2 Data Sheets

This section presents complete electrical specifications for Teccor's *SIDACtor* solid state overvoltage protection devices.

		<u> </u>
	DO-214AA Package Symbolization.	2-3
	DO-214AA	
	SIDACtor Device	2-4
	MicroCapacitance (MC) SC SIDACtor Device	
	MicroCapacitance (MC) SA SIDACtor Device	
	High Surge Current (D-rated) SIDACtor Device. 2	
	Compak Two-chip SIDACtor Device	
	Ethernet/10BaseT/100BaseT/1000BaseT Protector	2-14
	ГО-92	
	SIDACtor Device	2-16
	MicroCapacitance (MC) SIDACtor Device	
	Modified MS-013 (Six-pin Surface Mount)	
	Balanced Three-chip SIDACtor Device	0 00
	Multiport SIDACtor Device	
	Multiport MicroCapacitance (MC) SIDACtor Device	
	Multiport Balanced SIDACtor Device	2-20
	Modified TO-220	
	SIDACtor Device	
	Two-chip SIDACtor Device	
	Two-chip MicroCapacitance (MC) SIDACtor Device	
	Balanced Three-chip SIDACtor Device	2-34
	Balanced Three-chip MicroCapacitance (MC) SIDACtor Device	2-36
	_CAS	
	LCAS Asymmetrical Multiport Device	2-38
	LCAS Asymmetrical Discrete Device	
	SIP Hybrid Overvoltage and Overcurrent Protector	
	Four-port Balanced Three-chip Protector	0 12
	Four-port Longitudinal Two-chip Protector.	
	Four-port Metallic Line Protector	
	Four-port TeleLink Fuse	
		2-40
	SLICs	
	Fixed Voltage SLIC Protector.	
	Twin SLIC Protector	
	Twin SLIC Protector Modified TO-220	
	Multiport SLIC Protector	2-58
	Battrax	
	Battrax SLIC Protector	2-60
	Battrax Dual Negative SLIC Protector	2-62
	Battrax Dual Positive/Negative SLIC Protector	2-64
	Battrax Quad Negative SLIC Protector	2-66
,	CATVs	
	CATV and HFC SIDACtor Device	2-68
	High Surge Current SIDACtor Device	
	CATV Line Amplifiers/Power Inserters ME SIDACtor Device	
	CATV Line Amplifiers/Power Inserters NE SIDACtor Device	
	CATV Line Amplifiers/Power Inserters RE SIDACtor Device	
	FeleLink Fuse	2-78

See next page for acronyms.

Acronyms:

CATV Community Antenna TV HFC Hybrid Fiber Coax LCAS Line Circuit Access Switch SIP Single In-line Package SLIC Subscriber Line Interface Circuit

Part Number

Symbolized

Catalog

DO-214AA Package Symbolization Part Number Catalog Symbolized P0080SA P-8A P0080SA MC P-8AM P0080SB P-8B P0080SC P-8C P0080SD P-8D P0080SC MC P-8CM P0300SA P03A P0300SA MC P03AM P0300SB P03B P0300SC P03C P0300SD P03D P0300SC MC P03CM P06A P0640SA P0640SB P06B P0640SC P06C P0640SD P06D P0640SC MC P06CM P0641CA2 P62A P0641SA P61A P0641SC P61C P0720SA P07A P07B P0720SB P0720SC P07C P0720SD P07D P0720SC MC P07CM P0721CA2 P72A P71A P0721SA P0721SC P71C P0900SA P09A P0900SB P09B P09C P0900SC P0900SD P09D P0900SC MC P09CM P0901CA2 P92A P0901SA P91A P0901SC P91C P1100SA P11A P1100SB P11B P1100SC P11C P1100SD P11D P1100SC MC P11CM P1101CA2 P02A

Part Number								
Catalog	Symbolized							
P1101SA	P01A							
P1101SC	P01C							
P1200SA	P12A							
P1200SB	P12B							
P1200SC	P12C							
P1200SD	P12D							
P1200SC MC	P12CM							
P1300SA	P13A							
P1300SB	P13B							
P1300SC	P13C							
P1300SD	P13D							
P1300SC MC	P13CM							
P1302SA	P132A							
P1402CA	P14A							
P1500SA	P15A							
P1500SB	P15A							
P1500SC	P156							
P1500SD	P15D							
P1500SC MC	P15CM							
P1502SA	P152A							
P1602CA	P16A							
P1800SA	P18A							
P1800SB	P18B							
P1800SC	P18C							
P1800SD	P18C							
P1800SD	P16D P18CM							
	P182A							
P1802SA P2000SA	P102A P20A							
P2000SA	P20A							
	P206							
P2000SC P2000SD	P20C P20D							
P2000SD P2000SC MC	P20D P20CM							
P2202CA	P22A							
P2300SA	P23A							
P2300SB	P23B							
P2300SC	P23C							
P2300SD	P23D							
P2300SC MC	P23CM							
P2302SA	P232A							
P2500SA	P25A							
P2500SB	P25B							
P2500SC	P25C							

P2500SD P25D P2500SC MC P25CM P2600SA P26A P26B P2600SB P2600SC P26C P2600SD P26D P26CM P2600SC MC P2602SA P262A P2702CA P27A P3002CA P30A P3002CB P30B P3002SA P30A P30B P3002SB P3100SA P31A P3100SB P31B P3100SC P31C P3100SD P31D P3100SC MC P31CM P3500SA P35A P3500SB P35B P3500SC P35C P3500SD P35D P3500SC MC P35CM P3502SA P352A P3602CA P36A P4202CA P42A P4202SA P422A P4802CA P48A P4802SA P482A P6002CA P60A P60B P6002CB P6002SA P602A B1100CA B10A B1100CC B10C B1160CA B16A

B1160CC

B1200CA

B1200CC

B2050CA

B2050CC

Note: Date code is located below the symbolized part number.

SIDACtor[®] Data Book and Design Guide

http://www.teccor.com +1 972-580-7777

B16C

B12A

B12C

B25A

B25C

SIDACtor Device

DO-214AA *SIDACtor* solid state protection devices protect telecommunications equipment such as modems, line cards, fax machines, and other CPE.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21 and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	l _S mAmps	l _T Amps	I _H mAmps	C _O pF
P0080S_	6	25	4	5	800	2.2	50	100
P0300S_	25	40	4	5	800	2.2	50	110
P0640S_	58	77	4	5	800	2.2	150	50
P0720S_	65	88	4	5	800	2.2	150	50
P0900S_	75	98	4	5	800	2.2	150	50
P1100S_	90	130	4	5	800	2.2	150	40
P1300S_	120	160	4	5	800	2.2	150	40
P1500S_	140	180	4	5	800	2.2	150	40
P1800S_	170	220	4	5	800	2.2	150	30
P2300S_	190	260	4	5	800	2.2	150	30
P2600S_	220	300	4	5	800	2.2	150	30
P3100S_	275	350	4	5	800	2.2	150	30
P3500S_	320	400	4	5	800	2.2	150	30

* For individual "SA", "SB", and "SC" surge ratings, see table below.

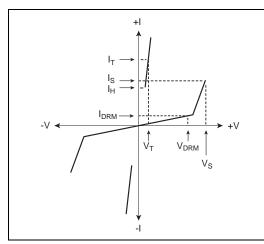
General Notes:

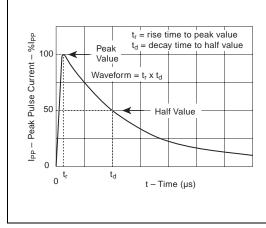
• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

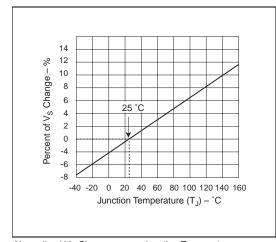
· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

V_{DRM} is measured at I_{DRM.}

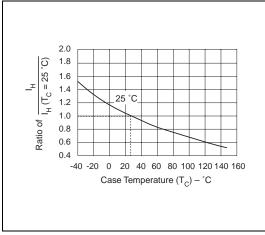

V_S is measured at 100 V/µs.


 Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value for "SA" and "SB" product. "SC" capacitance is approximately 2x the listed value. The off-state capacitance of the P0080SB is equal to the "SC" device.

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
Α	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500


[•] Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

Package	Symbol	Parameter	Value	Unit
DO-214AA	TJ	Operating Junction Temperature Range	-40 to +150	°C
	Ts	Storage Temperature Range	-65 to +150	°C
	$R_{ heta JA}$	Thermal Resistance: Junction to Ambient	90	°C/W



V-I Characteristics

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

MicroCapacitance (MC) SC SIDACtor Device

The DO-214AA SC MC *SIDACtor* series is intended for applications sensitive to load values. Typically, high speed connections require a lower capacitance. C_0 values for the MicroCapacitance device are 40% lower than a standard SC part.

This MC *SIDACtor* series is used to enable equipment to meet various regulatory requirements including GR 1089, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68). Contact factory regarding ITU K.20, K.21, and K.45.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	l _S mAmps	l _T Amps	l _H mAmps	С _О pF
P0080SC MC	6	25	4	5	800	2.2	50	55
P0300SC MC	25	40	4	5	800	2.2	50	35
P0640SC MC	58	77	4	5	800	2.2	150	60
P0720SC MC	65	88	4	5	800	2.2	150	60
P0900SC MC	75	98	4	5	800	2.2	150	60
P1100SC MC	90	130	4	5	800	2.2	150	50
P1300SC MC	120	160	4	5	800	2.2	150	50
P1500SC MC	140	180	4	5	800	2.2	150	50
P1800SC MC	170	220	4	5	800	2.2	150	40
P2300SC MC	190	260	4	5	800	2.2	150	40
P2600SC MC	220	300	4	5	800	2.2	150	40
P3100SC MC	275	350	4	5	800	2.2	150	40
P3500SC MC	320	400	4	5	800	2.2	150	40

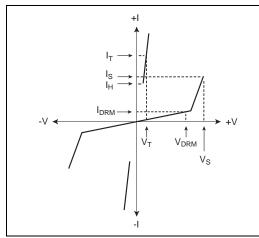
* For surge ratings, see table below.

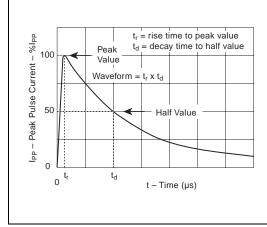
General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

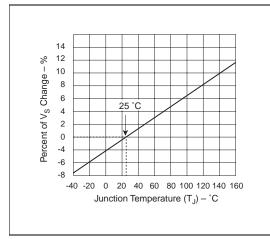
• IPP is a repetitive surge rating and is guaranteed for the life of the product.

- Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.
- V_{DRM} is measured at I_{DRM.}

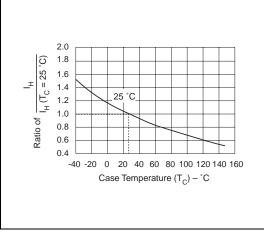

V_S is measured at 100 V/µs.


- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

· Off-state capacitance is measured at 1 MHz with a 2 V bias.


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
С	500	400	200	150	100	30	500

Package	Symbol	Parameter	Value	Unit
DO-214AA	TJ	Operating Junction Temperature Range	-40 to +150	°C
	Ts	Storage Temperature Range	-65 to +150	°C
	R _{θJA}	Thermal Resistance: Junction to Ambient	90	°C/W



V-I Characteristics

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

MicroCapacitance (MC) SA SIDACtor Device

The DO-214AA SA MC *SIDACtor* series is intended for applications sensitive to load values. Typically, high speed connections require a lower capacitance. C_0 values for the MicroCapacitance device are 40% lower than a standard SA part.

This MC *SIDACtor* series is used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	l _S mAmps	l _T Amps	l _H mAmps	C _O pF
P0080SA MC	6	25	4	5	800	2.2	50	45
P0300SA MC	25	40	4	5	800	2.2	50	25

* For surge ratings, see table below.

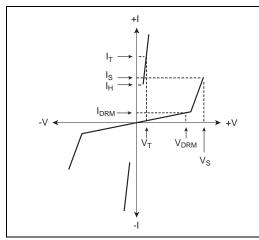
General Notes:

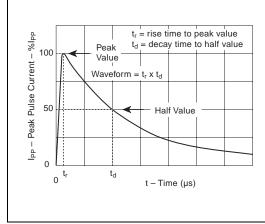
• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

· IPP is a repetitive surge rating and is guaranteed for the life of the product.

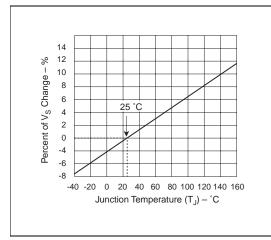
Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

V_{DRM} is measured at I_{DRM}.

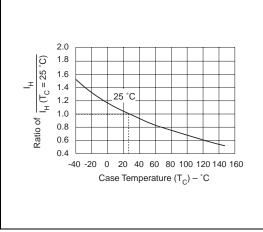

+ V_S is measured at 100 V/µs.


Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

• Off-state capacitance is measured at 1 MHz with a 2 V bias.


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
Α	150	150	90	50	45	20	500

Package	Symbol	Parameter	Value	Unit
DO-214AA	TJ	Operating Junction Temperature Range	-40 to +150	°C
	Ts	Storage Temperature Range	-65 to +150	°C
	R _{θJA}	Thermal Resistance: Junction to Ambient	90	°C/W



V-I Characteristics

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

High Surge Current (D-rated) SIDACtor Device

DO-214AA *SIDACtor* solid state protection devices with a D surge rating protect telecommunications equipment such as modems, line cards, fax machines, and other CPE.

These *SIDACtor* devices withstand simultaneous surges incurred in GR 1089 lightning tests. (See "First Level Lightning Surge Test" on page 4-5.) Surge ratings are twice that of a device with a C surge rating. This allows a discrete surface mount version of Teccor's patented "Y" configuration. (US Patent 4,905,119)

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21 and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	Ι _{DRM} μAmps	l _S mAmps	I _T Amps	I _H mAmps	C _O pF
P0080SD **	6	25	4	5	800	2.2	50	200
P0300SD **	25	40	4	5	800	2.2	50	220
P0640SD **	58	77	4	5	800	2.2	50	100
P0720SD **	65	88	4	5	800	2.2	50	100
P0900SD **	75	98	4	5	800	2.2	50	100
P1100SD	90	130	4	5	800	2.2	50	80
P1300SD	120	160	4	5	800	2.2	50	80
P1500SD	140	180	4	5	800	2.2	50	80
P1800SD	170	220	4	5	800	2.2	50	60
P2300SD	190	260	4	5	800	2.2	50	60
P2600SD	220	300	4	5	800	2.2	50	60
P3100SD	275	350	4	5	800	2.2	50	60
P3500SD	320	400	4	5	800	2.2	50	60

* For surge ratings, see table below.

** Contact factory for release date.

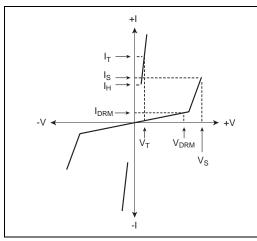
General Notes:

All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

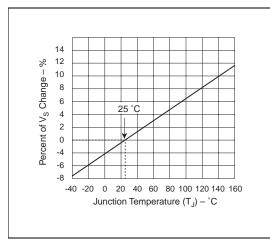
• IPP is a repetitive surge rating and is guaranteed for the life of the product.

· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

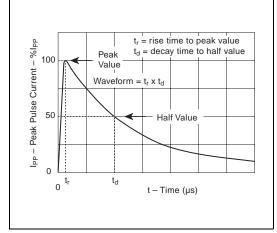
V_{DRM} is measured at I_{DRM}.

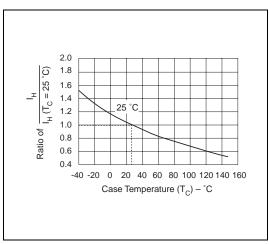

V_S is measured at 100 V/µs.

• Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.


· Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value.

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{ΡΡ} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
D	1000	800	400	300	200	50	1000


Package	Symbol	Parameter	Value	Unit
DO-214AA	TJ	Operating Junction Temperature Range	-40 to +150	°C
	Ts	Storage Temperature Range	-65 to +150	°C
	$R_{ heta JA}$	Thermal Resistance: Junction to Ambient	90	°C/W


V-I Characteristics

Normalized V_S Change versus Junction Temperature

t_r x t_d Pulse Wave-form

Normalized DC Holding Current versus Case Temperature

Compak Two-chip SIDACtor Device

The modified DO-214AA SIDACtor device provides low-cost, longitudinal protection.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	VT	IDRM	ls	Ιτ	Iн	C _O pF
Number	Pins1	-2, 2-3	Pins	s 1-3			mAmps	Pins 1-3		
P1402C_	58	77	116	154	4	5	800	2.2	120	15
P1602C_	65	95	130	190	4	5	800	2.2	120	15
P2202C_	90	130	180	260	4	5	800	2.2	120	15
P2702C_	120	160	240	320	4	5	800	2.2	120	15
P3002C_	140	180	280	360	4	5	800	2.2	120	15
P3602C_	170	220	340	440	4	5	800	2.2	120	15
P4202C_	190	250	380	500	4	5	800	2.2	120	15
P4802C_	220	300	440	600	4	5	800	2.2	120	15
P6002C_	275	350	550	700	4	5	800	2.2	120	15

* For surge ratings, see table below.

General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

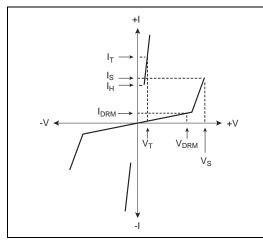
· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

+ V_{DRM} is measured at I_{DRM} .

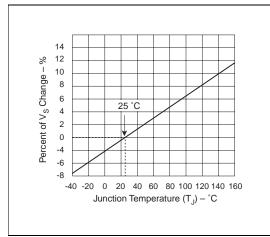
+ V_{S} is measured at 100 V/µs.

- Special voltage (V_S and \dot{V}_{DRM}) and holding current (I_H) requirements are available upon request.

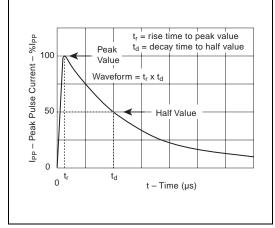
• Off-state capacitance is measured between Pins 1-3 at 1 MHz with a 2 V bias.

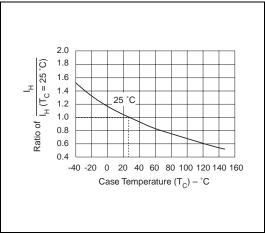

• UL 60950 creepage requirements must be considered.

Surge Ratings


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
В*	250	250	150	100	80	30	500

* Contact factory for release date.


Package	Symbol	Parameter	Value	Unit
Modified DO-214AA	TJ	Operating Junction Temperature Range	-40 to +150	°C
Pin 3	TS	Storage Temperature Range	-65 to +150	°C
Pin 1 Pin 2	R_{\thetaJA}	Thermal Resistance: Junction to Ambient	85	°C/W


V-I Characteristics

Normalized V_S Change versus Junction Temperature

tr x td Pulse Wave-form

Normalized DC Holding Current versus Case Temperature

Ethernet/10BaseT/100BaseT/1000BaseT Protector

The DO-214AA *SIDACtor* Ethernet protection series is intended for applications sensitive to load values. Typically, high speed connections require a lower capacitance. C_0 values are 40% lower than standard devices.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21 and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	Ι _{DRM} μAmps	l _S mAmps	l _T Amps	l _H mAmps	C _O pF
P0642S_	58	77	4	5	800	2.2	120	25
P0722S_	65	88	4	5	800	2.2	120	25
P0902S_	75	98	4	5	800	2.2	120	25
P1102S_	90	130	4	5	800	2.2	120	20
P1402S_	140	180	4	5	800	2.2	120	20
P3002S_	280	360	4	5	800	2.2	120	15
P4802S_	440	600	4	5	800	2.2	120	15

* For surge ratings, see table below.

General Notes:

All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

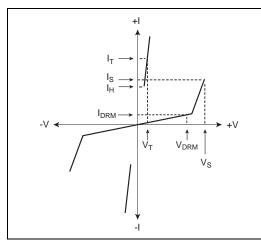
· IPP is a repetitive surge rating and is guaranteed for the life of the product.

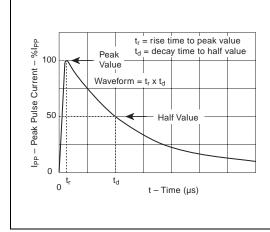
· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

V_{DRM} is measured at I_{DRM}.

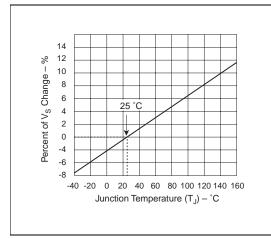
V_S is measured at 100 V/µs.

Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

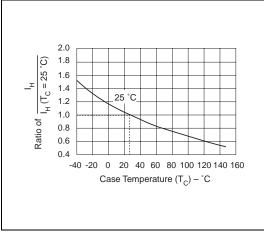

· Off-state capacitance is measured at 1 MHz with a 2 V bias.


Surge Ratings

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
B**	250	250	150	100	80	30	500


** Contact factory for release date of B-rated devices.

Package	Symbol	Parameter	Value	Unit
DO-214AA	TJ	Operating Junction Temperature Range	-40 to +150	°C
	Ts	Storage Temperature Range	-65 to +150	°C
	R_{0JA}	Thermal Resistance: Junction to Ambient	90	°C/W



V-I Characteristics

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

SIDACtor Device

TO-92 *SIDACtor* solid state protection devices protect telecommunications equipment such as modems, line cards, fax machines, and other CPE.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68)

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	l _S mAmps	I _T Amps	I _H mAmps	C _O pF
P0080E_	6	25	4	5	800	2.2	50	100
P0300E_	25	40	4	5	800	2.2	50	110
P0640E_	58	77	4	5	800	2.2	150	50
P0720E_	65	88	4	5	800	2.2	150	50
P0900E_	75	98	4	5	800	2.2	150	50
P1100E_	90	130	4	5	800	2.2	150	40
P1300E_	120	160	4	5	800	2.2	150	40
P1500E_	140	180	4	5	800	2.2	150	40
P1800E_	170	220	4	5	800	2.2	150	30
P2300E_	190	260	4	5	800	2.2	150	30
P2600E_	220	300	4	5	800	2.2	150	30
P3100E_	275	350	4	5	800	2.2	150	30
P3500E_	320	400	4	5	800	2.2	150	30

* For individual "EA", "EB", and "EC" surge ratings, see table below.

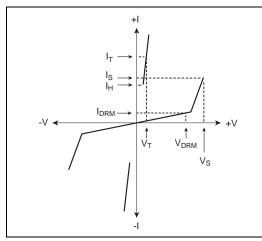
General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

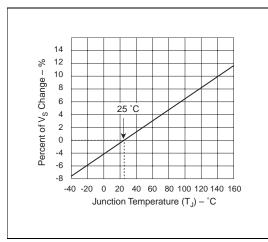
- $I_{\mbox{\scriptsize PP}}$ is a repetitive surge rating and is guaranteed for the life of the product.

· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

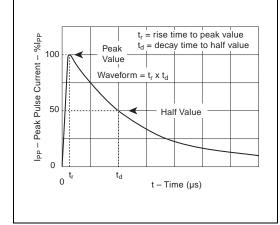
V_{DRM} is measured at I_{DRM}.

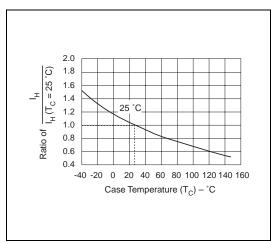

V_S is measured at 100 V/µs.

• Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value for "EA" and "EB" product. "EC" capacitance is approximately 2x the listed value. The off-state capacitance of the P0080EB is equal to the "EC" device.


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500

Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.


Package	Symbol	Parameter	Value	Unit
	TJ	Operating Junction Temperature Range	-40 to +150	°C
TO-92	Ts	Storage Temperature Range	-65 to +150	°C
	R _{0JA}	Thermal Resistance: Junction to Ambient	90	°C/W


V-I Characteristics

Normalized V_S Change versus Junction Temperature

t_r x t_d Pulse Wave-form

Normalized DC Holding Current versus Case Temperature

MicroCapacitance (MC) SIDACtor Device

The TO-92 MC *SIDACtor* series is intended for applications sensitive to load values. Typically, high speed connections require a lower capacitance. C_0 values for MC devices are 40% lower than a standard EC part.

This MC *SIDACtor* series is used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68) without the need of series resistors.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	l _S mAmps	l _T Amps	l _H mAmps	C _O pF
P0640EC MC	58	77	4	5	800	2.2	150	60
P1500EC MC	140	180	4	5	800	2.2	150	50
P2600EC MC	220	300	4	5	800	2.2	150	40
P3100EC MC	275	350	4	5	800	2.2	150	40

* For surge ratings, see table below.

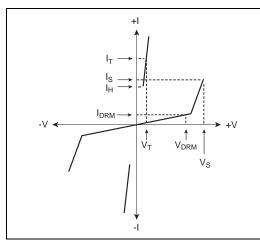
General Notes:

All measurements are made at an ambient temperature of 25 °C. I_{PP} applies to -40 °C through +85 °C temperature range.

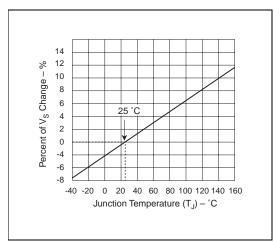
• IPP is a repetitive surge rating and is guaranteed for the life of the product.

· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

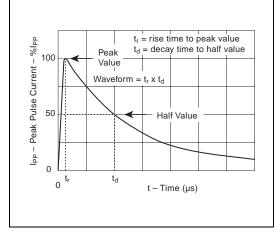
V_{DRM} is measured at I_{DRM.}

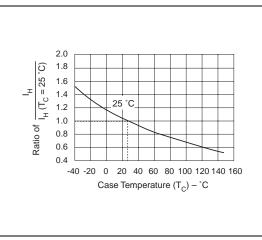

+ V_S is measured at 100 V/µs.

Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.


• Off-state capacitance is measured at 1 MHz with a 2 V bias.

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
С	500	400	200	150	100	50	500


Package	Symbol	Parameter	Value	Unit	
	TJ	Operating Junction Temperature Range	-40 to +150	°C	
TO-92	Ts	Storage Temperature Range	-65 to +150	°C	
	R _{θJA}	Thermal Resistance: Junction to Ambient	90	°C/W	


V-I Characteristics

Normalized V_S Change versus Junction Temperature

t_r x t_d Pulse Wave-form

Normalized DC Holding Current versus Case Temperature

Balanced Three-chip SIDACtor Device

This balanced protector is a surface mount alternative to the modified TO-220 package. Based on a six-pin surface mount SOIC package, it uses Teccor's patented "Y" (US Patent 4,905,119) configuration. It is available in surge current ratings up to 500 A.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	VT	IDRM	Is	Ιτ	IH	Co
Number *	Pins 1	-3, 1-4	Pins	s 3-4	Volts	μAmps	mAmps	Amps	mAmps	pF
P1553U_	130	180	130	180	8	5	800	2.2	150	80
P1803U_	150	210	150	210	8	5	800	2.2	150	80
P2103U_	170	250	170	250	8	5	800	2.2	150	80
P2353U_	200	270	200	270	8	5	800	2.2	150	80
P2703U_	230	300	230	300	8	5	800	2.2	150	60
P3203U_	270	350	270	350	8	5	800	2.2	150	60
P3403U_	300	400	300	400	8	5	800	2.2	150	60
P5103U_	420	600	420	600	8	5	800	2.2	150	60
A2106U_3 **	170	250	50	80	8	5	800	2.2	120	80
A5030U_3 **	400	550	270	340	8	5	800	2.2	150	60

* For individual "UA", "UB", and "UC" surge ratings, see table below. ** Asymmetrical

General Notes:

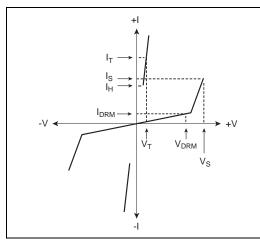
• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

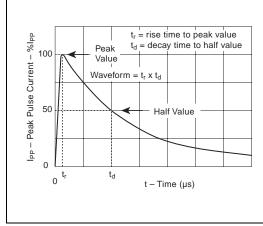
· IPP is a repetitive surge rating and is guaranteed for the life of the product.

• Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

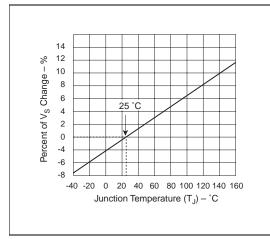
V_{DRM} is measured at I_{DRM}.

V_S is measured at 100 V/µs.

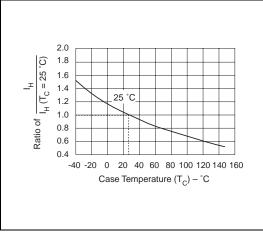

· Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.


• Off-state capacitance is measured between Pins 1-3 and 1-4 at 1 MHz with a 2 V bias and is a typical value for "UA", "UB", and "UC" products.

• Device is designed to meet balance requirements of GTS 8700 and GR 974.


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
Α	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500

Package	Symbol	Parameter	Value	Unit
Modified MS-013	TJ	Operating Junction Temperature Range	-40 to +125	°C
6 5	TS	Storage Temperature Range	-65 to +150	°C
	$R_{ heta JA}$	Thermal Resistance: Junction to Ambient	60	°C/W



V-I Characteristics

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

Multiport SIDACtor Device

The multiport line protector is an integrated multichip solution for protecting multiple twisted pair from overvoltage conditions. Based on a six-pin surface mount SOIC package, it is equivalent to four discrete DO-214AA or two TO-220 packages. Available in surge current ratings up to 500 A, the multiport line protector is ideal for densely populated, high-speed line cards that cannot afford PCB inefficiencies or the use of series power resistors.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

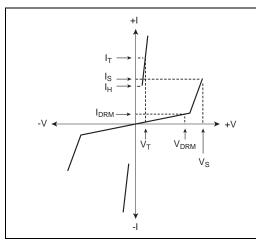
Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	VT	IDRM	Is	Ιτ	Ін	Co
Number *	Pins 1-2, 3	-2, 4-5, 6-5	Pins 1	-3, 4-6	Volts	μAmps	mAmps	Amps	mAmps	pF
P0084U_	6	25	12	50	4	5	800	2.2	50	100
P0304U_	25	40	50	80	4	5	800	2.2	50	110
P0644U_	58	77	116	154	4	5	800	2.2	150	50
P0724U_	65	88	130	176	4	5	800	2.2	150	50
P0904U_	75	98	150	196	4	5	800	2.2	150	50
P1104U_	90	130	180	260	4	5	800	2.2	150	40
P1304U_	120	160	240	320	4	5	800	2.2	150	40
P1504U_	140	180	280	360	4	5	800	2.2	150	40
P1804U_	170	220	340	440	4	5	800	2.2	150	30
P2304U_	190	260	380	520	4	5	800	2.2	150	30
P2604U_	220	300	440	600	4	5	800	2.2	150	30
P3104U_	275	350	550	700	4	5	800	2.2	150	30
P3504U_	320	400	640	800	4	5	800	2.2	150	30

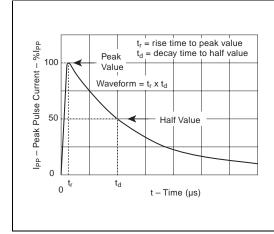
* For individual "UA", "UB", and "UC" surge ratings, see table below.

General Notes:

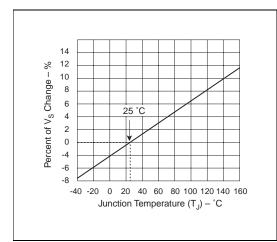
All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

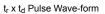

· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

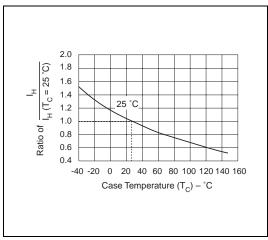

+ V_{DRM} is measured at $I_{DRM},$ and V_S is measured at 100 V/µs.

Off-state capacitance is measured between Pins 1-2 and 3-2 at 1 MHz with a 2 V bias and is a typical value for "UA" product. "UB" and "UC" capacitance is approximately 2x higher.

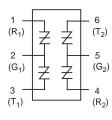

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
A	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500

Package	Symbol	Parameter	Value	Unit
Modified MS-013	TJ	Operating Junction Temperature Range	-40 to +150	°C
6 5	Τ _S	Storage Temperature Range	-65 to +150	°C
1 2 3 4	R _{θJA}	Thermal Resistance: Junction to Ambient	60	°C/W





V-I Characteristics


Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

Multiport MicroCapacitance (MC) SIDACtor Device

The multiport MC line protector is an integrated, multichip solution for protecting multiple twisted pair from overvoltage conditions. It is intended for applications sensitive to load values. Typically, high speed connections require lower capacitance. $C_{\rm O}$ values for the MC devices are 40% lower than standard UC devices

Based on a six-pin surface mount SOIC package, it is equivalent to four discrete DO-214AA or two TO-220 packages, which makes it ideal for densely populated, highspeed line cards that cannot afford PCB inefficiencies or the use of series power resistors. Surge current ratings up to 500 A are available.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	VT	I _{DRM}	Is	г	Iн	Co
Number *	Pins 1-2, 3	-2, 4-5, 6-5	Pins 1	-3, 4-6	Volts	µAmps	mAmps	mAmps Amps		pF
P0084UC MC	6	25	12	50	4	5	800	2.2	50	30
P0304UC MC	25	40	50	80	4	5	800	2.2	50	30
P0644UC MC	58	77	116	154	4	5	800	2.2	150	30
P0724UC MC	65	88	130	176	4	5	800	2.2	150	30
P0904UC MC	75	98	150	196	4	5	800	2.2	150	30
P1104UC MC	90	130	180	260	4	5	800	2.2	150	25
P1304UC MC	120	160	240	320	4	5	800	2.2	150	25
P1504UC MC	140	180	280	360	4	5	800	2.2	150	25
P1804UC MC	170	220	340	440	4	5	800	2.2	150	20
P2304UC MC	190	260	380	520	4	5	800	2.2	150	20
P2604UC MC	220	300	440	600	4	5	800	2.2	150	20
P3104UC MC	275	350	550	700	4	5	800	2.2	150	20
P3504UC MC	320	400	640	800	4	5	800	2.2	150	20

Electrical Parameters

* For surge ratings, see table below.

General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

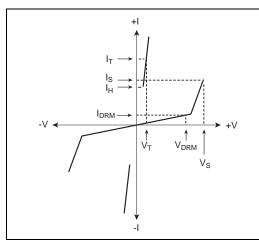
· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

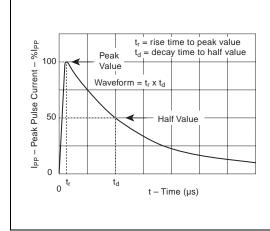
• V_{DRM} is measured at I_{DRM.}

V_S is measured at 100 V/µs.

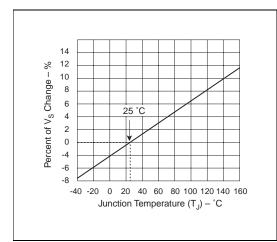
Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

· Off-state capacitance is measured at 1 MHz with a 2 V bias.

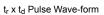

Surge Ratings

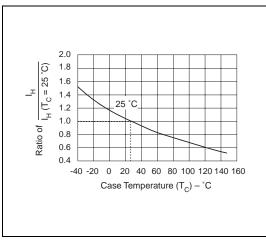

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
С	500	400	200	150	100	50	500

http://www.teccor.com +1 972-580-7777 © 2003 Teccor Electronics SIDACtor[®] Data Book and Design Guide


Thermal Considerations

Package	Symbol	Parameter	Value	Unit
Modified MS-013	TJ	Operating Junction Temperature Range	-40 to +150	°C
6 5	Τ _S	Storage Temperature Range	-65 to +150	°C
1 2 3 4 4	$R_{\theta JA}$	Thermal Resistance: Junction to Ambient	60	°C/W


V-I Characteristics



Normalized V_S Change versus Junction Temperature

SIDACtor® Data Book and Design Guide

© 2003 Teccor Electronics

Normalized DC Holding Current versus Case Temperature

Multiport Balanced SIDACtor Device

This multiport balanced protector is a surface mount alternative to the modified TO-220 package. It is based on a six-pin surface mount SOIC package and uses Teccor's patented "Y" (US Patent 4,905,119) configuration. It is available in surge current ratings up to 500 A.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters — Symmetrical

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volt	V _S Volts	VT	IDRM	Is	Ιτ	Ц	C _O pF
Number *	Pins 1-2	, 2-3, 1-3	Pins 4-5	, 5-6, 4-6	Volts	μAmps	mAmps	Amps	mAmps	Pins 3-2, 6-5, 1-2, 4-5
P1556U_	130	180	130	180	8	5	800	2.2	150	40
P1806U_	150	210	150	210	8	5	800	2.2	150	40
P2106U_	170	250	170	250	8	5	800	2.2	150	40
P2356U_	200	270	200	270	8	5	800	2.2	150	40
P2706U_	230	300	230	300	8	5	800	2.2	150	30
P3206U_	270	350	270	350	8	5	800	2.2	150	30
P3406U_	300	400	300	400	8	5	800	2.2	150	30
P5106U_	420	600	420	600	8	5	800	2.2	150	30

Electrical Parameters — Asymmetrical

	V _{DRM} Volts	V _S Volts	V _{DRM} Volt	V _S Volts						
Part Number *	Pins 1-2, 5-		Pins 4	-6, 1-3	V _T Volts	I _{DRM} μAmps	l _S mAmps	l _T Amps	I _H mAmps	C _O pF
A2106U_6	170	250	50	80	3.5	5	800	2.2	120	40
A5030U_6	400	550	270	340	3.5	5	800	2.2	150	30

* For individual "UA", "UB", and "UC" surge ratings, see table below.

General Notes:

All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

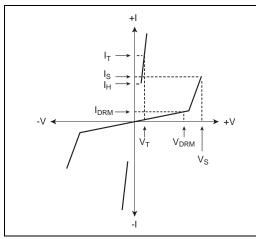
· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

V_{DRM} is measured at I_{DRM.}

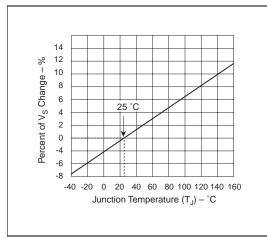
V_S is measured at 100 V/µs.

• Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

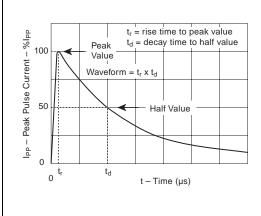
Off-state capacitance is measured between Pins 1-2 and 3-2 at 1 MHz with a 2 V bias and is a typical value for "UA" product. "UB" and "UC" capacitance is approximately 10 pF higher.

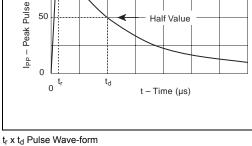

• Device is designed to meet balance requirements of GTS 8700 and GR 974.

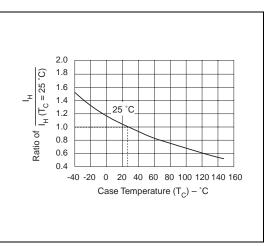
Surge Ratings


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{ΡΡ} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500

http://www.teccor.com +1 972-580-7777 © 2003 Teccor Electronics SIDACtor[®] Data Book and Design Guide


Package	Symbol	Parameter	Value	Unit
Modified MS-013	TJ	Operating Junction Temperature Range	-40 to +125	°C
6	Ts	Storage Temperature Range	-65 to +150	°C
1 2 3 4 3 4	$R_{ heta JA}$	Thermal Resistance: Junction to Ambient	60	°C/W


V-I Characteristics



Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

SIDACtor Device

The modified TO-220 Type 61 *SIDACtor* solid state protection device can be used in telecommunication protection applications that do not reference earth ground.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21 and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	l _S mAmps	l _T Amps	l _H mAmps	С _О pF
P2000AA61	180	220	4	5	800	2.2	150	30
P2200AA61	200	240	4	5	800	2.2	150	30
P2400AA61	220	260	4	5	800	2.2	150	30
P2500AA61	240	290	4	5	800	2.2	150	30
P3000AA61	270	330	4	5	800	2.2	150	30
P3300AA61	300	360	4	5	800	2.2	150	30

* For surge ratings, see table below.

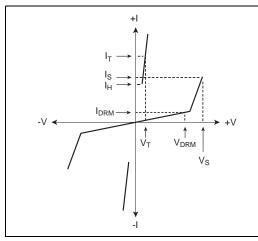
General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

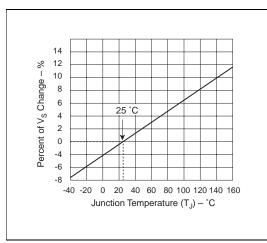
• IPP is a repetitive surge rating and is guaranteed for the life of the product.

• Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

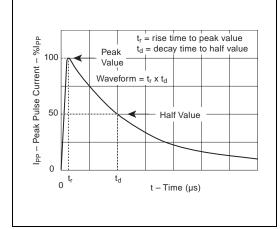
• V_{DRM} is measured at I_{DRM.}

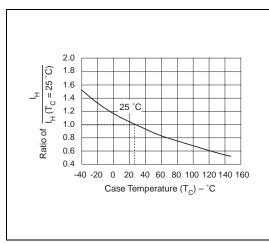

• V_S is measured at 100 V/µs.

• Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.


• Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value.

Series	l _{PP} 0.2x310 μs Amps	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 5x320 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
Α	20	150	150	90	50	75	45	20	500


Package	Symbol	Parameter	Value	Unit
	TJ	Operating Junction Temperature Range	-40 to +150	°C
Modified TO-220	Ts	Storage Temperature Range	-65 to +150	°C
Type 61	R_{0JA}	Thermal Resistance: Junction to Ambient	50	°C/W


V-I Characteristics

Normalized V_S Change versus Junction Temperature

tr x td Pulse Wave-form

Normalized DC Holding Current versus Case Temperature

Two-chip SIDACtor Device

The two-chip modified TO-220 *SIDACtor* solid state device protects telecommunication equipment in applications that reference Tip and Ring to earth ground but do not require balanced protection.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21 and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	VT	IDRM	ls	Ιτ	Iн	Co
Number *	Pins 1-2	, 3-2	Pins	s 1-3	Volts	μAmps	mAmps	Amps	mAmps	pF
P0602A_	25	40	50	80	4	5	800	2.2	50	110
P1402A_	58	77	116	154	4	5	800	2.2	150	50
P1602A_	65	95	130	190	4	5	800	2.2	150	50
P2202A_	90	130	180	260	4	5	800	2.2	150	40
P2702A_	120	160	240	320	4	5	800	2.2	150	40
P3002A_	140	180	280	360	4	5	800	2.2	150	40
P3602A_	170	220	340	440	4	5	800	2.2	150	40
P4202A_	190	250	380	500	4	5	800	2.2	150	30
P4802A_	220	300	440	600	4	5	800	2.2	150	30
P6002A_	275	350	550	700	4	5	800	2.2	150	30

* For individual "AA", "AB", and "AC" surge ratings, see table below.

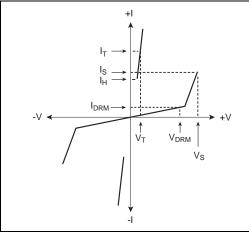
General Notes:

All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

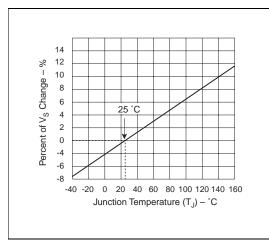
· IPP is a repetitive surge rating and is guaranteed for the life of the product.

· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

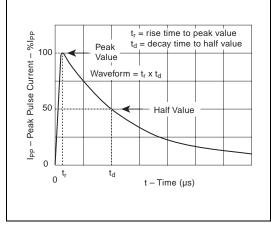
V_{DRM} is measured at I_{DRM.}

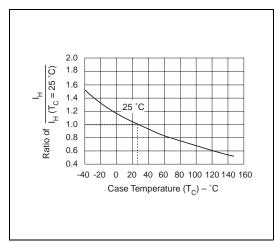

V_S is measured at 100 V/µs.

Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.


• Off-state capacitance is measured between Pins 1-2 and 3-2 at 1 MHz with a 2 V bias and is a typical value for "AA" product. "AB" and "AC" capacitance is approximately 2x the listed value.

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500


Pac	kage	Symbol	Parameter	Value	Unit
	· · ·	Operating Junction Temperature Range	-40 to +150	°C	
Modified TO-220		Ts	Storage Temperature Range	-65 to +150	°C
	PIN 1 PIN 2 PIN 2	$R_{\theta JA}$	Thermal Resistance: Junction to Ambient	50	°C/W


V-I Characteristics

Normalized V_S Change versus Junction Temperature

 $t_r \ x \ t_d$ Pulse Wave-form

Normalized DC Holding Current versus Case Temperature

Two-chip MicroCapacitance (MC) SIDACtor Device

The two-chip modified TO-220 MC *SIDACtor* solid state device protects telecommunication equipment in applications that reference Tip and Ring to earth ground but do not require balanced protection.

SIDACtor devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21 and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters: A-rated

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	VT	I _{DRM}	ls	Гт	IH	Co
Number *	Pins 1-2,	3-2	Pins	s 1-3	Volts	μAmps	mAmps	Amps	mAmps	pĔ
P0302AA MC	6	25	12	50	4	5	800	2.2	50	45
P0602AA MC	25	40	50	80	4	5	800	2.2	50	25

Electrical Parameters: C-rated

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	VT	IDRM	Is	г	Iн	co
Number *	Pins 1-2,	3-2	Pins	s 1-3	Volts	μAmps	mAmps	Amps	mAmps	pF
P0602AC MC	25	40	50	80	4	5	800	2.2	50	60
P1402AC MC	58	77	116	154	4	5	800	2.2	150	60
P1602AC MC	65	95	130	190	4	5	800	2.2	150	60
P2202AC MC	90	130	180	260	4	5	800	2.2	150	50
P2702AC MC	120	160	240	320	4	5	800	2.2	150	50
P3002AC MC	140	180	280	360	4	5	800	2.2	150	50
P3602AC MC	170	220	340	440	4	5	800	2.2	150	40
P4202AC MC	190	250	380	500	4	5	800	2.2	150	40
P4802AC MC	220	300	440	600	4	5	800	2.2	150	40
P6002AC MC	275	350	550	700	4	5	800	2.2	150	40

* For surge ratings, see table below.

General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

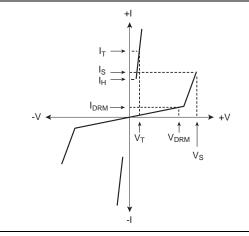
· IPP is a repetitive surge rating and is guaranteed for the life of the product.

· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

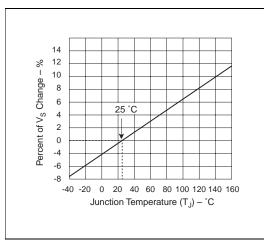
V_{DRM} is measured at I_{DRM}.

V_S is measured at 100 V/µs.

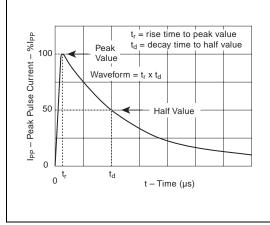
· Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

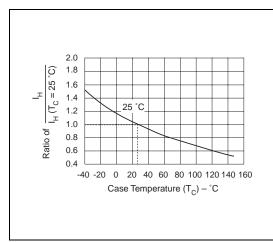

· Off-state capacitance is measured between Pins 1-2 and 3-2 at 1 MHz with a 2 V bias.

Surge Ratings


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
С	500	400	200	150	100	50	500

http://www.teccor.com +1 972-580-7777 © 2003 Teccor Electronics SIDACtor[®] Data Book and Design Guide


Package Sym		Parameter	Value	Unit	
Modified TO-220	TJ	Operating Junction Temperature Range	-40 to +150	°C	
	Ts	Storage Temperature Range	-65 to +150	°C	
PIN 1	R _{0JA}	Thermal Resistance: Junction to Ambient	50	°C/W	


V-I Characteristics

Normalized V_S Change versus Junction Temperature

 $t_r \ x \ t_d$ Pulse Wave-form

Normalized DC Holding Current versus Case Temperature

Balanced Three-chip SIDACtor Device

The three-chip modified TO-220 *SIDACtor* balanced solid state device is designed for telecommunication protection systems that reference Tip and Ring to earth ground. Applications include any piece of transmission equipment that requires balanced protection. This device is built using Teccor's patented "Y" (US Patent 4,905,119) configuration.

The *SIDACtor* device is used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20,K.21 and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Electrical Parameters

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	VT	IDRM	ls	г	IH	co
Number *	Pins 1-2, 2-3		Pins 1-3		Volts	μAmps	mAmps	Amps	mAmps	pF
P1553A_	130	180	130	180	8	5	800	2.2	150	40
P1803A_	150	210	150	210	8	5	800	2.2	150	40
P2103A_	170	250	170	250	8	5	800	2.2	150	40
P2353A_	200	270	200	270	8	5	800	2.2	150	40
P2703A_	230	300	230	300	8	5	800	2.2	150	30
P3203A_	270	350	270	350	8	5	800	2.2	150	30
P3403A_	300	400	300	400	8	5	800	2.2	150	30
P5103A_	420	600	420	600	8	5	800	2.2	150	30
A2106A_3 **	170	250	50	80	8	5	800	2.2	120	40
A5030A_3 **	400	550	270	340	8	5	800	2.2	150	30

* For individual "AA", "AB", and "AC" surge ratings, see table below.

** Asymmetrical

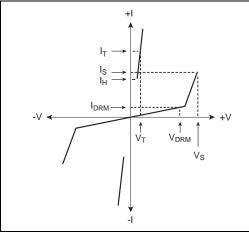
General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

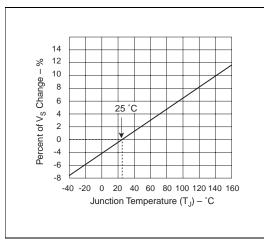
• IPP is a repetitive surge rating and is guaranteed for the life of the product.

· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

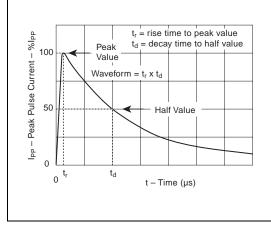
• V_{DRM} is measured at I_{DRM.}

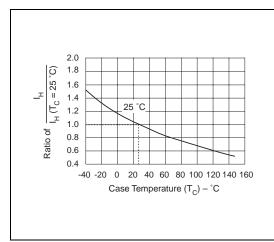

V_S is measured at 100 V/µs.

- · Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.
- Off-state capacitance is measured between Pins 1-2 and 3-2 at 1 MHz with a 2 V bias and is a typical value for "AA" product. "AB" and "AC" capacitance is approximately 2x the listed value.


· Device is designed to meet balance requirements of GTS 8700 and GR 974.

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500


Package Symb		Parameter	Value	Unit	
Modified TO-220	TJ	Operating Junction Temperature Range	-40 to +150	°C	
	Ts	Storage Temperature Range	-65 to +150	°C	
PIN 1 PIN 2	R _{0JA}	Thermal Resistance: Junction to Ambient	50	°C/W	


V-I Characteristics

Normalized V_S Change versus Junction Temperature

 $t_r \ x \ t_d$ Pulse Wave-form

Normalized DC Holding Current versus Case Temperature

Balanced Three-chip MicroCapacitance (MC) SIDACtor Device

The balanced three-chip TO-220 MC *SIDACtor* solid state device protects telecommunication equipment in high-speed applications that are sensitive to load values and that require a lower capacitance. C_0 values for the MC are 40% lower than a standard AC part.

This MC *SIDACtor* series is used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68) without the need of series resistors.

Electrical Parameters

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	VT	I _{DRM}	ls	Гт	Iн	Co
Number *	Pins 1-2, 2-3 Pins 1-3		s 1-3	Volts	μAmps	mAmps	Amps	mAmps	pF	
P1553AC MC	130	180	130	180	8	5	800	2.2	150	40
P1803AC MC	150	210	150	210	8	5	800	2.2	150	40
P2103AC MC	170	250	170	250	8	5	800	2.2	150	40
P2353AC MC	200	270	200	270	8	5	800	2.2	150	40
P2703AC MC	230	300	230	300	8	5	800	2.2	150	30
P3203AC MC	270	350	270	350	8	5	800	2.2	150	30
P3403AC MC	300	400	300	400	8	5	800	2.2	150	30
P5103AC MC	420	600	420	600	8	5	800	2.2	150	30

* For surge ratings, see table below.

General Notes:

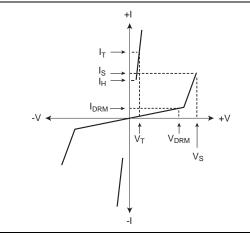
• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

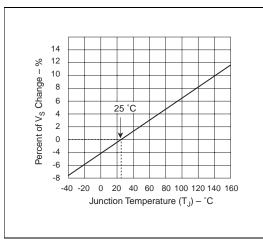
Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

V_{DRM} is measured at I_{DRM.}

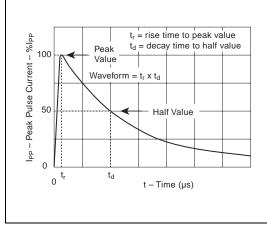
+ V_{S} is measured at 100 V/ $\mu s.$

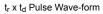

• Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

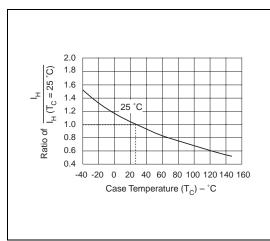
- · Off-state capacitance is measured between Pins 1-2 and 3-2 at 1 MHz with a 2 V bias.
- Device is designed to meet balance requirements of GTS 8700 and GR 974.


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
С	500	400	200	150	100	50	500

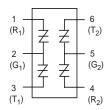
Thermal Considerations


Package	Symbol	Parameter	Value	Unit
	TJ	Operating Junction Temperature Range	-40 to +150	°C
Modified TO-220	Ts	Storage Temperature Range	-65 to +150	°C
PIN 1 PIN 2		Thermal Resistance: Junction to Ambient	50	°C/W




V-I Characteristics

Normalized V_S Change versus Junction Temperature



Normalized DC Holding Current versus Case Temperature

Data Sheets

LCAS Asymmetrical Multiport Device

This is an integrated multichip solution for protecting multiple twisted pair from overvoltage conditions. Based on a six-pin surface mount SOIC package, it is equivalent to four discrete DO-214AA or two TO-220 packages. Available in surge current ratings up to 500 A, the multiport line protector is ideal for densely populated line cards that cannot afford PCB inefficiencies or the use of series power resistors.

For a diagram of an LCAS (Line Circuit Access Switch) application, see Figure 3.23.

Electrical Parameters

Part	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts	Vт		ls	Гт	I _H	С _О pF
Number *	Pins 3	-2, 6-5	Pins 1	-2, 4-5	Volts		mAmps	Amps	mAmps	Pins 3-2, 6-5, 1-2, 4-5
A1220U_4	100	130	180	220	4	5	800	2.2	120	30
A1225U_4	100	130	230	290	4	5	800	2.2	120	30

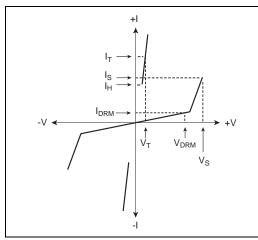
* For individual "UA", "UB", and "UC" surge ratings, see table below.

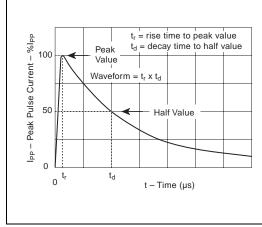
General Notes:

- All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.
- $I_{\mbox{\scriptsize PP}}$ is a repetitive surge rating and is guaranteed for the life of the product.

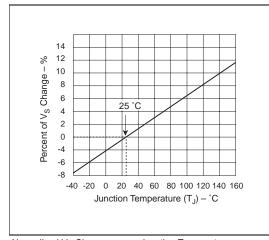
· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

V_{DRM} is measured at I_{DRM}.

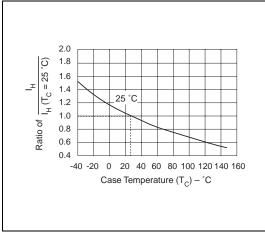

+ V_{S} is measured at 100 V/µs.


- · Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.
- Off-state capacitance is measured between Pins 1-2 and 3-2 at 1 MHz with a 2 V bias and is a typical value for "UA" product. "UB" and "UC" capacitance is approximately 2x higher.

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500


Thermal Considerations

Package	Symbol	Parameter	Value	Unit
Modified MS-013	TJ	Operating Junction Temperature Range	-40 to +125	°C
6 5	Ts	Storage Temperature Range	-65 to +150	°C
1 2 3 4	R_{0JA}	Thermal Resistance: Junction to Ambient	60	°C/W



V-I Characteristics

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

LCAS Asymmetrical Discrete Device

These DO-214AA *SIDACtor* devices are intended for LCAS (Line Circuit Access Switch) applications that require asymmetrical protection in discrete (individual) packages. They enable the protected equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, K.45, IEG 60950, UL 60950, and TIA-968.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	l _S mAmps	l _T Amps	I _H mAmps	C _O pF
P1200S_	100	130	4	5	800	2.2	120	40
P2000S_	180	220	4	5	800	2.2	120	30
P2500S_	230	290	4	5	800	2.2	120	30

* For individual "SA", "SB", and "SC" surge ratings, see table below.

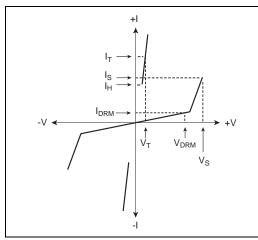
General Notes:

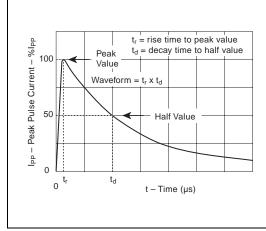
• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

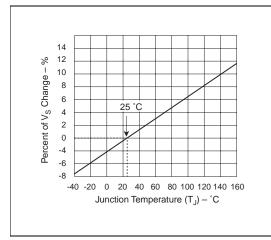
· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

• V_{DRM} is measured at I_{DRM}.

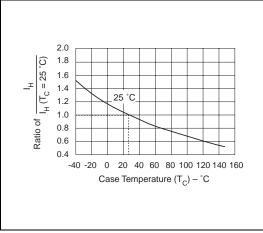

+ V_S is measured at 100 V/µs.


· Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

Off-state capacitance is measured between Pins 1-2 and 3-2 at 1 MHz with a 2 V bias and is a typical value for "SA" and "SB" product. "SC" capacitance is approximately 10 pF higher.

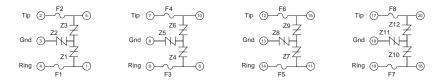

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{ΡΡ} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500

Package	Symbol	Parameter	Value	Unit
DO-214AA	TJ	Operating Junction Temperature Range	-40 to +125	°C
	Ts	Storage Temperature Range	-65 to +150	°C
	R_{0JA}	Thermal Resistance: Junction to Ambient	60	°C/W



V-I Characteristics

Normalized V_S Change versus Junction Temperature



Normalized DC Holding Current versus Case Temperature

Four-port Balanced Three-chip Protector

This hybrid Single In-line Package (SIP) protects four twisted pairs from overcurrent and overvoltage conditions. Comprised of twelve discrete DO-214AA *SIDACtor* devices and eight *TeleLink* surface mount fuses, it is ideal for densely populated line cards that cannot afford PCB inefficiencies or the use of series power resistors. Surge current ratings up to 500 A are available.

Electrical Parameters

	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts						С _О рF
Part Number *	12-13, 14-	-3, 7-8, 9-8, -13, 17-18, -18	Pins 2 12-14,	-4, 7-9, 17-19	V _T Volts	I _{DRM} μAmps	I _S mAmps	I _T Amps	I _H mAmps	Pins 1-3
P1553Z_	130	180	130	180	8	5	800	2.2	150	40
P1803Z_	150	210	150	210	8	5	800	2.2	150	40
P2103Z_	170	250	170	250	8	5	800	2.2	150	40
P2353Z_	200	270	200	270	8	5	800	2.2	150	40
P2703Z_	230	300	230	300	8	5	800	2.2	150	30
P3203Z_	270	350	270	350	8	5	800	2.2	150	30
P3403Z_	300	400	300	400	8	5	800	2.2	150	30
A2106Z_3 **	170	250	50	80	8	5	800	2.2	120	40
A5030Z_ 3 **	400	550	270	340	8	5	800	2.2	150	30

* For individual "ZA," "ZB," and "ZC" surge ratings, see table below.

** Asymmetrical

General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

· IPP is a repetitive surge rating and is guaranteed for the life of the product.

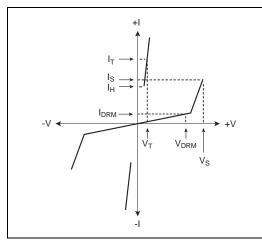
· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

V_{DRM} is measured at I_{DRM.}

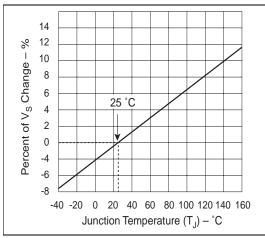
V_S is measured at 100 V/µs.

- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

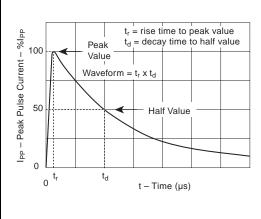
Off-state capacitance is measured between Pins 4-3 and Pins 2-3 at 1 MHz with a 2 V bias and is a typical value for "ZA" product. "ZB" and "ZC" capacitance is approximately 10 pF higher.

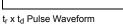

• Device is designed to meet balance requirements of GTS 8700 and GR 974.

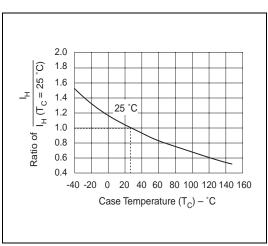
Surge Ratings

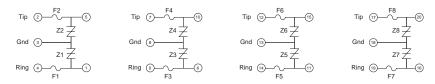

Series	l _{PP} 2x10 μs Amps	l _{ΡΡ} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500

http://www.teccor.com +1 972-580-7777 © 2003 Teccor Electronics SIDACtor[®] Data Book and Design Guide


Package	Symbol	Parameter	Value	Unit
SIP	TJ	Operating Junction Temperature Range	-40 to +150	°C
	Ts	Storage Temperature Range	-65 to +150	°C
•••••••••••••••••••••	$R_{\theta JA}$	Thermal Resistance: Junction to Ambient	90	°C/W




V-I Characteristics



Normalized DC Holding Current versus Case Temperature

Four-port Longitudinal Two-chip Protector

This hybrid Single In-line Package (SIP) protects four twisted pairs from overcurrent and overvoltage conditions. Comprised of eight discrete DO-214AA *SIDACtor* devices and eight *TeleLink* surface mount fuses, it is ideal for densely populated line cards that cannot afford PCB inefficiencies or the use of series power resistors. Surge current ratings up to 500 A are available.

Electrical Parameters

	V _{DRM} Volts	V _S Volts	V _{DRM} Volts	V _S Volts						C _O pF
Part Number *		-3, 7-8, 9-8, 17-18, 19-18	Pins 2 12-14,	-4, 7-9, 17-19	V _T Volts	I _{DRM} μAmps	l _S mAmps	l _T Amps	I _H mAmps	Pins 2-3, 3-4
P0602Z_	25	40	50	80	4	5	800	2.2	50	110
P1402Z_	58	77	116	154	4	5	800	2.2	150	50
P1602Z_	65	95	130	190	4	5	800	2.2	150	50
P2202Z_	90	130	180	260	4	5	800	2.2	150	40
P2702Z_	120	160	240	320	4	5	800	2.2	150	40
P3002Z_	140	180	280	360	4	5	800	2.2	150	40
P3602Z_	160	220	320	440	4	5	800	2.2	150	40
P4202Z_	190	250	380	500	4	5	800	2.2	150	30
P4802Z_	220	300	440	600	4	5	800	2.2	150	30
P6002Z_	275	350	550	700	4	5	800	2.2	150	30

* For individual "ZA," "ZB," and "ZC" surge ratings, see table below.

General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

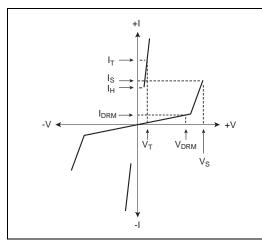
V_{DRM} is measured at I_{DRM}.

V_S is measured at 100 V/µs.

- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

• Off-state capacitance is measured between Pins 4-3 and Pins 2-3 at 1 MHz with a 2 V bias and is a typical value for "ZA" product. "ZB" and "ZC" capacitance is approximately 2x higher.

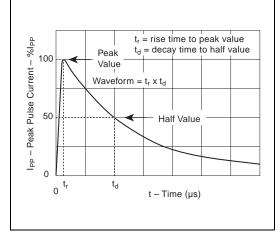
• Device is designed to meet balance requirements of GTS 8700 and GR 974.

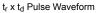

• Lower capacitance MC versions may be available. Contact factory for further information.

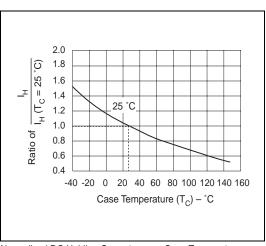
Surge Ratings

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500

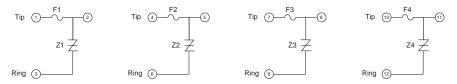
© 2003 Teccor Electronics SIDACtor[®] Data Book and Design Guide


Package	Symbol	Parameter	Value	Unit
SIP	TJ	Operating Junction Temperature Range	-40 to +150	°C
	Ts	Storage Temperature Range	-65 to +150	°C
	$R_{\theta JA}$	Thermal Resistance: Junction to Ambient	90	°C/W


V-I Characteristics



Normalized V_S Change versus Junction Temperature



Normalized DC Holding Current versus Case Temperature

Four-port Metallic Line Protector

The four-port hybrid Single In-line Package (SIP) line protector protects multiple twisted pair from overcurrent and overvoltage conditions. Based on a SIP, it is equivalent to four discrete DO-214AA *SIDACtor* devices and four surface mount fuses. Available in surge current ratings up to 500 A, this four-port SIP line protector is ideal for densely populated line cards that cannot afford PCB inefficiencies or the use of series power resistors.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	l _S mAmps	l _T Amps	I _H mAmps	С _О pF
P0080Z_	6	25	4	5	800	2.2	50	100
P0300Z_	25	40	4	5	800	2.2	50	110
P0640Z_	58	77	4	5	800	2.2	150	50
P0720Z_	65	88	4	5	800	2.2	150	50
P0900Z_	75	98	4	5	800	2.2	150	50
P1100Z_	90	130	4	5	800	2.2	150	40
P1300Z_	120	160	4	5	800	2.2	150	40
P1500Z_	140	180	4	5	800	2.2	150	40
P1800Z_	170	220	4	5	800	2.2	150	30
P2300Z_	190	260	4	5	800	2.2	150	30
P2600Z_	220	300	4	5	800	2.2	150	30
P3100Z_	275	350	4	5	800	2.2	150	30
P3500Z_	320	400	4	5	800	2.2	150	30

* For individual "ZA," "ZB," and "ZC" surge ratings, see table below.

General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

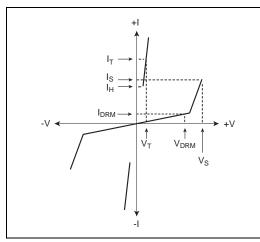
· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

V_{DRM} is measured at I_{DRM}.

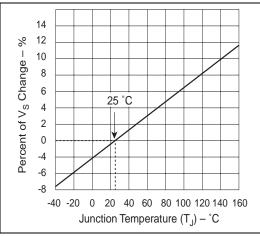
V_S is measured at 100 V/µs.

Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

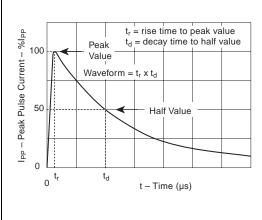
 Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value for "ZA" and "ZB" product. "ZC" capacitance is approximately 2x the listed value.

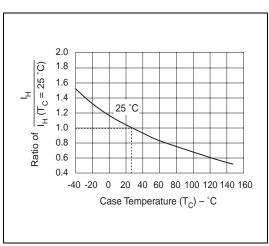

· Lower capacitance MC versions may be available. Contact factory for further information.

Surge Ratings


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
В	250	250	150	100	80	30	500
С	500	400	200	150	100	50	500

http://www.teccor.com +1 972-580-7777 © 2003 Teccor Electronics SIDACtor[®] Data Book and Design Guide


Package	Symbol	Parameter	Value	Unit
SIP	TJ	Operating Junction Temperature Range	-40 to +150	°C
	Ts	Storage Temperature Range	-65 to +150	°C
	$R_{\theta JA}$	Thermal Resistance: Junction to Ambient	90	°C/W



Normalized DC Holding Current versus Case Temperature

Four-port TeleLink Fuse

This hybrid Single In-line Package (SIP) protects four twisted pairs from overcurrent conditions. Comprising eight *TeleLink* surface mount fuses, it is ideal for densely populated line cards that connot afford PCB inefficiencies or the use of series power resistors. F0500T, F1250T, F1250T, F1251T versions are available.

Surge Ratings

TeleLink SM Fuse	l _{PP} 2x10 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	I _{РР} 10х1000 µs Amps
F0500Z8	not rated	75	45	35
F1250Z8	500	160	115	100
F1251Z8	500	160	115	100

Interrupting Values

		_	I ² t Measured		Interrupting	Rating	
<i>TeleLink</i> SM Fuse	Voltage Rating	Current Rating	at DC Rated Voltage	Voltage, Current	MIN	ТҮР	МАХ
F0500Z8	250 V	500 mA	1.3 A ² s	600 V, 40 A	1 ms	2 ms	60 ms
F1250Z8	250 V	1.25 A	22.2 A ² s	600 V, 60 A *	1 ms	2 ms	60 ms
F1251Z8	250 V	2 A	30 A ² s	600 V, 60 A *	1 ms	2 ms	60 ms

* Interrupt test characterized at 50° to 70° phase angle. Phase angles approximating 90° may result in damage to the body of the fuse. Notes:

• The *TeleLink* SM fuse is designed to carry 100% of its rated current for four hours and 250% of its rated current for one second minimum and 120 seconds maximum. Typical time is four to 10 seconds. For optimal performance, an operating current of 80% or less is recommended.

• I²t is a non-repetitive RMS surge current rating for a period of 16.7 ms.

Resistance Ratings

	Typical Voltage Drop	op DC Cold Resistance		
TeleLink SM Fuse	@ Rated Current	MIN	MAX	
F0500Z8	0.471 V	0.420 Ω	0.640 Ω	
F1250Z8	0.205 V	0.107 Ω	0.150 Ω	
F1251Z8	0.110 V	0.050 Ω	0.100 Ω	

Notes:

• Typical inductance < 150 nH up to 500 MHz.

+ Resistance changes 0.5% for every $^\circ\text{C}.$

· Resistance is measured at 10% rated current.

Qualification Data

The F1250z8 and F1251z8 meet the following test conditions per GR 1089 **without** additional series resistance. However, in-circuit test verification is required. Note that considerable heating may occur during Test 4 of the Second Level AC Power Fault Test.

First Level Lightning Surge Test

Test	Surge Voltage Volts	Wave-form µs	Surge Current Amps	Repetitions Each Polarity
1	±600	10x1000	100	25
2	±1000	10x360	100	25
3	±1000	10x1000	100	25
4	±2500	2x10	500	10
5	±1000	10x360	25	5

Data Sheets

Second Level Lightning Surge Test

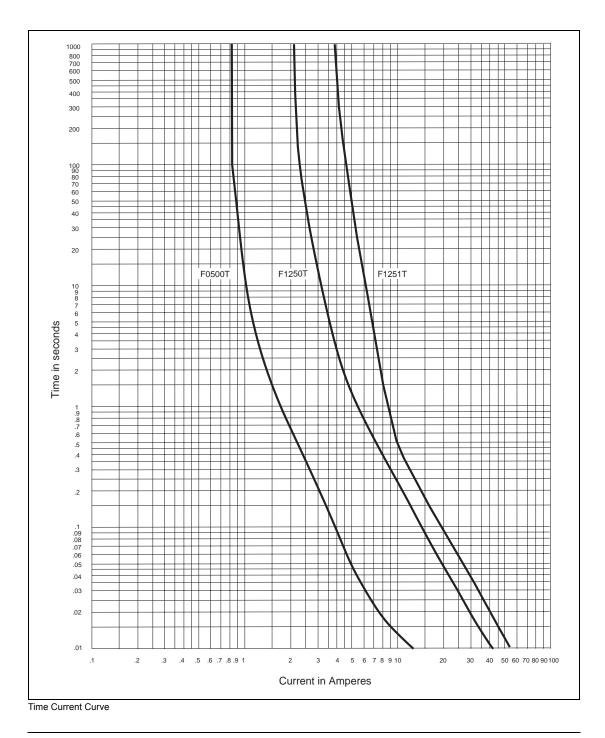
Test	Surge Voltage	Wave-form	Surge Current	Repetitions Each
	Volts	μs	Amps	Polarity
1	±5000	2x10	500	1

First Level AC Power Fault Test

Test	Applied Voltage, 60 Hz V _{RMS}	Short Circuit Current Amps	Duration
1	50	0.33	15 min
2	100	0.17	15 min
3	200, 400, 600	1 at 600 V	60 applications, 1 s each
4	1000	1	60 applications, 1 s each
5	*	*	60 applications, 5 s each
6	600	0.5	30 s each
7	600	2.2	2 s each
8	600	3	1 s each
9	1000	5	0.5 s each

* Test 5 simulates a high impedance induction fault. For specific information, please contact Teccor Electronics.

Second Level AC Power Fault Test for Non-Customer Premises Equipment


Test	Applied Voltage, 60 Hz V _{RMS}	Short Circuit Current Amps	Duration
1	120, 277	30	30 min
2	600	60	5 s
3	600	7	5 s
4	100-600	2.2 at 600 V	30 min

Notes:

• Power fault tests equal or exceed the requirements of UL 60950 3rd edition.

• Test 4 is intended to produce a maximum heating effect. Temperature readings can exceed 150 °C.

• Test 2 may be dependent on the closing angle of the voltage source. Fuse is characterized at 50° to 70°. Closing angles approximating 90° may result in damage to the body of the fuse.

http://www.teccor.com +1 972-580-7777 © 2003 Teccor Electronics SIDACtor[®] Data Book and Design Guide

Temperature Derating Curve

Operating temperature is -55 °C to +125 °C with proper correction factor applied.

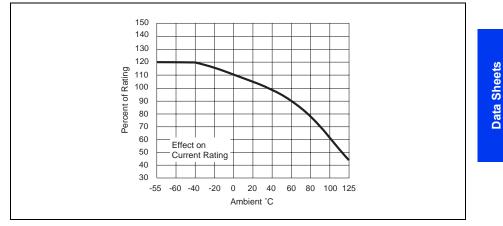
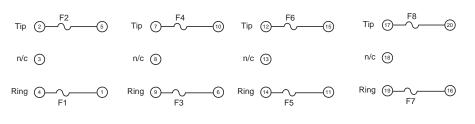


Chart of Correction Factor

Maximum Temperature Rise


TeleLink Fuse	Temperature Reading
F0500Z8	≤75 °C (167 °F) *
F1250Z8	≤75 °C (167 °F) *
F1251Z8	≤75 °C (167 °F) *

* Higher currents and PCB layout designs can affect this parameter.

Notes:

· Readings are measured at rated current after temperature stabilizes

 The F1250Z8 meets the requirements of UL 248-14. However, board layout, board trace widths, and ambient temperature values can cause higher than expected rises in temperature. During UL testing, the typical recorded heat rise for the F1250Z8 at 2.2 A was 120 °C.

Fixed Voltage SLIC Protector

These DO-214AA unidirectional protectors are constructed with a *SIDACtor* device and an integrated diode. They protect SLICs (Subscriber Line Interface Circuits) from damage during transient voltage activity and enable line cards to meet various regulatory requirements including GR 1089, ITU K.20, K.21 and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

For specific design criteria, see details in Figure 3.23.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	V _F Volts	Ι _{DRM} μAmps	l _S mAmps	l _T Amps	l _H mAmps	С _О pF
P0641S_	58	77	4	5	5	800	1	120	70
P0721S_	65	88	4	5	5	800	1	120	70
P0901S_	75	98	4	5	5	800	1	120	70
P1101S_	95	130	4	5	5	800	1	120	70

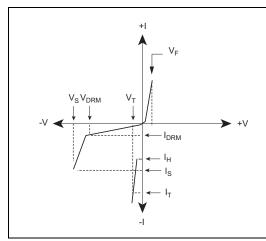
* For individual "SA" and "SC" surge ratings, see table below.

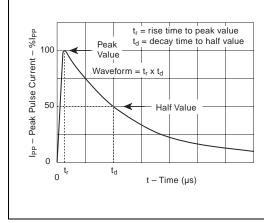
General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

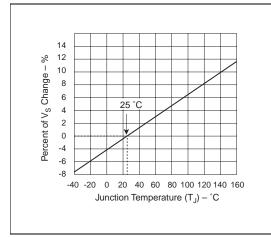
• I_{PP} is a repetitive surge rating and is guaranteed for the life of the product.

V_{DRM} is measured at I_{DRM}.

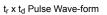

+ V_{S} and V_{F} are measured at 100 V/µs.

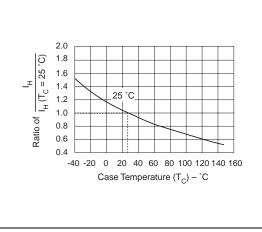

- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.
- Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value for "SA" and "SB" product. "SC" capacitance is approximately 2x the listed value.
- Parallel capacitive loads may affect electrical parameters.

Surge Ratings (Preliminary Data)


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
С	500	400	200	150	100	50	500

Package	Symbol	Parameter	Value	Unit
DO-214AA	TJ	Operating Junction Temperature Range	-40 to +150	°C
	Ts	Storage Temperature Range	-65 to +150	°C
	R _{θJA}	Thermal Resistance: Junction to Ambient	90	°C/W





V-I Characteristics

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

Twin SLIC Protector

Subscriber Line Interface Circuits (SLIC) are highly susceptible to transient voltages, such as lightning and power cross conditions. To minimize this threat, Teccor provides this dualchip, fixed-voltage SLIC protector device.

For specific design criteria, see details in Figure 3.30.

Electrical Parameters

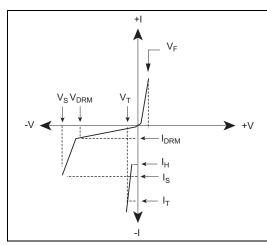
Part	V _{DRM} Volts	V _S Volts	VT	VF	I _{DRM}	Is	Гт	Iн	Co
Number *	Pins 1	-2, 3-2	Volts	Volts	μAmps	mAmps	Amps	mAmps	pF
P0641CA2	58	77	4	5	5	800	1	120	60
P0721CA2	65	88	4	5	5	800	1	120	60
P0901CA2	75	98	4	5	5	800	1	120	60
P1101CA2	95	130	4	5	5	800	1	120	60

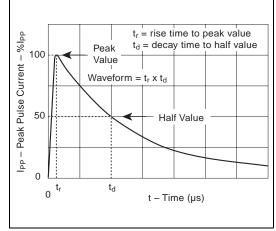
* For surge ratings, see table below.

General Notes:

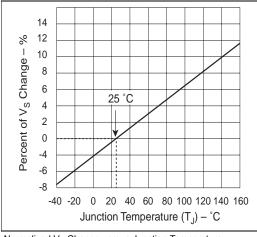
• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

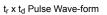

- V_{DRM} is measured at I_{DRM.}
- V_S and V_F are measured at 100 V/µs.
- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.
- Off-state capacitance is measured across pins 1-2 or 3-2 at 1 MHz with a 2 V bias. Capacitance across pins 1-3 is approximately half.
- · Parallel capacitive loads may affect electrical parameters.
- Compliance with GR 1089 or UL 60950 power cross tests may require special design considerations. Contact the factory for further information.

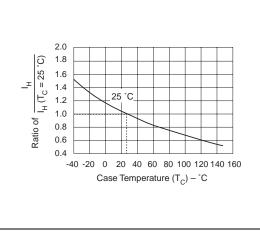

Surge Ratings (Preliminary Data)

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{ΡΡ} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
A	150	150	90	50	45	20	500


Thermal Considerations

Package	Symbol	Parameter	Value	Unit
Modified DO-214AA	TJ	Operating Junction Temperature Range	-40 to +150	°C
Pin 3	Ts	Storage Temperature Range	-65 to +150	°C
Pin 1 Pin 2	$R_{ heta JA}$	Thermal Resistance: Junction to Ambient	85	°C/W





V-I Characteristics

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

Twin SLIC Protector Modified TO-220

Subscriber Line Interface Circuits (SLIC) are highly susceptible to transient voltages, such as lightning and power cross conditions. To minimize this threat, Teccor provides this dualchip, fixed-voltage SLIC protector device.

For specific design criteria, see details in Figure 3.30.

Electrical Parameters

Part	V _{DRM} Volts	V _S Volts	VT	VF	I _{DRM}	ls	г	IH	co
Number *	Pins 1	-2, 3-2	Volts	Volts	µAmps	mAmps	Amps	mAmps	pF
P0641A_2	58	77	4	5	5	800	2.2	120	40
P0721A_2	65	88	4	5	5	800	2.2	120	60
P0901A_2	75	98	4	5	5	800	2.2	120	60
P1101A_2	95	130	4	5	5	800	2.2	120	60

* For surge ratings, see table below.

General Notes:

• All measurements are made at an ambient temperature of 25 °C. I_{PP} applies to -40 °C through +85 °C temperature range.

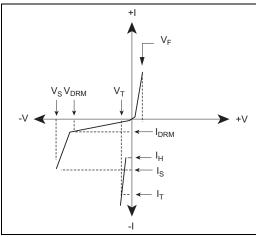
• IPP is a repetitive surge rating and is guaranteed for the life of the product.

V_{DRM} is measured at I_{DRM.}

• V_S and V_F are measured at 100 V/µs.

- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

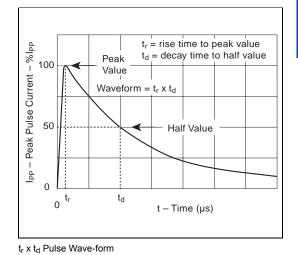
Off-state capacitance is measured across pins 1-2 or 3-2 at 1 MHz with a 2 V bias. Capacitance across pins 1-3 is approximately half.

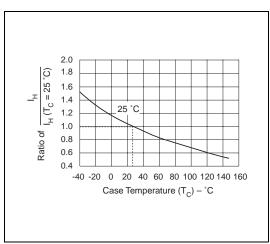

· Parallel capacitive loads may affect electrical parameters.

Compliance with GR 1089 or UL 60950 power cross tests may require special design considerations. Contact the factory for further information.

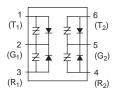
Surge Ratings (Preliminary Data)

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{ΡΡ} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
С	500	400	200	150	100	50	500


Package	Symbol	Parameter	Value	Unit
	TJ	Operating Junction Temperature Range	-40 to +150	°C
Modified TO-220	Ts	Storage Temperature Range	-65 to +150	°C
PIN 1 PIN 2	R _{0JA}	Thermal Resistance: Junction to Ambient	50	°C/W



V-I Characteristics



Normalized DC Holding Current versus Case Temperature

Multiport SLIC Protector

This multiport line protector is designed as a single-package solution for protecting multiple twisted pair from overvoltage conditions. Based on a six-pin SOIC package, it is equivalent to four discrete DO-214AA packages. Available in surge current ratings up to 500 A for a 2x10 μ s event, the multiport line protector is ideal for densely populated line cards that cannot afford PCB inefficiencies or the use of series power resistors.

For specific design criteria, see details in Figure 3.34.

Electrical Parameters

	V _{DRM} Volts	V _S Volts							
Part Number *	Pins 1-2, 2-3, 4-5, 5-6		V _T Volts	V _F Volts	I _{DRM} μAmps	l _S mAmps	l _T Amps	l _H mAmps	C _O pF
P0641U_	58	77	4	5	5	800	1	120	70
P0721U_	65	88	4	5	5	800	1	120	70
P0901U_	75	98	4	5	5	800	1	120	70
P1101U_	95	130	4	5	5	800	1	120	70

* For individual "UA" and "UC" surge ratings, see table below.

General Notes:

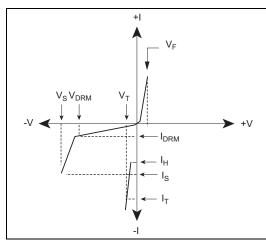
• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

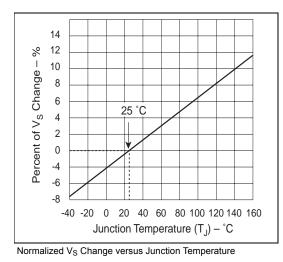
V_{DRM} is measured at I_{DRM.}

+ V_S and V_F are measured at 100 V/µs.

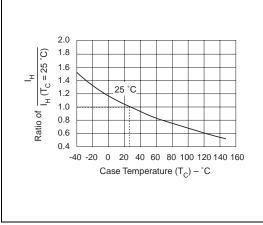
• Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.


• Off-state capacitance is measured across pins 1-2, 2-3, 4-5, or 5-6 at 1 MHz with a 2 V bias and is a typical value. Capacitance across pins 1-3 or 4-6 is approximately half. "UC" capacitance is approximately 2x the listed value for "UA" product.

Parallel capacitive loads may affect electrical parameters.


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
С	500	400	200	120	100	50	500

Thermal Considerations


Package	Symbol	Parameter	Value	Unit
Modified MS-013	TJ	Operating Junction Temperature Range	-40 to +150	°C
6 5	Ts	Storage Temperature Range	-65 to +150	°C
1 2 3 4 1 2 3	$R_{ heta JA}$	Thermal Resistance: Junction to Ambient	60	°C/W

V-I Characteristics

t_r x t_d Pulse Wave-form

Normalized DC Holding Current versus Case Temperature

Battrax SLIC Protector

This solid state protection device can be referenced to either a positive or negative voltage source. The B1xx0C_ is for a -V_{REF} and the B2050C_ is for a +V_{REF}. Designed using an SCR and a gate diode, the B1xx0C_ *Battrax* begins to conduct at $|-V_{REF}| + |-1.2 \text{ V}|$ while the B2050C_ *Battrax* begins to conduct at $|+V_{REF}| + |1.2 \text{ V}|$.

For a diagram of a Battrax application, see Figure 3.44.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	I _{GT} mAmps	l _T Amps	I _H mAmps	Co pF
B1100C_	-V _{REF} + -1.2 V	-V _{REF} + -10 V	4	5	100	2.2	100	50
B1160C_	-V _{REF} + -1.2 V	-V _{REF} + -10 V	4	5	100	2.2	160	50
B1200C_	-V _{REF} + -1.2 V	-V _{REF} + -10 V	4	5	100	2.2	200	50
B2050C_	+V _{REF} + 1.2 V	+V _{REF} + 10 V	4	5	50	2.2	50	50

* For individual "CA" and "CC" surge ratings, see table below.

General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

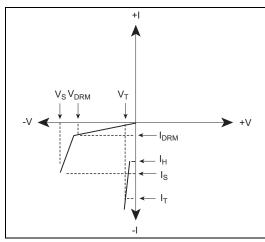
• IPP is a repetitive surge rating and is guaranteed for the life of the product.

• I_{PP} ratings assume V_{REF} = ±48 V.

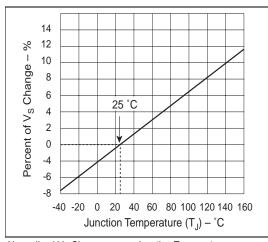
V_{DRM} is measured at I_{DRM.}

V_S is measured at 100 V/µs.

• Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value. "CC" product is approximately 2x the listed value.

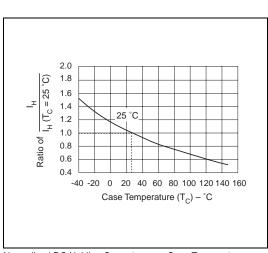

Positive Battrax information is preliminary data.

• V_{REF} maximum value for the negative Battrax is -200 V.

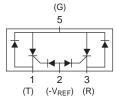

• V_{REF} maximum value for the positive Battrax is 110 V.

Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	60	50	20	500
С	500	400	200	150	100	50	500


Package	Symbol	Parameter	Value	Unit
Modified DO-214AA	TJ	Operating Junction Temperature Range	-40 to +150	°C
Pin 3 (V _{REF})	TS	Storage Temperature Range	-65 to +150	°C
Pin 1 (Line) Pin 2 (Ground)	R_{0JA}	Thermal Resistance: Junction to Ambient	85	°C/W



V-I Characteristics for Negative Battrax


Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

Battrax Dual Negative SLIC Protector

This solid state *Battrax* protection device is referenced to a negative voltage source. Its dual-chip package also includes internal diodes for transient protection from positive surge events.

For a diagram of a *Battrax* application, see Figure 3.42.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	V _F Volts	I _{DRM} μAmps	I _{GT} mAmps	l _T Amps	I _H mAmps	C _O pF
B1101U_	-V _{REF} + -1.2V	-V _{REF} + -10V	4	5	5	100	2.2	100	50
B1161U_	-V _{REF} + -1.2V	-V _{REF} + -10V	4	5	5	100	2.2	160	50
B1201U_	-V _{REF} + -1.2V	-V _{REF} + -10V	4	5	5	100	2.2	200	50

* For individual "UA" and "UC" surge ratings, see table below.

General Notes:

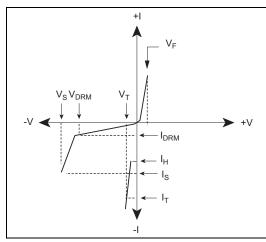
• All measurements are made at an ambient temperature of 25 °C. I_{PP} applies to -40 °C through +85 °C temperature range.

- $I_{\mbox{\scriptsize PP}}$ is a repetitive surge rating and is guaranteed for the life of the product.

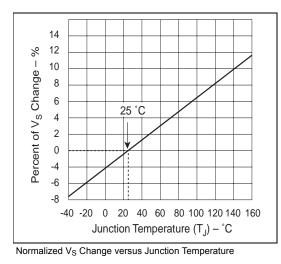
• I_{PP} ratings assume a V_{REF} = -48 V.

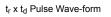
• V_{DRM} is measured at I_{DRM}.

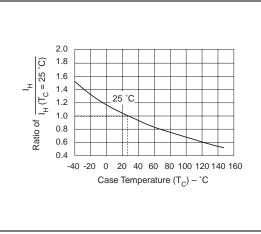
• V_S is measured at 100 V/µs.

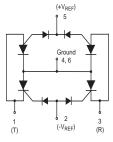

• Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value. "UC" product is approximately 2x the listed value.

• V_{REF} maximum value for the B1101, B1161, and/or B1201 is -200 V.


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
С	500	400	200	120	100	50	500


Thermal Considerations


Package	Symbol	Parameter	Value	Unit
Modified MS-013	TJ	-40 to +125	°C	
6 5	TS	Storage Temperature Range	-65 to +150	°C
1 2 3 4 3 4	$R_{ heta JA}$	Thermal Resistance: Junction to Ambient	60	°C/W



Normalized DC Holding Current versus Case Temperature

Battrax Dual Positive/Negative SLIC Protector

This Battrax device protects Subscriber Line Interface Circuits (SLIC) that use both a positive and negative Ring voltage. It limits transient voltages with rise times of 100 V/ μs to V_{REF} ±10 V.

Teccor's six-pin *Battrax* devices are constructed using four SCRs and four gate diodes. The SCRs conduct when a voltage that is more negative than $-V_{REF}$ (and/or more positive than $+V_{REF}$) is applied to the cathode (Pins 1 and 3) of the SCR. During conduction, the SCRs appear as a low-resistive path which forces all transients to be shorted to ground.

For a diagram of a Battrax application, see Figure 3.45.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	Ι _{DRM} μAmps	I _{GT} mAmps	l _T Amps	I _H mAmps	C _O pF
B3104U_	-V _{REF} + ±1.2V	-V _{REF} + ±10V	4	5	100	2.2	100	50
B3164U_	-V _{REF} + ±1.2V	-V _{REF} + ±10V	4	5	100	2.2	160	50
B3204U_	-V _{REF} + ±1.2V	-V _{REF} + ±10V	4	5	100	2.2	200	50

* For individual "UA" and "UC" surge ratings, see table below.

General Notes:

All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

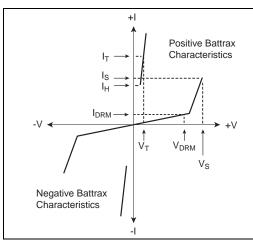
• IPP is a repetitive surge rating and is guaranteed for the life of the product.

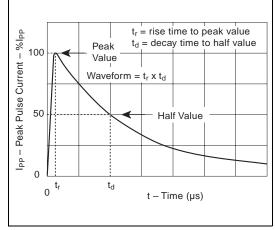
I_{PP} ratings assume a V_{REF} = ±48 V.

V_{DRM} is measured at I_{DRM}.

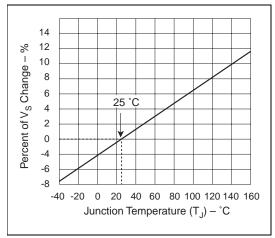
V_S is measured at 100 V/µs.

• Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value. "UC" product is approximately 2x the listed value.

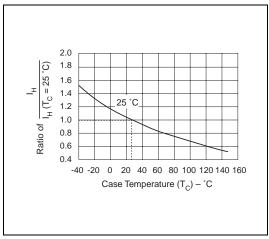

Positive Battrax information is preliminary data.


• V_{REF} maximum value for the negative Battrax is -200 V.

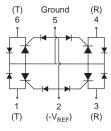
• V_{REF} maximum value for the positive Battrax is 110 V.


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{ΡΡ} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
А	150	150	90	50	45	20	500
С	500	400	200	120	100	50	500

Package	Symbol	Parameter	Value	Unit
Modified MS-013	TJ	Operating Junction Temperature Range	-40 to +125	°C
6	Ts	Storage Temperature Range	-65 to +150	°C
1 2 3 4 3 4	$R_{ heta JA}$	Thermal Resistance: Junction to Ambient	60	°C/W



V-I Characteristics


Normalized V_S Change versus Junction Temperature

t_r x t_d Pulse Wave-form

Normalized DC Holding Current versus Case Temperature

Battrax Quad Negative SLIC Protector

This *Battrax* device is an integrated overvoltage protection solution for SLIC-based (Subscriber Line Interface Circuit) line cards. This six-pin device is constructed using four SCRs and four gate diodes.

The device is referenced to V_{BAT} and conducts when a voltage that is more negative than - V_{REF} is applied to the cathode (pins 1, 3, 4, or 6) of the SCR. During conduction, all negative transients are shorted to Ground. All positive transients are passed to Ground by steering diodes.

For specific diagrams showing these Battrax applications, see Figure 3.43.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} µAmps	I _{GT} mAmps	I _T Amps	I _H mAmps	C _O pF
B1101U_4 **	-V _{REF} + -1.2V	-V _{REF} + -10V	4	5	100	2.2	100	50
B1161U_4 **	-V _{REF} + -1.2V	-V _{REF} + -10V	4	5	100	2.2	160	50
B1201U_4 **	-V _{REF} + -1.2V	-V _{REF} + -10V	4	5	100	2.2	200	50

* For individual "UA" and "UC" surge ratings, see table below.

** Contact factory for release date.

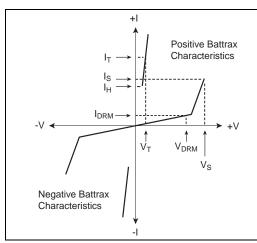
General Notes:

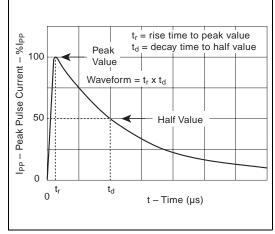
• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

• IPP is a repetitive surge rating and is guaranteed for the life of the product.

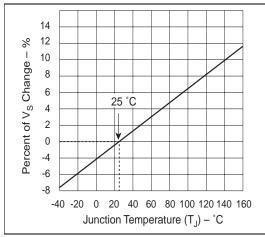
+ I_{PP} ratings assume a V_{REF} = \pm 48 V.

• V_{DRM} is measured at I_{DRM}.

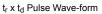

+ V_S is measured at 100 V/µs.

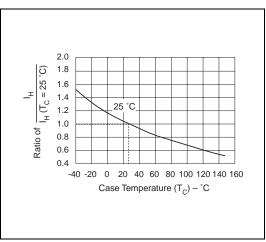

• Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value. "UC" product is approximately 2x the listed value.

• V_{REF} maximum value for the negative Battrax is -200 V.


Series	l _{PP} 2x10 μs Amps	l _{PP} 8x20 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
Α	150	150	90	50	45	20	500
С	500	400	200	120	100	50	500

Package	Symbol	Parameter	Value	Unit
Modified MS-013	TJ	Operating Junction Temperature Range	-40 to +125	°C
⁶ T _S	Ts	Storage Temperature Range	-65 to +150	°C
1 2 3 4	R_{0JA}	Thermal Resistance: Junction to Ambient	60	°C/W





V-I Characteristics

Normalized V_S Change versus Junction Temperature

Normalized DC Holding Current versus Case Temperature

CATV and HFC SIDACtor Device

This *SIDACtor* device is a 1000 A solid state protection device offered in a TO-220 package. It protects equipment located in the severe surge environment of Community Antenna TV (CATV) applications.

Used in Hybrid Fiber Coax (HFC) applications, this device replaces the gas tube traditionally used for station protection, because a *SIDACtor* device has a much tighter voltage tolerance.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	l _S mAmps	l _T Amps	I _H mAmps	C _O pF Pins 1-3
P1400AD	120	160	3	5	800	2.2	50	200
P1800AD	170	220	3	5	800	2.2	50	150

* For surge ratings, see table below.

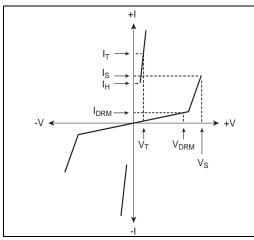
General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

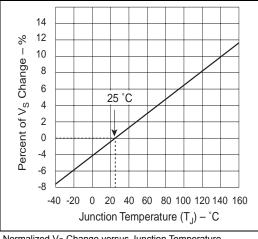
• IPP is a repetitive surge rating and is guaranteed for the life of the product.

Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

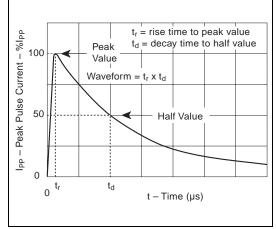
• V_{DRM} is measured at I_{DRM}.

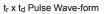

• V_S is measured at 100 V/µs.

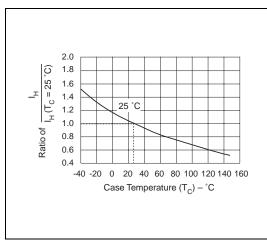
- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.


• Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value.

Series	l _{PP} 8x20 μs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
D	1000	250	120	500


Package	Symbol	Parameter	Value	Unit
	TJ	Operating Junction Temperature Range	-40 to +150	°C
Modified TO-220	Ts	Storage Temperature Range	-65 to +150	°C
	R_{0JA}	Thermal Resistance: Junction to Ambient	60	°C/W




V-I Characteristics

Normalized DC Holding Current versus Case Temperature

High Surge Current SIDACtor Device

This *SIDACtor* device is a 1000 A solid state protection device offered in a TO-220 package. It protects equipment located in the severe surge environment of Community Antenna TV (CATV) applications.

This device can replace the gas tubes traditionally used for station protection because *SIDACtor* devices have much tighter voltage tolerances.

Electrical Parameters

Number * Volts Volts Volts uAmps Amps Amps MAmps Pins 1-3	Part	V _{DRM}	Vs	VT	I _{DRM}	Is	ΙŢ	IH	C _O pF
	P6002AD	550	700	5.5	5	800	2.2	50	60

* For surge ratings, see table below.

Electrical Parameters

Part	V _{DRM}	V _S Volts	V _T Volts	I _{DRM}	I _S	l _T	I _H	C _O pF
Number *	Volts	voits	voits	µAmps	mAmps	Amps	mAmps	Pins 1-3
P3100AD	280	360	5.5	5	800	2.2	120	115

* For surge ratings, see table below.

General Notes:

All measurements are made at an ambient temperature of 25 °C. I_{PP} applies to -40 °C through +85 °C temperature range.

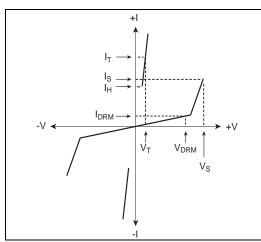
• IPP is a repetitive surge rating and is guaranteed for the life of the product.

· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

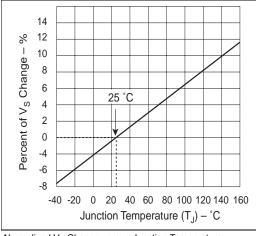
V_{DRM} is measured at I_{DRM.}

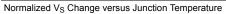
• V_S is measured at 100 V/µs.

Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

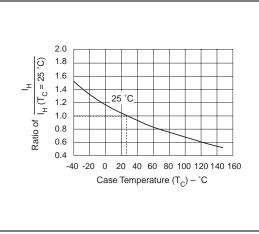

• Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value.

Series	I _{PP} 8x20 µs Amps	l _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
D	1000	250	120	500


Thermal Considerations


Package	Symbol	Parameter	Value	Unit
	TJ	Operating Junction Temperature Range	-40 to +150	°C
Modified TO-220	Ts	Storage Temperature Range	-65 to +150	°C
	R _{0JA}	Thermal Resistance: Junction to Ambient	60	°C/W

Note: P6002AD is shown. P3100AD has no center lead.



V-I Characteristics

t_r x t_d Pulse Wave-form

Normalized DC Holding Current versus Case Temperature

© 2003 Teccor Electronics SIDACtor[®] Data Book and Design Guide

CATV Line Amplifiers/Power Inserters ME SIDACtor Device

This *SIDACtor* device is a 5000 A solid state protection device offered in a non-isolated TO-218 package. It protects equipment located in the severe surge environment of CATV (Community Antenna TV) applications.

In CATV line amplifiers and power inserters, this device can replace the gas tubes traditionally used for station protection because *SIDACtor* devices have much tighter voltage tolerances.

Electrical Parameters

Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	Ι _{DRM} μAmps	l _S mAmps	I _T Amps **	l _H mAmps	C _O pF
P1500ME	140	180	4	5	800	2.2/25	50	750
P1900ME	140	220	4	5	800	2.2/25	50	750
P2300ME	180	260	4	5	800	2.2/25	50	750

* For surge ratings, see table below.

** I_T is a free air rating; heat sink I_T rating is 25 A.

General Notes:

• All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.

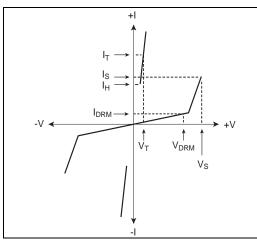
• I_{PP} is a repetitive surge rating and is guaranteed for the life of the product.

· Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.

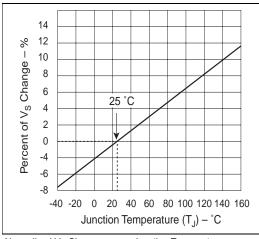
V_{DRM} is measured at I_{DRM.}

V_S is measured at 100 V/µs.

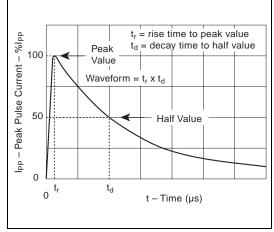
Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.

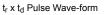

Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value.

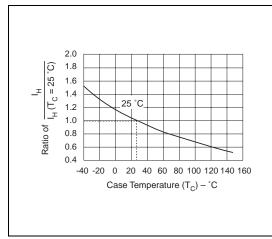
Series	l _{PP} 8x20 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
E	5000	400	630


Package	Symbol	Parameter	Value	Unit
270	TJ	Operating Junction Temperature Range	-40 to +150	°C
TO-218	Ts	Storage Temperature Range	-65 to +150	°C
	T _C	Maximum Case Temperature	100	°C
	R _{0JC} *	Thermal Resistance: Junction to Case	1.7	°C/W
	R _{0JA}	Thermal Resistance: Junction to Ambient	56	°C/W
1 2 3 (No Connection)				

Thermal Considerations


* R_{0JC} rating assumes the use of a heat sink and on state mode for extended time at 25 A, with average power dissipation of 29.125 W.




V-I Characteristics

Normalized DC Holding Current versus Case Temperature

© 2003 Teccor Electronics SIDACtor[®] Data Book and Design Guide **Data Sheets**

CATV Line Amplifiers/Power Inserters NE SIDACtor Device

This SIDACtor device is a 3000 A solid state protection device offered in a non-isolated TO-263 (D²) package. It protects equipment located in the severe surge environment of CATV (Community Antenna TV) applications.

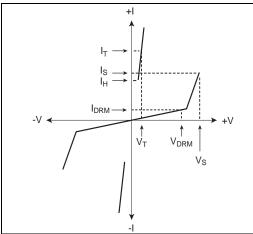
In CATV line amplifiers and power inserters, this device can replace the gas tubes traditionally used for station protection because SIDACtor devices have much tighter voltage tolerances.

Electrical Parameters

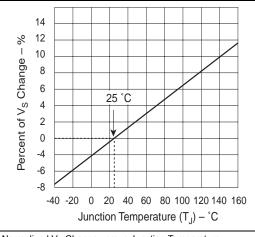
Part	V _{DRM}	V _S	V _T	I _{DRM}	l _S	I _T	l _H	C _O
Number *	Volts	Volts	Volts	µAmps	mAmps	Amps **	mAmps	pF
P1900NE	140	220	4	5	800	2.2/25	50	260

 * For surge ratings, see table below. ** I_T is a free air rating; heat sink I_T rating is 25 A.

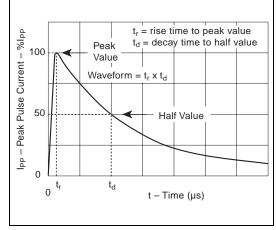
General Notes:

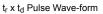

- All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.
- I_{PP} is a repetitive surge rating and is guaranteed for the life of the product.
- · Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.
- V_{DRM} is measured at I_{DRM.}
- V_S is measured at 100 V/µs.
- Special voltage (V_S and V_DRM) and holding current (I_H) requirements are available upon request.
- Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value.

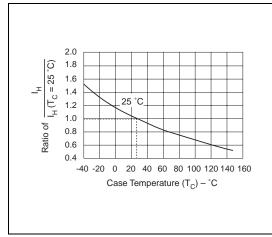
Series	l _{PP} 8x20 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
E	3000	400	500


Package	Symbol	Parameter	Value	Unit
	TJ	Operating Junction Temperature Range	-40 to +150	°C
TO-263 D ² PAK	Ts	Storage Temperature Range	-65 to +150	°C
Pin2 Pin2 Pin2	T _C	Maximum Case Temperature	100	°C
	R _{0JC} *	Thermal Resistance: Junction to Case	1.7	°C/W
Pin1	R _{0JA}	Thermal Resistance: Junction to Ambient	56	°C/W

Thermal Considerations


* R_{0JC} rating assumes the use of a heat sink and on state mode for extended time at 25 A, with average power dissipation of 29.125 W.





Normalized DC Holding Current versus Case Temperature

Data Sheets

CATV Line Amplifiers/Power Inserters RE SIDACtor Device

This *SIDACtor* device is a 3000 A solid state protection device offered in a non-isolated TO-220 package. It protects equipment located in the severe surge environment of CATV (Community Antenna TV) applications.

In CATV line amplifiers and power inserters, this device can replace the gas tubes traditionally used for station protection because *SIDACtor* devices have much tighter voltage tolerances.

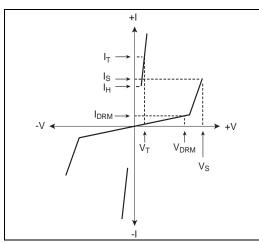
Electrical Parameters

Part	V _{DRM}	V _S	V _T	I _{DRM}	l _S	I _T	l _H	C _O
Number *	Volts	Volts	Volts	µAmps	mAmps	Amps **	mAmps	pF
P1900RE	140	220	4	5	800	2.2/25	50	260

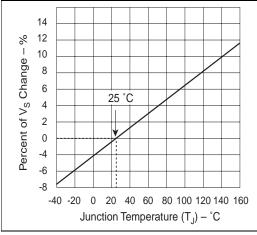
* For surge ratings, see table below.

** I_T is a free air rating; heat sink I_T rating is 25 A.

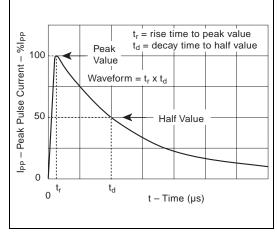
General Notes:

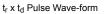

- All measurements are made at an ambient temperature of 25 °C. I_{PP} applies to -40 °C through +85 °C temperature range.
- $I_{\mbox{\scriptsize PP}}$ is a repetitive surge rating and is guaranteed for the life of the product.
- · Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.
- V_{DRM} is measured at I_{DRM}.
- + V_S is measured at 100 V/ μ s.
- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.
- Off-state capacitance is measured at 1 MHz with a 2 V bias and is a typical value.

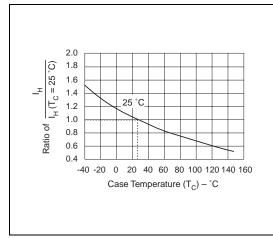
Series	l _{PP} 8x20 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
E	3000	400	500


Package	Symbol	Parameter	Value	Unit
Pin2	TJ	Operating Junction Temperature Range	-40 to +150	°C
TO-220	TS	Storage Temperature Range	-65 to +150	°C
	T _C	Maximum Case Temperature	100	°C
	R _{0JC} *	Thermal Resistance: Junction to Case	1.7	°C/W
Pin1 Pin2 Rejz *		Thermal Resistance: Junction to Ambient	56	°C/W

Thermal Considerations


* R_{0JC} rating assumes the use of a heat sink and on state mode for extended time at 25 A, with average power dissipation of 29.125 W.




V-I Characteristics

Normalized DC Holding Current versus Case Temperature

Data Sheets

TeleLink Fuse

The *TeleLink* Surface Mount (SM) surge resistant fuse offers circuit protection without requiring a series resistor. When used in conjunction with the *SIDACtor* Transient Voltage Suppressor (TVS), the *TeleLink* SM fuse and the *SIDACtor* TVS provide a complete regulatory-compliant solution for standards such as GR 1089, TIA-968 (formerly known as FCC Part 68), UL 60950, and ITU K.20 and K.21. No series resistor is required for the F1250T and F1251T to comply with these standards.

Contact factory for enhanced K.20 and K.21 details.

Surge Ratings

TeleLink SM Fuse	l _{PP} 2x10 μs Amps	l _{PP} 10x160 μs Amps	l _{PP} 10x560 μs Amps	I _{РР} 10х1000 µs Amps
F0500T	100	65	45	35
F1250T	500	160	115	100
F1251T	500	160	115	100

Interrupting Values

			I ² t Measured		Interrupting	Rating	
<i>TeleLink</i> SM Fuse	Voltage Rating	Current Rating	at DC Rated Voltage	Voltage, Current	MIN	ТҮР	МАХ
F0500T	250 V	500 mA	1.3 A ² s	600 V, 40 A	1 ms	2 ms	60 ms
F1250T	250 V	1.25 A	22.2 A ² s	600 V, 60 A *	1 ms	2 ms	60 ms
F1251T	250 V	2 A	30 A ² s	600 V, 60 A *	1 ms	2 ms	60 ms

* Interrupt test characterized at 50° to 70° phase angle. Phase angles approximating 90° may result in damage to the body of the fuse. Notes:

• The *TeleLink* SM fuse is designed to carry 100% of its rated current for four hours and 250% of its rated current for one second minimum and 120 seconds maximum. Typical time is four to 10 seconds. For optimal performance, an operating current of 80% or less is recommended.

• I²t is a non-repetitive RMS surge current rating for a period of 16.7 ms.

Resistance Ratings

	Typical Voltage Drop	DC Cold F	Resistance
TeleLink SM Fuse	@ Rated Current	MIN	MAX
F0500T	0.471 V	0.420 Ω	0.640 Ω
F1250T	0.205 V	0.107 Ω	0.150 Ω
F1251T	0.110 V	0.050 Ω	0.100 Ω

Notes:

• Typical inductance < 40 nH up to 500 MHz.

• Resistance changes 0.5% for every °C.

• Resistance is measured at 10% rated current.

Qualification Data

The F1250T and F1251T meet the following test conditions per GR 1089 **without** additional series resistance. However, in-circuit test verification is required. Note that considerable heating may occur during Test 4 of the Second Level AC Power Fault Test.

First Level Lightning Surge Test

Test	Surge Voltage Volts	Wave-form µs	Surge Current Amps	Repetitions Each Polarity
1	±600	10x1000	100	25
2	±1000	10x360	100	25
3	±1000	10x1000	100	25
4	±2500	2x10	500	10
5	±1000	10x360	25	5

Second Level Lightning Surge Test

Test	Surge Voltage	Wave-form	Surge Current	Repetitions Each
	Volts	μs	Amps	Polarity
1	±5000	2x10	500	1

First Level AC Power Fault Test

Test	Applied Voltage, 60 Hz V _{RMS}	Short Circuit Current Amps	Duration
1	50	0.33	15 min
2	100	0.17	15 min
3	200, 400, 600	1 at 600 V	60 applications, 1 s each
4	1000	1	60 applications, 1 s each
5	*	*	60 applications, 5 s each
6	600	0.5	30 s each
7	600	2.2	2 s each
8	600	3	1 s each
9	1000	5	0.5 s each

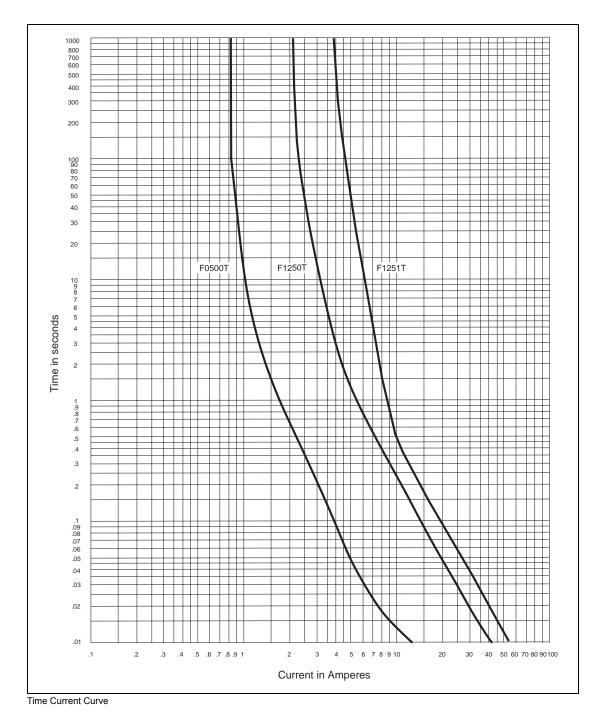
* Test 5 simulates a high impedance induction fault. For specific information, please contact Teccor Electronics.

Second Level AC Power Fault Test for Non-Customer Premises Equipment

Test	Applied Voltage, 60 Hz V _{RMS}	Short Circuit Current Amps	Duration
1	120, 277	30	30 min
2	600	60	5 s
3	600	7	5 s
4	100-600	2.2 at 600 V	30 min

Notes:

• Power fault tests equal or exceed the requirements of UL 60950 3rd edition.


• Test 4 is intended to produce a maximum heating effect. Temperature readings can exceed 150 °C.

Test 2 may be dependent on the closing angle of the voltage source. Fuse is characterized at 50° to 70°. Closing angles approximating 90° may result in damage to the body of the fuse.

Use caution when routing internal traces adjacent to the F1250T and F1251T.

^{© 2003} Teccor Electronics SIDACtor[®] Data Book and Design Guide

http://www.teccor.com

© 2003 Teccor Electronics SIDACtor[®] Data Book and Design Guide

^{+1 972-580-7777}

Temperature Derating Curve

Operating temperature is -55 °C to +125 °C with proper correction factor applied.

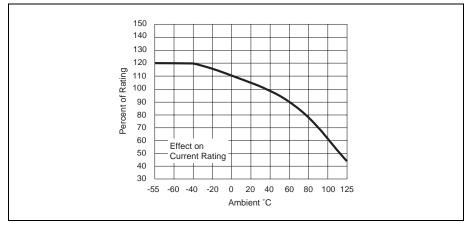


Chart of Correction Factor

Maximum Temperature Rise

TeleLink Fuse	Temperature Reading
F0500T	≤75 °C (167 °F) *
F1250T	≤75 °C (167 °F) *
F1251T	≤75 °C (167 °F) *

* Higher currents and PCB layout designs can affect this parameter.

Notes:

· Readings are measured at rated current after temperature stabilizes

The F1250T meets the requirements of UL 248-14. However, board layout, board trace widths, and ambient temperature values can cause higher than expected rises in temperature. During UL testing, the typical recorded heat rise for the F1250T at 2.2 A was 120 °C.

Package Symbolization

Marking	F0500T	F1250T	F1251T	Manufactured in USA	Manufactured in Taiwan
FU	F			U	
FT	F				Т
JU		J		U	
JT		J			Т
NU			N	U	
NT			Ν		Т

TeleLink Fuse