DISCRETE SEMICONDUCTORS

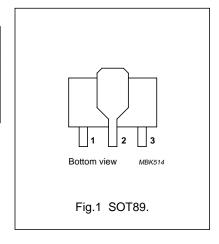
DATA SHEET

BFQ17NPN 1 GHz wideband transistor

Product specification
File under Discrete Semiconductors, SC14

September 1995

NPN 1 GHz wideband transistor


BFQ17

DESCRIPTION

NPN transistor in a SOT89 plastic envelope intended for application in thick and thin-film circuits. The transistor has extremely good intermodulation properties and a high power gain.

PINNING

PIN DESCRIPTION	
	Code: FA
1	emitter
2	collector
3	base

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	40	V
V _{CEO}	collector-emitter voltage	open base	_	25	V
I _{CM}	peak collector current		-	300	mA
P _{tot}	total power dissipation	up to T _s = 145 °C (note 1)	-	1	W
f _T	transition frequency	$I_C = 150 \text{ mA}; V_{CE} = 15 \text{ V}; f = 500 \text{ MHz};$ $T_j = 25 ^{\circ}\text{C}$	1.5	-	GHz
C _{re}	feedback capacitance	I _C = 10 mA; V _{CE} = 15 V; f = 1 MHz; T _{amb} = 25 °C	1.9	_	pF

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	-	40	V
V _{CER}	collector-emitter voltage	$R_{BE} \le 50 \Omega$	_	40	V
V _{CEO}	collector-emitter voltage	open base	-	25	V
V _{EBO}	emitter-base voltage	open collector	-	2	V
I _C	DC collector current		_	150	mA
I _{CM}	peak collector current	f > 1 MHz	-	300	mA
P _{tot}	total power dissipation	up to T _s = 145 °C (note 1)	_	1	W
T _{stg}	storage temperature		-65	150	°C
T _i	junction temperature		_	175	°C

Note

1. T_s is the temperature at the soldering point of the collector tab.

Product specification Philips Semiconductors

NPN 1 GHz wideband transistor

BFQ17

THERMAL RESISTANCE

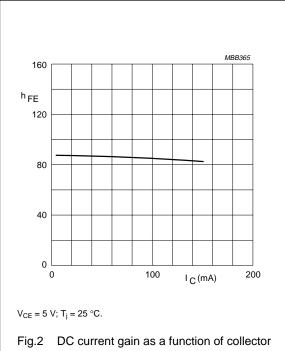
SYMBOL	PARAMETER	CONDITIONS	THERMAL RESISTANCE	
R _{th j-s}	thermal resistance from junction to	up to $T_s = 145 ^{\circ}\text{C}$ (note 1)	30 K/W	
	soldering point			

Note

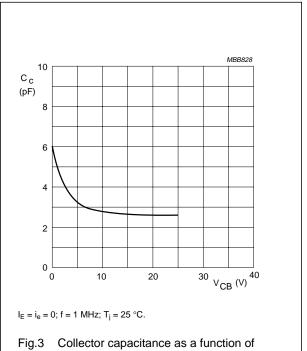
1. $\,\,T_{s}$ is the temperature at the soldering point of the collector tab.

CHARACTERISTICS

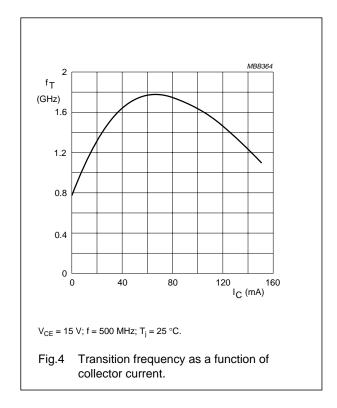
 $T_j = 25$ °C unless otherwise specified.


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = 20 V; T _j = 50 °C	_	_	20	μΑ
V _{CE sat}	collector-emitter saturation voltage	I _C = 100 mA; I _B = 10 mA	_	_	0.5	V
h _{FE}	DC current gain	I _C = 150 mA; V _{CE} = 5 V	25	80	_	
C _c	collector capacitance	$I_E = i_e = 0$; $V_{CB} = 15 \text{ V}$; $f = 1 \text{ MHz}$	_	_	4	pF
C _{re}	feedback capacitance	I _C = 10 mA; V _{CE} = 15 V; f = 1 MHz; T _{amb} = 25 °C	-	1.9	_	pF
f _T	transition frequency	I _C = 150 mA; V _{CE} = 15 V; f = 500 MHz	-	1.5	-	GHz
G _{UM}	maximum unilateral power gain (note 1)	I _C = 60 mA; V _{CE} = 15 V; f = 200 MHz; T _{amb} = 25 °C	-	16	_	dB
		I _C = 60 mA; V _{CE} = 15 V; f = 800 MHz; T _{amb} = 25 °C	-	6.5	-	dB

Note


1.
$$G_{UM}$$
 is the maximum unilateral power gain, assuming S_{12} is zero and
$$G_{UM} = 10 \ log \frac{\left|S_{21}\right|^2}{\left(1-\left|S_{11}\right|^2\right)\left(1-\left|S_{22}\right|^2\right)} dB.$$

NPN 1 GHz wideband transistor


BFQ17

current.

collector-base voltage.

NPN 1 GHz wideband transistor

BFQ17

PACKAGE OUTLINE

Plastic surface mounted package; collector pad for good heat transfer; 3 leads

SOT89

September 1995

OUTLINE VERSION

SOT89

IEC

EIAJ

EUROPEAN PROJECTION

 $\bigoplus \bigoplus$

ISSUE DATE

97-02-28

REFERENCES

JEDEC

Philips Semiconductors Product specification

NPN 1 GHz wideband transistor

BFQ17

DEFINITIONS

Data Sheet Status				
Objective specification	Objective specification This data sheet contains target or goal specifications for product development.			
Preliminary specification This data sheet contains preliminary data; supplementary data may be published late				
Product specification	This data sheet contains final product specifications.			
Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification				

Application information

Where application information is given, it is advisory and does not form part of the specification.

is not implied. Exposure to limiting values for extended periods may affect device reliability.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.