

No.3011

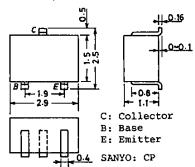
2SA1682

PNP Epitaxial Planar Silicon Transistor
TV Camera Deflection,
High-Voltage Driver Applications

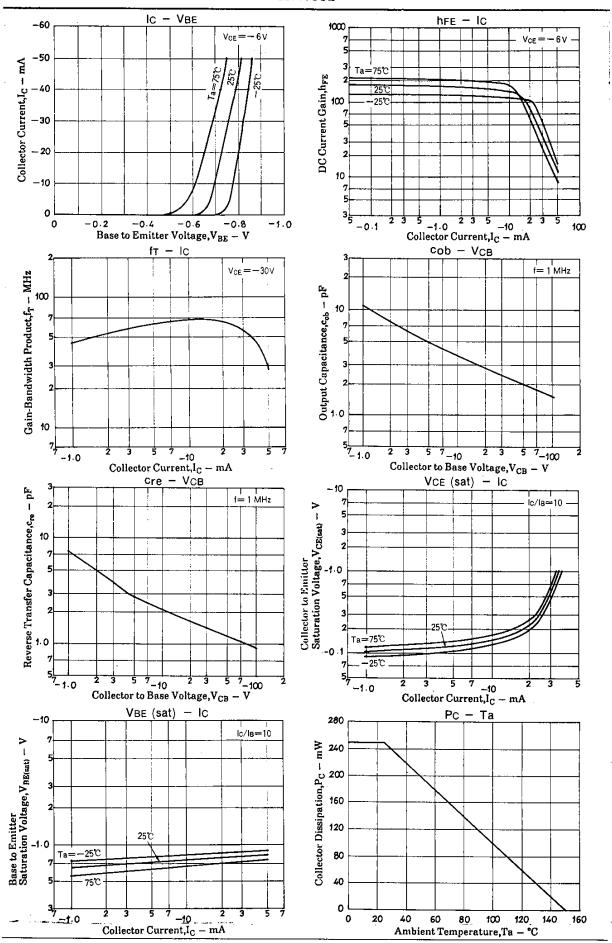
Features

- . High breakdown voltage (V_{CEO} \ge 300V)
- · Small reverse transfer capacitance and excellent high frequency characteristic (cre: 1.5pF typ)
- · Excellent DC current gain ratio (hFE ratio: 1.0 typ)
- . Adoption of FBET process

AT TANK . That	m 0500					
Absolute Maximum Ratings at Ta = 25°C					unit	
Collector to Base Voltage	$ m V_{CBO}$		- 3	300	V	
Collector to Emitter Voltage	$V_{ m CEO}$		_;	300	V	
Emitter to Base Voltage	V_{EBO}			-5	v	
Collector Current	$I_{\mathbf{C}}$		_	-50	mA	
Collector Current(Pulse)	I_{CP}		(100	mA	
Collector Dissipation	$P_{\mathbf{C}}$			250	mW	
Junction Temperature	Tj			150	$^{\circ}\mathrm{C}$	
Storage Temperature	Tstg		-55 to +150 °C			
Electrical Characteristics at Ta	=25°C		min	typ	max	unit
Collector Cutoff Current	I_{CBO}	$V_{CB} = -200V, I_{E} = 0$			-0.1	μA
Emitter Cutoff Current	I_{EBO}	$V_{EB} = -4V, I_C = 0$			-0.1	μA
DC Current Gain	$h_{FE}(1)$	$V_{CE} = -6V, I_{C} = -0.1 \text{mA}$	100 * 320 *		* •	
	$h_{FE}(2)$	$V_{CE} = -6V_{IC} = -1mA$	100 '			
Gain-Bandwidth Product	$\mathbf{f_T}$	$V_{CE} = -30V, I_{C} = -10mA$		70		MHz
C-E Saturation Voltage	V _{CE(sat)}	$I_{C} = -10 \text{mA}, I_{B} = -1 \text{mA}$			-1.0	v
B-E Saturation Voltage	$V_{\mathrm{BE(sat)}}$	$I_C = -10 \text{mA}, I_B = -1 \text{mA}$			-1.0	V
C-B Breakdown Voltage	$V_{(BR)CBO}$	$I_{\rm C} = -10 \mu {\rm A}, I_{\rm E} = 0$	-300			V
C-E Breakdown Voltage	$V_{(BR)CEO}$	$I_C = -1 \text{mA}, R_{BE} = \infty$	-300			V
E-B Breakdown Voltage	$V_{(BR)EBO}$	$I_E = -10\mu A, I_C = \infty$	-5			v
Output Capacitance	c_{ob}	$V_{CB} = -30V, f = 1MHz$		2.4		рF
Reverse Transfer Capacitance	c _{re}	$V_{CB} = -30V, f = 1MHz$		1.5		рF
DC Current Gain Ratio	h _{FE} ratio	$h_{FE}(1)/h_{FE}(2)$		1.0		-


* : The 2SA1682 is classified by 0.1mA hre as follows:

			7		
100	4	200	160	5	320


(Note) Marking: CS hFE rank: 4,5

Package Dimensions 2018A

(unit: mm)

SANYO Electric Co., Ltd. Semiconductor Business Headquarters
TOKYO OFFICE Tokyo Bldg., 1-10,1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.