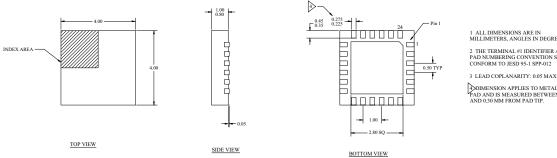


RFS1006 3.4-3.6 GHz Power Amplifier

Applications

- 3.4-3.6 GHz fixed-wireless transmitter
- · Wireless Local Loop transmitter


Functional Block Diagram

Product Description

The RFS1006 power amplifier is a high-power, high-performance GaAs MESFET IC designed for use in transmit applications in the 3.4-3.6 GHz frequency band. With a P1dB of 31 dBm, the device is ideal as a final stage for fixed wireless applications requiring high transmit linearity. The input and output of the PA can be easily matched for optimum linearity and power performance from 3.4 to 3.6 GHz.

Product Features

- 31 dBm P1dB
- 21 dB gain

1 ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES IN DEGREES.

2 THE TERMINAL #1 IDENTIFIER AND PAD NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012

4 DIMENSION APPLIES TO METALLIZED PAD AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM PAD TIP.

4x4 mm Package Outline

RFS1006

3.4-3.6 GHz Power Amplifier

1	Specification			Unit	Condition
Parameter ¹	Min.	Тур.	Max.	Unit	Conduon
Overall					
Frequency Range	3400		3600	MHz	
Output P1dB		31		dBm	$P_{IN} = +11 dBm$
Efficiency at P1dB		35		%	
Small Signal Gain		21		dB	$P_{IN} = -20 dBm$
Gain Flatness		± 1.0		dB	Entire Band
Harmonics					
2 nd Harmonic		-50		dBc	
3 rd Harmonic		-30		dBc	
Spurious (Stability) ²		-60		dBc/30 kHz	$P_{IN} = -30 \text{ to } +13 \text{ dBm}$
Reverse Isolation		50		dB	
Noise Figure		5.5		dB	
Input Return Loss	10			dB	
Power Supply					
Drain Operating Voltage	5		7	V	
Gate Operating Voltage		-1.1		V	
Current Consumption		570		mA	
Gate Leakage Current		150		μΑ	

Note 1: Test Conditions: V_{DD} =7.0V, P_{IN} =+11dBm, Freq. = 3500MHz, V_{GG} = -1.1 V, T = 25 °C, unless otherwise specified. Note 2: Load VSWR is set to 7:1 and the angle is varied 360 degrees.

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Power Supply	8.0	V
DC Gate Voltage	-5.0 min, -0.5 max	V
DC Supply Current	1000	mA
Maximum RF input level	+14	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-55 to +150	°C

Ordering Information

Part Number	Temp. Range (°C)	Package Description	Quantity
PRFS-1006-0EVL	-40 to +85	Evaluation Board	1
PRFS-1006-0005	-40 to +85	13" Reverse Tape/Reel	2500 pcs.
PRFS-1006-0006	-40 to +85	13" Tape/Reel	2500 pcs.
PRFS-1006-0007	-40 to +85	7" Reverse Tape/Reel	1000 pcs.
PRFS-1006-0008	-40 to +85	7" Tape/Reel	1000 pcs.
PRFS-1006-0009	-40 to +85	Bulk – 4x4 mm 24-pin LPCC	1-999 pcs.

2

NOTES

ANADIGICS, Inc. 141 Mount Bethel Road Warren, New Jersey 07059,U.S.A. Tel: +1(908)668-5000 Fax: +1(908)668-5132

URL: http://www.anadigics.com E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders. WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.