DESCRIPTION

NPN transistor in a plastic SOT37 envelope, intended for wideband amplification applications. The device features high output voltage capabilities.

PINNING

PIN	DESCRIPTION
1	base
2	emitter
3	collector

A SOT5 (TO-39) version (ref: ON4497) is available on request.

Fig. 1 SOT37.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$V_{\text {CBO }}$	collector-base voltage	open emitter	-	-	25	V
$V_{\text {CEO }}$	collector-emitter voltage	open base	-	-	18	V
I_{c}	collector current		-	-	150	mA
$\mathrm{P}_{\text {sot }}$	total power dissipation	up to $\mathrm{T}_{\mathrm{s}}=145^{\circ} \mathrm{C}$ (note 1)	-	-	1	W
$\mathrm{h}_{\text {FE }}$	DC current gain	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{C E}=10 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	25	70	-	
$\overline{f_{T}}$ www.DataS	transition frequency eet4U.com	$\begin{aligned} & I_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \\ & \mathrm{f}=800 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	-	3.7	-	GHz
G_{UM}	maximum unilateral power gain	$\begin{aligned} & I_{C}=100 \mathrm{~mA} ; V_{C E}=10 \mathrm{~V} ; \\ & f=800 \mathrm{MHz} ; T_{\text {amb }}=25^{\circ} \mathrm{C} \end{aligned}$	-	12	-	dB
V_{0}	output voltage	$\begin{aligned} & d_{\text {im }}=-60 \mathrm{~dB} ; \mathrm{I}_{\mathrm{C}}=90 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} ; \\ & \mathrm{f}_{(p+\mathrm{q}-1)}=793.25 \mathrm{MHz} \end{aligned}$	-	750	-	mV
$\mathrm{P}_{\mathrm{L} 1}$	output power at 1 dB gain compression	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=90 \mathrm{~mA} ; \mathrm{f}=800 \mathrm{MHz} ; \\ & \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \end{aligned}$	-	22	-	dBm
ITO	third order intercept point	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=90 \mathrm{~mA} ; V_{C E}=10 \mathrm{~V} ; f=800 \mathrm{MHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	-	41	-	dBm

Note

1. T_{s} is the temperature at the soldering point of the collector lead.

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$V_{\text {CBO }}$	collector-base voltage	open emitter	-	25	V
$\mathrm{~V}_{\text {CEO }}$	collector-emitter voltage	open base	-	18	V
$\mathrm{~V}_{\text {EBO }}$	emitter-base voltage	open collector	-	2	V
I_{C}	DC collector current		-	150	mA
$\mathrm{P}_{\text {lot }}$	total power dissipation	up to $\mathrm{T}_{\mathrm{s}}=145^{\circ} \mathrm{C}$ (note 1)	-	1	W
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	150	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-	175	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

SYMBOL	PARAMETER	CONDITIONS	THERMAL RESISTANCE
$\mathrm{R}_{\mathrm{t} \mathrm{j}, \mathrm{s}}$	thermal resistance from junction to soldering point	up to $\mathrm{T}_{\mathbf{s}}=145^{\circ} \mathrm{C}$ (note 1)	30 KW

Note

1. T_{s} is the temperature at the soldering point of the collector lead.

CHARACTERISTICS

$T_{1}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNT
$\mathrm{I}_{\text {cbo }}$	collector cut-off current	$\mathrm{I}_{\mathrm{E}}=0 ; \mathrm{V}_{\mathrm{CB}}=15 \mathrm{~V}$	-	-	100	$\mu \mathrm{A}$
$\mathrm{h}_{\text {FE }}$	DC current gain	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$	25	70	-	
f_{T}	transition frequency	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\text {CE }}=10 \mathrm{~V} ; \mathrm{f}=800 \mathrm{MHz}$	-	3.7	-	GHz
$\mathrm{C}_{\text {c }}$	collector capacitance	$\mathrm{I}_{E}=i_{\text {d }}=0 ; \mathrm{V}_{\text {CB }}=10 \mathrm{~V} ; \mathfrak{f}=1 \mathrm{MHz}$	-	2	-	pF
$\mathrm{C}_{\text {e }}$	emitter capacitance	$\mathrm{I}_{\mathrm{C}}=\mathrm{i}_{\mathrm{c}}=0 ; \mathrm{V}_{\text {EB }}=0.5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF
$\mathrm{C}_{\text {re }}$	feedback capacitance	$\mathrm{I}_{\mathrm{C}}=0 ; \mathrm{V}_{\text {CE }}=10 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	-	1.2	-	pF
$\mathrm{G}_{\text {um }}$	maximum unilateral power gain (note 1)	$\begin{aligned} & I_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \\ & \mathrm{f}=800 \mathrm{MHz} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	-	12	-	dB
d_{2}	second order intermodulation distortion (Fig.2)	note 2	-	-55	-	dB
V_{0}	output voltage	note 3	-	1	-	V
		note 4	-	750	-	mV
$\mathrm{P}_{\mathrm{L} 1}$	output power at 1 dB gain compression	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=90 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} ; \\ & \text { measured at } \mathrm{f}=800 \mathrm{MHz} \end{aligned}$	-	22	-	dBm
ITO	third order intercept point	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=90 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{f}=500 \mathrm{MHz} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	-	41	-	dBm

Notes

1. $G_{U M}$ is the maximum unilateral power gain, assuming S_{12} is zero and $G_{U M}=10 \log \frac{\left|S_{21}\right|^{2}}{\left(1-\left|S_{11}\right|^{2}\right)\left(1-\left|S_{22}\right|^{2}\right)} d B$.
2. $\mathrm{I}_{\mathrm{C}}=60 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=75 \Omega ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$;
$V_{q}=V_{p}=V_{0}=48 \mathrm{dBmV} ; f_{p}=560 \mathrm{MHz} ;$
$w^{\prime} V_{q}=V_{b}=50 \mathrm{dBmV} ; f_{q}=250 \mathrm{MHz}$;
measured at $f_{(p+q)}=810 \mathrm{MHz}$.
3. $\mathrm{d}_{\mathrm{im}}=-60 \mathrm{~dB}(\mathrm{DIN} 45004 \mathrm{~B}) ; \mathrm{t}_{\mathrm{C}}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=75 \Omega ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$;
$V_{p}=V_{0}$ at $d_{i m}=-60 \mathrm{~dB} ; f_{p}=287.25 \mathrm{MHz}$;
$V_{q}=V_{0}-6 d B ; f_{q}=294.25 \mathrm{MHz} ;$
$\mathrm{V}_{\mathrm{r}}=\mathrm{V}_{\mathrm{o}}-6 \mathrm{~dB} ; \mathrm{f}_{\mathrm{r}}=295.25 \mathrm{MHz}$;
measured at $\mathrm{f}_{(p+q-1)}=285.25 \mathrm{MHz}$.
4. $\mathrm{d}_{\mathrm{im}}=-60 \mathrm{~dB}(\mathrm{DIN} 45004 \mathrm{~B}) ; \mathrm{I}_{\mathrm{C}}=90 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=75 \Omega ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$;
$V_{p}=V_{0}$ at $d_{i m}=-60 \mathrm{~dB} ; \mathrm{f}_{\mathrm{p}}=797.25 \mathrm{MHz}$;
$\mathrm{V}_{\mathrm{q}}=\mathrm{V}_{\mathrm{O}}-6 \mathrm{~dB} ; \mathrm{f}_{\mathrm{q}}=803.25 \mathrm{MHz}$;
$\mathrm{V}_{\mathrm{r}}=\mathrm{V}_{\mathrm{O}}-6 \mathrm{~dB} ; \mathrm{f}_{\mathrm{r}}=805.25 \mathrm{MHz}$;
measured at $f_{(p+a-r)}=793.25 \mathrm{MHz}$.

$\mathrm{L} 1=\mathrm{L} 2=5 \mu \mathrm{H}$ Ferroxcube choke.

$\mathrm{L} 3=2$ turns 0.5 mm copper wire; winding pitch 2 mm ; internal diameter 4 mm .

Fig. 2 Intermodulation distortion and second order intermodulation distortion MATV test circuit.

Fig. 5 Collector capacitance as a function of collector-base voltage.

Fig. 7 Maximum unilateral power gain as a function of frequency.

$V_{C E}=10 \mathrm{~V} ; f=800 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.
Fig. 6 Transition frequency as a function of collector current.

$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=750 \mathrm{mV} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; $\mathrm{f}_{(p+g-1)}=793.25 \mathrm{MHz}$.

Fig. 8 Intermodulation distortion as a function of collector current.

NPN 4 GHz wideband transistor

$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=48 \mathrm{dBmV} ; \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$;
$f_{p}=560 \mathrm{MHz} ; \mathrm{f}_{\mathrm{q}}=250 \mathrm{MHz} ; \mathrm{f}_{(\mathrm{p}+\mathrm{a})}=810 \mathrm{MHz}$.

Fig. 9 Second order intermodulation distortion as a function of collector current.

$\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V} ; \mathrm{f}=800 \mathrm{MHz} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Fig. 10 Noise circle figure.

Fig. 11 Common emitter input reflection coefficient $\left(S_{11}\right)$.

Fig. 12 Common emitter forward transmission coefficient $\left(S_{21}\right)$.

Fig. 13 Common emitter reverse transmission coefficient (S_{12}).

Fig. 14 Common emitter output reflection coefficient (S_{22}).

Table 1 Common emitter scattering parameters, $I_{C}=70 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$

\mathbf{f} (MHz)	\mathbf{S}_{11}		\mathbf{S}_{21}		\mathbf{S}_{12}		\mathbf{S}_{22}		$\mathbf{G}_{\text {uM }}$
	MAG. (RAT)	ANG. (DEG)							
40	0.459	-73.8	32.733	142.7	0.019	65.0	0.801	-35.7	35.8
100	0.469	-126.0	19.677	116.6	0.033	56.9	0.500	-61.7	28.2
200	0.479	-156.6	10.977	98.5	0.048	58.6	0.307	-78.8	22.4
300	0.483	-171.9	7.424	89.5	0.063	61.8	0.241	-88.2	18.8
400	0.507	179.1	5.674	82.8	0.078	64.1	0.216	-94.6	16.6
500	0.507	172.8	4.597	77.4	0.093	66.0	0.211	-100.5	14.7
600	0.488	165.6	3.858	73.2	0.108	66.2	0.212	-105.1	13.1
700	0.511	159.7	3.356	68.7	0.124	65.8	0.217	-108.3	12.0
800	0.507	153.1	2.937	64.2	0.138	66.5	0.223	-111.7	10.9
900	0.521	147.9	2.643	60.4	0.156	66.1	0.229	-114.9	10.1
1000	0.526	142.5	2.364	56.4	0.172	65.3	0.237	-118.5	9.1
1200	0.554	133.2	2.041	49.9	0.203	63.5	0.254	-127.3	8.1
1400	0.549	125.2	1.760	42.5	0.229	61.7	0.281	-136.1	6.8
1600	0.578	118.3	1.552	36.3	0.263	60.1	0.315	-142.3	6.0
1800	0.580	109.9	1.403	30.5	0.292	56.7	0.344	-148.6	5.3
2000	0.613	100.8	1.302	25.5	0.322	54.6	0.363	-154.8	5.0

Table 2 Common emitter scattering parameters, $I_{C}=100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$

$\begin{gathered} \mathbf{f} \\ (\mathbf{M H z} \mathbf{H}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}		$\begin{aligned} & \mathbf{G}_{\mathrm{um}} \\ & (\mathrm{~dB}) \end{aligned}$
	MAG. (RÃ)	ANG. (DEG)	MAG. (RAT)	ANG. (DEG)	MAG. (RAT)	ANG. (DEG)	MAG. (RAT)	ANG. (DEG)	
40	0.463	-74.1	33.964	141.6	0.020	64.0	0.786	-37.5	35.8
100	0.475	-126.8	20.065	115.5	0.033	58.0	0.481	-64.3	28.3
200	0.484	-156.8	11.112	98.0	0.048	57.9	0.294	-82.6	22.5
300	0.479	-173.0	7.528	89.3	0.062	61.6	0.230	-92.9	18.9
400	0.494	177.7	5.729	82.6	0.079	64.5	0.210	-99.6	16.6
500	0.487	172.5	4.642	77.2	0.094	65.6	0.204	-105.5	14.7
600	0.487	164.6	3.896	73.1	0.110	66.5	0.205	-110.0	13.2
700	0.503	159.6	3.382	68.7	0.127	66.0	0.210	-113.1	12.0
800	0.506	151.9	2.965	64.1	0.141	66.1	0.216	-116.1	10.9
900	0.512	148.2	2.667	60.5	0.159	65.2	0.221	-119.3	10.1
1000	0.525	142.8	2.384	56.6	0.174	64.7	0.228	-122.5	9.2
1200	0.544	133.5	2.069	50.4	0.205	62.8	0.245	-131.4	8.1
1400	0.555	124.4	1.773	42.8	0.232	61.1	0.273	-139.3	6.9
1600	0.579	117.7	1.578	36.7	0.264	59.3	0.307	-145.3	6.2
1800	0.587	110.0	1.434	31.1	0.293	55.8	0.332	-151.1	5.5
2000	0.617	101.6	1.310	26.5	0.322	53.5	0.353	-157.1	5.0

