

Correction Amplifiers

May 1990

IF Amplifier

For Use in Communication Equipment

Features:

- Input resistance 100 kΩ typ.
- Output resistance 70Ωtyp.
- Voltage gain 24 dB typ. @ 1.75 MHz
- Push-pull input, single-ended output
- -3 dB bandwidth 11 MHz typ.
- AGC range 80 dB typ.
- Useful frequency range DC to 15 MHz

Applications:

- Product detector
- IF & video amplifier
- AM detector
- Schmitt trigger

The CA3002 integrated-circuit IF amplifier is a balanced differential amplifier that can be used with either a single-ended or a push-pull input and can provide either a direct-coupled or a capacitance-coupled single-ended output. Its applications include RC-coupled IF amplifiers that use the internal silicon output-coupling capacitor, video amplifiers that use an external coupling capacitor, envelope detectors, product detectors, and various trigger circuits.

The CA3002 is supplied in the 10-lead hermetic TO-5 style package.

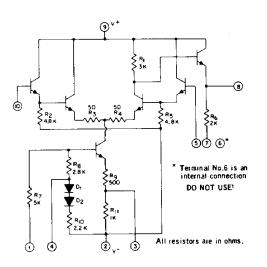


Figure 1 - Schematic diagram.

Copyright © Harris Corporation 1990

Downloaded from Elcodis.com electronic components distributor

CA3002

ABSOLUTE-MAXIMUM VOLTAGE AND CURRENT LIMITS, at $T_A = 25^{\circ}C$

COMMON-MODE INPUT SIGNAL VOLTAG	GE.											±2.V
MAXIMUM POWER SUPPLY VOLTAGE												
OPERATING-TEMPERATURE RANGE												
STORAGE-TEMPERATURE RANGE												~65°C to +150°C
LEAD TEMPERATURE (During Soldering):												_
At distance $1/16 \pm 1/32$ inch (1.59 ± 0.75	9 mn	n) fr	om (case	for	10 se	econ	ds r	nax	• •		+265°C
MAXIMUM INPUT-SIGNAL VOLTAGE												±4 V

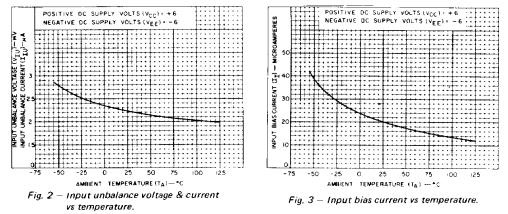
MAXIMUM DEVICE DISSIPATION:

 $-55 \text{ to } 85^{\circ}\text{C} \qquad 450 \text{ mW}$ Above $85^{\circ}\text{C} \qquad Derate linearly 5 \text{ mW/}^{\circ}\text{C}$ ELECTRICAL CHARACTERISTICS, at T_A = 25°C, V_{CC} = +6 V, V_{EE} = -6 V

	SPECIA	L TEST CO	TEST		UN				
CHARACTERISTICS	TERMINALS No. 3 & No.4 NOT CONNECTED			CIRCUITS					
		OTHERN	Fig.	Min.	Typ.	Max.			
STATIC CHARACTERIS	TICS								
Input Unbalance Voltage V _{IU}				4	_	2.2		mV	
Input Unbalance Current I _{IU}				5	-	2.2	10	μA	
Input Bias Current I				5	-	20	36	μA	
<u> </u>	MODE	TE	RMINAL						
		2	4						
Quiescent Operating Voltage	A	V _{EE}	NC	7a		2.8	_	v	
	В	V _{EE}	VEE	8b	1	3.9	_	v	
Device Dissipation P _T		۰ <u>ــــــــــــــــــــــــــــــــــــ</u>		4	_	55	_	mW	
DYNAMIC CHARACTERISTICS									
Differential Voltage Gain A _{DIF} (Single-Ended Input and Output)	f = 1.75 MHz			10	19	24		dƁ	
Bandwith at –3 dB Point BW	-			10		11	_	MHz	
Maximum Output Volt- age Swing V _{OUT} (P-P)		_	10	1	5.5	_	V _{P-P}		
Noise Figure NF	f = 1.75 MHz R _S = 1 kΩ			12		4	8	dB	
Input Impedance Components: Parallel Input Resistance R _{IN}	f = 1.75 MHz			None	1	100k	_	Ω	
Parallel Input Capacitance C _{IN}	f =	1.75 MHz	None		4	-	pF		
Output Resistance ROUT	f =	1.75 MHz	14	1	70	_	Ω		
3rd Harmonic Inter- modulation Distortion IMD	_			16	-30	-40	_	dB	
AGC Range (Maximum Voltage Gain to Complete Cutoff AGC	f = 1.75 MHz			18	60	80	_	dB	

Downloaded from Elcodis.com electronic components distributor

CA3002


ABSOLUTE-MAXIMUM VOLTAGE AND CURRENT LIMITS, at $T_A = 25^{\circ}C$

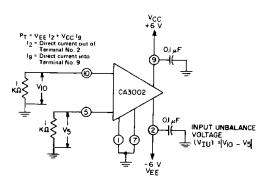
Indicated voltage or current limits for each terminal can be applied under the specified operating conditions for other terminals.

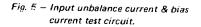
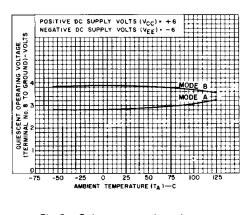
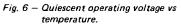
All voltages are with respect to ground $(-V)$	CC, +VFF,) or common terminal
of Positive and Negative DC supplies).	00 22

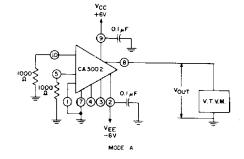
TERMINAL	VOLTAGE O		CONDITIONS					
	NEGATIVE	POSITIVE	TERMINAL	VOLTAGE				
1	8 V	0 V	2, 7 5, 10 9	8 0 +6				
2	-10 V	0 V	1, 5, 10 9	0 +6				
3	-8.5 V	0 V	1, 5, 10 7 9	0 6 +6				
4	-8 V	0 V	1, 5, 10 2, 7 9	0 8 +6				
5	-3.5 V	+3.5 V	1, 10 2, 7 9	0 6 +6				
6		CONNECTION						
7	–12 V	0 V	1, 5, 10 2 9	0 -6 +6				
8	20 m	hΑ	1, 5, 10 0 26 9 +6 200 Ω Resistor Between Terminals 7 & 8					
9	0 V	+10 V	1, 5, 10 2, 3, 7	0 -6				
10	-3.5 V	+3.5 V	1, 5 2, 7 9	0 6 +6				
CASE	INTERNALLY CONNECTED TO TERMINAL No.2 (SUBSTRATE) DO NOT GROUND							

STATIC CHARACTERISTICS

6




Fig. 4 – Input unbalance voltage and device dissipation test circuit.

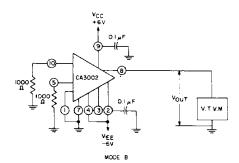
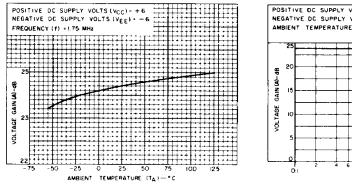
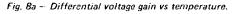




Fig. 7 - Quiescent operating voltage.

DYNAMIC CHARACTERISTICS

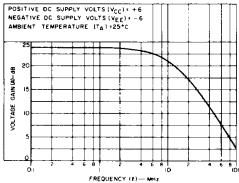


Fig. 8b - Differential voltage gain vs frequency.

CA3002

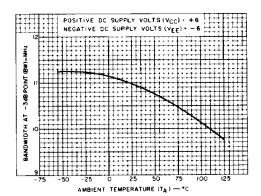


Fig. 9 – Bandwidth of -3 dB point vs temperature.

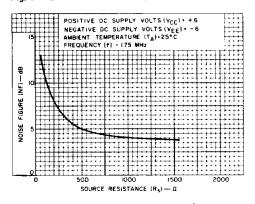


Fig. 11 – Noise figure vs source resistance.

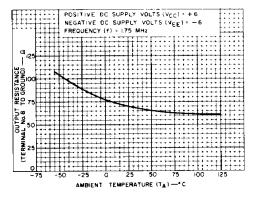


Fig. 13a - Output resistance vs temperature.

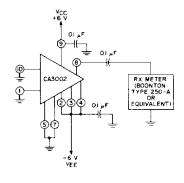


Fig. 14 – Output resistance.

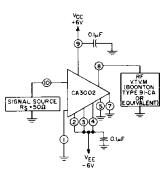
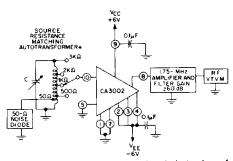



Fig. 10 – Differential voltage gain, -3 dB bandwidth, and maximum output voltage swing.

Taps are adjusted to provide indicated equivalent values of R_S with tank tuned to resonance at 1.75 MHz, and a 50-42 resistor connected to simulate the noise diode.

Fig. 12 – Noise figure.

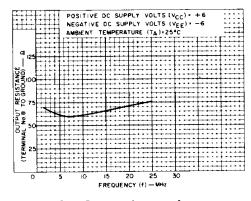
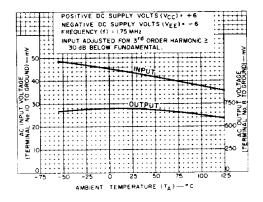
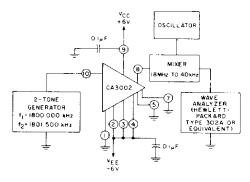
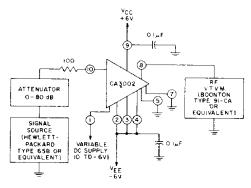


Fig. 13b - Output resistance vs frequency.


Fig. 15 – Input level for –30 dB intermodulation vs temperature.

 Increase both input-signal tones until the 2f2-f1 and 2f1-f2 outputsignal voltages are 30 dB below the f1 and f2 output-signal voltages.

Measure rms values of the input and output signal voltages.
The measured input signal voltage is that value when the 3rd-harmonic intermodulation products are 30 dB below the fundamental outputs.

Fig. 16 - Intermodulation circuit.

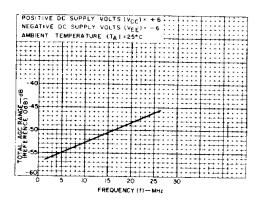


Fig. 17 - AGC range vs frequency.

1) Set attenuator at 80 dB attenuation.

2) Set variable dc supply voltage at 0 V.

 Increase signal input voltage until RF V.T.V.M. indicates 5 mV output.

4) Set variable dc supply voltage at -6 V.

5) Adjust attenuator until RF V.T.V.M. again indicates 5 mV output. 6) Change in attenuator setting in dB is total AGC Range.

Fig. 18 - AGC range.