Disk - Linux Installation
■ SANbox2 Installation Disk - Solaris Installation

4.2.6

SANsurfer Management Suite Disk - Windows Installation

To install the SANbox Manager application on Windows from the SANsurfer® Management Suite Disk, do the following:

1. Close all programs currently running, and insert the SANsurfer Management Suite Disk into the management workstation CD-ROM drive. If the SANsurfer Management Suite start page does not open in your default browser, do the following:
a. Using Windows Explorer, double-click the drive letter which contains the SANsurfer Management Suite Disk.
b. Locate and double-click the Start_Here.htm file to open the SANsurfer Management Suite start page in your default browser.
2. On the SANsurfer Management Suite start page, choose the SANbox Switch Software button.
3. On the SANbox Switch Software page, scroll to the SANbox2 (2Gb) Series area.
4. In the Windows column, choose the SANbox Manager link to open the File Download window.
5. You have a choice of running the installation file from the CD-ROM or downloading the installation file to your hard drive. Choose one of the following:

■ Open the installation file from the CD-ROM and follow the SANbox Manager installation instructions.

- Specify a location in which to save the sansurfer_windows_install.exe file, and choose the Save button. Double-click the saved sansurfer_windows_install.exe file and follow the SANbox Manager installation instructions.

4.2.7

SANsurfer Management Suite Disk - Linux Installation

To install the SANbox Manager application on Linux from the SANsurfer Management Suite Disk, do the following:

1. Close all programs currently running, and insert the SANsurfer Management Suite Disk into the management workstation CD-ROM drive. If a file browser window opens showing icons for the contents of the CD-ROM, double-click the Start_Here.htm file to open the SANsurfer Management Suite start page. If a file browser does not open, double-click the CD-ROM icon on the to open the browser. If there is no CD-ROM icon, do the following:
a. Open an xterm or other terminal window.
b. Mount the CD-ROM. From a shell prompt, enter the following command:
mount /mnt/cdrom
c. Execute your web browser to view the Start_Here.htm document using one of the following commands:
```
$mozilla file:/mnt/cdrom/Start_Here.htm
or
$netscape file:/mnt/cdrom/Start_Here.htm
```

d. The SANsurfer Management Suite start page opens in your default browser.
2. On the SANsurfer Management Suite start page, choose the SANbox Switch Software button.
3. On the SANbox Switch Software page, scroll to the SANbox2 (2Gb) Series area.
4. In the Linux column, choose the SANbox Manager link to open the Save As window.
5. Enter a path name to save the sansurfer_linux_install.bin file, and choose the Save button
6. Open a terminal window for the directory in which the sansurfer_linux_install.bin file was saved, and enter the following command and press the Enter key:

```
chmod +x sansurfer_linux_install.bin
```

7. Enter the following command:
```
./sansurfer_linux_install.bin
```

8. Press the Enter key, and follow the SANbox Manager installation instructions.

4.2.8

SANsurfer Management Suite Disk - Solaris Installation

To install the SANbox Manager application on Solaris from the SANsurfer Management Suite CD-ROM, do the following:

1. Close all programs currently running, and insert the SANsurfer Management Suite Disk into the management workstation CD-ROM drive. If the SANsurfer Management Suite start page does not open in your default browser, do the following:
a. Right-click the to open the Workshops Menu.
b. Point to and select Files, then select File Manager.
c. In File Manager, double-click the CD-ROM icon, and then double-click the Sansurfer folder.
d. In the Sansurfer folder, double-click the Start_Here.htm file to open the SANsurfer Management Suite start page in your default browser.
2. On the SANsurfer Management Suite start page, choose the SANbox Switch Software button.
3. On the SANbox Switch Software page, scroll to the SANbox2 (2Gb) Series area.
4. In the Solaris column, choose the SANbox Manager link to open the Save As window.
5. Enter a path name to save the sansurfer_solaris_install.pkg file and choose the Save button.
6. Open a terminal window for the directory in which the sansurfer_solaris_install.pkg file was saved, and enter the following command:
```
chmod +x sansurfer_solaris_install.pkg
```

7. Enter the following command and follow the SANbox Manager installation instructions:
```
pkgadd -d QLGCsol_x.x.yyyy.mm.dd.xx.xx
```

Note: If you download SANbox Manager from a server, be sure the downloaded file has execute permission before installing.

4.2.9

SANbox2 Installation Disk - Windows Installation

To install the SANbox Manager application on Windows from the SANbox2 Installation Disk, do the following:

1. Close all programs currently running, and insert the SANbox2 Installation Disk into the management workstation CD-ROM drive.
2. Using Windows Explorer, double-click the drive letter which contains the SANbox2 Installation Disk.
3. Double click the SANbox_Manager folder, then double click the Windows folder.
4. Double click the executable file and follow the SANbox Manager installation instructions.

4.2 .10

SANbox2 Installation Disk - Linux Installation

To install the SANbox Manager application on Linux from the SANbox2 Installation Disk, do the following:

1. Close all programs currently running, and insert the SANbox2 Installation Disk into the management workstation CD-ROM drive.
2. Open the File Manager and double-click on the CD-ROM icon.
3. Double click the SANbox_Manager folder, then double click the Linux folder.
4. Double click the executable file and follow the SANbox Manager installation instructions.
4.2.11

SANbox2 Installation Disk - Solaris Installation
To install the SANbox Manager application on Solaris from the SANbox2 Installation Disk, do the following:

1. Close all programs currently running, and insert the SANbox2 Installation Disk into the management workstation CD-ROM drive.
2. Open a terminal window. If the disk isn't already mounted, enter the following command:
mount /mnt/cdrom
3. Move the directory on the disk that contains the executable. Enter the following command:
cd cdrom/cdrom0/sanbox~1/solaris
4. Run the executable and follow the SANbox Manager installation instructions. Enter the following command:
```
pkgadd -d sol_pkg
```


4.2.12

Configure the Switch

Do the following to configure a switch using the SANbox Manager application. Refer to the SANbox2-8c/16 Switch Management User's Guide for more information about configuring a switch. You can also configure the switch using the Command Line Interface. Refer to Appendix B Command Line Interface for more information.

1. Connect to the switch using an Ethernet connection and run SANbox Manager.
2. Open the Fabric menu and select Add Fabric to open the Add a New Fabric window.
3. Enter a fabric name and the IP address of the switch through which to manage the fabric. The default IP address is 10.0.0.1. If this is a new switch, leave the login name and password fields empty, and choose the Add Fabric button. By default, fabric security is disabled, and therefore account names and passwords are not enforced. Refer to the "Set Setup Command" on page B-43 for information about setting fabric security.
4. Open the Switch menu and select Switch Properties. In the Switch Properties window, enter a chassis name. Accept the default domain ID, and choose the OK button.
5. Open the Switch menu and select Network Properties. In the Network Properties window, enter values for the IP address, subnet mask, and gateway address. Accept the default boot method. If you know the SNMP configuration settings, enter those as well. Choose the OK button.
6. Set the date and time. Double click on the switch in the topology display. In the faceplate display, open the Switch menu and select Set Date/Time. Enter the date and time in the Switch Date and Time window and choose the OK button. Reset the switch when prompted to implement the new and date and time.
Repeat this process for each switch in the fabric, then connect the switches.

4.2 .13

Configure the Ports

Configuring a port involves defining the port mode. For public devices and other switches, a switch automatically sets the port mode as each port discovers the type of device to which it is connected. The default port mode is GL_Port.

A GL_Port will self configure as an FL_Port when connected to a loop of public devices or an F_Port when connected to a single device. A G_Port will self configure as an F_Port when connected to a single public device. Both GL_Ports and G_Ports self configure as E_Ports when connected to another switch. Refer to the SANbox2-8c/16 Switch Management User's Guide for more information about configuring ports. You can also configure ports using the CLI. Refer to Appendix B Command Line Interface for more information.

4.2.14
 Cable Devices to the Switch

Connect cables to the SFP transceivers and their corresponding devices, and then energize the devices. Device host bus adapters can have SFP (or SFF) transceivers or GigaBit Interface Converters (GBIC). LC-type duplex fiber optic cable connectors are designed for SFP transceivers, while SC-type connectors are designed for GBICs. Duplex cable connectors are keyed to ensure proper orientation. Choose the fiber optic cable with the connector combination that matches the device host bus adapter.

4.3

Install Firmware

The switch comes with current firmware installed. You can upgrade the firmware from the management workstation as new firmware becomes available. Firmware installation involves loading the firmware image file onto the switch, unpacking the image file, and then resetting the switch to activate the new firmware. Firmware versions that follow version 2.0 can be loaded and activated on an operating switch without disrupting traffic.

You can use the SANbox Manager application or the CLI to install new firmware:
■ The SANbox Manager application loads and unpacks the firmware image file in one operation. Refer to "Using SANbox Manager to Install Firmware" on page 4-17.

■ When using the CLI on a workstation that has an FTP server, you can open a Telnet session and load and unpack the firmware image file using the CLI Image command. Refer to "Using the CLI to Install Firmware" on page 4-18.

■ When using the CLI on a workstation without an FTP server, you must open an FTP session through the switch to load the image file, then open a Telnet session to unpack it with the CLI Image command. Refer to "Using FTP and the CLI to Install Firmware" on page 4-19.
4.3.1

Using SANbox Manager to Install Firmware

To install firmware using SANbox Manager, do the following:

1. From the Faceplate display, open the Switch menu and select Load Firmware.
2. In the Firmware Upload window, browse and select the firmware file you want to load.
3. In the Firmware Upload window, choose the Start button to begin the loading process. When the firmware is finished loading, the Bytes Transferred field displays the number of bytes that have been transferred.
4. Choose the Close button to close the Firmware Upload window.
5. If a non-disruptive activation is not possible, SANbox Manager prompts you to reset the switch. Choose the OK button to reset the switch and activate the new firmware.

4.3.2

Using the CLI to Install Firmware

To install firmware using the CLI when an FTP server is present on the management workstation, do the following:

1. Connect to the switch through the Ethernet or the serial port and open a Telnet session.
2. Enter the following account name and password:
```
SANbox2 Login:admin
Password: password
```

3. To start an admin session, enter the following:
```
SANbox2 $> admin start
```

4. Retrieve the firmware file. The device on which the firmware file is stored must be running an FTP server. Enter the following command to retrieve the firmware file from the specified IP address:
```
SANbox2 (admin) #> image fetch username 10.0.0.254
firmwarefilenametoload firmwarefilenameonswitch
Connected to 10.0.0.254.
```

Note: If prompted for your password, enter your password (for that IP Address) and press the Enter key.

```
3 3 1 ~ P a s s w o r d ~ r e q u i r e d ~ f o r ~ u s e r n a m e .
Password:
2 3 0 ~ U s e r ~ u s e r n a m e ~ l o g g e d ~ i n .
bin
200 Type set to I.
verbose
Verbose mode off.
```

5. Enter the following command to display the list of firmware files:

SANbox2 (admin) \#> image list
6. Enter the following command to install the new firmware:

```
SANbox2 (admin) #>image unpack filename
```

7. If the new firmware is later than version 2.0, the new firmware can be acivated without disrupting traffic. Enter the Hotreset command to perform a non-disruptive activation.

SANbox2 (admin) \$>hotreset

4.3.3

Using FTP and the CLI to Install Firmware

To install firmware using the CLI when the management workstation does not have an FTP server, do the following:

1. Connect to the switch through the Ethernet or the serial port.
2. Move to the folder or directory that contains the new firmware image file.
3. Establish communications with the switch using the File Transfer Protocol (FTP). Enter one of the following on the command line:
>ftp $x x x . x x x . x x x . x x x$
or
>ftp switchname
where $x x x . x x x . x x x . x x x$ is the switch IP address, and switchname is the switch name associated with the IP address.
4. Enter the following account name and password:
user:images
password: images
5. Activate binary mode and copy the firmware image file on the switch:
ftp>bin
ftp>put filename
6. Close the FTP session.
ftp>quit
7. Establish communications with the switch using the CLI. Enter one of the following on the command line:
telnet $x x x . x x x \cdot x x x . x x x$
or
telnet switchname
where $x x x . x x x . x x x . x x x$ is the switch IP address, and switchname is the switch name associated with the IP address.
8. A Telnet window opens prompting you for a login. Enter an account name and password. The default account name and password are (admin, password).
9. Open an Admin session to acquire the necessary authority.
```
SANbox2 $>admin start
```

10. Display the list of firmware image files on the switch to confirm that the file was loaded. Refer to the "Image Command" on page B-16 for more information.

SANbox2 (admin) \$>image list
11. Unpack the firmware image file to install the new firmware in flash memory.

```
SANbox2 (admin) $>image unpack filename
```

12. If the new firmware is later than version 2.0, the new firmware can be activated without disrupting traffic. Enter the Hotreset command to perform a non-disruptive activation.
```
SANbox2(admin) $>hotreset
```


4.4
 Powering Down a Switch

Simply unplugging the switch from the power source does not allow the switch to complete executing tasks and could lead to flash memory corruption. For this reason, open a Telnet session and use the Shutdown command to initiate an orderly shut down, then power down the switch. Refer to the "Shutdown Command" on page B-70.

Section 5
 Diagnostics/Troubleshooting

Diagnostic information about the switch is available through the chassis LEDs, the power supply LEDs, and the Logged-In LED. Diagnostic information is also available through the SANbox Manager and CLI event logs and error displays. This section describes two types of diagnostics: Power On Self Test (POST) and chassis. POST diagnostics describe the Heartbeat LED and the port Logged-In LED indications. Chassis diagnostics cover power supply and fan diagnostics as well as over temperature conditions. This section also describes how to use maintenance mode to recover a disabled switch.

5.1
 POST Diagnostics

The switch performs a series of Power On Self Tests (POST) as part of its power-up procedure. The POST diagnostic program performs the following tests:
■ Checksum tests on the boot firmware in PROM and the switch firmware in flash memory
■ Internal data loopback test on all ports

- Access and integrity test on the ASIC

During the POST, the switch logs any errors encountered. Some POST errors are fatal, others are non-fatal. The switch uses the Heartbeat LED and the Logged-In LED to indicate switch and port status. A fatal error disables the switch so that it will not operate. A non-fatal error allows the switch to operate, but disables the ports that have errors. Whether the problem is fatal or non-fatal, contact your authorized maintenance provider.

If there are no errors, the Heartbeat LED blinks at a steady rate of once per second. If a fatal error occurs, the Heartbeat LED will show an error blink pattern. If there are non-fatal errors, the switch disables the failed ports and flashes the associated Logged-In LEDs. Refer to "Heartbeat LED Blink Patterns" on page 5-1 for more information about Heartbeat LED blink patterns.

5.1.1

Heartbeat LED Blink Patterns

5.1.1.1

Normal (all pass)
If all POST diagnostics pass, the switch will go to normal operation and the Heartbeat LED will blink at a steady rate of one (1) blink per second.

5.1.1.2

Maintenance Mode Pattern

Steady illumination indicates that the switch is in maintenance mode, which returns the switch IP address to 10.0.0.1. From maintenance mode, you may reload firmware, reset the password to the factory default, and remove a corrupt configuration.

5.1.1.3

Internal Firmware Failure Blink Pattern

An internal firmware failure blink pattern is 2 blinks per second followed by a two second pause. The 2-blink error pattern indicates that the firmware has failed, and that the switch must be reset. Power cycle the switch to reset it.

5.1.1.4

Fatal Error Blink Pattern

A fatal error blink pattern is 3 blinks per second followed by a two second pause. The 3-blink error pattern indicates that a fatal error has left the switch inoperable. If a fatal error occurs, contact your authorized maintenance provider. Power cycle the switch to reset the switch.

5.1.1.5

Configuration File System Error Blink Pattern

A configuration file system error blink pattern is 4 blinks per second followed by a two second pause. The 4-blink error pattern indicates that a configuration file system error has occurred, and that the configuration file must be recreated. Refer to "Recovering a Switch" on page 5-12 for more information.

To recreate the configuration file, do the following:

1. Open a Telnet session and use the Shutdown command to close activity on the switch, then power down the switch. Refer to the "Shutdown Command" on page B-70.
2. Place the switch in maintenance mode. Press and hold the Maintenance button, then power up the switch. Refer to "Recovering a Switch" on page 5-12 for more information about placing the switch in maintenance mode.
3. Establish a Telnet session with the switch using the default IP address 10.0.0.1.
```
telnet 10.0.0.1
```

4. Enter the account name (prom) and password (prom), and press the Enter key.
```
Sanbox2 login: prom
Password:xxxx
[username@host:Itasca]% telnet 10.0.0.1
Trying 10.0.0.1...
Connected to 10.0.0.1.
Escape character is '^]'.
```

5. The following menu is displayed. Enter "6" (Remake Filesystem) and press the Enter key to recreate the configuration file.
```
0) Exit
1) Image Unpack
2) Reset Network Config
3) Reset Password File
4) Copy Log Files
5) Remove Switch Config
6) Remake Filesystem
7) Reset Switch
8) Show Firmware Versions
9) Set Active Image
Option: 6
```

6. When the recreate process is complete, select option 7 to reset the switch and exit maintenance mode.
7. If a previously saved configuration file is available for the switch, do the following to restore the configuration file.
a. Establish communications with the switch using the File Transfer Protocol (FTP). Enter one of the following on the command line:
```
>ftp xxx.xxx.xxx.xxx
```

 or
 >ftp switchname
where $x x x . x x x . x x x . x x x$ is the switch IP address and switchname is the switch name associated with the IP address.
b. Enter the following account name and password:

```
user:images
```

password:images
c. Activate binary mode and copy the configuration file from the workstation to the switch. The configuration file must be named "configdata".
ftp>bin
ftp>put configdata
d. Close the FTP session.

```
ftp>quit
```

e. Establish communications with the switch using Telnet. Enter one of the following on the command line:

```
telnet xxx.xxx.xxx.xxx
Or
telnet switchname
```

where $x x x . x x x . x x x . x x x$ is the switch IP address and switchname is the switch name associated with the IP address.
f. A Telnet window opens prompting you for a login. Enter an account name and password. The default account name and password are (admin, password).
g. Open an admin session to acquire the necessary authority.

```
SANbox2 $>admin start
```

h. Restore the configuration file.

```
SANbox2 (admin) $>config restore
```

i. Reset the switch and close the Telnet session.

```
SANbox2 (admin) $>reset
```


5.1.2
 Logged-In LED Indications

Port diagnostics are indicated by the Logged-In LED for each port as shown in Figure 5-1.

Figure 5-1. Logged-In LED
The Logged-In LED has three indications:

- Logged in - Continuous illumination.
- Logging in - Flashes at roughly once per second as shown in Figure 5-2.

■ Error - Flashes at roughly twice per second as shown in Figure 5-2.

Figure 5-2. Logged-In LED Indications
If a Logged-In LED shows an error indication, review the alarm log for messages regarding the affected port. You can inspect the alarm log using the Alarm data tab in SANbox Manager faceplate display or the Show Alarm command. Pertinent alarm log messages will point to one or more of the following conditions:

- E_Port isolation
- Excessive port errors

5.1.2.1

E_Port Isolation

A Logged-In LED error indication is often the result of E_Port isolation. An isolated E_Port is indicated by a red link in the SANbox Manager topology display. E_Port isolation can be caused by conflicting domain IDs, conflicting timeout values, or conflicting zone membership between active zone sets. Refer to the SANbox2-8c/16 Switch Management User's Guide for information about how to change domain IDs, timeout values, and edit zoning.

Review the alarm log and do the following to diagnose and correct an isolated E_Port:

1. Display the fabric domain IDs using the Show Domains command or the Switch data tab in the SANbox Manager topology display. Are all domain IDs in the fabric unique?

- Yes-Continue.
- No - Correct the domain IDs on the offending switches using the Set Config Switch command or the SANbox Manager Switch Properties window. Reset the port. If the condition remains, continue.

2. Compare the RA_TOV and ED_TOV timeout values for all switches in the fabric using the Show Config Switch command or the Switch data tab of the SANbox Manager topology display. Is each timeout value the same on every switch?
■ Yes-Continue.

- No - Correct the timeout values on the offending switches using the Set Config Switch command or the SANbox Manager Switch Properties dialog. Reset the port. If the condition remains, continue.

3. Display the active zone set on each switch using the Zoning Active command or the Active Zoneset tab of the SANbox Manager topology display. Compare the zone membership between the two active zone sets. Are they the same?

- Yes - Contact your authorized maintenance provider.
- No - Deactivate one of the active zone sets or edit the conflicting zones so that their membership is the same. Reset the port. If the condition remains, contact your authorized maintenance provider.

Note: This can be caused by merging two fabrics whose active zone sets have two zones with the same name, but different membership.

5.1.2.2
 Excessive Port Errors

The switch monitors a set of port errors and generates alarms based on user-defined sample intervals and thresholds. Refer to the SANbox2-8c/16 Switch Management User's Guide for information about managing alarms. These port errors include the following:

- CRC errors
- Decode errors
- ISL connection count
- Login errors
- Logout errors
- Loss-of-signal errors

If the count for any of these errors exceeds the rising threshold for three consecutive sample intervals, the switch generates an alarm and disables the affected port, changing its operational state to "down". Port errors can be caused by the following:

■ Thresholds are too low or the sample interval is too small

- Faulty Fibre Channel port cable
- Faulty SFP
- Faulty port
- Fault device or HBA

Review the alarm log to determine if excessive port errors are responsible for disabling the port. Look for a message that mentions one of the monitored error types indicating that the port has been disabled, then do the following:

1. Examine the alarm configuration for the associated error using the Show Config Threshold command or the SANbox Manager application. Refer to the "Show Config Command" on page B-60. Refer to Table B-5 for a list of the alarm configuration defaults. Are the thresholds and sample interval correct?

- Yes-Continue
- No - Correct the alarm configuration. If the condition remains, continue.

2. Reset the port, then perform an external port loopback test to validate the port and the SFP. Refer to the "Test Command" on page B-71 or the SANbox2-8c/16 Switch Management User's Guide for information about testing ports. Does the port pass the test?

- Yes - Continue
- No - Replace the SFP and repeat the test. If the port does not pass the test, contact your authorized maintenance provider. Otherwise continue.

3. Replace the Fibre Channel port cable. Is the problem corrected?

■ Yes - Complete.

- No-Continue.

4. Inspect the device to which the affected port is connected and confirm that the device and its HBA are working properly. Make repairs and corrections as needed. If the condition remains, contact your authorized maintenance provider.

5.2
 Chassis Diagnostics

Chassis diagnostics are indicated by the chassis and power supply LEDs as shown in Figure 5-3.

Figure 5-3. Chassis and Power Supply LEDs
The following conditions are described:
■ Chassis Over Temperature LED is illuminated

- Input Power LED is extinguished
- Fan Fail LED is illuminated

■ Output Power LED is extinguished
■ Power supply Over Temperature LED is illuminated

Note: The chassis and power supply Over Temperature LEDs are different. The chassis LED indicates an over temperature condition in the switch logic circuitry; the power supply LED indicates an over temperature condition in the power supply.

5.2.1
 Chassis Over Temperature LED is Illuminated

The chassis Over Temperature LED illuminates to indicate that the switch logic circuitry is overheating. If the chassis Over Temperature LED illuminates, do the following:

1. Inspect the chassis fans. Are the intake openings clear? Are all fans operating and producing air flow?

- Yes - Continue.
- No - Remove any debris from fan intakes and exhausts if necessary. Replace any fan that is not operating. Refer to Section 6 Removal/Replacement. If the condition remains, continue.

2. Consider the ambient air temperature near the switch. Make necessary corrections. If the condition remains, shut down the switch immediately and contact your authorized maintenance provider.

5.2.2

Input Power LED Is Extinguished
The Input Power LED illuminates to indicate that the switch logic circuitry is receiving proper voltages. If the Input Power LED is extinguished, inspect the Output Power LED. Is the Output Power LED illuminated?

- Yes - Contact your authorized maintenance provider.
- No - Refer to "Output Power LED Is Extinguished" on page 5-11.

5.2.3
 Fan Fail LED is Illuminated

The Fan Fail LED illuminates to indicate a malfunction with one or more of the chassis fans. If the Fan Fail LED illuminates, do the following:

1. Inspect the chassis fan connections. Remove and reinstall the chassis fan. Refer to Section 6 Removal/Replacement. If the condition remains, continue.
2. Are all fans operating and producing equal air flow?

■ Yes - Contact your authorized maintenance provider.
■ No - Replace the weaker chassis fan. Refer to Section 6 Removal/Replacement. If the condition remains, contact your authorized maintenance provider.

Note: Removing a fan will not illuminate the Fan Fail LED.

5.2.4

Output Power LED Is Extinguished

The Output Power LED illuminates to indicate that the power supply is producing the proper voltages. If the Output Power LED is extinguished, do the following:

1. Inspect the power supply Over Temperature LED. Is the power supply Over Temperature LED illuminated?

■ Yes - Refer to "Power Supply Over Temperature LED is Illuminated" on page 5-11.

- No-Continue.

2. Inspect the power cables and connectors. Are the cables unplugged? Are the cables or connectors damaged?
■ Yes - Make necessary corrections or repairs. If the condition remains, continue.

- No-Continue.

3. Inspect the power source. Is the power source delivering the proper voltage?

- Yes - Continue
- No - Make necessary repairs. If the condition remains, continue.

4. Replace the power supply. Refer to Section 6 Removal/Replacement. If the condition remains, contact your authorized maintenance provider.

5.2.5

Power Supply Over Temperature LED is Illuminated

The power supply Over Temperature LED illuminates to indicate that the power supply is overheating. If the power supply Over Temperature LED illuminates, do the following:

1. Inspect the chassis fans. Are the intake openings clear? Are both fans operating and producing air flow?
■ Yes-Continue.

- No - Remove any debris from fan intakes if necessary. Replace any fan that is not operating. Refer to Section 6 Removal/Replacement. If the condition remains, continue.

2. Consider the ambient air temperature near the switch and clearance around the switch. Make necessary corrections. If the condition remains, continue.
3. Replace the power supply. Refer to Section 6 Removal/Replacement. If the condition remains, contact your authorized maintenance provider.

5.3

Recovering a Switch

A switch can become inoperable or unmanageable for the following reasons:
■ Firmware becomes corrupt

- IP address is lost

■ Switch configuration becomes corrupt

- Forgotten password

In these specific cases, you can recover the switch using maintenance mode. Maintenance mode temporarily returns the switch IP address to 10.0.0.1 and provides opportunities to do the following:

- Unpack a firmware image file
- Restore the network configuration parameters to the default values
- Remove all user accounts and restore the Admin account name password to the default.
- Copy the log file
- Restore factory defaults for all but user accounts and zoning
- Restore all switch configuration parameters to the factory default values
- Reset the switch

■ Display firmware versions stored on the switch
■ Select the firmware image to activate
To recover a switch, do the following:

1. Place the switch in maintenance mode. Do the following:
a. Power down the switch.
b. Press and hold the Maintenance button with a pointed tool, then power up the switch. All chassis LEDs will illuminate, then extinguish leaving only the Input Power LED illuminated. Release the button.
2. Allow one minute for the switch to complete its tests. When the switch is in maintenance mode, the Input LED will be illuminated and the Heartbeat LED will illuminate continuously. All other chassis LEDs will be extinguished.
3. Establish a Telnet session with the switch using the maintenance mode IP address 10.0.0.1.
4. Enter the maintenance mode account name and password (prom, prom), and press the Enter key.
```
Sanbox login: prom
Password:xxxx
[username@anteater:Itasca]% telnet 10.0.0.1
Trying 10.0.0.1...
Connected to 10.0.0.1.
Escape character is '^]'.
```

5. The maintenance menu displays several recovery options. To select a switch recovery option, press the corresponding number (displayed in option: field) on the keyboard and press the Enter key.
```
0) Exit
1) Image Unpack
2) Reset Network Config
3) Reset Password File
4) Copy Log Files
5) Remove Switch Config
6) Remake Filesystem
7) Reset Switch
8) Show Firmware Versions
9) Set Active Image
Option:
```

These options and their use are described in the following subsections.

5.3.1
 Maintenance - Exit

This option closes the current login session. To log in again, enter the maintenance mode account name and password (prom, prom). To return to normal operation, power cycle the switch.

5.3.2

Maintenance - Image Unpack
This option unpacks and installs new firmware when the current firmware has become corrupt. Before using this option, you must load the new firmware image file onto the switch. The steps to install new firmware using this option are as follows:

1. Place the switch in maintenance mode. Refer to the procedure for maintenance mode in "Recovering a Switch" on page 5-12.
2. Use FTP to load a new firmware image file onto the switch. Refer to "Using FTP and the CLI to Install Firmware" on page 4-19. Do not unpack the firmware image file with the Image command.
3. Select option 1 from the maintenance menu. When prompted for a file name prompt, enter the firmware image file name.
```
Image filename: filename
Unpacking 'filename', please wait...
Unpackage successful.
```

4. Select option 7 to reset the switch and exit maintenance mode.

5.3.3

Maintenance - Reset Network Config
This option resets the network properties to the factory default values and saves them on the switch. Refer to Table B-8 for the default network configuration values.

5.3.4

Maintenance - Reset Password File
This option restores the password for the Admin account name to the default (password) and removes all other user accounts from the switch.

5.3.5
 Maintenance - Copy Log Files

This option copies all log file buffers to a file on the switch named logfile. You can use FTP to download this file to the management workstation.

5.3.6
 Maintenance - Remove Switch Config

This option deletes all configurations from the switch except for the default configuration. This restores switch configuration parameters to the factory defaults except for user accounts and zoning. Refer to Table B-3 though Table B-8 for the factory default values.

5.3.7

Maintenance - Remake Filesystem
In the event of sudden loss of power, it is possible that the switch configuration may become corrupt. The file system on which the configuration is stored must be re-created. This option resets the switch to the factory default values including user accounts and zoning. Refer to Table B-3 though Table B-8 for the factory default values.

CAUTION! If you choose the Remake Filesystem option, you will lose all changes made to the fabric configuration that involve that switch, such as password and zoning changes. You must then reconfigure the portions of the fabric that involve the switch.

5.3.8
 Maintenance - Reset Switch

This option closes the Telnet session, exits maintenance mode and reboots the switch using the current switch configuration. All unpacked firmware image files that reside on the switch are deleted.
5.3.9

Maintenance - Show Firmware Versions

This option displays the image numbers and firmware versions that are stored on the switch.

5.3 .10
 Maintenance - Set Active Image

This option specifies the firmware version to be used when the switch returns to normal operation. A message reminds you of the pending firmware version and gives you an opportunity to change it by selecting the other image number.

Recovering a Switch

Notes

Section 6 Removal/Replacement

This section describes the removal and replacement procedures for the following field replaceable units (FRU):

- SFP transceivers
- Power supplies

Fans
The switch is equipped with a battery that powers the non-volatile memory. This memory stores the switch configuration. The battery is not a field replaceable unit.

WARNING!! Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of the used battery according to the manufacturer's instructions.

WARNUNG!!
Bei unsachgemäß ausgetauschter Batterie besteht Explosionsgefahr. Die Batterie nur mit der gleichen Batterie oder mit einem äquivalenten, vom Hersteller empfohlenen Batterietyp ersetzen. Die gebrauchte Batterie gemäß den Herstelleranweisungen entsorgen.

AVERTISSEMENT!!

Danger d'explosion si le remplacement de la pile est incorrect. Ne remplacer que par une pile de type identique ou équivalent recommandé par le fabricant. Jeter la pile usagée en observant les instructions du fabricant.
6.1

SFP Transceivers
The SFP transceivers can be removed and replaced while the switch is operating without damaging the switch or the transceiver. However, transmission on the affected port will be interrupted until the transceiver installed.

To remove a transceiver, gently press the transceiver into the port to release the tension, then pull on the release tab or lever and remove the transceiver. Different transceiver manufacturers have different release mechanisms. Consult the documentation for your transceiver. To install, insert the transceiver into the port and gently press until it snaps in place as shown in Figure 6-1.

Note: \quad The SFP transceiver will fit only one way. If the SFP does not install under gentle pressure, flip it over and try again.

Figure 6-1. SFP Transceiver Installation

6.2
 Power Supplies

The power supplies are hot pluggable. This means you can remove or install one of the power supplies while the switch is operating without disrupting service. The power supplies are also interchangeable; that is, the left and right power supplies are the same unit.

To remove the power supply, grasp the power supply latch handle and pull firmly to release the latches and disengage the modular connector. Slide the power supply out of its bay as shown in Figure 6-2.

To install a power supply, slide the power supply into the bay with the latch handle on top. Press the power supply firmly into place until it is fully seated, then push the latch handle in against the power supply to engage the latches.

Figure 6-2. Power Supply Removal
6.3

Fans
The fans are hot pluggable. This means you can remove or install one of the fans while the switch is operating without disrupting service. The fan is completely enclosed, so there is no risk of injury from the fan blades. The fans are also interchangeable; that is, the left and right fans are the same unit.

To remove a fan, loosen the two retaining screws, then grasp the fan housing and pull firmly to disengage the modular connector. Slide the fan out of its bay as shown in Figure 6-2.

Figure 6-3. Fan Removal
When replacing a fan, consider the following:

- The left and right fans are interchangeable. However, you must orient the fan so that the modular connector aligns with the mating connector in the switch as shown in Figure 6-4.
■ Replacement fans must be compatible with the switch air flow direction. Air flow direction for switch model SB2A-16A is front-to-back; air flow direction for switch model SB2A-16B is back-to-front.
- A label on the fan indicates the switch model number and fan air flow direction as shown in Figure 6-4.

CAUTION! Both fans must have the same air flow direction to prevent the switch from overheating.

To install a fan, do the following:

1. Confirm that the new fan is compatible with the switch air flow direction.
2. Align the modular connector toward the inside of the switch as shown in Figure 6-4.
3. Slide the fan into the bay until it is firmly seated and confirm that the air flow is correct. Fasten the screws.

Figure 6-4. Fan Installation for Switch Model SB2A-16B

Notes

Appendix A Specifications

This appendix contains the specifications for the SANbox2-16 Fibre Channel switch. Refer to Section 2 General Description for the location of all connections, switches, controls, and components.

A. 1
 Fabric Specifications

Fibre Channel Protocols	FC-PH Rev. 4.3
	FC-PH-2
	FC-PH-3
	FC-AL Rev 4.5
	FC-AL-2 Rev 7.0
	FC-FLA
	FC-GS-3
	FC-FG
	FC-PLDA
	FC-Tape
	FC-VI
	FC-SW-2
	Fibre Channel Element MIB RFC 2837
	Fibre Alliance MIB Version 4.0
Fibre Channel Classes of Service..	Classes 2 and 3
Modes of Operation	Fibre Channel Classes 2 and 3,
	connectionless
Port Types....................................	F_Port
	FL_Port
	TL-Port
	E_Port
	G_Port
	GL_Port
Port Characteristics	All ports are auto-discovering and
self-configuring.	

Maximum User Ports	$>475,000$ ports depending on configuration
Buffer Credits..............................	12 buffer credits per port

A. 2
 Maintainability

Maintenance Strategy	Field Replaceable Units - SFP transceivers - Power supplies - Fans
Diagnostics	Power On Self Test (POST) tests all functional components except SFP transceivers. Port tests include online internal, and external tests.

User Interface \qquad LED indicators

A. 3
 Fabric Management

Management Methods | SANbox Manager Graphical User Interface |
| :--- |
| Application Programming Interface |
| Command Line Interface |

GS-3 Management Server
SNMP
FTP

A. 4
 Dimensions

| Width... | $17.0 "(431 \mathrm{~mm}), 19$ inch rack mount |
| :--- | :--- | :--- |
| Height | $1.75 "(44 \mathrm{~mm})(1 \mathrm{U})$ |
| Depth | 18.0 " $(457 \mathrm{~mm})$ |
| Weight.. $18 \mathrm{lbs}(8.16 \mathrm{Kg})$ | |

A. 5
 Electrical

Operating voltage | 90 to $137 \mathrm{Vac} ; 47$ to 63 Hz |
| :--- |
| 180 to $265 \mathrm{Vac} ; 47$ to 63 Hz |

Power source loading | 1.9 Amps maximum at 90 to 137 Vac |
| :--- |
| 0.95 Amps maximum at 180 to 265 Vac |

Heat Output (maximum) 170 watts
Circuit Protection Internally fused

A. 6
 Environmental

Temperature	
■ Operating	10 to $40^{\circ} \mathrm{C}\left(50\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
■ Non-operating	-40 to $65^{\circ} \mathrm{C}\left(-40\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
Humidity	
■ Operating	25\% to 80\%, non-condensing
- Non-operating	25\% to 90%, non-condensing
Altitude	
■ Operating	0 to 3048m (0 to 10,000 feet)
- Non-operating	0 to 15,240m (0 to 50,000 feet)
Vibration	Magnitude during/after along any axis
- Operating	2.54 mm (.1); 5-14 Hz
	$0.1 \mathrm{G} ; 14-300 \mathrm{~Hz}$
- Non-operating	5-500 Hz, random
	$2.09 \mathrm{Grms}, 10$ minutes
Shock	Magnitude during/after along any axis
■ Operating	1 g for 15 msec
■ Non-operating	8 g for 15 msec
Air flow ..	Two fans; front-to-back or back-to-front by model

A. 7
 Regulatory Certifications

Safety Standards

\qquad
UL1950, CSA 22.2 No. 950, EN60950
Emissions Standards

\qquad
FCC Part 15B Class AVCCI Class A ITEBSMI Class ACISPR 22, Class AEN 55022, Class A
Voltage Fluctuations EN 61000-3-3
Harmonics EN 61000-3-2
Immunity EN 55024:1998
MarkingFCC Part 15,UL (United States), cUL(Canada), TUV, VCCI, BSMI, CE
SANmark®

A. 8
 Shortwave Laser SFP 1G/2G (multi-mode)

| Connector | Duplex LC |
| :--- | :--- | :--- |
| Color coding................................... | Beige or black exposed connector
 surfaces |
| Cable ... | Fibre Channel 100-M6-SN-I (50 $\mu \mathrm{m}$
 multimode) |
| | Fibre Channel 200-M5-SN-I or
 $200-M 6-S N-I ~(62.5 ~ \mu m ~ m u l t i m o d e) ~$ |
| Wavelength | $830-860$ nm |

A. 9
 Longwave Laser SFP 1G/2G (single-mode)

| Connector | Duplex LC |
| :--- | :--- | :--- |
| Color coding................................... | Blue exposed connector surfaces |
| Cable .. | Fibre Channel 100SM-LC-L (9 mm single
 mode) |
| Wavelength | $1270-13.5 \mathrm{~nm}$ |
| Transmit Power.............................. | -10 dBm minimum |
| Receiver Sensitivity | -20 dBm average |
| Distance... | 2 meters to 10 kilometers |
| Safety... | DHHS 21 CFR(J), IEC 825-1 |
| | CENELEC EN 60825-1, VDE |

Notes

Appendix B Command Line Interface

Each switch contains a Telnet server. This server allows a Telnet client to establish a Telnet session with the switch to retrieve information or to configure parameters using the Command Line Interface (CLI). The CLI enables you to perform a variety of fabric and switch management tasks through an Ethernet or a serial port connection.

B. 1

Logging On to a Switch

To log on to a switch using Telnet, open a command line window on the management workstation and enter the Telnet command followed by the switch IP address:
/> telnet 123.45.67.89
A Telnet window opens prompting you for a login. Enter an account name and password. Switches come from the factory with the following user account already defined:

Account name: admin
Password: password
Authority: Admin
This user account provides full access to the switch and its configuration. After planning your fabric management needs and creating your own user accounts, consider changing the password for this account. Refer to "Commands" on page B-3 for more information about authority levels. Refer to the "User Command" on page B-75 for information about creating user accounts.

Note: A switch supports a combined maximum of 19 logins reserved as follows:

- 4 sessions for internal applications such as management server and SNMP
- 15 sessions for SANbox Manager inband and out-of-band logins, Application Programming Interface (API) inband and out-of-band logins and Telnet logins. Of these 15, there can be a combined maximum of 10 SANbox Manager and API logins. Additional logins will be refused.
B. 2

Command Syntax

The command syntax is as follows:
command
keyword
keyword [value]
keyword [value1] [value2]
The Command is followed by one or more keywords. Consider the following rules and conventions:

- Commands and keywords are lowercase and case sensitive.
- Commands with keywords require one of those keywords.

■ Required keyword values appear in standard font: [value]. Optional values are shown in italics: [value].

- Underlined portions of the keyword in the command format indicate the abbreviated form that can be used. For example the Delete keyword can be abbreviated Del.

A command-line completion feature makes entering and repeating commands easier. Table B-1 describes the command-line completion keystrokes.

Table B-1. Command-Line Completion

Keystroke	Effect
Tab	Completes the command line. Enter at least one character and press the tab key to complete the command line. If more than one possibility exists, press the Tab key again to display all possibilities.
Up Arrow	Scrolls backward through the list of previously entered commands. Down Arrow Control-A
Scrolls forward through the list of previously entered commands.	
Control-E	Moves the cursor to the beginning of the command line
Moves the cursor to the end of the command line.	

B. 3

Commands

The command set provides for User and Admin authority levels.
■ User authority grants viewing access to the fabric and switches using the Show command and other read-only commands.

- Admin authority includes the User authority and grants permission to use the Admin command. The Admin Start command opens an admin session which provides access to the commands that change switch and fabric configurations. Refer to the "Admin Command" on page B-4.

The commands and their page numbers are listed by authority level in Table B-2.
Table B-2. Commands Listed by Authority Level

User Authority Commands		Admin Authority Command	
Help	(B-13)	Admin	(B-4)
History Ping	(B-14) (B-19)	Admin Session Commands	
Ps	(B-20)		(B-5)
Quit Show	(B-21) (B-48)	Config ${ }^{1}$	(B-7)
Show Config	(B-60)	Date ${ }^{1}$	(B-10)
Show Log	(B-63)	Fallback	(B-11)
Show Perf	(B-65)	Hardreset	(B-12)
Show Setup	(B-67)	Hotreset	(B-15)
Uptime	(B-74)	Image	(B-16)
Whoami	(B-77)	Lip	(B-17)
		Passwd	(B-18)
		Reset	(B-22)
		Set ${ }^{1}$	(B-27)
		Set Config	(B-29)
		Set Log	(B-39)
		Set Port	(B-42)
		Set Setup	(B-43)
		Shutdown	(B-70)
		Test	(B-71)
		User ${ }^{1}$	(B-75)
		Zone ${ }^{1}$	(B-78)
		Zoneset ${ }^{1}$	(B-82)
		Zoning ${ }^{1}$	(B-85)

[^0]
Admin Command

Opens and closes an Admin session. The Admin session provides commands that change the fabric and switch configurations. Only one Admin session can be open on the switch at any time. An inactive Admin session will time out after a period of time which can be changed using the Set Setup System command. Refer to the "Set Setup Command" on page B-43.
Authority Admin
Syntax admin
start (or begin)
end (or stop)
cancel
Keywords start (or begin)
Opens the admin session.
end (or stop)
Closes the admin session. The Hardreset, Hotreset, Logout, Shutdown, and Reset Switch commands will also end an admin session.

cancel

Terminates an Admin session opened by another user. Use this keyword with care because it terminates the Admin session without warning the other user and without saving pending changes.

Notes Closing a Telnet window during an admin session does not release the session. In this case, you must either wait for the admin session to time out, or use the Admin Cancel command.

Examples The following example shows how to open and close an Admin session:

```
SANbox2 #> admin start
```

SANbox2 (admin) \#>

SANbox2 (admin) \#> admin end

Alias Command

Creates a named set of ports/devices. Aliases make it easier to assign a set of ports/devices to many zones. An alias can not have a zone or another alias as a member.

Authority Admin

Syntax alias

add [alias] [members]
copy [alias_source] [alias_destination]
create [alias]
delete [alias]
list
members [alias]
remove [alias] [members]
rename [alias_old] [alias_new]
Keywords add [alias] [members]
Specifies one or more ports/devices given by [members] to add to the alias named [alias]. An alias can have a maximum of 2000 members. [members] can have one of the following formats:

- Domain ID and port number pair (Domain ID, Port Number). Domain IDs and port numbers are in decimal. Ports are numbered beginning with 0 .
■ 6-character hexadecimal device Fibre Channel address (hex)
■ 16-character hexadecimal worldwide port name (WWPN) with the format xx:xx:xx:xx:xx:xx:xx:xx.

The application verifies that the [alias] format is correct, but does not validate that such a port/device exists.

copy [alias_source] [alias_destination]

Creates a new alias named [alias_destination] and copies the membership into it from the alias given by [alias_source].
create [alias]
Creates an alias with the name given by [alias]. An alias name must begin with a letter and be no longer than 64 characters. Valid characters are 0-9, A-Z, a-z, _, \$, \wedge, and -. The zoning database supports a maximum of 256 aliases.

delete [alias]

Deletes the specified alias given by [alias] from the zoning database. If the alias is a member of the active zone set, the alias will not be removed from the active zone set until the active zone set is deactivated.
list
Displays a list of all aliases. This keyword is valid for User authority and does not require a zoning edit session or an admin session.

members [alias]

Displays all members of the alias given by [alias]. This keyword is available with User authority and does not require a zoning edit session or an admin session.

remove [alias] [members]

Removes the ports/devices given by [members] from the alias given by [alias]. [members] can have one of the following formats:

- Domain ID and port number pair (Domain ID, Port Number). Domain IDs and port numbers are in decimal. Ports are numbered beginning with 0 .
- 6-character hexadecimal device Fibre Channel address (hex)
- 16-character hexadecimal worldwide port name (WWPN) for the device with the format $x x: x x$.
rename [alias_old] [alias_new]
Renames the alias given by [alias_old] to the alias given by [alias_new].

Config Command

Manages the Fibre Channel configurations on a switch. For information about setting the port and switch configurations, refer to the "Set Config Command" on page B-29.
Authority Admin for all keywords except List
Syntax config
activate [config]
backup
cancel
copy [config_source] [config_destination]
delete [config]
edit [config]
list
restore
save [config]

Keywords

activate [config]
Activates the configuration given by [config]. If you omit the configuration, the currently active configuration is used. Only one configuration can be active at a time.

backup

Creates a file named configdata, which contains the system configuration information. To download this file, open an FTP session, log in with account name/password of "images" for both, and type "get configdata". Refer to Examples.
cancel
Terminates the current configuration edit session without saving changes that were made.
copy [config_source] [config_destination]
Copies the configuration given by [config_source] to the configuration given by [config_destination]. The switch supports up to 10 configurations including the default configuration.

delete [config]

Deletes the specified configuration file where [config] is a file name.

edit [config]

Opens an edit session for the configuration given by [config]. If you omit the configuration name, the currently active configuration is used.
list
Displays a list of all available configurations. This keyword is available with User authority.

restore

Restores configuration settings to an out-of-band switch from a backup file named configdata, which must be first uploaded on the switch using FTP. You create the backup file using the Config Backup command. Use FTP to load the backup file on a switch, then enter the Config Restore command. Refer to Examples.

Note: ■ If the restore process changes the IP address, all management sessions are terminated. Use the Set Setup System command to return the IP configuration to the values you want. Refer to the "Set Setup Command" on page B-43.
■ Configuration archive files created with the SANbox Manager Archive function are not compatible with the Config Restore command.

save [config]

Saves changes made during a configuration edit session in the configuration given by [config]. If you omit the configuration name value, the configuration you chose for the Config Edit command is used. The switch supports up to 10 configurations including the default configuration.
Notes If you edit the active configuration, changes will be held in suspense until you reactivate the configuration or activate another configuration.

Examples The following shows an example of how to open and close a Config Edit session:

```
SANbox2 #> admin start
SANbox2 (admin) #> config edit
SANbox2 (admin-config) #> config cancel
    Configuration mode will be canceled. Please confirm (y/n): [n] y
SANbox2 (admin) #> admin end
```

B - Command Line Interface Config Command

The following is an example of how to create a backup file (configdata) and download the file to the workstation.

```
SANbox2 #> admin start
SANbox2 (admin) #> config backup
SANbox2 (admin) #> admin end
SANbox2 #> exit
#>ftp symbolic_name or ip_address
user: images
password: images
ftp> bin
ftp> get configdata
ftp> quit
```

The following is an example of how to upload a configuration backup file (configdata) from the workstation to the switch, and then restore the configuration.

```
#> ftp symbolic_name or ip_address
user: images
password: images
ftp> bin
ftp> put configdata
ftp> quit
SANbox2 #> admin start
SANbox2 (admin) #> config restore
The switch will be reset after restoring the configuration.
    Please confirm (y/n): [n] y
    Alarm Msg: [Tue Jun 10 09:25:56.938 2003][A1005.0021][SM][Configuration is being
restored - this could take several minutes !]
    Alarm Msg: [Tue Jun 10 09:26:19.266 2003][A1000.000A][SM][The switch will be
reset in 3 seconds due to a config restore]
SANbox2 (admin) #>
    Alarm Msg: [Tue Jun 10 09:26:22.296 2003][A1000.0005][SM][The switch is being
reset]
Good bye.
```


Date Command

This command displays or sets the system date and time. To set the date and time the information string must be provided in this format: MMDDhhmmCCYY. The new date and time takes effect immediately.
Authority Admin to change the date; User to display the date.
Syntax date
[MMDDhhmmCCYY]
Keywords [MMDDhhmmCCYY]
Specifies the date - this requires an admin session. If you omit
[MMDDhhmmCCYY], the current date is displayed - this is available with User authority.
Examples The following is an example of the Date command:
SANbox2 \#> date
Mon Apr 07 07:51:24 2003

Fallback Command

Assigns the pending firmware status back and forth between the active and inactive firmware images stored in switch memory.
Authority Admin
Syntax fallback

Notes

- The Show Switch command displays the two firmware images, active firmware, inactive firmware, and pending firmware versions.

■ After executing the Fallback command, reset the switch to activate the pending firmware. Use the Hotreset command for a non-disruptive activation. Otherwise, you can use the Reset Switch command.

Examples The following is an example of the Fallback command:

```
SANbox2 #> admin start
```

SANbox2 (admin) \#> fallback

Reverting to previous software image. Please confirm (y/n): [n] y

Hardreset Command

Resets the switch and performs a power-on self test. This reset activates the pending firmware and disrupts traffic.

Authority Admin

Syntax hardreset

Notes
To reset the switch without a power-on self test, refer to the "Reset Command" on page B-22.

To reset the switch without disrupting traffic, refer to the "Hotreset Command" on page B-15.

Help Command

Displays a brief description of the specified command and its keywords.

Authority User

Syntax help [command] [keyword]

Keywords [command]
Displays a summary of the command given by [command] and its keywords. If you omit [command], the system displays all available commands from which to choose.

[keyword]

Displays a summary of the keyword given by [keyword] belonging to the command given by [command]. If you omit [keyword], the system displays the available keywords for the specified command.
all
Displays a list of all available commands (including command variations).
Examples The following is an example of the Help Set command:

```
SANbox2 #> help set
set SET_OPTIONS
There are many attributes that can be set.
Type help with one of the following to get more information:
    set alarm
    set beacon
    set blade
    set config blade
    set config port
    set config ports
    set config switch
    set config threshold
    set config zoning
    set log
    set pagebreak
    set port
    set setup snmp
    set setup system
    set switch
```

The following is an example of the Help Set Beacon command:

```
SANbox2 #> help set beacon
set beacon On | Off
This command allows the LEDs on the front of the switch to flash.
The On option will start and the Off option will stop the flashing.
```


History Command

Displays a numbered list of the previously entered commands from which you can re-execute selected commands.

Authority

User
Syntax
history
Notes
Use the History command to provide context for the ! command:
■ Enter ![command] to re-enter the most recent execution of that command.

- Enter![line number] to re-execute the corresponding command from the History display
■ Enter ![partial command string] to re-execute a command that matches the command string.
- Enter !! to re-execute the most recent command.

Examples The following is an example of the History command:

```
SANbox2 #> history
    1 \text { show switch}
    2 date
    3 help set
    4 history
```

SANbox2 \#> ! 3
help set
set SET_OPTIONS
There are many attributes that can be set.
Type help with one of the following to get more information:
set alarm
set beacon
set blade
set config blade
set config port
set config ports
set config switch
set config threshold
set config zoning
set log
set pagebreak
set port
set setup snmp
set setup system
set switch

Hotreset Command

Resets the switch for the purpose of activating the pending firmware without disrupting traffic. This command terminates all management sessions and saves all configuration information. After the pending firmware is activated, the configuration is recovered. This process takes less than 80 seconds.

Authority Admin

Syntax hotreset
Notes
Non-disruptive firmware activation is possible under the following conditions:
■ The active firmware must be version 2.0 or greater and the new firmware to be activated must be a version greater than 2.0.

- The fabric must be stable. This means that no configuration changes can be in progress, and switch and device connections are not being added or removed. Furthermore, a non-disruptive activation cannot occur if any port in the fabric is in the diagnostic operational state.
This command clears the event log and all counters.

Image Command

Manages and installs switch firmware.

Authority Admin

Syntax
image cleanup fetch [account_name] [ip_address] [file_source] [file_destination] list unpack [file]

Keywords cleanup

Removes all firmware image files from the switch. All firmware image files are removed automatically each time the switch is reset.
fetch [account_name] [ip_address] [file_source] [file_destination]
Retrieves image file given by [file_source] and stores it on the switch with the file name given by [file_destination]. The image file is retrieved from the device with the IP address given by [ip_address] and an account name given by [account_name]. If an account name needs a password to access the device, the system will prompt you for it.
list
Displays the list of image files that reside on the switch.
unpack [file]
Installs the firmware file given by [file]. After unpacking the file, a message appears confirming successful unpacking. The switch must be reset for the new firmware to take effect.

Notes To provide consistent performance throughout the fabric, ensure that all switches are running the same version of firmware.

Use the Hotreset command to perform a non-disruptive activation for firmware versions that follow version 2.0.

B - Command Line Interface
Lip Command

Lip Command

Reinitializes the specified loop port.
Authority Admin
Syntax lip [port_number]
Keywords [port_number]
The number of the port to be reinitialized.
Examples The following is an example of the Lip command:
SANbox2 (admin) \#> lip 2

Passwd Command

Changes a user account's password.
Authority Admin to change another account's password; User to change your own.
Syntax passwd [account_name]
Keywords [account_name]
The user account name. You must open an admin session to change the password for an account name other than your own. If you omit [account_name], you will be prompted to change the password for the current account name.

Examples The following is an example of the Passwd command:

```
SANbox2 (admin) #> passwd user2
    Press 'q' and the ENTER key to abort this command.
    account OLD password :
    account NEW password (4-20 chars) :
    please confirm account NEW password:
    password has been changed.
```

B - Command Line Interface
Ping Command

Ping Command

Initiates an attempt to communicate with another switch in the fabric and reports the result.

Authority User

Syntax Ping
ip_address
Keywords ip_address
The IP address of the switch to query.
Examples The following is an example of a successful Ping command:

```
SANbox2 #> ping 10.20.11.57
    Ping command issued. Waiting for response...
SANbox2 #>
    Response successfully received from 10.20.11.57.
```

This following is an example of an unsuccessful Ping command:

```
SANbox2 #> ping 10.20.10.100
    Ping command issued. Waiting for response...
    No response from 10.20.10.100. Unreachable.
```


Ps Command

Displays current system process information.
Authority User
Syntax ps
Examples The following is an example of the Ps command:

B - Command Line Interface

Quit Command

Closes the Telnet session.
Authority User
Syntax quit, exit, or logout
Notes You can also enter Control-D to close the Telnet session.

Reset Command

Resets the switch configuration parameters. If you omit the keyword, the default is Reset Switch.

Authority
Admin
Syntax

```
reset
    config [config_name]
    factory
    port [port_number]
    snmp
    switch (default)
    system
    zoning
```


Keywords config [config_name]

Resets the configuration given by [config_name] to the factory default values for switch, port, alarm threshold, and zoning configuration. If [config_name] does not exist on the switch, a configuration with that name will be created. If you omit [config_name], the active configuration is reset. You must activate the configuration for the changes to take effect. Refer to Table B-3 through Table B-6 for switch, port, and alarm threshold configuration default values.

factory

Resets switch configuration, port configuration, alarm threshold configuration, zoning configuration, SNMP configuration, system configuration, and zoning to the factory default values. The switch configuration is activated automatically. Refer to Table B-3 through Table B-8.

port [port_number]

Reinitializes the port given by [port_number]. Ports are numbered beginning with 0 .

snmp

Resets the SNMP configuration settings to the factory default values. Refer to Table B-7 for SNMP configuration default values.

switch

Resets the switch without a power-on self test. This reset disrupts traffic and activates the pending firmware. This command also closes all management sessions. This is the default. To reset the switch with a power-on self test, refer to the "Hardreset Command" on page B-12. To reset the switch without disrupting traffic, refer to the "Hotreset Command" on page B-15.
system
Resets the system configuration settings to the factory default values. Refer to Table B-8 for system configuration default values.

zoning

Clears the zoning database and deactivates the active zone set. The zoning configuration values (autosave, default visibility) remain unchanged.

Notes
The following tables specify the various factory default settings:
Table B-3. Switch Configuration Defaults

Parameter	Default
Admin State	Online
Broadcast Enabled	True
InbandEnabled	True
Domain ID	$1(0 x$ Hex)
Domain ID Lock	False
Symbolic Name	SANbox2
R_A_TOV	10000
E_D_TOV	2000
Principal Priority	254
Configuration Description	QLogic SANbox2 FC Switch
Configuration Last Saved By	Initial
Configuration Last Saved On	Initial

Table B-4. Port Configuration Defaults

Parameter	
Admin State	Default
Link Speed	Online
Port Type	GL
ISL Security	Any
Symbolic Name	Port
ALFairness	False
DeviceScanEnabled	True
ForceOfflineRSCN	False
ARB_FF	False
InteropCredit	0
ExtCredit	0

Table B-4. Port Configuration Defaults (Continued)

Parameter	Default
FANEnable	True
LCFEnable	False
MFSEnable	True
MFS_TOV	10
MSEnable	True
NoClose	False
IOStreamGuard	Disabled
VIEnable	False
CheckAlps	False

Table B-5. Alarm Threshold Configuration Defaults

Parameter	
ThresholdMonitoringEnabled	False
CRCErrorsMonitoringEnabled	True
RisingTrigger	25
FallingTrigger	1
SampleWindow	10
DecodeErrorsMonitoringEnabled	True
RisingTrigger	200
FallingTrigger	0
SampleWindow	10
ISLMonitoringEnabled	True
RisingTrigger	2
FallingTrigger	0
SampleWindow	10
LoginMonitoringEnabled	True
RisingTrigger	5
FallingTrigger	1
SampleWindow	10

B - Command Line Interface
Reset Command

Table B-5. Alarm Threshold Configuration Defaults (Continued)

Parameter	
LogoutMonitoringEnabled	True
RisingTrigger	5
FallingTrigger	1
SampleWindow	10
LOSMonitoringEnabled	True
RisingTrigger	100
FallingTrigger	5
SampleWindow	10

Table B-6. Zoning Configuration Defaults

Parameter	Default
FC-SW-2 AutoSave	True
Default	All

Table B-7. SNMP Configuration Defaults

Parameter	Default
Contact	<syscontact undefined>
Location	<sysLocation undefined>
Description	QLogic SANbox2 FC Switch
Trap [1-5] Address	Trap 1: 10.0.0.254; Traps 2-5: 0.0.0.0
Trap [1-5] Port	162
Trap [1-5] Severity	Warning
Trap [1-5] Version	2
Trap [1-5] Enabled	False
ObjectID	1.3.6.1.4.1.1663.1.1.1.1.11
AuthFailureTrap	False
ProxyEnabled	True

Table B-8. System Configuration Defaults

| Parameter | Default |
| :--- | :--- | :--- |
| Ethernet Network Discovery | Static |
| Ethernet Network IP Address | 10.0 .0 .1 |
| Ethernet Network IP Mask | 255.0 .0 .0 |
| Ethernet Gateway Address | 10.0 .0 .254 |
| Fibre Channel Network Discovery | Static |
| Fibre Channel Network IP Address | 0.0 .0 .0 |
| Fibre Channel Network IP Mask | 255.0 .0 .0 |
| Fibre Channel Gateway Address | 10.0 .0 .254 |
| Admin Timeout | 30 minutes |
| SecurityEnabled | False |
| LocalLogEnabled | True |
| RemotelogEnabled | False |
| RemoteLogHostAddress | 10.0 .0 .254 |
| Temp Monitoring Warning | 65 |
| Temp Monitoring Failure | 70 |
| Temp Failure Port Shutdown | False |

Set Command

Sets a variety of switch parameters.
Authority Admin for all keywords except Alarm Clear, Beacon, and Pagebreak which are available with User authority.

Syntax
 set

alarm clear
beacon [state]
config [option]
log [option]
pagebreak [state]
port [option]
setup [option]
switch [state]

Keywords alarm clear

Clears the alarm log. This keyword is available with User authority.

beacon [state]

Enables or disables the flashing of the Logged-In LEDs according to [state]. This keyword is available with User authority. [state] can be one of the following:
on
Enables the flashing beacon.
off
Disables the flashing beacon.

config [option]

Sets switch, port, alarm threshold, and zoning configuration parameters. Refer to the "Set Config Command" on page B-29.
log [option]
Specifies the type of entries to be entered in the event log. Refer to the "Set Log Command" on page B-39.

pagebreak [state]

Specifies how much information is displayed on the screen at a time according to the value given by [state]. This keyword is available with User authority. [state] can be one of the following:
on
Limits the display of information to 20 lines at a time. The page break functions affects the following commands: Alias (List, Members), Show (Alarm, Log), Zone (List, Members), Zoneset (List, Zones), Zoning (Active, List).
off
Allows continuous display of information without a break.

port [option]

Sets port state and speed for the specified port temporarily until the next switch reset or new configuration activation. Refer to the "Set Port Command" on page B-42.

setup [option]

Changes SNMP and system configuration settings. Refer to the "Set Setup Command" on page B-43.

switch [state]

Temporarily changes the administrative state for all ports on the switch to the state given by [state]. The previous Set Config Switch settings are restored after a switch reset or a reactivation of a switch configuration. [state] can be one of the following:

```
online
Places all ports online
offline
Places all ports offline.
diagnostics
Prepares all ports for testing.
```

Examples The following examples enables and disables the beacon:

```
SANbox2 #> set beacon on
    Command succeeded.
SANbox2 $> set beacon off
```

Command succeeded.

Set Config Command

Sets switch, port, alarm threshold, and zoning configuration parameters.
Authority Admin authority and a Config Edit session
Syntax set config
port [port_number]
ports [port_number]
switch
threshold
zoning

Keywords port [port_number]

Initiates an edit session in which to change configuration parameters for the port number given by [port_number]. If you omit [port_number], the system begins with port 0 and proceeds in order through the last port. For each parameter, enter a new value or press the Enter key to accept the current value shown in brackets. Enter " q " to end the configuration for one port, or "qq" to end the configuration for all ports. Table B-9 describes the port parameters.

ports [port_number]

Initiates an editing session in which to change configuration parameters for all ports based on the configuration for the port given by [port_number]. If you omit [port_number], port 0 is used. For each parameter, enter a new value or press the Enter key to accept the current value shown in brackets. Enter "q" to end the configuration. Table B-9 describes the port parameters.

Table B-9. Set Config Port Parameters

Parameter	Description
AdminState	Port administrative state: online, offline, diagnostics, or down. The default is
	online.

Table B-9. Set Config Port Parameters (Continued)

Parameter	Description
SymbolicPortName	Descriptive name. The default is Port.
ALFairness	Arbitration loop fairness. Enables (True) or disables (False) the switch's priority to arbitrate on the loop. The default is False.
DeviceScanEnabled	Enables (True) or disables (False) the scanning of the connected device for FC-4 descriptor information during login. The default is True.
ForceOfflineRSCN	Enables (False) or disables (True) the immediate transmission of RSCN messages when communication between a port and its device is interrupted. If enabled, the RSCN message is queued for 200 ms . The default is False. This parameter is ignored if IOStreamGuard is enabled.
ARB_FF	Send ARB_FF (True) instead of IDLEs (False) on the loop. The default is False.
InteropCredit	Interoperability credit. The number of buffer-to-buffer credits per port. 0 means the default (12) is unchanged.
ExtCredit	Extended credits. The number of port buffer credits that this port can acquire from donor ports. The default is 0 .
FANEnable	Fabric address notification. Enables (True) or disables (False) the communication of the FL_Port address, port name, and node name to the logged-in NL_Port. The default is True.
LCFEnable	Link control frame preference routing. Enables (True) or disables (False) preferred routing of frames with R_CTL = 1100 (Class 2 responses). The default is False. Enabling LCFEnable will disable MFSEnable.

B - Command Line Interface Set Config Command

Table B-9. Set Config Port Parameters (Continued)

Parameter	Description
MFSEnable	Multi-Frame Sequence bundling. Prevents (True) or allows (False) the interleaving of frames in a sequence. The default is True. Enabling MFSEnable disables LCFEnable and VIEnable.
MSEnable	Management server enable. Enables (True) or disables (False) management server on this port. The default is True.
NoClose	Loop circuit closure prevention. Enables (True) or disables (False) the loop's ability to remain in the open state indefinitely. True reduces the amount of arbitration on a loop when there is only one device on the loop. The default is False.
IOStreamGuard	I/O Stream Guard. Enable (Enable) or disables (Disable) the suppression of RSCN messages. The default is Disable.
VIEnable	Enables (True) or disables (False) VI preference routing. The default is False. Enabling VIEnable will disable MFSEnable.
CheckAlps	Enables (True) or disables (False) the loop's ability to close more often. Enable only for TL_Ports that are having problems with a specific device. The default is False.

switch
Initiates an editing session in which to change switch configuration settings. The system displays each parameter one line at a time and prompts you for a value. For each parameter, enter a new value or press the Enter key to accept the current value shown in brackets.

Table B-10. Set Config Switch Parameters

Parameter	Description
AdminState	Switch administrative state: online, offline, or diagnostics. The default is Online.
BroadcastEnabled	Broadcast. Enables (True) or disables (False) forwarding of broadcast frames. The default is True.
InbandEnabled	Inband management. Enables (True) or disables (False) the ability to manage the switch over an ISL. The default is True.
DefaultDomainID	Default domain ID. The default is 1 .
DomainIDLock	Prevents (True) or allows (False) dynamic reassignment of the domain ID. The default is False.
SymbolicName	Descriptive name. The default is SANbox2.
R_A_TOV	Resource Allocation Timeout Value. The number of milliseconds the switch waits to allow two ports to allocate enough resources to establish a link. The default is 10000 .
E_D_TOV	Error Detect Timeout Value. The number of milliseconds a port is to wait for errors to clear. The default is 2000.
PrincipalPriority	The priority used in the FC-SW-2 principal switch selection algorithm. 1 is high, 255 is low. The default is 254 .
ConfigDescription	The name for the configuration. The default is undefined.

Table B-10. Set Config Switch Parameters (Continued)

Parameter	Description
FC-SW-2 Compliant	Propagates just the active zone set throughout the fabric (True, compliant) or the entire zoning database (False, non-compliant). The default is True.
	Available only when the FC-SW-2 Compliant parameter is False, this parameter enables (True) or disables (False) the use of legacy address formating for interoperating with non-FC-SW-2 switches. Refer to
	"FC-SW-2 Compliant" on page B-33.
	The default is False.

threshold

Initiates a configuration session by which to generate and log alarms for selected events. The system displays each event, its thresholds, and sampling interval one line at a time and prompts you for a value. For each parameter, enter a new value or press the Enter key to accept the current value shown in brackets. These parameters must be saved in a configuration and activated before they will take effect. Refer to the "Config Command" on page B-7 for information about saving and activating a configuration. Table B-11 describes the Set Config Threshold parameters. The switch will down a port if an alarm condition is not cleared within three consecutive sampling intervals (by default 30 seconds). Reset the port to bring it back online. An alarm is cleared when the threshold monitoring detects that the error rate has fallen below the falling threshold.

Table B-11. Set Config Threshold Parameters

Parameter	Description
Threshold Monitoring Enabled	Master enable/disable parameter for all events. Enables (True) or disables (False) the generation of all enabled event alarms. The default is False.
CRCErrorsMonitoringEnabled DecodeErrorsMonitoringEnabled ISLMonitoringEnabled LoginMonitoringEnabled LogoutMonitoringEnabled LOSMonitoringEnabled	The event type enable/disable parameter. Enables (True) or disables (False) the generation of alarms for each of the following events: - CRC errors - Decode errors - ISL connection count - Device login errors - Device logout errors - Loss-of-signal errors
Rising Trigger	The event count above which a rising threshold alarm is logged. The switch will not generate another rising threshold alarm for that event until the count descends below the falling threshold and again exceeds the rising threshold.
Falling Trigger	The event count below which a falling threshold alarm is logged. The switch will not generate another falling threshold alarm for that event until the count exceeds the rising threshold and descends again below the falling threshold.
Sample Window	The period of time in seconds in which to count events.

zoning

Initiates an editing session in which to change switch zoning attributes. The system displays each parameter one line at a time and prompts you for a value. For each parameter, enter a new value or press the Enter key to accept the current value shown in brackets.

Table B-12. Set Config Zoning Parameters

Parameter	Description
FC-SW-2 AutoSave	Available only when the FC-SW-2
	Compliant parameter is True, this
parameter enables (True) or disables	
	(False) the saving of changes to active
	zone set in the switch's permanent
	memory. Refer to "FC-SW-2
	Compliant" on page B-33. The default is
	True.
	Enables (AII) or disables (None)
	communication among the switch's
Default	ports/devices and the fabric in the
	absence of an active zone set. The
	default is All.

Examples The following is an example of the Set Config Port command:

SANbox2 \#> admin start
SANbox2 (admin) \#> config edit
SANbox2 (admin-config) \#> set config port 1

```
A list of attributes with formatting and current values will follow.
Enter a new value or simply press the ENTER key to accept the current value.
If you wish to terminate this process before reaching the end of the list
press 'q' or 'Q' and the ENTER key to do so.
```

```
Configuring Port Number: 1
```

\qquad

AdminState	(1=Online, 2=Offline, 3=Diagnostics, 4=Down)	[Online]
LinkSpeed	$(1=1 \mathrm{~Gb} / \mathrm{s}, 2=2 \mathrm{~Gb} / \mathrm{s}, 3=$ Auto $)$	[Auto]
PortType	(TL / GL / G / F / FL / Donor)	[GL]
ISLSecurity	(Any / Ours / None)	[Any]
SymPortName	(string, max=32 chars)	[Port2]
ALFairness	(True / False)	[False]
DeviceScanEnab	le (True / False)	[True]
ForceofflineRS	CN (True / False)	[False]
ARB_FF	(True / False)	[False]
InteropCredit	(decimal value, 0-255)	[0]
ExtCredit	(dec value, increments of 11, non-loop only)	[0]
FANEnable	(True / False)	[True]
LCFEnable	(True / False)	[False]
MFSEnable	(True / False)	[False]
MSEnable	(True / False)	[True]
NoClose	(True / False)	[False]
IOStreamGuard	(Enable / Disable)	[Disable]
VIEnable	(True / False)	[False]
CheckAlps	(True / False)	[False]

Finished configuring attributes.
This configuration must be saved (see config save command) and
activated (see config activate command) before it can take effect.
To discard this configuration use the config cancel command.

B - Command Line Interface
Set Config Command

The following is an example of the Set Config Switch command:

SANbox2 \#> admin start
SANbox2 (admin) \#> config edit
SANbox2 (admin-config) \#> set config switch

The following is an example of the Set Config Threshold command:

SampleWindow
(decimal value, $1-1000 \mathrm{sec}$) [10]

ISLMonitoringEnabled
RisingTrigger
FallingTrigger
SampleWindow

(True / False)	[True]
(decimal value, $1-1000$)	$[2]$
(decimal value, $0-1000$)	$[0$]
(decimal value, $1-1000 \mathrm{sec})$	$[10$]

LoginMonitoringEnabled
RisingTrigger
FallingTrigger
SampleWindow

(True / False)	[True]
(decimal value, $1-1000$)	$[5 \mathrm{f}]$
(decimal value, $0-1000$)	$[1]$
(decimal value, $1-1000 \mathrm{sec})$	$[10$]

LogoutMonitoringEnabled
RisingTrigger
FallingTrigger
SampleWindow

LOSMonitoringEnabled
RisingTrigger
FallingTrigger
SampleWindow

(True / False)	[True]
(decimal value, $1-1000$)	$[5]$
(decimal value, $0-1000$)	$[1]$
(decimal value, $1-1000 \mathrm{sec})$	$[10$]

(True / False)	[True]
(decimal value, $1-1000$)	$[100$]
(decimal value, $0-1000$)	$[5$]
(decimal value, $1-1000 \mathrm{sec})$	$[10$]

Finished configuring attributes.
This configuration must be saved (see config save command) and activated (see config activate command) before it can take effect. To discard this configuration use the config cancel command.

The following is an example of the Set Config Zoning command.

```
SANbox2 #> admin start
SANbox2 (admin) #> config edit
SANbox2 (admin-config) #> set config zoning
```

A list of attributes with formatting and current values will follow.
Enter a new value or simply press the ENTER key to accept the current value.
If you wish to terminate this process before reaching the end of the list press ' q '
or ' Q ' and the ENTER key to do so.

| FC-SW-2 AutoSave (True / False) [True] | |
| :--- | :--- | :--- |
| Default | (All / None) [All] |

 Finished configuring attributes.
 This configuration must be saved (see config save command) and
 activated (see config activate command) before it can take effect.
 To discard this configuration use the config cancel command.

Set Log Command

Specifies the type of entries to be entered in the event log. The log consists of six files contained on the switch: logfile, and logfile. 1 - logfile.5. Each file can hold a maximum of 200 entries. The switch begins writing entries to logfile. When logfile is full, its contents are moved into logfile.1, and logging continues in logfile. When logfile. 1 is full, its contents are moved into logfile.2, and so on. When logfile. 5 becomes full, its contents are discarded. Log entries are created for ports, components, and event severity levels.
Authority Admin
Syntax set log
archive
clear
component [list]
level [level]
port [port_list]
restore
save
start (default)
stop

Keywords archive

Concatenates the individual event log files (logfile, logfile.1, logfile.2, logfile.3, logfile.3, logfile.4, logfile.5) and stores the result in new file named logfile that is maintained in another part of switch memory where it can be downloaded from the switch using FTP. To download logfile, open an FTP session, log in with account name/password of "images" for both, and type "get logfile".

clear

Clears all log entries.
component [list]
Specifies one or more components to monitor for events. Use spaces to delimit values in the list. Choose one or more of the following values:

All
Monitors all components. To maintain optimal switch performance, do not use this setting with the Level keyword set to Info.
Chassis
Monitors chassis hardware components such as fans and power supplies.
Eport
Monitors all E_Ports.
Mgmtserver
Monitors management server status.
Nameserver
Monitors name server status.

None
Monitor none of the component events.
Other
Monitors other miscellaneous events.
Port
Monitors all port events
Switch
Monitors switch management events.
Zoning
Monitors zoning conflict events.

level [level]

Specifies the severity level given by [level] to use in monitoring events for the specified components or ports. [level] can be one of the following values:

Critical
Monitors critical events.
Warn
Monitors warning events.
Info
Monitors informational events. To maintain optimal switch performance, do not use this setting with the Component keyword set to All.
None
Monitors none of the severity levels.

port [port_list]

Specifies one or more ports to monitor for events. Choose one of the following values:
[port_list]
Specifies port or ports to monitor. Use spaces to delimit values in the list.
Ports are numbered beginning with 0 .

All
 Specifies all ports.

None
Disables monitoring on all ports.

restore

Restores and saves the port, component, and level settings to the default values.

save

Saves the log settings for the component, level, and port. These settings remain in effect after a switch reset. The log settings can be viewed using the Show Log Settings command. To export log entries to a file, use the Set Log Archive command.

B - Command Line Interface
Set Log Command
start
Starts the logging of events based on the Port, Component, and Level keywords assigned to the current configuration. The logging continues until you enter the Set Log Stop command.

stop

Stops logging of events.
Notes To maintain optimal switch performance, do not set the Component keyword to All and the Level keyword to Info at the same time.

Set Port Command

Sets port state and speed for the specified port temporarily until the next switch reset or new configuration activation. This command also clears port counters.
Authority
Admin
Syntax set port [port_number]
bypass [alpa]
clear
enable
speed [transmission_speed]
state [state]
Keywords [port_number]
Specifies the port. Ports are numbered beginning with 0 .
bypass [alpa]
Sends a Loop Port Bypass (LPB) to a specific Arbitrated Loop Physical Address (ALPA) or to all ALPAs on the arbitrated loop. [alpa] can be a specific ALPA or the keyword ALL to choose all ALPAs.

clear

Clears the counters on the specified port.
enable
Sends a Loop Port Enable (LPE) to all ALPAs on the arbitrated loop.

speed [transmission_speed]

Specifies the transmission speed for the specified port. Choose one of the following port speed values:

1Gb/s
One gigabit per second.
2Gb/s
Two gigabits per second.
Auto
The port speed is automatically detected.

state [state]

Specifies one of the following administrative states for the specified port:
Online
Places the port online.
Offline
Places the port offline.
Diagnostics
Prepares the port for testing.
Down
Disables the port.

Set Setup Command

Changes SNMP and system configuration settings. The switch maintains one SNMP configuration and one system configuration.

Authority
Admin
Syntax set setup
snmp
system

Keywords snmp

Prompts you in a line-by-line fashion to change SNMP configuration settings. Table B-13 describes the SNMP fields. For each parameter, enter a new value or press the Enter key to accept the current value shown in brackets.

Table B-13. SNMP Configuration Settings

Entry	Description
Contact	Specifies the name of the person to be contacted to respond to trap events. The default is undefined. Specifies the name of the switch location. The default is undefined. Specifies the workstation IP address to which SNMP traps are sent. The default address for trap 1 is 10.0.0.254. The default address for traps 2-5 is 0.0.0.0. Addresses, other than 0.0.0.0, for all traps must be unique.
Trap [1-5] Port	Specifies the workstation port to which SNMP traps are sent. The default is 162.
Trap [1-5] Severity	Specifies the severity level to use when monitoring trap events. The default is Warning
Trap [1-5] Version	Specifies the SNMP version (1 or 2) to use in formatting traps. The default is 2. Specifies whether traps (event information) are enabled or
ReadCommunity Enabled	Sisabled (default). Read community password that authorizes an SNMP agent to read information from the switch. This is a write-only field. The value on the switch and the SNMP management server must be the same. The default is "public".
WriteCommunity	Write community password that authorizes an SNMP agent to write information to the switch. This is a write-only field. The value on the switch and the SNMP management server must be the same. The default is "private".

Table B-13. SNMP Configuration Settings (Continued)

Entry	Description
TrapCommunity	Trap community password that authorizes an SNMP agent to receive traps. This is a write-only field. The value on the switch and the SNMP management server must be the same. The default is "public".
AuthFailureTrap	Enables (True) or disables (False) the generation of traps in response to trap authentication failures. The default is False.
ProxyEnabled	Enables (True) or disables (False) SNMP communication with other switches in the fabric. The default is True.

system

Prompts you in a line-by-line fashion to change system configuration settings. Table B-14 describes the system configuration fields. For each parameter, enter a new value or press the Enter key to accept the current value shown in brackets.

Note: \quad Changing the IP address will terminate all Ethernet management sessions.

Table B-14. System Configuration Settings

Entry	Description
EthONetworkDiscovery	Ethernet boot method: 1 - Static, 2 - Bootp, 3 DHCP, 4 -RARP. The default is 1 - Static.
EthONetworkAddress	Ethernet Internet Protocol (IP) address. The default is 10.0.0.1.
EthONetworkMask	Ethernet subnet mask address.
Eth0GatewayAddress	Ethernet IP address gateway.
FCNetworkDiscovery	Fibre Channel boot method: 1 - Static, 3 - DHCP. The default is 1 - Static.
FCNetworkAddress	Fibre Channel Internet Protocol (IP) address for the Ethernet port. The default is 0.0 .0 .0 .
FCNetworkMask	Fibre Channel subnet mask address. The default is 255.0.0.0.
FCGatewayAddress	Fibre Channel IP address gateway. The default is 10.0.0.254.

B - Command Line Interface
Set Setup Command

Table B-14. System Configuration Settings (Continued)

Entry	Description
AdminTimeout	Specifies the amount of time in minutes the switch waits before terminating an idle Admin session. Zero (0) disables the time out threshold. The default is 30, the maximum is 1440.
Warning temperature threshold in ${ }^{\circ} \mathrm{C}$ above which	
a warning condition alarm is generated. The	
default is $65^{\circ} \mathrm{C}$.	

Examples The following is an example of the Set Setup SNMP command:

```
SANbox2 #> admin start
SANbox2 (admin) #> set setup snmp
    A list of attributes with formatting and current values will follow.
    Enter a new value or simply press the ENTER key to accept the current value.
    If you wish to terminate this process before reaching the end of the list
    press 'q' or 'Q' and the ENTER key to do so.
    Trap Severity Options
    unknown, emergency, alert, critical, error, warning, notify, info, debug, mark
```

Contact	(string, max $=32$ chars)	[<sysContact	undefined]
Location	(string, max=32 chars)	[sysLocation	undefined]
Trap1Address	(dot-notated IP Address)	[10.20.71.15]
Trap1Port	(decimal value)	[162]
Trap1Severity	(see allowed options above)	[warning]
TraplVersion	(1 / 2)	[2]
Trap1Enabled	(True / False)	[False]
Trap2Address	(dot-notated IP Address)	[0.0.0.0]
Trap2Port	(decimal value)	[162]
Trap2Severity	(see allowed options above)	[warning]
Trap2Version	(1 / 2)	[2]
Trap2Enabled	(True / False)	[False]
Trap3Address	(dot-notated IP Address)	[0.0.0.0]
Trap3Port	(decimal value)	[162]
Trap3Severity	(see allowed options above)	[warning]
Trap3Version	(1 / 2)	[2]
Trap3Enabled	(True / False)	[False]
Trap4Address	(dot-notated IP Address)	[0.0.0.0]
Trap4Port	(decimal value)	[162]
Trap4Severity	(see allowed options above)	[warning]
Trap4Version	(1 / 2)	[2]
Trap4Enabled	(True / False)	[False]
Trap5Address	(dot-notated IP Address)	[0.0.0.0]
Trap5Port	(decimal value)	[162]
Trap5Severity	(see allowed options above)	[warning]
Trap5Version	(1 / 2)	[2]
Trap5Enabled	(True / False)	[False]
ReadCommunity	(string, max=32 chars)	[public]
WriteCommunity	(string, max $=32$ chars)	[private]
TrapCommunity	(string, max=32 chars)	[public]
AuthFailureTrap	(True / False)	[False]
ProxyEnabled	(True / False)	[True]

The following is an example of the Set Setup System command:

Nbox2 (admin) \#> set setup system			
A list of attributes Enter a new value or s If you wish to termina press 'q' or 'Q' and	ith formatting and current values w simply press the ENTER key to accept te this process before reaching the he ENTER key to do so.	1 follow. he current nd of the li	alue
Eth0NetworkDiscovery	(1=Static, 2=Bootp, 3=Dhcp, 4=Rarp)	[Static]
Eth0NetworkAddress	(dot-notated IP Address)	[10.0.0.1]
Eth0NetworkMask	(dot-notated IP Address)	[255.255.255	
Eth0GatewayAddress	(dot-notated IP Address)	[10.0.0.254]
FCNetworkDiscovery	(1=Static, 3=Dhcp)	[Static]
FCNetworkAddress	(dot-notated IP Address)	[0.0.0.0]
FCNetworkMask	(dot-notated IP Address)	[255.0.0.0]
FCGatewayAddress	(dot-notated IP Address)	[10.0.0.254]
AdminTimeout	(dec value 0-1440 minutes, $0=$ never)	[30]
TempMonitoringWarning	(dec value 0-100 degrees Celsius)	[65]
TempMonitoringFailure	(dec value 0-100 degrees Celsius)	[70]
TempFailurePortShutdown	(True / False)	[False]
SecurityEnabled	(True / False)	[False]
LocalLogEnabled	(True / False)	[True]
RemoteLogEnabled	(True / False)	[False]
RemoteLogHostAddress	(dot-notated IP Address)	[10.0.0.254]

Show Command

Displays fabric, switch, and port operational information.
Authority
Syntax

User
Syntax
show
about
alarm
broadcast
chassis
config [option]
domains
donor
fabric
interface
log [option]
Isdb
mem [count]
ns [option]
pagebreak
perf [option]
port [port_number]
post log
setup [option]
steering [domain_id]
support
switch
topology
users
version
Keywords about
Displays an introductory set of information about operational attributes of the switch. This keyword is equivalent to the Version keyword.
alarm
Displays the last 200 alarm entries.
broadcast
Displays the broadcast tree information and all ports that are currently transmitting and receiving broadcast frames.
chassis
Displays chassis component status and temperature.
config [option]
Displays switch, port, and zoning configuration attributes. Refer to the "Show Config Command" on page B-60.

domains

Displays list of each domain and its worldwide name in the fabric.

donor

Displays list of current donor configuration for all ports.

fabric

Displays list of each domain, symbolic name, worldwide name, node IP address, and port IP address.

interface

Displays the status of the active network interfaces.

log [option]

Displays log entries. Refer to the "Show Log Command" on page B-63.

Isdb

Displays Link State database information.
mem [count]
Displays information about memory activity for the number of seconds given by [count]. If you omit [count], the value 1 is used. Displayed memory values are in 1K block units.

Note: \quad This keyword will display memory activity updates until [count] is reached - it cannot be interrupted. Therefore, avoid using large values for [count].

ns [option]

Displays name server information for the specified [option]. If you omit [option], name server information for the local domain ID is displayed. [option] can have the following values:
all
Displays name server information for all switches and ports.
[domain_id]
Displays name server information for the switch given by [domain_id].
[domain_id] is a switch domain ID.
[port_id]
Displays name server information for the port given by [port_id]. [port_id] is a port Fibre Channel address.

pagebreak

Displays the current pagebreak setting. The pagebreak setting limits the display of information to 20 lines (On) or allows the continuous display of information without a break (Off).

perf [option]

Displays performance information for all ports. Refer to the "Show Perf Command" on page B-65.

port [port_number]

Displays operational information for the port given by [port_number]. Ports are numbered beginning with 0 . If [port number] is omitted, information is displayed for all ports. Table B-15 describes the port parameters.

Table B-15. Show Port Parameters

Entry	Description
Alinit	Incremented each time the port begins AL initialization. AlinitError Number of times the port entered initialization and the initialization failed.
Bad Frames	Number of frames that have framing errors.
ClassXFramesIn	Number of class x frames received by this port.
ClassXFramesOut	Number of class x frames sent by this port.
ClassXWordsIn	Number of class x words received by this port.
ClassXWordsOut	Number of class x words sent by this port.
ClassXToss	Number of times an SOFi3 or SOFn3 frame is tossed from TBUF.
DecodeError	Number of decode errors detected EpConnects Number of times an E_Port connected through ISL negotiation.
FBusy	Number of times the switch sent a F_BSY because Class 2 frame could not be delivered within ED_TOV time. Number of class 2 and class 3 fabric busy (F_BSY) frames generated by this port in response to incoming frames.
This usually indicates a busy condition on the fabric or	
N_Port that is preventing delivery of this frame.	

B - Command Line Interface
Show Command

Table B-15. Show Port Parameters (Continued)

Entry	Description
LIPF7ALPS	This LIP is used to reinitialize the loop. An L_Port, identified by AL_PS, may have noticed a performance degradation and is trying to restore the loop.
LIPF8ALPS	This LIP denotes a loop failure detected by the L_Port identified by AL PS.
LIPF7F7	A loop initialization primitive frame used to acquire a valid AL_PA.
LIPF8F7	A loop initialization primitive frame used to indicate that a loop failure has been detected at the receiver.
Link Failures	Number of optical link failures detected by this port. A link failure is a loss of synchronization or by loss of signal while not in the offline state. A loss of signal causes the switch to attempt to re-establish the link. If the link is not re-established, a link failure is counted. A link reset is performed after a link failure.
Login	Number of device logins
Logout	Number of device logouts
LoopTimeouts	A two (2) second timeout as specified by FC-AL-2.
LossOfSync	Number of synchronization losses ($>100 \mathrm{~ms}$) detected by this port. A loss of synchronization is detected by receipt of an invalid transmission word.
PrimSeqErrors	Primitive sequence errors detected.
RxLinkResets	Number of link reset primitives received from an attached device.
RxOfflineSeq	Number of offline sequences received. An OLS is issued for link initialization, a Receive \& Recognize Not_Operational (NOS) state, or to enter the offline state.
TotalErrors	Total number of errors detected.
TotalLIPsRecvd	Number of loop initialization primitive frames received by this port.
TotalLIPsXmitd	Number of loop initialization primitive frames transmitted by this port.
TotalLinkResets	Total number of link reset primitives.
TotalOfflineSeq	Total number of Offline Sequences issued by this port.

Table B-15. Show Port Parameters (Continued)

Entry	Description
TotalRxFrames	Total number of frames received by this port.
TotalRxWords	Total number of words received by this port.
TotalTxFrames	Total number of frames issued by this port.
TotalTxWords	Total number of words issued by this port.
TxLinkResets	Number of Link Resets issued by this port.
TxOfflineSeq	Total number of Offline Sequences issued by this port.
TxWaits	Time waiting to transmit when blocked with no credit.
	Measured in FC Word times.

post log

Displays the Power On Self Test (POST) log which contains results from the POST.

setup [option]

Displays setup attributes for the system, SNMP, and the switch manufacturer. Refer to the "Show Setup Command" on page B-67.

steering [domain_id]

Displays the routes that data takes to the switch given by [domain_id]. If you omit [domain_id], the system displays routes for all switches in the fabric.

support

Executes a series of commands that display a complete description of the switch, its configuration, and operation. The display can be captured from the screen and used for diagnosing problems. This keyword is intended for use at the request of your authorized maintenance provider. The commands that are executed include the following:

- Alias List
- Config List
- Date
- History
- Ps
- Show (About, Alarm, Backtrace, Chassis, Config Port, Config Switch, Config Threshold, Dev, Dev Settings, Domains, Donor, Fabric, Log, Log Settings, Lsdb, Mem, Ns, Perf, Port, Setup Mfg, Setup Snmp, Setup System, Steering, Switch, Topology, Users)
- Uptime

B - Command Line Interface Show Command

- User Accounts
- Whoami

■ Zoneset (Active, List)

- Zoning (History, Limits, List)
switch
Displays switch operational information.

topology

Displays all connected devices.

users

Displays a list of logged-in users. This is equivalent to the User List command.

version

Displays an introductory set of information about operational attributes of the switch. This keyword is equivalent to the About keyword.

Examples The following is an example of the Show Chassis command:

```
SANbox2 #> show chassis
    Chassis Information
\begin{tabular}{ll} 
BoardTemp (1) - Degrees Celsius & 32 \\
BoardTemp (2) - Degrees Celsius & 36 \\
FanStatus (1) & Good \\
FanStatus (2) & Good \\
PowerSupplyStatus (1) & Good \\
PowerSupplyStatus (2) & Good \\
HeartBeatCode & 1 \\
HeartBeatStatus & Normal
\end{tabular}
```

The following is an example of the Show Domains command:

```
SANbox2 #> show domains
    Principal switch is (remote): 10:00:00:60:69:50:0b:6c
    Upstream Principal ISL is : 1
    Domain ID List:
    Domain 97 (0x61) WWN = 10:00:00:c0:dd:00:71:ed
    Domain 98 (0x62) WWN = 10:00:00:60:df:22:2e:0c
    Domain 99 (0x63) WWN = 10:00:00:c0:dd:00:72:45
    Domain 100 (0x64) WWN = 10:00:00:c0:dd:00:ba:68
    Domain 101 (0x65) WWN = 10:00:00:60:df:22:2e:06
    Domain 102 (0x66) WWN = 10:00:00:c0:dd:00:90:ef
    Domain 103 (0x67) WWN = 10:00:00:60:69:50:0b:6c
    Domain 104 (0x68) WWN = 10:00:00:c0:dd:00:b8:b7
```

The following is an example of the Show Fabric command:
SANbox2 \#> show fabric

Domain	WWN	Enet IP Addr	FC IP Addr	SymbolicName
16 (0x10)	10:00:00:c0:dd: 00:77:81	10.20.68.11	0.0 .0 .0	gui sb1 . 11
17 (0x11)	10:00:00:c0:dd: 00:6a:2d	10.20.68.12	0.0 .0 .0	sw12
18 (0x12)	10:00:00:c0:dd: 00:c3:04	10.20.68.160	0.0 .0 .0	sw . 160
19 (0x13)	10:00:00:c0:dd: $00: \mathrm{bc}: 56$	10.20.68.108	0.0 .0 .0	Sb2 . 108

The following is an example of the Show NS (local domain) command:

The following is an example of the Show NS [domain_ID] command:

```
SANbox2 #> show ns 18
```


The following is an example of the Show NS [port_ID] command:

SANbox2 \#> show ns 1301e1	
Port ID: 1301e1	
-_-----	
PortType	NL
PortWWN	$21: 00: 00: 20: 37: 73: 13: 69$
SymbolicPortName	
NodeWWN	$20: 00: 00: 20: 37: 73: 13: 69$
SymbolicNodeName	
NodeIPAddress	0.0 .0 .0
ClassOfService	3
PortIPAddress	0.0 .0 .0
FabricPortName	$20: 01: 00: c 0: d d: 00: b c: 56$
FC4Type	FCP
FC4Desc	(NULL)

The following is an example of the Show Interface command:

```
SANbox2 #> show interface
eth0 Link encap:Ethernet HWaddr 00:C0:DD:00:BD:ED
    inet addr:10.20.68.107 Bcast:10.20.68.255 Mask:255.255.255.0
    UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
    RX packets:4712 errors:0 dropped:0 overruns:0 frame:0
    TX packets:3000 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:100
    RX bytes:415313 (405.5 Kb) TX bytes:716751 (699.9 Kb)
    Interrupt:11 Base address:0xfcc0
lo Link encap:Local Loopback
    inet addr:127.0.0.1 Mask:255.0.0.0
    UP LOOPBACK RUNNING MTU:16436 Metric:1
    RX packets:304 errors:0 dropped:0 overruns:0 frame:0
    TX packets:304 errors:0 dropped:0 overruns:0 carrier:0
    collisions:0 txqueuelen:0
    RX bytes:20116 (19.6 Kb) TX bytes:20116 (19.6 Kb)
```

The following is an example of the Show Port command:

ALInit 0
ALInitError 0
BadFrames 0
Class2FramesIn 0
Class2FramesOut 0
Class2WordsIn 0
Class2WordsOut 0
Class3FramesIn 0
Class 3 FramesOut 0
Class3Toss 0
Class3WordsIn 0
Class3WordsOut 0
DecodeErrors 0
EpConnects 25
FBusy 0
FlowErrors 0
FReject 0
InvalidCRC 0
InvalidDestAddr 0
LIP_AL_PD_AL_PS 0
LIP_F7_AL_PS 0
LIP_F7_F7 0

LIP_F8_AL_PS 0
LIP_F8_F7 0
LinkFailures 26
Login 25
Logout 24
LoopTimeouts 0
Lossofsync 1
PrimSeqErrors 0
RxLinkResets 23
RxOfflineSeq 45
TotalErrors 26
TotalLIPsRecvd 0
TotalLIPsXmitd 0
TotalLinkResets 77
TotalOfflineSeq 59
TotalRxFrames 0
TotalRxWords 0
TotalTxFrames 0
TotalTxWords 0
TxLinkResets 54
TxOfflineSeq 14
TxWaits 222649090

B - Command Line Interface
Show Command

The following is an example of the Show Switch command:

SANbox2 \#> show switch	
Switch Information	
SymbolicName	sw . 108
SwitchWWN	100000 c 0 dd 00 bc 56
SwitchType	SANbox2-16
PROMVersion	V2.0.0.0-0 (day month date time year)
CreditPool	0
DomainID	19 (0x13)
FirstPortAddress	130000
FlashSize - MBytes	128
LogLevel	Critical
MaxPorts	16
NumberOfResets	224
ReasonForLastReset	PowerUp
SWImageVersion (1) - build date	V2.0.0.0-17 (day month date time year)
SWImageVersion (2) - build date	V2.0.0.0-17 (day month date time year)
ActiveImageVersion - build date	V2.0.0.0-2 (day month date time year)
PendingImageVersion - build date	V2.0.0.0-17 (day month date time year)
ActiveConfiguration	default
AdminState	Online
AdminModeActive	False
BeaconOnStatus	False
OperationalState	Online
PrincipalSwitchRole	False
BoardTemp (1) - Degrees Celsius	32
BoardTemp (2) - Degrees Celsius	36
SwitchDiagnosticsStatus	Passed
SwitchTemperatureStatus	Normal

The following is an example of the Show Topology command:

SANbox2 \#> show topology Unique ID Key					
$\mathrm{A}=\mathrm{ALPA}, \mathrm{D}=$ Domain ID, $\mathrm{P}=$ Port ID					
Port	Loca	Local	Remote	Remote	Unique
Numbe	Type	PortWWN	Type	NodeWWN	ID
5	F	20:05:00:c0:dd: 00:bd:ec	N	20:00:00:00:c9:22:1e:93	010500
10	E	20:0a:00:c0:dd:00:bd:ec	E	10:00:00:c0:dd:00:80:21	$4(0 \times 4)$

The following is an example of the Show Topology command for port 1:

```
SANbox2 #> show topology 1
    Local Link Information
    PortNumber 1
    PortID 650100
    PortWWN 20:01:00:c0:dd:00:91:11
    PortType F
Remote Link Information
Device 0
NodeWWN 50:80:02:00:00:06:d5:38
PortType NL
Description (NULL)
IPAddress 0.0.0.0
Device 1
NodeWWN 20:00:00:20:37:2b:08:c9
PortType NL
Description (NULL)
IPAddress 0.0.0.0
Device 2
Description (NULL)
IPAddress 0.0.0.0
Device 3
NodeWWN 20:00:00:20:37:2b:05:c9
PortType NL
Description (NULL)
IPAddress 0.0.0.0
```

B - Command Line Interface Show Command

The following is an example of the Show Version command:

SANbox2 \#> show version				
* *				
	Command Line Interface SHell		(CLISH)	*
	*			*
	SystemDescription QLogic SANbox2 FC Switch			
	Eth0NetworkAddress 10.20.11.192 (use 'set setup system' to update)			
	FCNetworkAddress	0.0.0.0 (use 'set setup system' to update)		
	MACAddress	00:c0: dd: 00:71: ee		
	WorldWideName	10:00:00:c0:dd:00:71: ed		
	SymbolicName	SB211.192		
	ActiveSWVersion	V2.0.0.0-26		
	ActiveTimestamp	day month date time year		
	DiagnosticsStatus	Passed		
	SecurityEnabled	True		

Show Config Command

Displays switch, port, alarm threshold, and zoning attributes for the current configuration.
Authority User
Syntax show config
port [port_number]
switch
threshold
zoning
Keywords port [port_number]
Displays configuration parameters for the port number given by [port_number]. Ports are numbered beginning with 0 . If [port_number] is omitted, all ports are specified.
switch
Displays configuration parameters for the switch.

threshold

Displays alarm threshold parameters for the switch.
zoning
Displays zoning configuration parameters for the switch.
Examples The following is an example of the Show Config Port command:

SANbox2 \#> show config port 3	
Port Number: 3	
-_---------	
AdminState	Offline
LinkSpeed	Auto
PortType	GL
ISLSecurity	Any
SymbolicName	Port3
ALFairness	False
DeviceScanEnabled	True
ForceOfflineRSCN	False
ARB_FF	False
InteropCredit	0
ExtCredit	0
FANEnabled	True
LCFEnabled	False
MFSEnabled	True
MSEnabled	True
NoClose	False
IOStreamGuard	Disabled
VIEnabled	False

B - Command Line Interface Show Config Command

```
CheckAlps False
```

The following is an example of the Show Config Switch command:

SANbox2 \#> show config switch	
Switch Configuration	
-_nformation	
AdminState	Online
BroadcastEnabled	False
InbandEnabled	True
DomainID	19 (0x13)
DomainIDLock	True
SymbolicName	sw108
R_A_TOV	10000
E_D_TOV	2000
PrincipalPriority	254
ConfigDescription	QLogic SANbox2 FC Switch
ConfigLastSavedBy	admin@oB-session5
ConfigLastSavedOn	day month date time year
FC-SW-2 Compliant	True
Legacy Address Format False	

The following is an example of the Show Config Threshold command:

```
SANbox2 #> show config threshold
Configuration Name: default
------------
```

Threshold Configuration Information
--
ThresholdMonitoringEnabled False
CRCErrorsMonitoringEnabled True
RisingTrigger 25
FallingTrigger 1
SampleWindow 10
DecodeErrorsMonitoringEnabled True
RisingTrigger 25
FallingTrigger 0
SampleWindow 10
ISLMonitoringEnabled True
RisingTrigger 2
FallingTrigger 0

[^1]| SampleWindow | 10 |
| :--- | :--- |
| LoginMonitoringEnabled | True |
| RisingTrigger | 5 |
| FallingTrigger | 1 |
| SampleWindow | 10 |
| LogoutMonitoringEnabled | True |
| RisingTrigger | 5 |
| FallingTrigger | 1 |
| SampleWindow | 10 |
| LoSMonitoringEnabled | True |
| RisingTrigger | 100 |
| FallingTrigger | 5 |
| SampleWindow | 10 |

The following is an example of the Show Config Zoning command:

```
SANbox2 #> show config zoning
Configuration Name: default
    Zoning Configuration Information
    FC-SW-2 AutoSave True
    Default All
```


Show Log Command

Displays the contents of the log or the parameters used to create entries in the log. The log contains a maximum of 200 entries. When the log reaches its entry capacity, subsequent entries overwrite the existing entries, beginning with the oldest.

Authority User
Syntax show log
component
level
options
port
settings
Keywords component
Displays the components currently being monitored for events.
level
Displays the event severity level needed to create an entry in the log. If the severity level occurs on a port or on a component which is not defined, no entry is made in the log.
options
Displays the options used to set the component and log level attributes.
port
Displays the ports being monitored for events. If an event occurs which is of the defined level and on a defined component, but not on a defined port, no entry is made in the log.
settings
Displays the current settings for component, level and port. This command is equivalent to executing the following commands separately: Show Log Component, Show Log Level, and Show Log Port.

Examples The following is an example of the Show Log Component command:

```
SANbox2 #> show log component
```

Current setting(s) for log component: NameServer
The following is an example of the Show Log Level command:

```
SANbox2 #> show log level
    Current settings for log
    level Critical
```


The following is an example of the Show Log Options command:

```
SANbox2 #> show log options
    Allowed options for log
    component All, None, NameServer, MgmtServer, Zoning, Switch, Chassis, Blade,
                Port, Eport, Snmp, Other,CimServer
    level Critical,Warn,Info,None
```

The following is an example of the Show Log command:

```
[327][day month date time year][I][Eport Port:0/8][Eport State=
E_A0_GET_DOMAIN_ID]
[328][day month date time year][I][Eport Port: 0/8][FSPF PortUp state=0]
[329][day month date time year][I][Eport Port: 0/8][Sending init hello]
[330][day month date time year][I][Eport Port: 0/8][Processing EFP, oxid= 0x8]
[331][day month date time year][I][Eport Port: 0/8][Eport State = E_A2_IDLE]
[332][day month date time year][I][Eport Port: 0/8][EFP,WWN= 0x100000c0dd00b845,
len= 0x30]
[333][day month date time year][I][Eport Port: 0/8][Sending LSU oxid=0xc:type=1]
[334][day month date time year][I][Eport Port: 0/8][Send Zone Merge Request]
[335][day month date time year][I][Eport Port: 0/8][LSDB Xchg timer set]
[336][day month date time year][I][Eport Port: 0/8][Setting attribute
Oper.UserPort.0.8.EpConnState Connected]
```


Show Perf Command

Displays port performance in frames/second and bytes/second. If you omit the keyword, the command displays data transmitted (out), data received (in), and total data transmitted and received in frames/second and bytes per second.
Authority User
Syntax show perf
byte
inbyte
outbyte
frame
inframe
outframe
errors

Keywords byte

Displays continuous performance data in total bytes/second transmitted and received for all ports. Type " q " and press the Enter key to stop the display.
inbyte
Displays continuous performance data in bytes/second received for all ports. Type " q " and press the Enter key to stop the display.
outbyte
Displays continuous performance data in bytes/second transmitted for all ports.
Type "q" and press the Enter key to stop the display.

frame [port_number]

Displays continuous performance data in total frames/second transmitted and received for the set of 16 ports that include [port_number]. Type " q " and press the Enter key to stop the display.
inframe [port_number]
Displays continuous performance data in frames/second received for the set of 16 ports that include [port_number]. Type " q " and press the Enter key to stop the display.

outframe [port_number]

Displays continuous performance data in frames/second transmitted for the set of 16 ports that include [port_number]. Type " q " and press the Enter key to stop the display.
errors [port_number]
Displays continuous error counts for the set of 16 ports that include [port_number]. Type " q " and press the Enter key to stop the display.

Examples The following is an example of the Show Perf command:

Port By	Bytes/s	Bytes/s	Bytes/s	Frames/s	Frames/s	Frames/s
Number	r (in)	(out)	(total)	(in)	(out)	(total)
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	0	0	0	0	0
7	0	0	0	0	0	0
8	7K	136M	136M	245	68K	68K
9	58K	0	58 K	1K	0	1K
10	0	0	0	0	0	0
11	0	0	0	0	0	0
12	0	0	0	0	0	0
13	0	0	0	0	0	0
14	0	7K	7K	0	245	245
15	136M	58K	136 M	68K	1K	70K

The following is an example of the Show Perf Byte command:

Displaying bytes/sec (total).. (Press 'q' and the ENTER key to stop display)															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	0	0	0	0	0	0	137M	58K	0	0	0	0	8K	137M
0	0	0	0	0	0	0	0	136M	58K	0	0	0	0	8K	136M
0	0	0	0	0	0	0	0	135M	58K	0	0	0	0	7K	135M
0	0	0	0	0	0	0	0	137M	58K	0	0	0	0	8K	137M
0	0	0	0	0	0	0	0	136M	58K	0	0	0	0	7K	136M
0	0	0	0	0	0	0	0	137M	58K	0	0	0	0	8K	137M
0	0	0	0	0	0	0	0	136M	58K	0	0	0	0	8K	136M
0	0	0	0	0	0	0	0	136M	58K	0	0	0	0	7K	136M

q

Show Setup Command

Displays the current SNMP and system settings.
Authority User
Syntax show setup
mfg
snmp
system

Keywords mfg

Displays manufacturing information about the switch.
snmp
Displays the current SNMP settings.
system
Displays the current system settings.
Examples The following is an example of the Show Setup Mfg command:

```
SANbox2 #> show setup mfg
```

 Manufacturing Information

 BrandName QLogic
BuildDate Unknown
ChassisPartNumber Unknown

ChassisSerialNumber 0
CPUBoardSerialNumber 000603949
MACAddress 00:c0:dd:00:90:aa

PlanarPartNumber Unknown
SwitchSymbolicName SANbox2
SwitchWWN 10:00:00:c0:dd:00:90:ab
SystemDescription QLogic SANbox2 FC Switch
SystemObjectID 1.3.6.1.4.1.1663.1.1.1.1.11
The following is an example of the Show Setup Snmp command:

SANbox2 \#> show setup snmp	
SNMP Information	
-_--------------	
Contact	<sysContact undefined>
Location	N_107 System Test Lab
Description	QLogic SANbox2 FC Switch
Trap1Address	10.0 .0 .254
Trap1Port	162
Trap1Severity	warning
Trap1Version	2
Trap1Enabled	False

-

Trap2Address	0.0 .0 .0
Trap2Port	162
Trap2Severity	warning
Trap2Version	2
Trap2Enabled	False
Trap3Address	0.0 .0 .0
Trap3Port	162
Trap3Severity	warning
Trap3Version	2
Trap3Enabled	False
Trap4Address	0.0 .0 .0
Trap4Port	warning
Trap4Severity	2
Trap4Version	False
Trap4Enabled	0.0 .0 .0
Trap5Address	162
Trap5Port	warning
Trap5Severity	2
Trap5Version	False
Trap5Enabled	1.3 .6 .1 .4 .1 .1663 .1 .1 .1 .1 .11
ObjectID	True
AuthFailureTrap	ProxyEnabled

The following is an example of the Show Setup System command:

SANbox2 \#> show setup system	
System Information	

Eth0NetworkDiscovery	Static
Eth0NetworkAddress	10.20 .11 .32
Eth0NetworkMask	255.255 .252 .0
Eth0GatewayAddress	10.20 .8 .254
FCNetworkDiscovery	Static
FCNetworkAddress	0.0 .0 .0
FCNetworkMask	255.0 .0 .0
FCGatewayAddress	10.0 .0 .254
AdminTimeout	30
TempMonitoringWarning	65
TempMonitoringFailure	70
TempFailurePortShutdown	False
SecurityEnabled	False
LocalLogEnabled	True
RemoteLogEnabled	False
RemoteLogHostAddress	10.0 .0 .254

Shutdown Command

Terminates all data transfers on the switch at convenient points and closes the Telnet session. Always power cycle the switch after entering this command.
Authority Admin

Syntax shutdown

Notes
Always use this command to perform an orderly shut down before removing power from the switch.

When the shutdown is complete, the Heartbeat LED is extinguished.

Test Command

Tests ports using internal (SerDes level), external (SFP), and online loopback tests. Internal and external tests require that the port be placed in diagnostic mode. Refer to the "Set Command" on page B-27 for information about changing the port administrative state. While the test is running, the remaining ports on the switch remain fully operational.
Authority Admin
Syntax test port [port_number] [test_type]
cancel
status
Keywords port [port_number] [test_type]
Tests the port given by [port_number] using the test given by [test_type]. If you omit [test_type], Internal is used. [test_type] can have the following values:
internal
Tests the SerDes. This is the default. The port must be in diagnostics mode to perform this test.
external
Tests both the SerDes and SFP. The port must be in diagnostics mode to perform this test, and a loopback plug must be installed in the SFP.
online
Tests one online port.

cancel

Cancels the online test in progress.
status
Displays the status of a test in progress, or if there is no test in progress, the status of the test that was executed last.
Examples To run an internal (SerDes) or external (SFP) port test, do the following:

1. To start an admin session, enter the following command and press the Enter key.
```
admin start
```

2. Place the port in Diagnostics mode, enter the following command ($x=$ port number) and press the Enter key.
set port x state diagnostics
3. Insert the loopback plug into the SFP on the selected port.
4. Choose the type of port loopback test to run:

■ To run an internal loopback test, enter the following:
test port x internal

- To run an external loopback test, enter the following command. A loopback plug must be installed for this test to pass.

```
test port x external
```

5. A series of test parameters are displayed on the screen. Press the Enter key to accept each default parameter value, or type a new value for each parameter and press the Enter key. The TestLength parameter is the number of frames sent, the FrameSize (256 byte maximum in some cases) parameter is the number of bytes in each frame, and the DataPattern parameter is the pattern in the payload.
6. After the test type has been chosen and the command executed, a message on the screen will appear detailing the test results.
7. After the test is run, put the port back into online state by entering the following command ($x=$ port number) and pressing the Enter key.
```
set port x state online
```

8. To verify port is back online, enter the following command and press the Enter key. The contents of the AdminState field should display be "Online".
show port x
The online loopback (node-to-node) test can test only one port at a time, and that port must be online and connected to a remote device. To run the online loopback test, do the following:
9. To start an admin session, enter the following command and press the Enter key.
admin start
10. To run the online loopback test, enter the following command and press the Enter key.
test port x online
11. A series of test parameters are displayed on the screen. Press the Enter key to accept each default parameter value, or type a new value for each parameter and press the Enter key. The TestLength parameter is the number of frames sent, the FrameSize (256 byte maximum in some cases) parameter is the number of bytes in each frame, and the DataPattern parameter is the pattern in the payload. Before running the test, make sure that the device attached to the port can handle the test parameters.
```
SANbox2 (admin) #> test port x online
A list of attributes with formatting and current values will
follow. Enter a new value or simply press the ENTER key to
accept the default value. If you wish to terminate this
process before reaching the end of the list press 'q' or 'Q'
and the ENTER key to do so.
\begin{tabular}{|c|c|c|}
\hline TestLength & (decimal value, 1-4294967295) & [100 \\
\hline FrameSize & (decimal value, 36-2148) & [256 \\
\hline DataPattern & (32-bit hex value or 'Default') & [Default] \\
\hline StopOnError & (True/False) & [False \\
\hline
\end{tabular}
    Do you want to start the test? (y/n) [n]
```

4. After all parameter values are defined, press the Y key to start the test.

Uptime Command

Displays the elapsed up time since the switch was last reset and reset method. A hot reset or non-disruptive firmware activation does not reset the elapsed up time reported by this command.

Authority User

Syntax uptime

Examples The following is an example of the Uptime command:
SANbox2 \#> uptime

$$
\begin{aligned}
& \text { Elapsed up time }: 0 \text { day(s), } 2 \text { hour(s), } 28 \mathrm{~min}(\mathrm{~s}), 44 \mathrm{sec}(\mathrm{~s}) \\
& \text { Reason last reset: NormalReset }
\end{aligned}
$$

User Command

Administers or displays user accounts.
Authority Admin. The List keyword is available with User authority.
Syntax
user
accounts
add delete [account_name] list

Keywords accounts

Displays all user accounts that exist on the switch.
add
Add a user account to the switch. You will be prompted for an account name, a password, authority, and an expiration date.
■ A switch can have a maximum of 15 user accounts.
■ Account names are limited to 15 characters; passwords must be 4-20 characters.

- Admin authority grants permission to use the Admin command to open an admin session, from which all commands can be entered. Without Admin authority, you are limited to view-only commands.
- The expiration date is expressed in the number of days until the account expires (2000 maximum). The switch will issue an expiration alarm every day for seven days prior to expiration.

delete [account_name]

Deletes the account name given by [account_name] from the switch.
list
Displays the list of users currently logged in and their session numbers. Provides the same function as the Show Users command. This keyword is valid for User authority and does not require an admin session.
Examples The following is an example of the User Accounts command:

The following is an example of the User Add command:

```
SANbox2 (admin) #> user add
    Press 'q' and the ENTER key to abort this command.
account name (1-15 chars) : user1
account password (4-20 chars) :
please confirm account password:
set account expiration in days (0-2000, 0=never): [0] 100
should this account have admin authority? (y/n): [n] y
OK to add user account 'user1' with admin authority
and to expire in 100 days?
Please confirm (y/n): [n] y
```

The following is an example of the User Delete command:

```
SANbox2 (admin) #> user del user3
    The user account will be deleted. Please confirm (y/n): [n] y
```

The following is an example of the User List command:

```
SANbox2 (admin) #> user list
    User Ethernet Addr-Port Logged in Since
    admin@OB-session1
    admin@OB-session2
    snmp@OB-session3
    snmp@IB-session4
    admin@OB-session5
    ----
    --------------------
        ----------------
10.20.68.108-1031
    day month date time year
\(10.20 .68 .108-1031\)
\(10.20 .68 .108-1034\)
Unknown
Unknown
Unknown
    day month date time year
    day month date time year
    day month date time year
    day month date time year
```

B - Command Line Interface Whoami Command

Whoami Command

Displays the account name, session number, and switch domain ID for the Telnet session.

Authority User

Syntax whoami

Examples The following is an example of the Whoami command:

```
SANbox2 #> whoami
```

User name	$:$ admin@session2
Switch name	$:$ SANbox2
Switch domain ID: $21(0 \times 15)$	

Zone Command

Manages zones and zone membership on a switch. The Zone command defines members (ports/devices) for a single switch. Zones are members of zone sets.
Authority Admin authority and a Zoning Edit session. Refer to the "Zoning Command" on page B-85 for information about starting a Zoning Edit session. The List, Members, and Zonesets keywords are available with User authority and do not require a Zoning Edit session.
Syntax
zone
add [zone] [members]
copy [zone_source] [zone_destination]
create [zone]
delete [zone]
list
members [zone]
remove [zone] [members]
rename [zone_old [zone_new]
type [zone] [zone_type]
zonesets [zone]
Keywords add [zone] [members]
Specifies one or more ports/devices given by [members] to add to the zone named [zone]. A zone can have a maximum of 256 members. [members] can have one of the following formats:
■ Domain ID and port number pair (Domain ID, Port Number). Domain IDs and port numbers are in decimal. Ports are numbered beginning with 0.

- 6-character hexadecimal device Fibre Channel address (hex)

■ 16-character hexadecimal worldwide port name (WWPN) with the format xx:xx:xx:xx:xx:xx:xx:xx.

- Alias name

The application verifies that the [members] format is correct, but does not validate that such a port exists.

copy [zone_source] [zone_destination]

Creates a new zone named [zone_destination] and copies the membership into it from the zone given by [zone_source].
create [zone]
Creates a zone with the name given by [zone]. An zone name must begin with a letter and be no longer than 64 characters. Valid characters are 0-9, A-Z, a-z, _, \$, ${ }^{\wedge}$, and -. The zoning database supports a maximum of 1000 zones.

delete [zone]

Deletes the specified zone given by [zone] from the zoning database. If the zone is a member of the active zone set, the zone will not be removed from the active zone set until the active zone set is deactivated.

list

Displays a list of all zones and the zone sets of which they are members. This keyword is valid for User authority and does not require a zoning edit session.

members [zone]

Displays all members of the zone given by [zone]. This keyword is available with User authority and does not require a Zoning Edit session.

remove [zone] [members]

Removes the ports/devices given by [members] from the zone given by [zone]. [members] can have one of the following formats:

- Domain ID and port number pair (Domain ID, Port Number). Domain IDs and port numbers are in decimal. Ports are numbered beginning with 0.
- 6-character hexadecimal device Fibre Channel address (hex)
- 16-character hexadecimal worldwide port name (WWPN) with the format XX:XX:XX:XX:XX:XX:XX:XX.
- Alias name
rename [zone_old] [zone_new]
Renames the zone given by [zone_old] to the zone given by [zone_new].

type [zone] [zone_type]

Specifies the zone type given by [zone_type] to be assigned to the zone name given by [zone]. If you omit the [zone_type], the system displays the zone type for the zone given by [zone]. [zone_type] can be one of the following:

soft

Name server zone
hardACL
Access control list hard zone. This keyword is case sensitive.
hardVPF
Virtual private fabric hard zone. This keyword is case sensitive.

zonesets [zone]

Displays all zone sets of which the zone given by [zone] is a member. This keyword is available with User authority and does not require a Zoning Edit session.

Zone
\qquad

Examples The following is an example of the Zone List command:

```
SANbox2 #> zone list
    Zone ZoneSet
wwn_b0241f
    zone_set_1
wwn_23bd31
    zone_set_1
wwn_221416
    zone_set_1
wwn_2215c3
    zone_set_1
wwn_0160ed
    zone_set_1
wwn_c001b0
    zone_set_1
wwn_401248
    zone_set_1
wwn_02402f
    zone_set_1
wwn_22412f
    zone_set_1
The following is an example of the Zone Members command:
```

```
SANbox2 #> zone members wwn_b0241f
```

SANbox2 \#> zone members wwn_b0241f
Current List of Members for Zone: wwn_b0241f
Current List of Members for Zone: wwn_b0241f
50:06:04:82:bf:d2:18:c2
50:06:04:82:bf:d2:18:c2
50:06:04:82:bf:d2:18:d2
50:06:04:82:bf:d2:18:d2
21:00:00:e0:8b:02:41:2f

```
    21:00:00:e0:8b:02:41:2f
```

The following is an example of the Zone Zonesets command:
SANbox2 \#> zone zonesets zone1
Current List of ZoneSets for Zone: wwn_b0241f
zone_set_1

Zoneset Command

Manages zone sets and zone set membership across the fabric.
Authority Admin authority and a Zoning Edit session. Refer to the "Zoning Command" on page B-85 for information about starting a Zoning Edit session. The Active, List, and Zones keywords are available with User authority. You must close the Zoning Edit session before using the Activate and Deactivate keywords.
Syntax

```
zoneset
    activate [zone_set]
    active
    add [zone_set] [zone_list]
    copy [zone_set_source] [zone_set_destination]
    create [zone_set]
    deactivate
    delete [zone_set]
    list
    remove [zone_set] [zone_list]
    rename [zone_set_old] [zone_set_new]
    zones [zone_set]
```

Keywords activate [zone_set]
Activates the zone set given by [zone_set]. This keyword deactivates the active zone set. Close the Zoning Edit session before using this keyword.
active
Displays the name of the active zone set. This keyword is available with User authority and does not require a Zoning Edit session.
add [zone_set] [zone_list]
Adds a list of zones and aliases given by [zone_list] to the zone set given by [zone_set]. Zone and alias names are delimited by spaces in [zone_list]. This keyword requires a Zoning Edit session.
copy [zone_set_source] [zone_set_destination]
Creates a new zone set named [zone_set_destination] and copies into it the membership from the zone set given by [zone_set_source]. This keyword requires a Zoning Edit session.

create [zone_set]

Creates the zone set with the name given by [zone_set]. A zone set name must begin with a letter and be no longer than 64 characters. Valid characters are 0-9, A-Z, a-z, _, \$, ^, and -. This keyword requires a Zoning Edit session. The zoning database supports a maximum of 256 zone sets.
deactivate
Deactivates the active zone set. Close the Zoning Edit session before using this keyword.

delete [zone_set]

Deletes the zone set given by [zone_set]. If the specified zone set is active, the command is suspended until the zone set is deactivated. This keyword requires a Zoning Edit session.
list
Displays a list of all zone sets. This keyword is available with User authority and does not require a Zoning Edit session.
remove [zone_set] [zone_list]
Removes a list of zones given by [zone_list] from the zone set given by [zone_set]. Zone names are delimited by spaces in [zone_list]. If [zone_set] is the active zone set, the zone will not be removed until the zone set has been deactivated. This keyword requires a Zoning Edit session.
rename [zone_set_old] [zone_set_new]
Renames the zone set given by [zone_set_old] to the name given by [zone_set_new]. You can rename the active zone set. This keyword requires a Zoning Edit session.
zones [zone_set]
Displays all zones that are members of the zone set given by [zone_set]. This keyword is available with User authority and does not need a Zoning Edit session.

Notes

- A zone set must be active for its definitions to be applied to the fabric.

■ Only one zone set can be active at one time.

- A zone can be a member of more than one zone set.

Examples The following is an example of the Zoneset Active command:

```
SANbox2 #> zoneset active
```

ActiveZoneSet	Bets
LastActivatedBy	admin@OB-session6
LastActivatedOn	day month date time year

The following is an example of the Zoneset List command:
SANbox2 \#> zoneset list

Current List of ZoneSets
\qquad
alpha
beta

The following is an example of the Zoneset Zones command:
SANbox2 \#> zoneset zones ssss

> Current List of Zones for ZoneSet: ssss
zone1
zone2
zone3

Zoning Command

Opens a Zoning Edit session in which to create and manage zone sets and zones. Refer to the "Zone Command" on page B-78 and the "Zoneset Command" on page B-82.
Authority Admin. The List keyword is available with User authority.
Syntax
zoning
active
cancel
clear
edit
history
limits
list
restore
save

Keywords active

Displays membership information for the active zone set including member zones and zone members.

```
cancel
```

Closes the current Zoning Edit session. Any unsaved changes are lost.
clear
Clears all inactive zone sets from the volatile edit copy of the zoning database. This keyword does not affect the non-volatile zoning database. However, if you enter the Zoning Clear command followed by the Zoning Save command, the non-volatile zoning database will be cleared from the switch.

Note: The preferred method for clearing the zoning database from the switch is the Reset Zoning command.

edit

Opens a Zoning Edit session.
history
Displays a history of zoning modifications including the following:

- Time of the most recent zone set activation or deactivation and the user who performed it
- Time of the most recent modifications to the zoning database and the user who made them.
- Checksum for the zoning database

limits

Displays the number of zone sets, zones, aliases, members per zone, members per alias, and total members in the zoning database. This keyword also displays the zoning database limits.
list
Lists all fabric zoning definitions. This keyword is available with User authority.

restore

Reverts the changes to the zoning database that have been made during the current Zoning Edit session since the last Zoning Save command was entered.

save

Saves changes made during the current Zoning Edit session. The system will inform you that the zone set must be activated to implement any changes. This does not apply if you entered the Zoning Clear command during the Zoning Edit session.

Examples The following is an example of the Zoning Edit command:

```
SANbox2 #> admin start
SANbox2 (admin) #> zoning edit
SANbox2 (admin-zoning) #>
SANbox2 (admin-zoning) #> zoning cancel
    Zoning edit mode will be canceled. Please confirm (y/n): [n] y
SANbox2 (admin) #> admin end
```

The following is an example of the Zoning Limits command:

```
SANbox2 #> zoning limits
```

Zoning Attribute	Maximum	Current	[Name]
----------------	-------	-------	------
MaxZoneSets	256	6	
MaxZones	256	19	
MaxAliases	256	1	
MaxTotalMembers	6000	166	D_1_JBOD_1
MaxZonesInZoneSets	1000	19	D_1_Photons
MaxMembersPerZone	2000		D_2_JBOD1

B - Command Line Interface Zoning Command

		16	D_2_NewJBOD_2
		5	E1JBOD1
		5	E2JBOD2
		3	LinkResetZone
		3	LinkResetZone2
		8	NewJBOD1
		8	NewJBOD2
		12	Q_1Photon1
		12	Q_2Photon2
		8	Q_1_NewJBOD1
		13	Q_1_Photon_1
		8	Q_2_NewJBOD2
		13	Q_2_Photon_2
		3	ZoneAlias
		3	ZoneDomainPort
		4	ZoneFCAddr
MaxMembersPerAlias	2000		
		2	AliasInAZone

The following is an example of the Zoning List command:

```
SANbox2 #> zoning list
    Active ZoneSet Information
    ZoneSet Zone ZoneMember
    wwn
        wwn_b0241f
                                    50:06:04:82:bf:d2:18:c2
                                    50:06:04:82:bf:d2:18:d2
                            21:00:00:e0:8b:02:41:2f
            wwn_23bd31
                                    50:06:04:82:bf:d2:18:c2
                                    50:06:04:82:bf:d2:18:d2
                                    10:00:00:00:c9:23:bd:31
            wwn_221416
                                    50:06:04:82:bf:d2:18:c2
                                    50:06:04:82:bf:d2:18:d2
                                    10:00:00:00:c9:22:14:16
```

 wwn_2215c3
 ■
$50: 06: 04: 82: \mathrm{bf}: \mathrm{d} 2: 18: \mathrm{c} 2$
$50: 06: 04: 82: \mathrm{bf}: \mathrm{d} 2: 18: \mathrm{d} 2$
$10: 00: 00: 00: \mathrm{c} 9: 22: 15: \mathrm{c} 3$

Configured Zoning Information
ZoneSet Zone ZoneMember
wwn
wwn_b0241f
50:06:04:82:bf:d2:18:c2
50:06:04:82:bf:d2:18:d2
21:00:00:e0:8b:02:41:2f
wwn_23bd31
50:06:04:82:bf:d2:18:c2
50:06:04:82:bf:d2:18:d2
10:00:00:00:c9:23:bd:31
wwn_221416
50:06:04:82:bf:d2:18:c2
50:06:04:82:bf:d2:18:d2
10:00:00:00:c9:22:14:16
wwn_2215c3
50:06:04:82:bf:d2:18:c2
50:06:04:82:bf:d2:18:d2
10:00:00:00:c9:22:15:

Glossary

Access Control List Zone

Access Control List zoning divides the fabric for purposes of controlling discovery and inbound traffic.

Active Zone Set

The zone set that defines the current zoning for the fabric.

Active Firmware

The firmware image on the switch that is in use.

Activity LED

A port LED that indicates when frames are entering or leaving the port.

Administrative State

State that determines the operating state of the port, I/O blade, or switch. The configured administrative state is stored in the switch configuration. The configured administrative state can be temporarily overridden using the command line interface.

Alarm

A message generated by the switch that specifically requests attention. Alarms are generated by several switch processes. Some alarms can be configured.

Alias

A named set of ports or devices. An alias is not a zone, and can not have a zone or another alias as a member.

AL_PA
Arbitrated Loop Physical Address

Arbitrated Loop

A Fibre Channel topology where ports use arbitration to establish a point-to-point circuit.

Arbitrated Loop Physical Address (AL_PA)

A unique one-byte value assigned during loop initialization to each NL_Port on a loop.

ASIC
Application Specific Integrated Circuit

Auto Save

Zoning parameter that determines whether changes to the active zone set that a switch receives from other switches in the fabric will be saved to permanent memory on that switch.

BootP

A type of network server.

Buffer Credit

A measure of port buffer capacity equal to one frame.

Cascade Topology

A fabric in which the switches are connected in series. If you connect the last switch back to the first switch, you create a cascade-with-a-loop topology.

Class 2 Service

A service which multiplexes frames at frame boundaries to or from one or more N_Ports wit h acknowledgment provided.

Class 3 Service

A service which multiplexes frames at frame boundaries to or from one or more N_Ports without acknowledgment.

Configured Zone Sets

The zone sets stored on a switch excluding the active zone set.

Default Visibility

Zoning parameter that determines the level of communication among ports/devices when there is no active zone set.

Domain ID

User defined number that identifies the switch in the fabric.

Event Log

Log of messages describing events that occur in the fabric.

Expansion Port

E_Port that connects to another FC-SW-2 compliant switch.

Fabric Database

The set of fabrics that have been opened during a SANbox Manager session.

Fabric Management Switch

The switch through which the fabric is managed.

Fabric Name

User defined name associated with the file that contains user list data for the fabric.

Fabric Port

An F_Port or FL_Port.

Fabric View File

A file containing a set of fabrics that were opened and saved during a previous SANbox Manager session.

Fan Fail LED

An LED that indicates that a cooling fan in the switch is operating below standard.

FC-PLDA

Fibre Channel Private Loop Direct Attach

Flash Memory

Memory on the switch that contains the chassis control firmware.

Frame

Data unit consisting of a start-of-frame (SOF) delimiter, header, data payload, CRC, and an end-of-frame (EOF) delimiter.

FRU

Field Replaceable Unit

Heartbeat LED

A chassis LED that indicates the status of the internal switch processor and the results of the Power-On Self-Test.

Inactive Firmware

The firmware image on the switch that is not in use.

Inband Management

The ability to manage a switch through another switch over an inter-switch link.

Initiator

The device that initiates a data exchange with a target device.

In-Order-Delivery

A feature that requires that frames be received in the same order in which they were sent.

Input Power LED

A chassis LED that indicates that the switch logic circuitry is receiving proper DC voltages.

Inter-Switch Link

The connection between two switches using E_Ports.

I/O Blade
Fibre Channel component of the SANbox2-64 switch.

IP

Internet Protocol

LIP

Loop Initialization Primitive sequence

Logged-In LED

A port LED on SANbox2-8c and SANbox2-16 switches that indicates device login or loop initialization status.

Maintenance Mode

Maintenance mode sets the IP address to 10.0.0.1 and provides access to the switch for maintenance purposes.

Management Information Base

A set of guidelines and definitions for SNMP functions.

Management Workstation

PC workstation that manages the fabric through the fabric management switch.

Mesh Topology

A fabric in which each chassis has at least one port directly connected to each other chassis in the fabric.

MIB

Management Information Base

Multistage Topology

A fabric in which two or more edge switches connect to one or more core switches.

NL_Port
Node Loop Port. A Fibre Channel device port that supports arbitrated loop protocol.

N_Port
Node Port. A Fibre Channel device port in a point-to-point or fabric connection.

Output Power LED

A power supply LED that indicates that the power supply is providing DC voltage to the switch. Applies only to SANbox2-16 and SANbox2-64 switches.

Over Temperature LED

A chassis LED or a power supply LED that indicates that the switch or power supply is overheating.

Pending Firmware

The firmware image that will be activated upon the next switch reset.

Port Status LED

A dual-function port LED on a SANbox2-64 switch that indicates device login or loop initialization status, and port activity.

POST

Power On Self Test

Power On Self Test (POST)

Diagnostics that the switch chassis performs at start up.

Principal Switch

The switch in the fabric that manages domain ID assignments.

Private Device

A device that can communicate only with other devices on the same loop.

Private Loop

A loop of private devices connected to a single switch port.

SANbox Manager

Switch management application.

SFP

Small Form-Factor Pluggable.

Small Form-Factor Pluggable

A transceiver device, smaller than a GigaBit Interface Converter, that plugs into the Fibre Channel port.

SNMP

Simple Network Management Protocol

Soft Zone

Soft zoning divides the fabric for purposes of controlling discovery. Members of the same soft zone automatically discover and communicate freely with all other members of the same zone.

Target

A storage device that responds to an initiator device.

Translated Loop Port

A TL_Port supports a loop of up 124 private target devices with the ability to communicate with up to 63 "off-loop" public devices.

User Account

An object stored on a switch that consists of an account name, password, authority level, and expiration date.

VCCI

Voluntary Control Council for Interference

Virtual Private Fabric Zone

Virtual Private Fabric zoning divides the fabric for purposes of controlling discovery and both inbound and outbound traffic.

Worldwide Name (WWN)

A unique 64-bit address assigned to a device by the device manufacturer.

WWN

Worldwide Name

Zone

A set of ports or devices grouped together to control the exchange of information.

Zone Set

A set of zones grouped together. The active zone set defines the zoning for a fabric.

Zoning Database

The set of zone sets, zones, and aliases stored on a switch.

Index

Numerics

10/100 Base-T straight cable 4-8

A

access 3-8
Access Control List zone 3-9
account name B-1, B-77
display B-77
ftp 5-4
maintenance mode 5-13
Activity LED 2-5
Admin authority B-3
Admin command B-4
administrative state
port B-42
switch B-28
air flow 2-10, A-4
alarm
configuration B-33
configuration display B-60
$\log \mathrm{B}-27, \mathrm{~B}-48$
alias
add members B-5
copy B-5
create B-5
delete B-5
delete members $\mathrm{B}-6$
display list B-5
display members B-6
rename B-6
Alias command B-5
altitude A-4
Arbitrated Loop Physical Address 3-1, B-42

B

bandwidth 3-7
beacon B-27
brackets 4-2, 4-4
broadcast B-48
browser 4-1
buffer credit 3-6, A-2

C

cable
10/100 Base-T 4-8
fibre optic 3-1
null modem F/F DB9 4-8
cascade topology 3-3
chassis
air flow A-4
diagnostics 5-9
LEDs 2-3
marking A-5
shock A-4
status B-48
vibration A-4
classes of service A-1
Command Line Interface B-1
command syntax B-2
commands B-3
Config command B-7
configuration
activate B-7
backup B-7
copy B-7
delete B-7
edit B-7
file 5-3
file system error 2-2, 5-2
list B-7
remove 5-14
reset B-22
restore B-8
restore default 5-14
save B-8
controls 2-2
credits 3-6, A-2
crossover cable 4-8

Date command B-10 device cabling 4-16
description 3-1
diagnostics 5-1, 5-9, A-2
dimensions A-3
disk space 4-1
distance 3-6
domain ID 3-2, 5-6
domain ID lock 3-2
domains B-49
donor port 3-6, B-49

E

E_Port 2-7, 5-6
emissions standards A-5
environmental conditions 4-2
specifications A-4
Ethernet
connection 4-9
direct connection 4-8
indirect connection 4-8
port 2-8
event logging
by component B-39, B-63
by port B-40, B-63
by severity level B-63
display B-63
restore defaults B-40
save settings $B-40$
settings $\mathrm{B}-63$
severity level B-40
start B-41
stop B-41
external test B-71

F_Port 2-7
fabric
aggregate bandwidth A-2 latency A-2
management 3-10, A-3
management switch 2-8
management workstation 4-1
point-to-point bandwidth A-2
ports 2-7
security 3-11, 4-10
factory defaults 5-14, B-22
Fallback command B-11
Fan Fail LED 2-3, 5-10
fans 2-10, 6-4
fatal error 5-1, 5-2
fiber optic cable 3-1
Fibre Channel
ports 2-4
protocols A-1
field replaceable unit 6-1
File Transfer Protocol 4-19, 5-3
firmware
display versions 5-15
failure 5-2
image 5-15
image file B-16
install with CLI 4-18
install with FTP and CLI 4-19
install with SANbox Manager 4-17
list image files B-16
non-disruptive activation 4-17, B-15
pending 5-15, B-11
remove image files $\mathrm{B}-16$
retrieve image file B-16
unpack image $5-13, B-16$
version B-53
FL_Port 2-7
flash memory 2-2, 4-20
frame size A-2
FRU - See Field Replaceable Unit
FTP - See File Transfer Protocol

G

G_Port 2-7
GBIC - See GigaBit Interface Converter
generic ports 2-6
Gigabit Interface Converter 3-1

GL_Port 2-6

H

Hardreset command B-12
harmonics A-5
HBA - See Host Bus Adapter
Heartbeat LED 2-4, 5-1
heat output A-3
Help command B-13
History command B-14
host bus adapter 3-1
Hotreset command B-15
humidity 4-2, A-4
HyperTerminal application 4-9
I
Image command B-16
immunity A-5
inband management 3-11
Input Power LED 2-4, 5-10
installation 4-2
internal
firmware failure 5-2
test B-71
internet browser 4-1
inter-switch link 3-11
laser specifications A-7
latency 3-7, A-2

LED

Activity 2-5
Fan Fail 2-3, 5-10
Heartbeat 2-4, 5-1
Input Power 2-4, 5-10
Logged-In 2-5, 5-5
Output Power 2-10, 5-11
Over Temperature (chassis) 2-3, 5-10
Over Temperature (power supply) 2-10, 5-11
link state database B-49
Lip command B-17
log
archive B-39
clear B-39
copy 5-14
event B-39, B-63
power-on self test $B-52$
logged in users B-53
Logged-In LED 2-5, 5-5
login limit 3-10, B-1
loop port B-17
Loop Port Bypass B-42
Loop Port Enable B-42

M

maintainability A-2
maintenance
blink pattern 5-2
exit 5-13
interface A-3
menu 5-13
mode 2-2, 5-2, 5-12
strategy A-2
Maintenance button 2-2, 5-12
management workstation 2-8, 4-8
manufacturer information B-67
marking A-5
media type A-2
memory 4-1
activity B-49
flash 2-2
mesh topology 3-4
minicom 4-10
Multistage topology 3-5
N
name server
display B-49
zone 3-9
network
configuration reset B-22
interfaces B-49
non-disruptive activation 4-17, 4-18, 4-20, B-15
non-fatal error 5-1
null modem F/F DB9 cable 4-8

0

online test B-71
operating systems 4-1
Output Power LED 2-10, 5-11
Over Temperature LED 2-3
chassis 2-3, 5-10
power supply 2-10, 5-11

P

page break B-27
Passwd command B-18
password
change B-18
file reset 5-14
maintenance mode 5-13
restore default 5-14
switch 3-11, B-18
user account B-1
pending firmware 5-15
performance 3-6
Ping command $\mathrm{B}-19$
planning 3-1
port
administrative state B-42
buffer credits 3-6
configuration 4-16, B-29
configuration display $\mathrm{B}-60$
counters B-42
diagnostics 5-5
Ethernet 2-8
external test B-71
Fibre Channel 2-4
generic 2-6
initialize B-22
internal test B-71
LEDs 2-5
loopback test B-71
maximum number of ports/users $\mathrm{A}-2$
modes 2-6
online test B-71
operational information $B-50$
performance $\mathrm{B}-49$, $\mathrm{B}-65$
serial 2-8
speed A-2, B-42
POST - See Power On Self Test
power
consumption A-3
cords 4-2
down switch 4-20
requirements 4-1
source loading A-3
supply 2-9, 6-3
switch 2-2
power on self test
description 5-1
log B-52
results 4-7
principal
priority 3-2
switch 3-2
processor 4-1
Ps command B-20

Q
Quit command B-21

R

rack mount 4-3
recovering a switch 5-12
regulatory certifications A-5
remake filesystem 5-14
removal/replacement 6-1
Reset command B-22
RS-232 port 2-8
rubber feet 4-2

S

safety standards A-5
SANbox Manager 2-11
SANbox Manager installation
Linux 4-12, 4-14
Solaris 4-13, 4-14
Windows 4-11, 4-14
SANmark A-5
scalability A-1
security 3-11, 4-10
serial port 2-8, 4-8, 4-9
Set command B-27
Set Config command B-29
Set Log command B-39
Set Port command B-42
Set Setup command B-43
SFP - See Small Form-Factor Pluggable
Show command B-48
Show Config command B-60
Show Log command B-63
Show Perf command B-65
Show Setup command B-67
Shutdown command B-70
Simple Network Management Protocol 2-11
configuration B-43
configuration display B-67
reset B-22
site requirements 4-1
small form-factor pluggable 2-6, 4-4, 6-2
SNMP See - Simple Network Management Protocol
soft zone 3-9
steering B-52
switch
administrative state $\mathrm{B}-28$
configuration 4-15, B-32
configuration display B-60
hard reset B-12
management 2-11
manufacturer information B-67
operational information B-53
power down 4-20
recovery 5-12
reset 2-2, 5-15, B-74
reset without POST B-22
specifications A-1
system configuration
change B-44
display B-67
system processor A-2
table mount 4-3
target device 2-7
temperature 4-2, A-4, B-48
Test command B-71
time B-10
timeout value 5-6
TL_Port
devices 2-7
name server registration 2-7
number of off-loop devices 2-7
private targets 2-7
topology
cascade 3-3
mesh 3-4
Multistage 3-5
transceiver 2-6, 4-4, 6-2
translation entries list 2-7
transmission rate 3-6, 3-7
U
Uptime command B-74
user
account B-1
authority B-3
interface A-2
logged in B-53
User command B-75
V
ventilation 2-10
vibration A-4
Virtual Private Fabric zone 3-10
voltage
fluctuations A-5
operating A-3

W

Whoami command B-77
workstation 4-1, 4-8
worldwide name 3-8
WWN - See Worldwide Name
Z
zone
access control list 3-9
add member port B-78
conflict 5-6
copy B-78
create B-78
definition 3-8
delete B-78
delete member port B-79
list B-79
list members B-79
name server 3-9
rename B-79
type B-79
virtual private fabric 3-10
Zone command B-78
zone set 3-8
activate B-82
active $B-85$
add member zone B-82
copy B-82
create B-82
deactivate $B-22, B-82$
delete $\mathrm{B}-83$
delete member zone B-83
display B-83
display active B-82
display members B-83
display zones B-79
rename B-83
Zoneset command B-82
zoning
configuration B-35
configuration display B-60
database 3-8, B-22
edit B-85
history B-85
limits 3-8, B-86
list definitions $B-86$
revert changes B-86
save edits B-86
Zoning command B-85

[^0]: ${ }^{1}$ Some keywords are available with User authority.

[^1]: 1 Appears only if FC-SW-2 Compliant is False.

