

7516 Central Industrial Drive Riviera Beach, Florida 33404

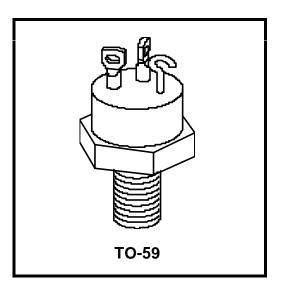
PHONE: (561) 842-0305 FAX: (561) 845-7813

2N2151

APPLICATIONS:

- Fast Switching
- High Frequency Switching and Amplifying

FEATURES:


- High Reliability
- Greater Gain Stability

5 Amp, 100V, Planar, NPN Power Transistors JAN, JANTX

DESCRIPTION:

These power transistors are produced by PPC's DOUBLE DIFFUSED PLANAR process. This technology produces high voltage devices with excellent switching speeds, frequency response, gain linearity, saturation voltages, high current gain, and safe operating areas. They are intended for use in Commercial, Industrial, and Military power switching, amplifier, and regulator applications.

Ultrasonically bonded leads and controlled die mount techniques are utilized to further increase the SOA capability and inherent reliability of these devices. The temperature range to 200°C permits reliable operation in high ambients, and the hermetically sealed package insures maximum reliability and long life.

ABSOLUTE MAXIMUM RATINGS

SYMBOL	CHARACTERISTIC	VALUE	UNITS
V _{CBO} *	Collector-Base Voltage	150	V
V _{CEO} *	Collector-Emitter Voltage	100	V
V _{EBO} *	Emitter-Base Voltage	8	V
I _C *	Peak Collector Current	10	Α
I _C *	Continuous Collector Current	5	Α
I _B *	Continuous Base Current	2	Α
T _{STG} *	Storage Temperature	-65 to 200	°C
T _J *	Operating Junction Temperature	-65 to 200	°C
*	Lead Temperature 1/16" From Case for 10 Sec.	230	∘C
P _T *	Power Dissipation $T_A = 25^{\circ}C$ $T_C = 100^{\circ}C$	2 30	W W
ө ЈС	Thermal Resistance Junction to Case	3.33	°C/W

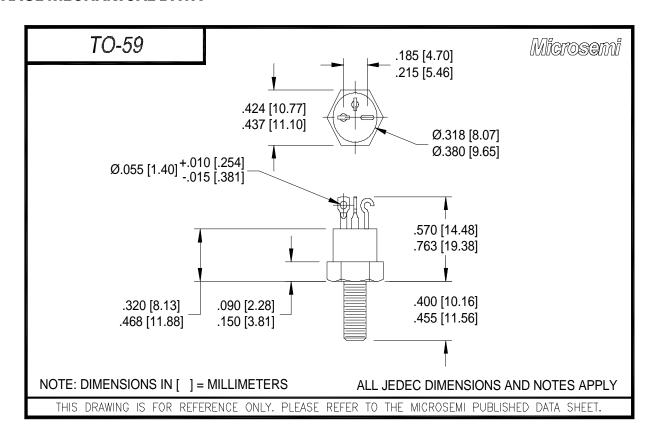
^{*} Indicates JEDEC registered data.

MSC0942A.DOC 11-03-98

ELECTRICAL CHARACTERISTICS

(25°Case Temperature Unless Otherwise Noted)

SYMBOL	CHARACTERISTIC	TEST CONDITIONS		VALUE	
STWIDOL				Max	Units
BV _{CBO} *	Collector-Base Voltage	I _C = 100 _μ Adc, Cond. D	150		Vdc
BV _{CEO} *	Collector-Emitter Voltage (Note 1)	I _C = 50 mAdc, Cond. D	100		Vdc
BV _{EBO} *	Emitter-Base Voltage	I _E = 2 μAdc, Cond. D	8		Vdc
I _{CEO} *	Collector-Emitter Cutoff Current	V _{CE} = 120 Vdc Cond. D		5	μ Adc
I _{CEX} *	Collector-Emitter Cutoff Current	V _{CE} = 120 Vdc, V _{EB} = 0.5 Vdc, Cond. A		5	μ Adc
		V _{CE} = 120 Vdc, V _{EB} = 0.5 Vdc, Cond. A T _A = 150°C		100	<u>μA</u>
I _{CBO} *	Collector-Base Cutoff Current	V _{CB} = 120 Vdc, Cond. D		5	μ Adc
hFE*	DC Current Gain (Note 1)	I _C = 1 Adc, V _{CE} = 5 Vdc	40	120	
		I _C = 0.5 Adc, V _{CE} = 5 Vdc	40	120	
		I _C = 0.1 Adc, V _{CE} = 5 Vdc	40		
hFE*	AC Current Gain	I _C = 0.1 Adc, V _{CE} = 30 Vdc, f = 1 KHz	40	160	
V _{CE(sat)} *	Collector Saturation Voltage (Note 1)	I _C = 1 Adc, I _B = 0.1 Adc		1.0	Vdc
V _{BE(sat)*}	Base Saturation Voltage (Note 1)	I _C = 1 Adc, I _B = 0.1 Adc		1.2	Vdc
V _{BE(on)} *	Base On-Voltage (Note 1)	I _C = 1 Adc, V _{CE} = 2 Vdc		1.2	Vdc
f _T *	Gain-Bandwidth Product	I _C = 1 Adc, V _{CE} = 30 Vdc, f = 10 MHz	10	70	MHz
C _{ob} *	Output Capacitance	V _{CB} = 20 Vdc, 1 _E = 0, f = 1 MHz		160	pf


Note 1: Pulse Test: PW = $300\mu s$, Duty Cycle \leq 2%.

^{*} Indicates JEDEC registered data.

PACKAGE MECHANICAL DATA

