PRELIMINARY

LM3S300 Microcontroller

DATA SHEET

Copyright © 2007-2008 Luminary Micro, Inc.

DS-LM3S300-2972

Legal Disclaimers and Trademark Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH LUMINARY MICRO PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN LUMINARY MICRO'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES NO LIABILITY WHATSOEVER, AND LUMINARY MICRO DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF LUMINARY MICRO'S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LUMINARY MICRO'S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.

Luminary Micro may make changes to specifications and product descriptions at any time, without notice. Contact your local Luminary Micro sales office or your distributor to obtain the latest specifications before placing your product order.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copyright © 2007-2008 Luminary Micro, Inc. All rights reserved. Stellaris, Luminary Micro, and the Luminary Micro logo are registered trademarks of Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com

Table of Contents

	This Document	
	This Manual	
	d Documents	
Docum	entation Conventions	
1	Architectural Overview	
1.1	Product Features	
1.2	Target Applications	
1.3	High-Level Block Diagram	
1.4	Functional Overview	
1.4.1	ARM Cortex™-M3	
1.4.2	Motor Control Peripherals	
1.4.3	Analog Peripherals	
1.4.4	Serial Communications Peripherals	
1.4.5	System Peripherals	
1.4.6	Memory Peripherals	
1.4.7	Additional Features	
1.4.8	Hardware Details	28
2	ARM Cortex-M3 Processor Core	29
2.1	Block Diagram	30
2.2	Functional Description	30
2.2.1	Serial Wire and JTAG Debug	30
2.2.2	Embedded Trace Macrocell (ETM)	31
2.2.3	Trace Port Interface Unit (TPIU)	31
2.2.4	ROM Table	31
2.2.5	Memory Protection Unit (MPU)	31
2.2.6	Nested Vectored Interrupt Controller (NVIC)	31
3	Метогу Мар	35
4	Interrupts	37
5	JTAG Interface	39
5.1	Block Diagram	
5.2	Functional Description	
5.2.1	JTAG Interface Pins	
5.2.2	JTAG TAP Controller	
5.2.3	Shift Registers	
5.2.4	Operational Considerations	
5.3	Initialization and Configuration	
5.4	Register Descriptions	
5.4.1	Instruction Register (IR)	
5.4.2	Data Registers	
6	System Control	
o 6.1	Functional Description	
6.1.1	Device Identification	
6.1.2	Reset Control	
0.1.2		49

6.1.3	Power Control	52
6.1.4	Clock Control	
6.1.5	System Control	
6.2	Initialization and Configuration	
6.3	Register Map	
6.4	Register Descriptions	
7	Internal Memory	104
7.1	Block Diagram	
7.2	Functional Description	
7.2.1	SRAM Memory	
7.2.2	Flash Memory	
7.3	Flash Memory Initialization and Configuration	
7.3.1	Changing Flash Protection Bits	. 107
7.3.2	Flash Programming	. 108
7.4	Register Map	. 108
7.5	Flash Register Descriptions (Flash Control Offset)	. 109
7.6	Flash Register Descriptions (System Control Offset)	. 116
8	General-Purpose Input/Outputs (GPIOs)	120
8.1	Functional Description	
8.1.1	Data Control	. 121
8.1.2	Interrupt Control	. 122
8.1.3	Mode Control	. 123
8.1.4	Pad Control	. 123
8.1.5	Identification	. 123
8.2	Initialization and Configuration	
8.3	Register Map	
8.4	Register Descriptions	. 126
9	General-Purpose Timers	
9.1	Block Diagram	
9.2	Functional Description	
9.2.1	GPTM Reset Conditions	
9.2.2	32-Bit Timer Operating Modes	
9.2.3	16-Bit Timer Operating Modes	
9.3	Initialization and Configuration	
9.3.1	32-Bit One-Shot/Periodic Timer Mode	
9.3.2	32-Bit Real-Time Clock (RTC) Mode	
9.3.3 9.3.4	16-Bit One-Shot/Periodic Timer Mode 16-Bit Input Edge Count Mode	
9.3.4 9.3.5	16-Bit Input Edge Timing Mode	
9.3.6	16-Bit PWM Mode	
9.3.0 9.4	Register Map	
9. 4 9.5	Register Descriptions	
10	Watchdog Timer	
10.1	Block Diagram	
10.1	Functional Description	
10.2	Initialization and Configuration	
10.3	Register Map	
	···	

10.5	Register Descriptions	196
11	Universal Asynchronous Receivers/Transmitters (UARTs)	217
11.1	Block Diagram	
11.2	Functional Description	218
11.2.1	Transmit/Receive Logic	218
11.2.2	Baud-Rate Generation	
11.2.3	Data Transmission	219
11.2.4	FIFO Operation	220
11.2.5	Interrupts	220
11.2.6	Loopback Operation	221
11.3	Initialization and Configuration	221
11.4	Register Map	222
11.5	Register Descriptions	223
12	Synchronous Serial Interface (SSI)	256
12.1	Block Diagram	
12.2	Functional Description	
12.2.1	Bit Rate Generation	
12.2.2	FIFO Operation	257
12.2.3	Interrupts	257
12.2.4	Frame Formats	258
12.3	Initialization and Configuration	265
12.4	Register Map	266
12.5	Register Descriptions	267
13	Inter-Integrated Circuit (I ² C) Interface	293
13.1	Block Diagram	
13.2	Functional Description	
13.2.1	I ² C Bus Functional Overview	
13.2.2	Available Speed Modes	296
13.2.3	Interrupts	297
13.2.4	Loopback Operation	297
13.2.5	Command Sequence Flow Charts	297
13.3	Initialization and Configuration	304
13.4	I ² C Register Map	305
13.5	Register Descriptions (I ² C Master)	306
13.6	Register Descriptions (I2C Slave)	319
14	Analog Comparators	328
14.1	Block Diagram	
14.2	Functional Description	
14.2.1	Internal Reference Programming	
14.3	Initialization and Configuration	
14.4	Register Map	
14.5	Register Descriptions	

15	Pin Diagram	341
16	Signal Tables	342
17	Operating Characteristics	349
18	Electrical Characteristics	350
18.1	DC Characteristics	
18.1.1	Maximum Ratings	
18.1.2	Recommended DC Operating Conditions	350
18.1.3	On-Chip Low Drop-Out (LDO) Regulator Characteristics	
18.1.4	Power Specifications	
18.1.5	Flash Memory Characteristics	
18.2	AC Characteristics	
18.2.1	Load Conditions	
	Clocks	
	Analog Comparator	
	I ² C	
18.2.5	Synchronous Serial Interface (SSI)	354
18.2.6	JTAG and Boundary Scan	
18.2.7	General-Purpose I/O	
18.2.8	Reset	357
19	Package Information	360
Α	Serial Flash Loader	362
A.1	Serial Flash Loader	362
A.2		
/ \	Interfaces	362
A.2.1	UART	362
		362
A.2.1	UART	362 362
A.2.1 A.2.2 A.3 A.3.1	UART SSI	362 362 363
A.2.1 A.2.2 A.3 A.3.1 A.3.2	UART SSI Packet Handling Packet Format Sending Packets	362 362 363 363 363
A.2.1 A.2.2 A.3 A.3.1	UART SSI Packet Handling Packet Format Sending Packets Receiving Packets	362 363 363 363 363 363
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.3.3 A.4	UART	362 363 363 363 363 363 363
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1	UART	362 363 363 363 363 363 364 364
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2	UART	362 363 363 363 363 364 364 364
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3	UART	362 363 363 363 363 363 364 364 364 364
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4	UART	362 363 363 363 363 364 364 364 364 364 365
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5	UART	362 363 363 363 363 364 364 364 364 364 365 365
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4	UART	362 363 363 363 363 364 364 364 364 364 365 365
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5	UART	362 363 363 363 363 364 364 364 364 365 365 365
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.3 A.4.4 A.4.5 A.4.6	UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22) COMMAND_RESET (0x25)	362 363 363 363 363 364 364 364 364 364 365 365 365 365 367
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.5 A.4.6 B	UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22) COMMAND_RESET (0x25) Register Quick Reference	362 363 363 363 363 364 364 364 364 364 365 365 365 365 367 379
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.6 B C	UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22) COMMAND_RESET (0x25) Register Quick Reference Ordering and Contact Information	362 363 363 363 363 364 364 364 364 364 365 365 365 365 367 379 379
A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.6 B C C.1	UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22) COMMAND_RESET (0x25) Register Quick Reference Ordering and Contact Information	362 363 363 363 363 364 364 364 364 364 365 365 365 365 367 379 379 379

List of Figures

Figure 1-1.	Stellaris [®] 300 Series High-Level Block Diagram	23
Figure 2-1.	CPU Block Diagram	30
Figure 2-2.	TPIU Block Diagram	31
Figure 5-1.	JTAG Module Block Diagram	40
Figure 5-2.	Test Access Port State Machine	43
Figure 5-3.	IDCODE Register Format	47
Figure 5-4.	BYPASS Register Format	47
Figure 5-5.	Boundary Scan Register Format	48
Figure 6-1.	External Circuitry to Extend Reset	50
Figure 6-2.	Main Clock Tree	53
Figure 7-1.	Flash Block Diagram	104
Figure 8-1.	GPIO Port Block Diagram	121
Figure 8-2.	GPIODATA Write Example	122
Figure 8-3.	GPIODATA Read Example	122
Figure 9-1.	GPTM Module Block Diagram	159
Figure 9-2.	16-Bit Input Edge Count Mode Example	163
Figure 9-3.	16-Bit Input Edge Time Mode Example	164
Figure 9-4.	16-Bit PWM Mode Example	165
Figure 10-1.	WDT Module Block Diagram	194
Figure 11-1.	UART Module Block Diagram	218
Figure 11-2.	UART Character Frame	219
Figure 12-1.	SSI Module Block Diagram	256
Figure 12-2.	TI Synchronous Serial Frame Format (Single Transfer)	259
Figure 12-3.	TI Synchronous Serial Frame Format (Continuous Transfer)	
Figure 12-4.	Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0	260
Figure 12-5.	Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0	
Figure 12-6.	Freescale SPI Frame Format with SPO=0 and SPH=1	
Figure 12-7.	Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0	262
Figure 12-8.	Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0	262
Figure 12-9.	Freescale SPI Frame Format with SPO=1 and SPH=1	263
Figure 12-10.	MICROWIRE Frame Format (Single Frame)	264
Figure 12-11.	MICROWIRE Frame Format (Continuous Transfer)	265
Figure 12-12.	MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements	265
Figure 13-1.	I ² C Block Diagram	293
Figure 13-2.	I ² C Bus Configuration	294
Figure 13-3.	START and STOP Conditions	
Figure 13-4.	Complete Data Transfer with a 7-Bit Address	295
Figure 13-5.	R/S Bit in First Byte	295
Figure 13-6.	Data Validity During Bit Transfer on the I ² C Bus	295
Figure 13-7.	Master Single SEND	298
Figure 13-8.	Master Single RECEIVE	
Figure 13-9.	Master Burst SEND	
•	Master Burst RECEIVE	
	Master Burst RECEIVE after Burst SEND	
-	Master Burst SEND after Burst RECEIVE	

Slave Command Sequence	304
Analog Comparator Module Block Diagram	329
Structure of Comparator Unit	330
Comparator Internal Reference Structure	331
48-Pin QFP Package Pin Diagram	. 341
Load Conditions	352
I ² C Timing	354
SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement	354
SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer	355
SSI Timing for SPI Frame Format (FRF=00), with SPH=1	355
JTAG Test Clock Input Timing	356
JTAG Test Access Port (TAP) Timing	357
JTAG TRST Timing	357
External Reset Timing (RST)	358
Power-On Reset Timing	
Brown-Out Reset Timing	359
Software Reset Timing	359
Watchdog Reset Timing	359
48-Pin LQFP Package	
	Analog Comparator Module Block Diagram Structure of Comparator Unit Comparator Internal Reference Structure 48-Pin QFP Package Pin Diagram Load Conditions I ² C Timing SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer SSI Timing for SPI Frame Format (FRF=00), with SPH=1 JTAG Test Clock Input Timing JTAG Test Access Port (TAP) Timing JTAG TRST Timing (RST) Power-On Reset Timing (RST) Power-On Reset Timing Brown-Out Reset Timing Software Reset Timing Watchdog Reset Timing

List of Tables

Table 1.	Documentation Conventions	. 15
Table 3-1.	Memory Map	. 35
Table 4-1.	Exception Types	. 37
Table 4-2.	Interrupts	. 38
Table 5-1.	JTAG Port Pins Reset State	. 41
Table 5-2.	JTAG Instruction Register Commands	. 45
Table 6-1.	System Control Register Map	. 56
Table 6-2.	PLL Mode Control	
Table 7-1.	Flash Protection Policy Combinations	105
Table 7-2.	Flash Register Map	108
Table 8-1.	GPIO Pad Configuration Examples	123
Table 8-2.	GPIO Interrupt Configuration Example	124
Table 8-3.	GPIO Register Map	
Table 9-1.	Available CCP Pins	
Table 9-2.	16-Bit Timer With Prescaler Configurations	162
Table 9-3.	Timers Register Map	
Table 10-1.	Watchdog Timer Register Map	
Table 11-1.	UART Register Map	
Table 12-1.	SSI Register Map	
Table 13-1.	Examples of I ² C Master Timer Period versus Speed Mode	296
Table 13-2.	Inter-Integrated Circuit (I ² C) Interface Register Map	305
Table 13-3.	Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)	
Table 14-1.	Comparator 0 Operating Modes	330
Table 14-2.	Comparator 1 Operating Modes	330
Table 14-3.	Comparator 2 Operating Modes	
Table 14-4.	Internal Reference Voltage and ACREFCTL Field Values	331
Table 14-5.	Analog Comparators Register Map	333
Table 16-1.	Signals by Pin Number	
Table 16-2.	Signals by Signal Name	
Table 16-3.	Signals by Function, Except for GPIO	
Table 16-4.	GPIO Pins and Alternate Functions	
Table 17-1.	Temperature Characteristics	349
Table 17-2.	Thermal Characteristics	349
Table 18-1.	Maximum Ratings	
Table 18-2.	Recommended DC Operating Conditions	350
Table 18-3.	LDO Regulator Characteristics	351
Table 18-4.	Detailed Power Specifications	351
Table 18-5.	Flash Memory Characteristics	
Table 18-6.	Phase Locked Loop (PLL) Characteristics	
Table 18-7.	Clock Characteristics	
Table 18-8.	Analog Comparator Characteristics	
Table 18-9.	Analog Comparator Voltage Reference Characteristics	
Table 18-10.	I ² C Characteristics	
Table 18-11.	SSI Characteristics	
Table 18-12.	JTAG Characteristics	
Table 18-13.	GPIO Characteristics	357

Table 18-14.	Reset Characteristics	357
Table C-1.	Part Ordering Information	379

List of Registers

System	Control	49
Register '		
Register 2	2: Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030	60
Register 3	3: LDO Power Control (LDOPCTL), offset 0x034	61
Register 4	4: Raw Interrupt Status (RIS), offset 0x050	62
Register &		
Register 6	6: Masked Interrupt Status and Clear (MISC), offset 0x058	65
Register 7		
Register 8	3: Run-Mode Clock Configuration (RCC), offset 0x060	67
Register 9		
Register 7	10: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144	72
Register 7	11: Clock Verification Clear (CLKVCLR), offset 0x150	73
Register 7	12: Allow Unregulated LDO to Reset the Part (LDOARST), offset 0x160	74
Register 7	13: Device Identification 1 (DID1), offset 0x004	75
Register 7	14: Device Capabilities 0 (DC0), offset 0x008	77
Register 7	15: Device Capabilities 1 (DC1), offset 0x010	78
Register 7	16: Device Capabilities 2 (DC2), offset 0x014	80
Register 7	17: Device Capabilities 3 (DC3), offset 0x018	82
Register 7		
Register 7	19: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100	85
Register 2	20: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110	86
Register 2		
Register 2	22: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104	88
Register 2	23: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114	90
Register 2	24: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124	92
Register 2	25: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108	94
Register 2		
Register 2	27: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128	98
Register 2	28: Software Reset Control 0 (SRCR0), offset 0x040	100
Register 2	29: Software Reset Control 1 (SRCR1), offset 0x044	101
Register 3	30: Software Reset Control 2 (SRCR2), offset 0x048	103
Internal	Memory	104
Register ²	-	110
Register 2	2: Flash Memory Data (FMD), offset 0x004	111
Register 3	3: Flash Memory Control (FMC), offset 0x008	112
Register 4		
Register &		
Register 6	5: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014	116
Register 7	7: USec Reload (USECRL), offset 0x140	117
Register 8	B: Flash Memory Protection Read Enable (FMPRE), offset 0x130	118
Register 9	P: Flash Memory Protection Program Enable (FMPPE), offset 0x134	119
General	-Purpose Input/Outputs (GPIOs)	120
Register ²		
Register 2	2: GPIO Direction (GPIODIR), offset 0x400	
Register 3	3: GPIO Interrupt Sense (GPIOIS), offset 0x404	129

Register 4:	GPIO Interrupt Both Edges (GPIOIBE), offset 0x408	120
Register 4.	GPIO Interrupt Event (GPIOIEC), offset 0x406	
Register 5:	GPIO Interrupt Mask (GPIOIEV), offset 0x400	
Register 7:	GPIO Raw Interrupt Status (GPIORIS), offset 0x410	
Register 8:	GPIO Masked Interrupt Status (GPIONIS), offset 0x418	
•		
Register 9:	GPIO Interrupt Clear (GPIOICR), offset 0x41C	
Register 10:	GPIO Alternate Function Select (GPIOAFSEL), offset 0x420	
Register 11:	GPIO 2-mA Drive Select (GPIODR2R), offset 0x500	
Register 12:	GPIO 4-mA Drive Select (GPIODR4R), offset 0x504	
Register 13:	GPIO 8-mA Drive Select (GPIODR8R), offset 0x508 GPIO Open Drain Select (GPIOODR), offset 0x50C	
Register 14:		
Register 15:	GPIO Pull-Up Select (GPIOPUR), offset 0x510	
Register 16:	GPIO Pull-Down Select (GPIOPDR), offset 0x514	
Register 17:	GPIO Slew Rate Control Select (GPIOSLR), offset 0x518	
Register 18:	GPIO Digital Enable (GPIODEN), offset 0x51C	
Register 19:	GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0	
Register 20:	GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4	
Register 21:	GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8	
Register 22:	GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC	
Register 23:	GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0	
Register 24:	GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4	
Register 25:	GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8	
Register 26:	GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC	
Register 27:	GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0	
Register 28:	GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4	
Register 29:	GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8	
Register 30:	GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC	
	rpose Timers	
Register 1:	GPTM Configuration (GPTMCFG), offset 0x000	
Register 2:	GPTM TimerA Mode (GPTMTAMR), offset 0x004	
Register 3:	GPTM TimerB Mode (GPTMTBMR), offset 0x008	
Register 4:	GPTM Control (GPTMCTL), offset 0x00C	
Register 5:	GPTM Interrupt Mask (GPTMIMR), offset 0x018	
Register 6:	GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C	
Register 7:	GPTM Masked Interrupt Status (GPTMMIS), offset 0x020	
Register 8:	GPTM Interrupt Clear (GPTMICR), offset 0x024	
Register 9:	GPTM TimerA Interval Load (GPTMTAILR), offset 0x028	
Register 10:	GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C	
Register 11:	GPTM TimerA Match (GPTMTAMATCHR), offset 0x030	
Register 12:	GPTM TimerB Match (GPTMTBMATCHR), offset 0x034	
Register 13:	GPTM TimerA Prescale (GPTMTAPR), offset 0x038	
Register 14:	GPTM TimerB Prescale (GPTMTBPR), offset 0x03C	
Register 15:	GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040	
Register 16:	GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044	
Register 17:	GPTM TimerA (GPTMTAR), offset 0x048	
Register 18:	GPTM TimerB (GPTMTBR), offset 0x04C	
	Timer	194
Register 1:	Watchdog Load (WDTLOAD), offset 0x000	197

Register 2:	Watchdog Value (WDTVALUE), offset 0x004	198
Register 3:	Watchdog Control (WDTCTL), offset 0x008	199
Register 4:	Watchdog Interrupt Clear (WDTICR), offset 0x00C	200
Register 5:	Watchdog Raw Interrupt Status (WDTRIS), offset 0x010	201
Register 6:	Watchdog Masked Interrupt Status (WDTMIS), offset 0x014	202
Register 7:	Watchdog Test (WDTTEST), offset 0x418	203
Register 8:	Watchdog Lock (WDTLOCK), offset 0xC00	204
Register 9:	Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0	205
Register 10:	Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4	206
Register 11:	Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8	207
Register 12:	Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC	208
Register 13:	Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0	209
Register 14:	Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4	210
Register 15:	Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8	
Register 16:	Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC	212
Register 17:	Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0	213
Register 18:	Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4	
Register 19:	Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8	215
Register 20:	Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC	216
Universal A	Asynchronous Receivers/Transmitters (UARTs)	217
Register 1:	UART Data (UARTDR), offset 0x000	224
Register 2:	UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004	226
Register 3:	UART Flag (UARTFR), offset 0x018	228
Register 4:	UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024	230
Register 5:	UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028	231
Register 6:	UART Line Control (UARTLCRH), offset 0x02C	232
Register 7:	UART Control (UARTCTL), offset 0x030	
Register 8:	UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034	
Register 9:	UART Interrupt Mask (UARTIM), offset 0x038	
Register 10:	UART Raw Interrupt Status (UARTRIS), offset 0x03C	
Register 11:	UART Masked Interrupt Status (UARTMIS), offset 0x040	
Register 12:	UART Interrupt Clear (UARTICR), offset 0x044	
Register 13:	UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0	
Register 14:	UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4	
Register 15:	UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8	
Register 16:	UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC	
Register 17:	UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0	
Register 18:	UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4	
Register 19:	UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8	
Register 20:	UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC	
Register 21:	UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0	
Register 22:	UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4	
Register 23:	UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8	
Register 24:	UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC	
	us Serial Interface (SSI)	
Register 1:	SSI Control 0 (SSICR0), offset 0x000	
Register 2:	SSI Control 1 (SSICR1), offset 0x004	
Register 3:	SSI Data (SSIDR), offset 0x008	272

Register 4:	SSI Status (SSISR), offset 0x00C	
Register 5:	SSI Clock Prescale (SSICPSR), offset 0x010	
Register 6:	SSI Interrupt Mask (SSIIM), offset 0x014	
Register 7:	SSI Raw Interrupt Status (SSIRIS), offset 0x018	
Register 8:	SSI Masked Interrupt Status (SSIMIS), offset 0x01C	
Register 9:	SSI Interrupt Clear (SSIICR), offset 0x020	
Register 10:	SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0	
Register 11:	SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4	
Register 12:	SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8	
Register 13:	SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC	
Register 14:	SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0	
Register 15:	SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4	
Register 16:	SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8	
Register 17:	SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC	
Register 18:	SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0	
Register 19:	SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4	
Register 20:	SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8	
Register 21:	SSI PrimeCell Identification 3 (SSIPCelIID3), offset 0xFFC	. 292
Inter-Integra	ated Circuit (I ² C) Interface	293
Register 1:	I ² C Master Slave Address (I2CMSA), offset 0x000	. 307
Register 2:	I ² C Master Control/Status (I2CMCS), offset 0x004	. 308
Register 3:	I ² C Master Data (I2CMDR), offset 0x008	. 312
Register 4:	I ² C Master Timer Period (I2CMTPR), offset 0x00C	. 313
Register 5:	I ² C Master Interrupt Mask (I2CMIMR), offset 0x010	
Register 6:	I ² C Master Raw Interrupt Status (I2CMRIS), offset 0x014	
Register 7:	I ² C Master Masked Interrupt Status (I2CMMIS), offset 0x018	
Register 8:	I ² C Master Interrupt Clear (I2CMICR), offset 0x01C	
Register 9:	I ² C Master Configuration (I2CMCR), offset 0x020	
Register 10:	I ² C Slave Own Address (I2CSOAR), offset 0x000	
Register 11:	I ² C Slave Control/Status (I2CSCSR), offset 0x004	
Register 12:	I ² C Slave Data (I2CSDR), offset 0x008	
Register 13:	I ² C Slave Interrupt Mask (I2CSIMR), offset 0x00C	
Register 14:	I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x010	
Register 15:	I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x014	
Register 16:	I ² C Slave Interrupt Clear (I2CSICR), offset 0x018	
U		
	nparators	
Register 1:	Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00	
Register 2:	Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04	
Register 3:	Analog Comparator Interrupt Enable (ACINTEN), offset 0x08	
Register 4:	Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10	
Register 5:	Analog Comparator Status 0 (ACSTAT0), offset 0x20	
Register 6:	Analog Comparator Status 1 (ACSTAT1), offset 0x40	
Register 7:	Analog Comparator Status 2 (ACSTAT2), offset 0x60	
Register 8:	Analog Comparator Control 0 (ACCTL0), offset 0x24	
Register 9:	Analog Comparator Control 1 (ACCTL1), offset 0x44	
Register 10:	Analog Comparator Control 2 (ACCTL2), offset 0x64	. 339

About This Document

This data sheet provides reference information for the LM3S300 microcontroller, describing the functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex[™]-M3 core.

Audience

This manual is intended for system software developers, hardware designers, and application developers.

About This Manual

This document is organized into sections that correspond to each major feature.

Related Documents

The following documents are referenced by the data sheet, and available on the documentation CD or from the Luminary Micro web site at www.luminarymicro.com:

- ARM® Cortex™-M3 Technical Reference Manual
- ARM® CoreSight Technical Reference Manual
- ARM® v7-M Architecture Application Level Reference Manual
- Stellaris[®] Peripheral Driver Library User's Guide
- Stellaris[®] ROM User's Guide

The following related documents are also referenced:

IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the Luminary Micro web site for additional documentation, including application notes and white papers.

Documentation Conventions

This document uses the conventions shown in Table 1 on page 15.

Table 1. Documentation Conventions

Notation	Meaning					
General Register N	General Register Notation					
REGISTER	APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more than one register. For example, SRCRn represents any (or all) of the three Software Reset Control registers: SRCR0, SRCR1 , and SRCR2 .					
bit	A single bit in a register.					
bit field	Two or more consecutive and related bits.					
offset 0xnnn	A hexadecimal increment to a register's address, relative to that module's base address as specified in "Memory Map" on page 35.					

Notation	Meaning				
Register N	Registers are numbered consecutively throughout the document to aid in referencing them. The register number has no meaning to software.				
reserved	Register bits marked <i>reserved</i> are reserved for future use. In most cases, reserved bits are set to 0; however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.				
уу:хх	The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in that register.				
Register Bit/Field Types	This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field.				
RC	Software can read this field. The bit or field is cleared by hardware after reading the bit/field.				
RO	Software can read this field. Always write the chip reset value.				
R/W	Software can read or write this field.				
R/W1C	Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.				
	This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reported at the time the register was read.				
R/W1S	Software can read or write a 1 to this field. A write of a 0 to a R/W1S bit does not affect the bit value in the register.				
W1C	Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data.				
	This register is typically used to clear the corresponding bit in an interrupt register.				
WO	Only a write by software is valid; a read of the register returns no meaningful data.				
Register Bit/Field Reset Value	This value in the register bit diagram shows the bit/field value after any reset, unless noted.				
0	Bit cleared to 0 on chip reset.				
1	Bit set to 1 on chip reset.				
-	Nondeterministic.				
Pin/Signal Notation					
[]	Pin alternate function; a pin defaults to the signal without the brackets.				
pin	Refers to the physical connection on the package.				
signal	Refers to the electrical signal encoding of a pin.				
assert a signal	Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below).				
deassert a signal	Change the value of the signal from the logically True state to the logically False state.				
SIGNAL	Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.				
SIGNAL	Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.				
Numbers					
x	An uppercase X indicates any of several values is allowed, where X can be any legal pattern. example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, so on.				

Notation	Meaning
0x	Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF. All other numbers within register tables are assumed to be binary. Within conceptual information, binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written without a prefix or suffix.

1 Architectural Overview

The Luminary Micro Stellaris[®] family of microcontrollers—the first ARM® Cortex[™]-M3 based controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package with a small footprint.

The LM3S300 microcontroller is targeted for industrial applications, including test and measurement equipment, factory automation, HVAC and building control, motion control, medical instrumentation, fire and security, and power/energy.

In addition, the LM3S300 microcontroller offers the advantages of ARM's widely available development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community. Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost. Finally, the LM3S300 microcontroller is code-compatible to all members of the extensive Stellaris[®] family; providing flexibility to fit our customers' precise needs.

Luminary Micro offers a complete solution to get to market quickly, with evaluation and development boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong support, sales, and distributor network. See "Ordering and Contact Information" on page 379 for ordering information for Stellaris[®] family devices.

1.1 **Product Features**

The LM3S300 microcontroller includes the following product features:

- 32-Bit RISC Performance
 - 32-bit ARM® Cortex[™]-M3 v7M architecture optimized for small-footprint embedded applications
 - System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism
 - Thumb®-compatible Thumb-2-only instruction set processor core for high code density
 - 25-MHz operation
 - Hardware-division and single-cycle-multiplication
 - Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt handling
 - 21 interrupts with eight priority levels
 - Memory protection unit (MPU), providing a privileged mode for protected operating system functionality
 - Unaligned data access, enabling data to be efficiently packed into memory
 - Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control
- Internal Memory

- 16 KB single-cycle flash
 - · User-managed flash block protection on a 2-KB block basis
 - User-managed flash data programming
 - User-defined and managed flash-protection block
- 4 KB single-cycle SRAM
- General-Purpose Timers
 - Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers. Each GPTM can be configured to operate independently:
 - As a single 32-bit timer
 - As one 32-bit Real-Time Clock (RTC) to event capture
 - For Pulse Width Modulation (PWM)
 - 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock when using an external 32.768-KHz clock as the input
 - User-enabled stalling in periodic and one-shot mode when the controller asserts the CPU Halt flag during debug
 - 16-bit Timer modes
 - · General-purpose timer function with an 8-bit prescaler
 - Programmable one-shot timer
 - Programmable periodic timer
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
 - 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
 - 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal
- ARM FiRM-compliant Watchdog Timer
 - 32-bit down counter with a programmable load register
 - Separate watchdog clock with an enable

- Programmable interrupt generation logic with interrupt masking
- Lock register protection from runaway software
- Reset generation logic with an enable/disable
- User-enabled stalling when the controller asserts the CPU Halt flag during debug
- Synchronous Serial Interface (SSI)
 - Master or slave operation
 - Programmable clock bit rate and prescale
 - Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
 - Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
 - Programmable data frame size from 4 to 16 bits
 - Internal loopback test mode for diagnostic/debug testing
- UART
 - Two fully programmable 16C550-type UARTs
 - Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs to reduce CPU interrupt service loading
 - Programmable baud-rate generator allowing speeds up to 1.5625 Mbps
 - Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
 - FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
 - Standard asynchronous communication bits for start, stop, and parity
 - False-start-bit detection
 - Line-break generation and detection
- Analog Comparators
 - Three independent integrated analog comparators
 - Configurable for output to: drive an output pin or generate an interrupt
 - Compare external pin input to external pin input or to internal programmable voltage reference
- I²C
 - Master and slave receive and transmit operation with transmission speed up to 100 Kbps in Standard mode and 400 Kbps in Fast mode
 - Interrupt generation

- Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing mode
- GPIOs
 - 8-36 GPIOs, depending on configuration
 - 5-V-tolerant input/outputs
 - Programmable interrupt generation as either edge-triggered or level-sensitive
 - Low interrupt latency; as low as 6 cycles and never more than 12 cycles
 - Bit masking in both read and write operations through address lines
 - Pins configured as digital inputs are Schmitt-triggered.
 - Programmable control for GPIO pad configuration:
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables
- Power
 - On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable from 2.25 V to 2.75 V
 - Low-power options on controller: Sleep and Deep-sleep modes
 - Low-power options for peripherals: software controls shutdown of individual peripherals
 - User-enabled LDO unregulated voltage detection and automatic reset
 - 3.3-V supply brown-out detection and reporting via interrupt or reset
- Flexible Reset Sources
 - Power-on reset (POR)
 - Reset pin assertion
 - Brown-out (BOR) detector alerts to system power drops
 - Software reset
 - Watchdog timer reset
 - Internal low drop-out (LDO) regulator output goes unregulated
- Additional Features

- Six reset sources
- Programmable clock source control
- Clock gating to individual peripherals for power savings
- IEEE 1149.1-1990 compliant Test Access Port (TAP) controller
- Debug access via JTAG and Serial Wire interfaces
- Full JTAG boundary scan
- Industrial and extended temperature 48-pin RoHS-compliant LQFP package

1.2 Target Applications

- Factory automation and control
- Industrial control power devices
- Building and home automation
- Stepper motors
- Brushless DC motors
- AC induction motors

1.3 High-Level Block Diagram

Figure 1-1 on page 23 represents the full set of features in the Stellaris[®] 300 series of devices; not all features may be available on the LM3S300 microcontroller.

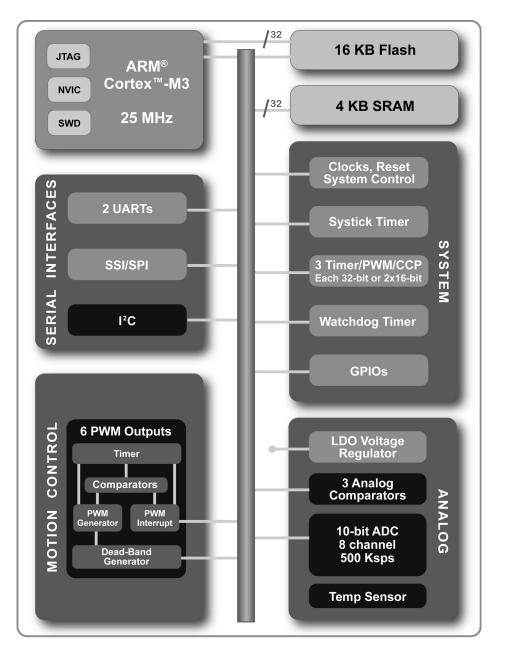


Figure 1-1. Stellaris[®] 300 Series High-Level Block Diagram

1.4 Functional Overview

The following sections provide an overview of the features of the LM3S300 microcontroller. The page number in parenthesis indicates where that feature is discussed in detail. Ordering and support information can be found in "Ordering and Contact Information" on page 379.

1.4.1 ARM Cortex[™]-M3

1.4.1.1 Processor Core (see page 29)

All members of the Stellaris[®] product family, including the LM3S300 microcontroller, are designed around an ARM Cortex[™]-M3 processor core. The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

"ARM Cortex-M3 Processor Core" on page 29 provides an overview of the ARM core; the core is detailed in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

1.4.1.2 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

1.4.1.3 Nested Vectored Interrupt Controller (NVIC)

The LM3S300 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the ARM® Cortex[™]-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions (system handlers) and 21 interrupts.

"Interrupts" on page 37 provides an overview of the NVIC controller and the interrupt map. Exceptions and interrupts are detailed in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual*.

1.4.2 Motor Control Peripherals

To enhance motor control, the LM3S300 controller features Pulse Width Modulation (PWM) outputs.

1.4.2.1 PWM

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control. On the LM3S300, PWM motion control functionality can be achieved through:

The motion control features of the general-purpose timers using the CCP pins

CCP Pins (see page 164)

The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable to support a simple PWM mode with a software-programmable output inversion of the PWM signal.

1.4.3 Analog Peripherals

For support of analog signals, the LM3S300 microcontroller offers three analog comparators.

1.4.3.1 Analog Comparators (see page 328)

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S300 microcontroller provides three independent integrated analog comparators that can be configured to drive an output or generate an interrupt .

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts to cause it to start capturing a sample sequence.

1.4.4 Serial Communications Peripherals

The LM3S300 controller supports both asynchronous and synchronous serial communications with:

- Two fully programmable 16C550-type UARTs
- One SSI module
- One I²C module

1.4.4.1 UART (see page 217)

A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.

The LM3S300 controller includes two fully programmable 16C550-type UARTs that support data transfer speeds up to 1.5625 Mbps. (Although similar in functionality to a 16C550 UART, it is not register-compatible.)

Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs reduce CPU interrupt service loading. The UART can generate individually masked interrupts from the RX, TX, modem status, and error conditions. The module provides a single combined interrupt when any of the interrupts are asserted and are unmasked.

1.4.4.2 SSI (see page 256)

Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface.

The LM3S300 controller includes one SSI module that provides the functionality for synchronous serial communications with peripheral devices, and can be configured to use the Freescale SPI, MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also configurable, and can be set between 4 and 16 bits, inclusive.

The SSI module performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or slave device. As a slave device, the SSI module can also be configured to disable its output, which allows a master device to be coupled with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the SSI module's input clock. Bit rates are generated based on the input clock and the maximum bit rate is determined by the connected peripheral.

1.4.4.3 I²C (see page 293)

The Inter-Integrated Circuit (I²C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL).

The I²C bus interfaces to external I²C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I²C bus may also be used for system testing and diagnostic purposes in product development and manufacture.

The LM3S300 controller includes one I^2C module that provides the ability to communicate to other IC devices over an I^2C bus. The I^2C bus supports devices that can both transmit and receive (write and read) data.

Devices on the I^2C bus can be designated as either a master or a slave. The I^2C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. The four I^2C modes are: Master Transmit, Master Receive, Slave Transmit, and Slave Receive.

A Stellaris[®] I²C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I²C master and slave can generate interrupts. The I²C master generates interrupts when a transmit or receive operation completes (or aborts due to an error). The I²C slave generates interrupts when data has been sent or requested by a master.

1.4.5 System Peripherals

1.4.5.1 **Programmable GPIOs (see page 120)**

General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.

The Stellaris[®] GPIO module is comprised of five physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time Microcontrollers specification) and supports 8-36 programmable input/output pins. The number of GPIOs available depends on the peripherals being used (see "Signal Tables" on page 342 for the signals available to each GPIO pin).

The GPIO module features programmable interrupt generation as either edge-triggered or level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in

both read and write operations through address lines. Pins configured as digital inputs are Schmitt-triggered.

1.4.5.2 Three Programmable Timers (see page 158)

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris[®] General-Purpose Timer Module (GPTM) contains three GPTM blocks. Each GPTM block provides two 16-bit timers/counters that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).

When configured in 32-bit mode, a timer can run as a Real-Time Clock (RTC), one-shot timer or periodic timer. When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event capture or Pulse Width Modulation (PWM) generation.

1.4.5.3 Watchdog Timer (see page 194)

A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or to the failure of an external device to respond in the expected way.

The Stellaris[®] Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

1.4.6 Memory Peripherals

The LM3S300 controller offers both single-cycle SRAM and single-cycle Flash memory.

1.4.6.1 SRAM (see page 104)

The LM3S300 static random access memory (SRAM) controller supports 4 KB SRAM. The internal SRAM of the Stellaris[®] devices is located at offset 0x0000.0000 of the device memory map. To reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

1.4.6.2 Flash (see page 105)

The LM3S300 Flash controller supports 16 KB of flash memory. The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

1.4.7 Additional Features

1.4.7.1 Memory Map (see page 35)

A memory map lists the location of instructions and data in memory. The memory map for the LM3S300 controller can be found in "Memory Map" on page 35. Register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

The *ARM*® *Cortex*™-*M*3 *Technical Reference Manual* provides further information on the memory map.

1.4.7.2 JTAG TAP Controller (see page 39)

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is composed of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.

1.4.7.3 System Control and Clocks (see page 49)

System control determines the overall operation of the device. It provides information about the device, controls the clocking of the device and individual peripherals, and handles reset detection and reporting.

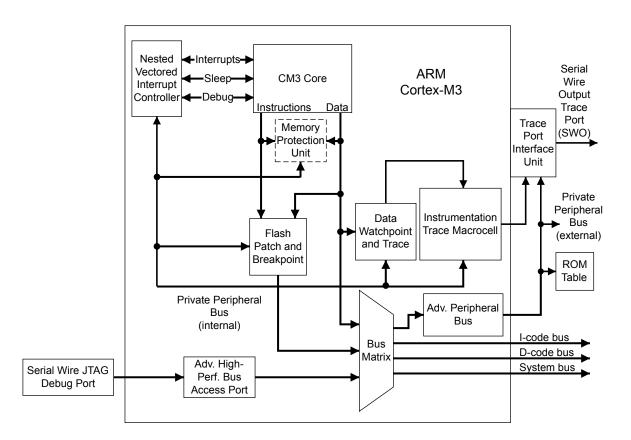
1.4.8 Hardware Details

Details on the pins and package can be found in the following sections:

- "Pin Diagram" on page 341
- Signal Tables" on page 342
- "Operating Characteristics" on page 349
- "Electrical Characteristics" on page 350
- "Package Information" on page 360

2 ARM Cortex-M3 Processor Core

The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Features include:


- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Rapid application execution through Harvard architecture characterized by separate buses for instruction and data.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Migration from the ARM7[™] processor family for better performance and power efficiency.
- Full-featured debug solution with a:
 - Serial Wire JTAG Debug Port (SWJ-DP)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
- Optimized for single-cycle flash usage
- Three sleep modes with clock gating for low power
- Single-cycle multiply instruction and hardware divide
- Atomic operations
- ARM Thumb2 mixed 16-/32-bit instruction set
- 1.25 DMIPS/MHz

The Stellaris[®] family of microcontrollers builds on this core to bring high-performance 32-bit computing to cost-sensitive embedded microcontroller applications, such as factory automation and control, industrial control power devices, building and home automation, and stepper motors.

For more information on the ARM Cortex-M3 processor core, see the ARM® Cortex[™]-M3 Technical Reference Manual. For information on SWJ-DP, see the ARM® CoreSight Technical Reference Manual.

2.1 Block Diagram

Figure 2-1. CPU Block Diagram

2.2 Functional Description

Important: The ARM® Cortex[™]-M3 Technical Reference Manual describes all the features of an ARM Cortex-M3 in detail. However, these features differ based on the implementation. This section describes the Stellaris[®] implementation.

Luminary Micro has implemented the ARM Cortex-M3 core as shown in Figure 2-1 on page 30. As noted in the *ARM*® *Cortex*[™]-*M3 Technical Reference Manual*, several Cortex-M3 components are flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.

2.2.1 Serial Wire and JTAG Debug

Luminary Micro has replaced the ARM SW-DP and JTAG-DP with the ARM CoreSight[™]-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. This means Chapter 12, "Debug Port," of the *ARM*® *Cortex[™]-M3 Technical Reference Manual* does not apply to Stellaris[®] devices.

Preliminary

The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the *CoreSight™ Design Kit Technical Reference Manual* for details on SWJ-DP.

2.2.2 Embedded Trace Macrocell (ETM)

ETM was not implemented in the Stellaris[®] devices. This means Chapters 15 and 16 of the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual* can be ignored.

2.2.3 Trace Port Interface Unit (TPIU)

The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace Port Analyzer. The Stellaris[®] devices have implemented TPIU as shown in Figure 2-2 on page 31. This is similar to the non-ETM version described in the *ARM*® *Cortex*[™]-*M3 Technical Reference Manual*, however, SWJ-DP only provides SWV output for the TPIU.

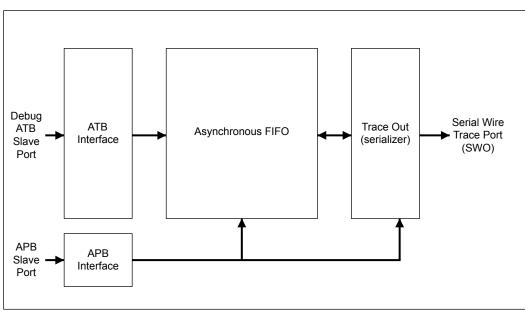


Figure 2-2. TPIU Block Diagram

2.2.4 ROM Table

The default ROM table was implemented as described in the *ARM*[®] *Cortex*[™]-*M*3 *Technical Reference Manual*.

2.2.5 Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) is included on the LM3S300 controller and supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

2.2.6 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC):

Facilitates low-latency exception and interrupt handling

- Controls power management
- Implements system control registers

The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256 levels of priority. The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked (nested) interrupts to enable tail-chaining of interrupts.

You can only fully access the NVIC from privileged mode, but you can pend interrupts in user-mode if you enable the Configuration Control Register (see the ARM® Cortex[™]-M3 Technical Reference Manual). Any other user-mode access causes a bus fault.

All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.

2.2.6.1 Interrupts

The ARM® Cortex[™]-M3 Technical Reference Manual describes the maximum number of interrupts and interrupt priorities. The LM3S300 microcontroller supports 21 interrupts with eight priority levels.

2.2.6.2 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

Functional Description

The timer consists of three registers:

- A control and status counter to configure its clock, enable the counter, enable the SysTick interrupt, and determine counter status.
- The reload value for the counter, used to provide the counter's wrap value.
- The current value of the counter.

A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris[®] devices.

When enabled, the timer counts down from the reload value to zero, reloads (wraps) to the value in the SysTick Reload Value register on the next clock edge, then decrements on subsequent clocks. Writing a value of zero to the Reload Value register disables the counter on the next wrap. When the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

Writing to the Current Value register clears the register and the COUNTFLAG status bit. The write does not trigger the SysTick exception logic. On a read, the current value is the value of the register at the time the register is accessed.

If the core is in debug state (halted), the counter will not decrement. The timer is clocked with respect to a reference clock. The reference clock can be the core clock or an external clock source.

SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features. The reset is 0x0000.0000.

Bit/Field	Name	Туре	Reset	Description
31:17	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
16	COUNTFLAG	R/W	0	Count Flag
				Returns 1 if timer counted to 0 since last time this was read. Clears on read by application. If read by the debugger using the DAP, this bit is cleared on read-only if the MasterType bit in the AHB-AP Control Register is set to 0. Otherwise, the COUNTFLAG bit is not changed by the debugger read.
15:3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	CLKSOURCE	R/W	0	Clock Source
				Value Description
				0 External reference clock. (Not implemented for Stellaris microcontrollers.)
				1 Core clock
				If no reference clock is provided, it is held at 1 and so gives the same time as the core clock. The core clock must be at least 2.5 times faster than the reference clock. If it is not, the count values are unpredictable.
1	TICKINT	R/W	0	Tick Interrupt
				Value Description
				0 Counting down to 0 does not generate the interrupt request to the NVIC. Software can use the COUNTFLAG to determine if ever counted to 0.
				1 Counting down to 0 pends the SysTick handler.
0	ENABLE	R/W	0	Enable
				Value Description
				0 Counter disabled.
				1 Counter operates in a multi-shot way. That is, counter loads with the Reload value and then begins counting down. On reaching 0, it sets the COUNTFLAG to 1 and optionally pends the SysTick handler, based on TICKINT. It then loads the Reload value again, and begins counting.

SysTick Reload Value Register

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the counter reaches 0. It can be any value between 1 and 0x00FF.FFFF. A start value

of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0.

Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is any value from 1 to 0x00FF.FFFF. So, if the tick interrupt is required every 100 clock pulses, 99 must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as single shot, then the actual count down must be written. For example, if a tick is next required after 400 clock pulses, 400 must be written into the RELOAD.

Bit/Field	Name	Туре	Reset	Description
31:24	reserved	RO		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23:0	RELOAD	W1C		Reload Value to load into the SysTick Current Value Register when the counter reaches 0.

SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

Bit/Field	Name	Туре	Reset	Description
31:24	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23:0	CURRENT	W1C	-	Current Value
				Current value at the time the register is accessed. No read-modify-write protection is provided, so change with care.
				This register is write-clear. Writing to it with any value clears the register to 0. Clearing this register also clears the COUNTFLAG bit of the SysTick Control and Status Register.

SysTick Calibration Value Register

The SysTick Calibration Value register is not implemented.

3 Memory Map

The memory map for the LM3S300 controller is provided in Table 3-1 on page 35.

In this manual, register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map. See also Chapter 4, "Memory Map" in the *ARM*® *Cortex*™*-M3 Technical Reference Manual*.

Table 3-1. Memory Map^a

Start	End	Description	For details on registers, see page
Memory			
0x0000.0000	0x0000.3FFF	On-chip flash ^b	109
0x0000.4000	0x1FFF.FFFF	Reserved	-
0x2000.0000	0x2000.0FFF	Bit-banded on-chip SRAM ^c	109
0x2000.1000	0x21FF.FFFF	Reserved	-
0x2200.0000	0x2201.FFFF	Bit-band alias of 0x2000.0000 through 0x200F.FFFF	104
0x2202.0000	0x3FFF.FFFF	Reserved	-
FiRM Peripherals			
0x4000.0000	0x4000.0FFF	Watchdog timer	196
0x4000.1000	0x4000.3FFF	Reserved	-
0x4000.4000	0x4000.4FFF	GPIO Port A	126
0x4000.5000	0x4000.5FFF	GPIO Port B	126
0x4000.6000	0x4000.6FFF	GPIO Port C	126
0x4000.7000	0x4000.7FFF	GPIO Port D	126
0x4000.8000	0x4000.8FFF	SSIO	267
0x4000.9000	0x4000.BFFF	Reserved	-
0x4000.C000	0x4000.CFFF	UART0	223
0x4000.D000	0x4000.DFFF	UART1	223
0x4000.E000	0x4001.FFFF	Reserved	-
Peripherals			I
0x4002.0000	0x4002.07FF	I2C Master 0	306
0x4002.0800	0x4002.0FFF	I2C Slave 0	319
0x4002.1000	0x4002.3FFF	Reserved	-
0x4002.4000	0x4002.4FFF	GPIO Port E	126
0x4002.5000	0x4002.FFFF	Reserved	-
0x4003.0000	0x4003.0FFF	Timer0	169
0x4003.1000	0x4003.1FFF	Timer1	169
0x4003.2000	0x4003.2FFF	Timer2	169
0x4003.3000	0x4003.BFFF	Reserved	-
0x4003.C000	0x4003.CFFF	Analog Comparators	328
0x4003.D000	0x400F.CFFF	Reserved	-
0x400F.D000	0x400F.DFFF	Flash control	109
0x400F.E000	0x400F.EFFF	System control	57

June 04, 2008

			registers, see page
0x400F.F000	0x41FF.FFFF	Reserved	-
0x4200.0000	0x43FF.FFFF	Bit-banded alias of 0x4000.0000 through 0x400F.FFFF	-
0x4400.0000	0xDFFF.FFFF	Reserved	-
Private Peripheral Bus	; ;	I	1
0xE000.0000	0xE000.0FFF	Instrumentation Trace Macrocell (ITM)	ARM® Cortex™-M3 Technical Reference Manual
0xE000.1000	0xE000.1FFF	Data Watchpoint and Trace (DWT)	ARM® Cortex™-M3 Technical Reference Manual
0xE000.2000	0xE000.2FFF	Flash Patch and Breakpoint (FPB)	ARM® Cortex™-M3 Technical Reference Manual
0xE000.3000	0xE000.DFFF	Reserved	-
0xE000.E000	0xE000.EFFF	Nested Vectored Interrupt Controller (NVIC)	ARM® Cortex™-M3 Technical Reference Manual
0xE000.F000	0xE003.FFFF	Reserved	-
0xE004.0000	0xE004.0FFF	Trace Port Interface Unit (TPIU)	ARM® Cortex™-M3 Technical Reference Manual
0xE004.1000	0xFFFF.FFFF	Reserved	-

a. All reserved space returns a bus fault when read or written.

b. The unavailable flash will bus fault throughout this range.

c. The unavailable SRAM will bus fault throughout this range.

4 Interrupts

The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration.

Table 4-1 on page 37 lists all exception types. Software can set eight priority levels on seven of these exceptions (system handlers) as well as on 21 interrupts (listed in Table 4-2 on page 38).

Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt Priority registers. You also can group priorities by splitting priority levels into pre-emption priorities and subpriorities. All of the interrupt registers are described in Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*™-*M3 Technical Reference Manual*.

Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and a Hard Fault. Note that 0 is the default priority for all the settable priorities.

If you assign the same priority level to two or more interrupts, their hardware priority (the lower position number) determines the order in which the processor activates them. For example, if both GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.

See Chapter 5, "Exceptions" and Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual* for more information on exceptions and interrupts.

Exception Type	Vector Number	Priority ^a	Description						
-	0	-	Stack top is loaded from first entry of vector table on reset.						
Reset	1	-3 (highest)	Invoked on power up and warm reset. On first instruction, drops to lowest priority (and then is called the base level of activation). This is asynchronous.						
Non-Maskable Interrupt (NMI)	2	-2	Cannot be stopped or preempted by any exception but reset. This is asynchronous.						
			An NMI is only producible by software, using the NVIC Interrupt Control State register.						
Hard Fault	3	-1	All classes of Fault, when the fault cannot activate due to priority or th configurable fault handler has been disabled. This is synchronous.						
Memory Management	4	settable	MPU mismatch, including access violation and no match. This is synchronous.						
			The priority of this exception can be changed.						
Bus Fault	5	settable	Pre-fetch fault, memory access fault, and other address/memory related faults. This is synchronous when precise and asynchronous when imprecise.						
			You can enable or disable this fault.						
Usage Fault	6	settable	Usage fault, such as undefined instruction executed or illegal state transition attempt. This is synchronous.						
-	7-10	-	Reserved.						
SVCall	11	settable	System service call with SVC instruction. This is synchronous.						

Table 4-1. Exception Types

June 04, 2008

Exception Type	Vector Number	Priority ^a	Description
Debug Monitor	12	settable	Debug monitor (when not halting). This is synchronous, but only active when enabled. It does not activate if lower priority than the current activation.
-	13	-	Reserved.
PendSV	14	settable	Pendable request for system service. This is asynchronous and only pended by software.
SysTick	15	settable	System tick timer has fired. This is asynchronous.
Interrupts	16 and above	settable	Asserted from outside the ARM Cortex-M3 core and fed through the NVIC (prioritized). These are all asynchronous. Table 4-2 on page 38 lists the interrupts on the LM3S300 controller.

a. 0 is the default priority for all the settable priorities.

Table 4-2. Interrupts

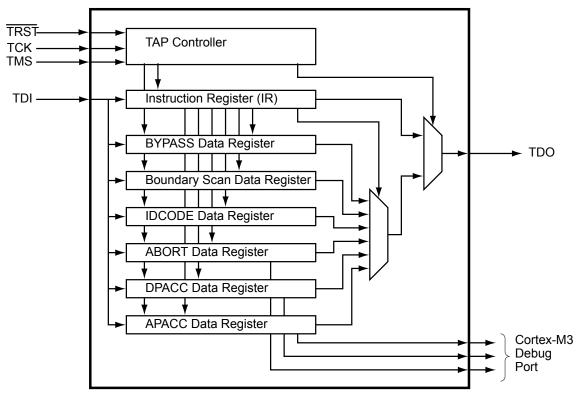
Vector Number	Interrupt Number (Bit in Interrupt Registers)	Description
0-15	-	Processor exceptions
16	0	GPIO Port A
17	1	GPIO Port B
18	2	GPIO Port C
19	3	GPIO Port D
20	4	GPIO Port E
21	5	UART0
22	6	UART1
23	7	SSI0
24	8	I2C0
25-33	9-17	Reserved
34	18	Watchdog timer
35	19	Timer0 A
36	20	Timer0 B
37	21	Timer1 A
38	22	Timer1 B
39	23	Timer2 A
40	24	Timer2 B
41	25	Analog Comparator 0
42	26	Analog Comparator 1
43	27	Analog Comparator 2
44	28	System Control
45	29	Flash Control
46-63	30-47	Reserved

5 JTAG Interface

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.


The JTAG module has the following features:

- IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
- Four-bit Instruction Register (IR) chain for storing JTAG instructions
- IEEE standard instructions:
 - BYPASS instruction
 - IDCODE instruction
 - SAMPLE/PRELOAD instruction
 - EXTEST instruction
 - INTEST instruction
- ARM additional instructions:
 - APACC instruction
 - DPACC instruction
 - ABORT instruction
- Integrated ARM Serial Wire Debug (SWD)

See the *ARM*® *Cortex*™-*M3 Technical Reference Manual* for more information on the ARM JTAG controller.

5.1 Block Diagram

5.2 Functional Description

A high-level conceptual drawing of the JTAG module is shown in Figure 5-1 on page 40. The JTAG module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and TMS inputs. The current state of the TAP controller depends on the current value of TRST and the sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel load registers. The current state of the TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load register determines which DR chain is captured, shifted, or updated during the sequencing of the TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not capture, shift, or update any of the chains. Instructions that are not implemented decode to the BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see Table 5-2 on page 45 for a list of implemented instructions).

See "JTAG and Boundary Scan" on page 355 for JTAG timing diagrams.

5.2.1 JTAG Interface Pins

The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and their associated reset state are given in Table 5-1 on page 41. Detailed information on each pin follows.

Pin Name	Data Direction	Internal Pull-Up	Internal Pull-Down	Drive Strength	Drive Value
TRST	Input	Enabled	Disabled	N/A	N/A
TCK	Input	Enabled	Disabled	N/A	N/A
TMS	Input	Enabled	Disabled	N/A	N/A
TDI	Input	Enabled	Disabled	N/A	N/A
TDO	Output	Enabled	Disabled	2-mA driver	High-Z

Table 5-1. JTAG Port Pins Reset State

5.2.1.1 Test Reset Input (TRST)

The $\overline{\text{TRST}}$ pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP controller and associated JTAG circuitry. When $\overline{\text{TRST}}$ is asserted, the TAP controller resets to the Test-Logic-Reset state and remains there while $\overline{\text{TRST}}$ is asserted. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE.

By default, the internal pull-up resistor on the $\overline{\text{TRST}}$ pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled on PB7/TRST; otherwise JTAG communication could be lost.

5.2.1.2 Test Clock Input (TCK)

The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers that are daisy-chained together can synchronously communicate serial test data between components. During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors can be turned off to save internal power as long as the TCK pin is constantly being driven by an external source.

5.2.1.3 Test Mode Select (TMS)

The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered. Because the TMS pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TMS to change on the falling edge of TCK.

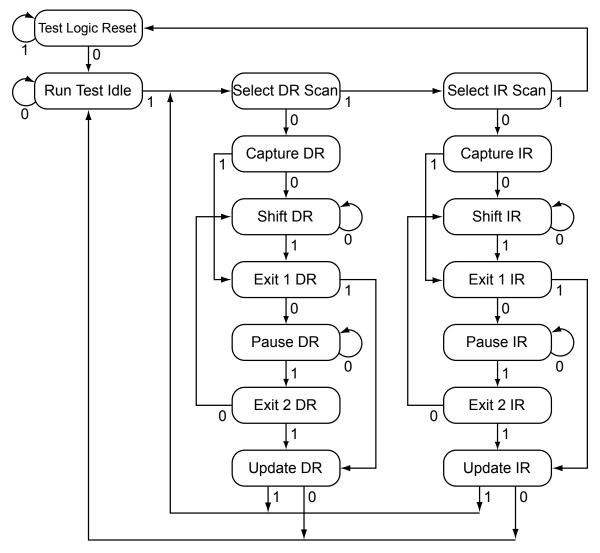
Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine can be seen in its entirety in Figure 5-2 on page 43.

By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC1/TMS; otherwise JTAG communication could be lost.

5.2.1.4 Test Data Input (TDI)

The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TDI to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC2/TDI; otherwise JTAG communication could be lost.


5.2.1.5 Test Data Output (TDO)

The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the *IEEE Standard 1149.1* expects the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable during certain TAP controller states.

5.2.2 JTAG TAP Controller

The JTAG TAP controller state machine is shown in Figure 5-2 on page 43. The TAP controller state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR) or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed information on the function of the TAP controller and the operations that occur in each state, please refer to *IEEE Standard 1149.1*.

5.2.3 Shift Registers

The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift register chain samples specific information during the TAP controller's CAPTURE states and allows this information to be shifted out of TDO during the TAP controller's SHIFT states. While the sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register on TDI. This new data is stored in the parallel load register during the TAP controller's UPDATE states. Each of the shift registers is discussed in detail in "Register Descriptions" on page 45.

5.2.4 Operational Considerations

There are certain operational considerations when using the JTAG module. Because the JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these pins must be considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the method for switching between these two operational modes is described below.

5.2.4.1 GPIO Functionality

When the controller is reset with either a POR or \overline{RST} , the JTAG port pins default to their JTAG configurations. The default configuration includes enabling the pull-up resistors (setting **GPIOPUR** to 1 for PB7 and PC[3:0]) and enabling the alternate hardware function (setting **GPIOAFSEL** to 1 for PB7 and PC[3:0]) on the JTAG pins.

It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and PC[3:0] in the **GPIOAFSEL** register. If the user does not require the JTAG port for debugging or board-level testing, this provides five more GPIOs for use in the design.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply $\overline{\text{RST}}$ or power-cycle the part.

It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris[®] microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

5.2.4.2 ARM Serial Wire Debug (SWD)

In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire debugger must be able to connect to the Cortex-M3 core without having to perform, or have any knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the SWD session begins.

The preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the following states: Run Test Idle, Select DR, Select IR, Capture IR, Exit1 IR, Update IR, Run Test Idle, Select DR, Select IR, Capture IR, Run Test Idle, Select DR, Select IR, and Test-Logic-Reset states.

Stepping through the JTAG TAP Instruction Register (IR) load sequences of the TAP state machine twice without shifting in a new instruction enables the SWD interface and disables the JTAG interface. For more information on this operation and the SWD interface, see the *ARM*® *Cortex*[™]-*M3 Technical Reference Manual* and the *ARM*® *CoreSight Technical Reference Manual*.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG TAP controller is not fully compliant to the *IEEE Standard 1149.1*. This is the only instance where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low probability of this sequence occurring during normal operation of the TAP controller, it should not affect normal performance of the JTAG interface.

5.3 Initialization and Configuration

After a Power-On-Reset or an external reset (\mathbb{RST}), the JTAG pins are automatically configured for JTAG communication. No user-defined initialization or configuration is needed. However, if the user application changes these pins to their GPIO function, they must be configured back to their JTAG functionality before JTAG communication can be restored. This is done by enabling the five JTAG pins ($\mathbb{PB7}$ and $\mathbb{PC}[3:0]$) for their alternate function using the **GPIOAFSEL** register.

5.4 Register Descriptions

There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The registers within the JTAG controller are all accessed serially through the TAP Controller. The registers can be broken down into two main categories: Instruction Registers and Data Registers.

5.4.1 Instruction Register (IR)

The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain with a parallel load register connected between the JTAG TDI and TDO pins. When the TAP Controller is placed in the correct states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the chain and updated, they are interpreted as the current instruction. The decode of the Instruction Register bits is shown in Table 5-2 on page 45. A detailed explanation of each instruction, along with its associated Data Register, follows.

IR[3:0]	Instruction	Description
0000	EXTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction onto the pads.
0001	INTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction into the controller.
0010	SAMPLE / PRELOAD	Captures the current I/O values and shifts the sampled values out of the Boundary Scan Chain while new preload data is shifted in.
1000	ABORT	Shifts data into the ARM Debug Port Abort Register.
1010	DPACC	Shifts data into and out of the ARM DP Access Register.
1011	APACC	Shifts data into and out of the ARM AC Access Register.
1110	IDCODE	Loads manufacturing information defined by the <i>IEEE Standard 1149.1</i> into the IDCODE chain and shifts it out.
1111	BYPASS	Connects TDI to TDO through a single Shift Register chain.
All Others	Reserved	Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.

Table 5-2. JTAG Instruction Register Commands

5.4.1.1 EXTEST Instruction

The EXTEST instruction does not have an associated Data Register chain. The EXTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the outputs and output enables are used to drive the GPIO pads rather than the signals coming from the core. This allows tests to be developed that drive known values out of the controller, which can be used to verify connectivity.

5.4.1.2 INTEST Instruction

The INTEST instruction does not have an associated Data Register chain. The INTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive the signals going into the core rather than the signals coming from the GPIO pads. This allows tests to be developed that drive known values into the controller, which can be used for testing. It is important to note that although the RST input pin is on the Boundary Scan Data Register chain, it is only observable.

5.4.1.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads new test data. Each GPIO pad has an associated input, output, and output enable signal. When the TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while the TAP controller is in the Shift DR state and can be used for observation or comparison in various tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the parallel load registers when the TAP controller enters the Update DR state. This update of the parallel load register preloads data into the Boundary Scan Data Register that is associated with each input, output, and output enable. This preloaded data can be used with the EXTEST and INTEST instructions to drive data into or out of the controller. Please see "Boundary Scan Data Register" on page 47 for more information.

5.4.1.4 ABORT Instruction

The ABORT instruction connects the associated ABORT Data Register chain between TDI and TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates a DAP abort of a previous request. Please see the "ABORT Data Register" on page 48 for more information.

5.4.1.5 DPACC Instruction

The DPACC instruction connects the associated DPACC Data Register chain between TDI and TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to the ARM debug and status registers. Please see "DPACC Data Register" on page 48 for more information.

5.4.1.6 APACC Instruction

The APACC instruction connects the associated APACC Data Register chain between TDI and TDO. This instruction provides read and write access to the APACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to internal components and buses through the Debug Port. Please see "APACC Data Register" on page 48 for more information.

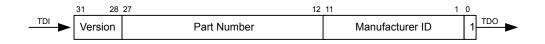
5.4.1.7 IDCODE Instruction

The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and TDO. This instruction provides information on the manufacturer, part number, and version of the ARM core. This information can be used by testing equipment and debuggers to automatically configure their input and output data streams. IDCODE is the default instruction that is loaded into the JTAG Instruction Register when a power-on-reset (POR) is asserted, TRST is asserted, or the Test-Logic-Reset state is entered. Please see "IDCODE Data Register" on page 47 for more information.

5.4.1.8 BYPASS Instruction

The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain by loading them with the BYPASS instruction. Please see "BYPASS Data Register" on page 47 for more information.

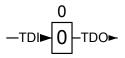
5.4.2 Data Registers


The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan, APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed in the following sections.

5.4.2.1 IDCODE Data Register

The format for the 32-bit IDCODE Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-3 on page 47. The standard requires that every JTAG-compliant device implement either the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB of 0. This allows auto configuration test tools to determine which instruction is the default instruction.

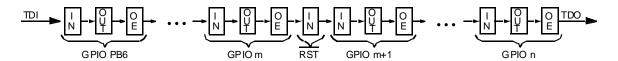
The major uses of the JTAG port are for manufacturer testing of component assembly, and program development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction outputs a value of 0x1BA00477. This value indicates an ARM Cortex-M3, Version 1 processor. This allows the debuggers to automatically configure themselves to work correctly with the Cortex-M3 during debug.


Figure 5-3. IDCODE Register Format

5.4.2.2 BYPASS Data Register

The format for the 1-bit BYPASS Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-4 on page 47. The standard requires that every JTAG-compliant device implement either the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB of 1. This allows auto configuration test tools to determine which instruction is the default instruction.

Figure 5-4. BYPASS Register Format


5.4.2.3 Boundary Scan Data Register

The format of the Boundary Scan Data Register is shown in Figure 5-5 on page 48. Each GPIO pin, in a counter-clockwise direction from the JTAG port pins, is included in the Boundary Scan Data

Register. Each GPIO pin has three associated digital signals that are included in the chain. These signals are input, output, and output enable, and are arranged in that order as can be seen in the figure. In addition to the GPIO pins, the controller reset pin, \overline{RST} , is included in the chain. Because the reset pin is always an input, only the input signal is included in the Data Register chain.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the input, output, and output enable from each digital pad are sampled and then shifted out of the chain to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with the EXTEST and INTEST instructions. These instructions either force data out of the controller, with the EXTEST instruction, or into the controller, with the INTEST instruction.

Figure 5-5. Boundary Scan Register Format

For detailed information on the order of the input, output, and output enable bits for each of the GPIO ports, please refer to the Stellaris[®] Family Boundary Scan Description Language (BSDL) files, downloadable from www.luminarymicro.com.

5.4.2.4 APACC Data Register

The format for the 35-bit APACC Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual.*

5.4.2.5 DPACC Data Register

The format for the 35-bit DPACC Data Register defined by ARM is described in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual*.

5.4.2.6 ABORT Data Register

The format for the 35-bit ABORT Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

6 System Control

System control determines the overall operation of the device. It provides information about the device, controls the clocking to the core and individual peripherals, and handles reset detection and reporting.

6.1 Functional Description

The System Control module provides the following capabilities:

- Device identification, see "Device Identification" on page 49
- Local control, such as reset (see "Reset Control" on page 49), power (see "Power Control" on page 52) and clock control (see "Clock Control" on page 52)
- System control (Run, Sleep, and Deep-Sleep modes), see "System Control" on page 55

6.1.1 Device Identification

Seven read-only registers provide software with information on the microcontroller, such as version, part number, SRAM size, flash size, and other features. See the **DID0**, **DID1**, and **DC0-DC4** registers.

6.1.2 Reset Control

This section discusses aspects of hardware functions during reset as well as system software requirements following the reset sequence.

6.1.2.1 Reset Sources

The controller has six sources of reset:

- **1.** External reset input pin (\overline{RST}) assertion, see " \overline{RST} Pin Assertion" on page 49.
- 2. Power-on reset (POR), see "Power-On Reset (POR)" on page 50.
- 3. Internal brown-out (BOR) detector, see "Brown-Out Reset (BOR)" on page 50.
- 4. Software-initiated reset (with the software reset registers), see "Software Reset" on page 51.
- 5. A watchdog timer reset condition violation, see "Watchdog Timer Reset" on page 52.
- 6. Internal low drop-out (LDO) regulator output

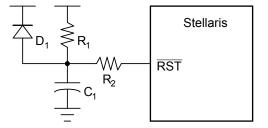
After a reset, the **Reset Cause (RESC)** register is set with the reset cause. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an external reset is the cause, and then all the other bits in the **RESC** register are cleared.

Note: The main oscillator is used for external resets and power-on resets; the internal oscillator is used during the internal process by internal reset and clock verification circuitry.

6.1.2.2 **RST** Pin Assertion

The external reset pin (\mathbb{RST}) resets the controller. This resets the core and all the peripherals except the JTAG TAP controller (see "JTAG Interface" on page 39). The external reset sequence is as follows:

- **1.** The external reset pin (\overline{RST}) is asserted and then de-asserted.
- 2. After RST is de-asserted, the main crystal oscillator is allowed to settle and there is an internal main oscillator counter that takes from 15-30 ms to account for this. During this time, internal reset to the rest of the controller is held active.
- 3. The internal reset is released and the core fetches and loads the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.


The external reset timing is shown in Figure 18-9 on page 358.

6.1.2.3 Power-On Reset (POR)

The Power-On Reset (POR) circuitry detects a rise in power-supply voltage (V_{DD}) and generates an on-chip reset pulse. To use the on-chip circuitry, the \overline{RST} input needs to be connected to the power supply (V_{DD}) through a pull-up resistor (1K to 10K Ω).

The device must be operating within the specified operating parameters at the point when the on-chip power-on reset pulse is complete. The specified operating parameters include supply voltage, frequency, temperature, and so on. If the operating conditions are not met at the point of POR end, the Stellaris[®] controller does not operate correctly. In this case, the reset must be extended using external circuitry. The RST input may be used with the circuit as shown in Figure 6-1 on page 50.

Figure 6-1. External Circuitry to Extend Reset

The R_1 and C_1 components define the power-on delay. The R_2 resistor mitigates any leakage from the \overline{RST} input. The diode (D₁) discharges C₁ rapidly when the power supply is turned off.

The Power-On Reset sequence is as follows:

- **1.** The controller waits for the later of external reset (RST) or internal POR to go inactive.
- 2. After the resets are inactive, the main crystal oscillator is allowed to settle and there is an internal main oscillator counter that takes from 15-30 ms to account for this. During this time, internal reset to the rest of the controller is held active.
- 3. The internal reset is released and the core fetches and loads the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The internal POR is only active on the initial power-up of the controller. The Power-On Reset timing is shown in Figure 18-10 on page 358.

Note: The power-on reset also resets the JTAG controller. An external reset does not.

6.1.2.4 Brown-Out Reset (BOR)

A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used to reset the controller. This is initially disabled and may be enabled by software.

The system provides a brown-out detection circuit that triggers if the power supply (V_{DD}) drops below a brown-out threshold voltage (V_{BTH}) . The circuit is provided to guard against improper operation of logic and peripherals that operate off the power supply voltage (V_{DD}) and not the LDO voltage. If a brown-out condition is detected, the system may generate a controller interrupt or a system reset. The BOR circuit has a digital filter that protects against noise-related detection for the interrupt condition. This feature may be optionally enabled.

Brown-out resets are controlled with the **Power-On and Brown-Out Reset Control (PBORCTL)** register. The BORIOR bit in the **PBORCTL** register must be set for a brown-out condition to trigger a reset.

The brown-out reset sequence is as follows:

- 1. When V_{DD} drops below V_{BTH} , an internal BOR condition is set.
- 2. If the BORWT bit in the **PBORCTL** register is set and BORIOR is not set, the BOR condition is resampled again, after a delay specified by BORTIM, to determine if the original condition was caused by noise. If the BOR condition is not met the second time, then no further action is taken.
- 3. If the BOR condition exists, an internal reset is asserted.
- 4. The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.
- 5. The internal BOR condition is reset after 500 μ s to prevent another BOR condition from being set before software has a chance to investigate the original cause.

The internal Brown-Out Reset timing is shown in Figure 18-11 on page 359.

6.1.2.5 Software Reset

Software can reset a specific peripheral or generate a reset to the entire system .

Peripherals can be individually reset by software via three registers that control reset signals to each peripheral (see the **SRCRn** registers). If the bit position corresponding to a peripheral is set and subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see "System Control" on page 55). Note that all reset signals for all clocks of the specified unit are asserted as a result of a software-initiated reset.

The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3 Application Interrupt and Reset Control register resets the entire system including the core. The software-initiated system reset sequence is as follows:

- 1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control register.
- 2. An internal reset is asserted.
- 3. The internal reset is deasserted and the controller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The software-initiated system reset timing is shown in Figure 18-12 on page 359.

6.1.2.6 Watchdog Timer Reset

The watchdog timer module's function is to prevent system hangs. The watchdog timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out.

After the first time-out event, the 32-bit counter is reloaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset sequence is as follows:

- 1. The watchdog timer times out for the second time without being serviced.
- 2. An internal reset is asserted.
- 3. The internal reset is released and the controller loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The watchdog reset timing is shown in Figure 18-13 on page 359.

6.1.2.7 Low Drop-Out

A reset can be initiated when the internal low drop-out (LDO) regulator output goes unregulated. This is initially disabled and may be enabled by software. LDO is controlled with the **LDO Power Control (LDOPCTL)** register. The LDO reset sequence is as follows:

- 1. LDO goes unregulated and the LDOARST bit in the LDOARST register is set.
- 2. An internal reset is asserted.
- 3. The internal reset is released and the controller fetches and loads the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The LDO reset timing is shown in Figure 18-14 on page 359.

6.1.3 Power Control

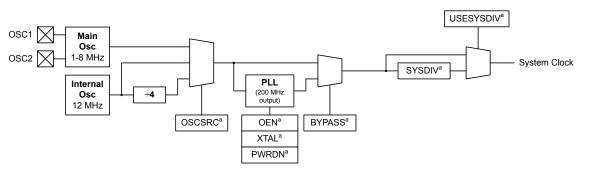
The Stellaris[®] microcontroller provides an integrated LDO regulator that is used to provide power to the majority of the controller's internal logic. The LDO regulator provides software a mechanism to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V to 2.75 V (inclusive)—or 2.5 V \pm 10%. The adjustment is made by changing the value of the VADJ field in the **LDO Power Control (LDOPCTL)** register.

6.1.4 Clock Control

System control determines the control of clocks in this part.

6.1.4.1 Fundamental Clock Sources

There are two clock sources for use in the device:


Internal Oscillator (IOSC): The internal oscillator is an on-chip clock source. It does not require the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%. Applications that do not depend on accurate clock sources may use this clock source to reduce system cost.

Main Oscillator (MOSC): The main oscillator provides a frequency-accurate clock source by one of two means: an external single-ended clock source is connected to the OSCO input pin, or an external crystal is connected across the OSCO input and OSC1 output pins. The crystal value allowed depends on whether the main oscillator is used as the clock reference source to the PLL. If so, the crystal must be one of the supported frequencies between 3.579545 MHz through 8.192 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC through the specified speed of the device. The supported crystals are listed in the XTAL bit field in the RCC register (see page 67).

The internal system clock (SysClk), is derived from any of the two sources plus two others: the output of the main internal PLL, and the internal oscillator divided by four ($3 \text{ MHz} \pm 30\%$). The frequency of the PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive).

Nearly all of the control for the clocks is provided by the **Run-Mode Clock Configuration (RCC)** register.

Figure 6-2 on page 53 shows the logic for the main clock tree. The peripheral blocks are driven by the system clock signal and can be programmatically enabled/disabled.

Figure 6-2. Main Clock Tree

a. These are bit fields within the Run-Mode Clock Configuration (RCC) register.

6.1.4.2 Crystal Configuration for the Main Oscillator (MOSC)

The main oscillator supports the use of a select number of crystals. If the main oscillator is used by the PLL as a reference clock, the supported range of crystals is 3.579545 to 8.192 MHz, otherwise, the range of supported crystals is 1 to 8.192 MHz.

The XTAL bit in the **RCC** register (see page 67) describes the available crystal choices and default programming values.

Software configures the **RCC** register XTAL field with the crystal number. If the PLL is used in the design, the XTAL field value is internally translated to the PLL settings.

6.1.4.3 Main PLL Frequency Configuration

The main PLL is disabled by default during power-on reset and is enabled later by software if required. Software configures the main PLL input reference clock source, specifies the output divisor to set the system clock frequency, and enables the main PLL to drive the output.

If the main oscillator provides the clock reference to the main PLL, the translation provided by hardware and used to program the PLL is available for software in the **XTAL to PLL Translation** (**PLLCFG**) register (see page 71). The internal translation provides a translation within \pm 1% of the targeted PLL VCO frequency.

The Crystal Value field (XTAL) on page 67 describes the available crystal choices and default programming of the **PLLCFG** register. The crystal number is written into the XTAL field of the **Run-Mode Clock Configuration (RCC)** register. Any time the XTAL field changes, the new settings are translated and the internal PLL settings are updated.

6.1.4.4 PLL Modes

The PLL has two modes of operation: Normal and Power-Down

- Normal: The PLL multiplies the input clock reference and drives the output.
- Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

The modes are programmed using the **RCC** register fields (see page 67).

6.1.4.5 PLL Operation

If a PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks) to the new setting. The time between the configuration change and relock is T_{READY} (see Table 18-6 on page 352). During the relock time, the affected PLL is not usable as a clock reference.

The PLL is changed by one of the following:

- Change to the XTAL value in the **RCC** register—writes of the same value do not cause a relock.
- Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure the T_{READY} requirement. The counter is clocked by the main oscillator. The range of the main oscillator has been taken into account and the down counter is set to 0x1200 (that is, ~600 µs at an 8.192 MHz external oscillator clock). Hardware is provided to keep the PLL from being used as a system clock until the T_{READY} condition is met after one of the two changes above. It is the user's responsibility to have a stable clock source (like the main oscillator) before the **RCC** register is switched to use the PLL.

If the main PLL is enabled and the system clock is switched to use the PLL in one step, the system control hardware continues to clock the controller from the oscillator selected by the **RCC** register until the main PLL is stable (T_{READY} time met), after which it changes to the PLL. Software can use many methods to ensure that the system is clocked from the main PLL, including periodically polling the PLLLRIS bit in the **Raw Interrupt Status (RIS)** register, and enabling the PLL Lock interrupt.

6.1.4.6 Clock Verification Timers

There are three identical clock verification circuits that can be enabled though software. The circuit checks the faster clock by a slower clock using timers:

The main oscillator checks the PLL.

- The main oscillator checks the internal oscillator.
- The internal oscillator divided by 64 checks the main oscillator.

If the verification timer function is enabled and a failure is detected, the main clock tree is immediately switched to a working clock and an interrupt is generated to the controller. Software can then determine the course of action to take. The actual failure indication and clock switching does not clear without a write to the **CLKVCLR** register, an external reset, or a POR reset. The clock verification timers are controlled by the PLLVER, IOSCVER, and MOSCVER bits in the **RCC** register.

6.1.5 System Control

For power-savings purposes, the **RCGCn**, **SCGCn**, and **DCGCn** registers control the clock gating logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep mode, respectively. The **DC1**, **DC2** and **DC4** registers act as a write mask for the **RCGCn**, **SCGCn**, and **DCGCn** registers.

In Run mode, the controller is actively executing code. In Sleep mode, the clocking of the device is unchanged but the controller no longer executes code (and is no longer clocked). In Deep-Sleep mode, the clocking of the device may change (depending on the Run mode clock configuration) and the controller no longer executes code (and is no longer clocked). An interrupt returns the device to Run mode from one of the sleep modes. Each mode is described in more detail in this section.

There are four levels of operation for the device defined as:

- Run Mode. Run mode provides normal operation of the processor and all of the peripherals that are currently enabled by the RCGCn registers. The system clock can be any of the available clock sources including the PLL.
- Sleep Mode. Sleep mode is entered by the Cortex-M3 core executing a WFI (Wait for Interrupt) instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® CortexTM-M3 Technical Reference Manual for more details.

In Sleep mode, the Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **SCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when the auto-clock gating is disabled. The system clock has the same source and frequency as that during Run mode.

■ **Deep-Sleep Mode.** Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the *ARM*® *Cortex*TM-*M3 Technical Reference Manual* for more details.

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **DCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when auto-clock gating is disabled. The system clock source is the main oscillator by default or the internal oscillator specified in the **DSLPCLKCFG** register if one is enabled. When the **DSLPCLKCFG** register is used, the internal oscillator is powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the time of the WFI instruction, hardware will power the PLL down and override the SYSDIV field of the active **RCC** register to be /16 or /64, respectively. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep duration.

6.2 Initialization and Configuration

The PLL is configured using direct register writes to the **RCC** register. The steps required to successfully change the PLL-based system clock are:

- 1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS bit in the **RCC** register. This configures the system to run off a "raw" clock source (using the main oscillator or internal oscillator) and allows for the new PLL configuration to be validated before switching the system clock to the PLL.
- Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN and OEN bits in RCC. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN and OEN bits powers and enables the PLL and its output.
- 3. Select the desired system divider (SYSDIV) in RCC and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller.
- 4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.
- 5. Enable use of the PLL by clearing the BYPASS bit in RCC.

Note: If the BYPASS bit is cleared before the PLL locks, it is possible to render the device unusable.

6.3 Register Map

Table 6-1 on page 56 lists the System Control registers, grouped by function. The offset listed is a hexadecimal increment to the register's address, relative to the System Control base address of 0x400F.E000.

Note: Spaces in the System Control register space that are not used are reserved for future or internal use by Luminary Micro, Inc. Software should not modify any reserved memory address.

Offset	Name	Туре	Reset	Description	See page
0x000	DID0	RO	-	Device Identification 0	58
0x004	DID1	RO	-	Device Identification 1	75
0x008	DC0	RO	0x000F.0007	Device Capabilities 0	77
0x010	DC1	RO	0x0000.709F	Device Capabilities 1	78
0x014	DC2	RO	0x0707.1013	Device Capabilities 2	80
0x018	DC3	RO	0xBF00.7FC0	Device Capabilities 3	82
0x01C	DC4	RO	0x0000.001F	Device Capabilities 4	84
0x030	PBORCTL	R/W	0x0000.7FFD	Power-On and Brown-Out Reset Control	60
0x034	LDOPCTL	R/W	0x0000.0000	LDO Power Control	61
0x040	SRCR0	R/W	0x00000000	Software Reset Control 0	100
0x044	SRCR1	R/W	0x00000000	Software Reset Control 1	101

Table 6-1. System Control Register Map

Offset	Name	Туре	Reset	Description	See page
0x048	SRCR2	R/W	0x00000000	Software Reset Control 2	103
0x050	RIS	RO	0x0000.0000	Raw Interrupt Status	62
0x054	IMC	R/W	0x0000.0000	Interrupt Mask Control	63
0x058	MISC	R/W1C	0x0000.0000	Masked Interrupt Status and Clear	65
0x05C	RESC	R/W	-	Reset Cause	66
0x060	RCC	R/W	0x0780.3AC0	Run-Mode Clock Configuration	67
0x064	PLLCFG	RO	-	XTAL to PLL Translation	71
0x100	RCGC0	R/W	0x00000040	Run Mode Clock Gating Control Register 0	85
0x104	RCGC1	R/W	0x00000000	Run Mode Clock Gating Control Register 1	88
0x108	RCGC2	R/W	0x00000000	Run Mode Clock Gating Control Register 2	94
0x110	SCGC0	R/W	0x00000040	Sleep Mode Clock Gating Control Register 0	86
0x114	SCGC1	R/W	0x00000000	Sleep Mode Clock Gating Control Register 1	90
0x118	SCGC2	R/W	0x00000000	Sleep Mode Clock Gating Control Register 2	96
0x120	DCGC0	R/W	0x00000040	Deep Sleep Mode Clock Gating Control Register 0	87
0x124	DCGC1	R/W	0x00000000	Deep Sleep Mode Clock Gating Control Register 1	92
0x128	DCGC2	R/W	0x00000000	Deep Sleep Mode Clock Gating Control Register 2	98
0x144	DSLPCLKCFG	R/W	0x0780.0000	Deep Sleep Clock Configuration	72
0x150	CLKVCLR	R/W	0x0000.0000	Clock Verification Clear	73
0x160	LDOARST	R/W	0x0000.0000	Allow Unregulated LDO to Reset the Part	74

6.4 Register Descriptions

All addresses given are relative to the System Control base address of 0x400F.E000.

Register 1: Device Identification 0 (DID0), offset 0x000

This register identifies the version of the device.

Base	vice Ider e 0x400F.E et 0x000		on 0 (D	ID0)														
	e RO, rese	:t -																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	reserved		VER							rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		MAJOR										MIN	IOR	1	1	·		
Type Reset	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -		
I	Bit/Field		Nar	ne	٦	Гуре	Reset	. C	Description									
со										Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
30:28 VER RO 0x0 DID0 Version																		
								This field defines the DID0 register format versi is numeric. The value of the VER field is encod Value Description 0x0 Initial DID0 register format definition for Sandstorm-class devices.					ncoded a	as follow				
	27:16		reser	ved		RO	0x0	c		ity with f	uture pr	oducts, t	the value	reserved bit. To provide le of a reserved bit should b ration.				
	15:8		MAJ	OR		RO	-	Ν	/lajor Rev	vision								
				This field specifies the major revision number of the device. Trevision reflects changes to base layers of the design. The major number is indicated in the part number as a letter (A for first reforms for second, and so on). This field is encoded as follows:									ajor revision					
								Value Description										
								(0x0 Re	vision A	(initial c	levice)						
								(Dx1 Re	vision B	(first ba	ise layer	revisior	ו)				
								(0x2 Re	evision C	(secon	d base la	ayer revi	ision)				
and so on.																		

Bit/Field	Name	Туре	Reset	Description
7:0	MINOR	RO	-	Minor Revision
				This field specifies the minor revision number of the device. The minor revision reflects changes to the metal layers of the design. The MINOR field value is reset when the MAJOR field is changed. This field is numeric and is encoded as follows:
				Value Description
				0x0 Initial device, or a major revision update.
				0x1 First metal layer change.
				0x2 Second metal layer change.
				and so on.

Register 2: Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030

This register is responsible for controlling reset conditions after initial power-on reset.

Power-On and Brown-Out Reset Control (PBORCTL)

Base 0x400F.E000

Offset 0x030 Type R/W, reset 0x0000.7FFD

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				•		•	•	re	served	•				•	'	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	1		1	BOF	RTIM		1	I			1	BORIOR	BORWT
Type Reset	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1							
Bit/Field Name Type Reset										n						
	31:16 reserved RO 0x0								Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.							
	15:2 BORTIM R/W 0x1FF							F	BOR Time Delay							
									This field s the BOR o							ayed before
								i	The width internal os counter va	scillator	(IOSC) fi	requenc	y of 12 M			
	1		BOR	IOR	F	R/W	0		BOR Interrupt or Reset							
									This bit controls how a BOR event is signaled to the contro reset is signaled. Otherwise, an interrupt is signaled.							ller. If set, a
	0		BOR	RWT	F	R/W	1		BOR Wait	and Ch	eck for N	loise				
									This bit sp is not set.	ecifies tl	he respo	nse to a	brown-o	ut signa	l assertic	n if BORIOR
										OSC per errupt is	riods and signalle	l resamp d. If no l	oles the longer a	BOR ou	tput. If s	ller waits till asserted, al assertion
									If BORWT is condition i						e output a	and any

Register 3: LDO Power Control (LDOPCTL), offset 0x034

The <code>VADJ</code> field in this register adjusts the on-chip output voltage (V $_{OUT}$).

Base Offse	e 0x400F. et 0x034		ol (LDC)PCTL)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	•	•				rese	erved		'			•	•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15	14	13	12	1	i erved	, ⁹	0	·	1	5	1	1	I NDJ	<u>'</u>	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	I R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Na	me	٦	Гуре	Reset	D	escriptio	n						
31:6 reserved RO 0 Software should not rely on the value of a reserved bit. To pro compatibility with future products, the value of a reserved bit s preserved across a read-modify-write operation.																
	5:0		VA	DJ	F	₹/W	0x0	LI	DO Outp	out Volta	ge					
										sets the field are				The prog	grammin	g values for
								V	/alue	V _{OUT}	(V)					
								0	x00	2.50						
								0	x01	2.45						
								0	x02	2.40						
								0	x03	2.35						
									x04	2.30						
									x05	2.25						
										F Reser	rved					
									x1B	2.75						
									x1C	2.70						
									x1D	2.65						
									x1E	2.60						
								0	x1F	2.55						

Register 4: Raw Interrupt Status (RIS), offset 0x050

Central location for system control raw interrupts. These are set and cleared by hardware.

Base Offse	v Interru 0x400F.E et 0x050 RO, rese	E000		6)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1		· ·			r	eserved	т т				1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I	15	14	13	12	11	10	9	8	7	6	5	4	3	2		0
Turna	RO	RO	RO	RO	reserved RO	RO	DO	RO	RO	PLLLRIS	CLRIS RO	IOFRIS RO	MOFRIS RO	LDORIS RO	BORRIS	PLLFRIS
Type Reset	0	0 0	0	0	0	0	RO 0	RU 0	0	0	0	0	0 0	0 0	0	0 0
E	Bit/Field		Nar	me	T	уре	Rese	t	Descriptio	on						
31:7 reserved RO 0 Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation.												•				
6 PLLLRIS RO 0 PLL Lock Raw Interrupt Status																
This bit is set when the PLL T _{READY}								v Timer	asserts.							
	5		CLF	ิรเร	F	20	0		Current L							
									This bit is	set if the	LDO's	CLE out	tput asse	erts.		
	4		IOFI	RIS	F	ર૦	0		Internal C	scillator l	Fault Ra	aw Interr	rupt Stat	us		
									This bit is	set if an	internal	oscillate	or fault is	s detecte	ed.	
	3		MOF		r	RO	0		Main Oca	illator Fo	ult Dow	Intorrup	t Statua			
	3		WOF	RIS	Г	χŪ	0		Main Osc This bit is							
										Selliali	14111 050			lecleu.		
	2		LDO	RIS	F	20	0		LDO Pow	er Unreg	ulated F	Raw Inte	errupt Sta	atus		
									This bit is	set if a L	DO volt	age is u	nregulat	ed.		
	1		BOR	RIS	F	RO	0		Brown-Ou	ut Reset F	Raw Inte	errupt St	tatus			
								This bit is the raw interrupt status for any brown-out conditions. If se a brown-out condition is currently active. This is an unregistered sig from the brown-out detection circuit. An interrupt is reported if the BOF bit in the IMC register is set and the BORIOR bit in the PBORCTL register is cleared.								
	0		PLLF	RIS	F	ર૦	0		PLL Fault	Raw Inte	errupt S	tatus				
		This bit is set if a PLL fault is detected (stops oscillating).														

Register 5: Interrupt Mask Control (IMC), offset 0x054

Central location for system control interrupt masks.

Base Offse	rupt Ma 0x400F.E t 0x054 R/W, rese	E000		/IC)													
r	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
								rese	erved								
Type	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Reset																	
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
					reserved					PLLLIM	CLIM	IOFIM	MOFIM	LDOIM	BORIM	PLLFIM	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
В	sit/Field		Nar	ne	Т	уре	Reset	D	escriptio	n							
	31:7		reser	ved	F	20	0			should no						provide hit should be	
										l across a							
	c				F		0	П		Interrupt	Mook						
6 PLLLIM R/W 0 PLL Lock Interrupt Mask																	
This bit specifies whether a current limit detection is promoted to a controller interrupt. If set, an interrupt is generated if PLLLRIS in RIS is set; otherwise, an interrupt is not generated.																	
	is set; otherwise, an interrupt is not generated.																
	5		UL		F	R/W	0		Current Limit Interrupt Mask This bit specifies whether a current limit detection is p								
										pecifies w interrupt.							
									therwise		5 15 501,						
	4				-		0	l a									
	4		IOF	IIVI	F	R/W	0	Internal Oscillator Fault Interrupt Mask This bit specifies whether an internal oscillator fault detection is pr									
									•							is promoted FRIS is set;	
										, an inter				genera		11111010000,	
	3		MOF	=11/1	6	R/W	0	M	lain Osci	illator Fa	ult Inter	unt Mas	sk.				
	0		WICI	1101	1		0							مام بال	4		
									•							s promoted FRIS is set;	
										, an inter				0		,	
	2		LDC	DIM	F	R/W	0	LI	DO Pow	er Unreg	ulated li	nterrupt	Mask				
										becifies w				ated nov	ver situa	ition is	
									-	to a cont			-	•			
								L	DORIS İS	s set; oth	erwise,	an inter	rupt is no	ot genera	ated.		
	1		BOF	RIM	F	R/W	0	В	rown-Ou	ut Reset I	nterrupt	Mask					
								Т	his bit sp	pecifies w	hether	a brown	-out con	dition is	promote	ed to a	
								C	ontroller	interrupt.	. If set, a	an interr	upt is ge		•	IS is set ;	
								of	inerwise	, an inter	rupt is n	ot gene	rated.				

Bit/Field	Name	Туре	Reset	Description
0	PLLFIM	R/W	0	PLL Fault Interrupt Mask
				This bit specifies whether a PLL fault detection is promoted to a controller interrupt. If set, an interrupt is generated if PLLFRIS is set; otherwise, an interrupt is not generated.

Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058

On a read, this register gives the current masked status value of the corresponding interrupt. All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the RIS register (see page 62).

Masked Interrupt Status and Clear (MISC)

Base 0x400F.E000

Offset 0x058 Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			•					res	erved		•				•				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			1		reserved		r r		1	PLLLMIS	CLMIS	IOFMIS	MOFMIS	LDOMIS	BORMIS	reserved			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0	RO 0			
E	Bit/Field		Nar	ne	Ţ	уре	Reset	t D	escriptio	'n									
	31:7		reser	rved	F	RO	0	С	Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.										
	6		PLLL	.MIS	R/	N1C	0	Р	LL Lock	Masked	Interrup	t Status							
									his bit is s y writing			T _{READY}	timer as	serts. Th	e interru	pt is cleared			
	5		CLN	<i>I</i> IS	R/W1C		0	C	Current Limit Masked Interrupt Status										
									his bit is y writing			CLE out	put asse	erts. The	e interrup	t is cleared			
	4		IOF	MIS	R/	N1C	0	Ir	nternal O	scillator	Fault Ma	asked In	terrupt S	Status					
									his bit is leared by				or fault is	detecte	ed. The i	nterrupt is			
	3		MOF	MIS	R/	N1C	0	Ν	Main Oscillator Fault Masked Interrupt Status										
									This bit is set if a main oscillator fault is detected. The interrupt is on by writing a 1 to this bit.										
	2		LDO	MIS	R/	N1C	0	L	LDO Power Unregulated Masked Interrupt Status										
									This bit is set if LDO power is unregulated. The interrupt writing a 1 to this bit.						errupt is	cleared by			
	1		BOR	MIS	R/	N1C	0	В	BOR Masked Interrupt Status										
								S B	et, a brov	wn-out c in the IN	ondition IC regist	was det er is set	ected. A and the I	n interrı BORIOR	upt is rep bit in the	nditions. If oorted if the PBORCTL this bit.			
	0		reserved		reserved		F	20	0	С	oftware s ompatibil reserved	lity with f	future pr	oducts, f	the value	e of a re		provide it should be	

June 04, 2008

Reset Cause (RESC)

Register 7: Reset Cause (RESC), offset 0x05C

This field specifies the cause of the reset event to software. The reset value is determined by the cause of the reset. When an external reset is the cause (EXT is set), all other reset bits are cleared. However, if the reset is due to any other cause, the remaining bits are sticky, allowing software to see all causes.

Base Offse	0x400F.I et 0x05C R/W, res		/													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								re	served	•						
Type	RO	RO 0	RO 0	RO 0	RO	RO	RO 0	RO	RO	RO	RO 0	RO 0	RO	RO	RO 0	RO
Reset	0				0	0		0	0	0			0	0		0
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					rese	rved			1		LDO	SW	WDT	BOR	POR	EXT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W	R/W	R/W	R/W	R/W	R/W
E	Bit/Field		Nar	me	Т	уре	Rese	et	Descriptio	'n						
	31:6		resei	rved		RO	0		Software s compatibil preserved	lity with t	future pr	oducts, t	the valu	e of a re		
	5		LD	0	F	R/W	-		LDO Rese	et						
									When set, generated)O circu	it has lo	st regula	ation and	has
	4		SI	N	F	R/W	-		Software I	Reset						
									When set.	indicate	es a soft	ware res	set is the	e cause o	of the res	set event
	3		WE	TC	F	R/W	-		Watchdog	Timer F	Reset					
									When set,	, indicate	es a wate	chdog re	eset is th	ne cause	of the re	eset even
	2		BC)R	F	R/W	-		Brown-Ou	it Reset						
									When set,	indicate	es a brov	vn-out re	eset is th	ne cause	of the r	eset ever
												in out it				
	1		PC)R	F	R/W	-		Power-On	Reset						
									When set,	, indicate	es a pow	er-on re	set is th	e cause	of the re	eset even
	0		ΕX	кт	F	R/W	-		External F	Reset						
									When set, the reset e		es an ex	ternal re	set (RST	ī asserti	on) is the	e cause o

Register 8: Run-Mode Clock Configuration (RCC), offset 0x060

This register is defined to provide source control and frequency speed.

Base Offse	n-Mode 0x400F. et 0x060 R/W, res	E000	Configu 30.3AC0	ration	(RCC)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		res	erved		ACG		SYSI	VIV	r	USESYSDIV		1	rese	rved	1	
Туре	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	rese	rved	PWRDN	OEN	BYPASS	PLLVER	ï	X	TAL		osc	SRC	IOSCVER	MOSCVER	IOSCDIS	MOSCDIS
Type Reset	RO 0	RO 0	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 1	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nar	ne	Т	уре	Reset	D	escriptio	n						
	31:28		Name reserved			RO	0x0	C	oftware s ompatibil reserved	ity with f	uture pr	oducts,	the value	e of a res		provide it should be
	27		AC	G	F	R/W	0	А	uto Cloc	k Gating						
								G G	•	ontrol (S ontrol (D	CGCn) CGCn)	register register	rs and De rs if the c	eep-Slee	ep-Mode r enters	

Gating Control (DCGCn) registers if the controller enters a Sleep or Deep-Sleep mode (respectively). If set, the SCGCn or DCGCn registers are used to control the clocks distributed to the peripherals when the controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating Control (RCGCn) registers are used when the controller enters a sleep mode.

The $\ensuremath{\textbf{RCGCn}}$ registers are always used to control the clocks in Run mode.

This allows peripherals to consume less power when the controller is in a sleep mode and the peripheral is unused.

Bit/Field	Name	Туре	Reset	Description
26:23	SYSDIV	R/W	0xF	System Clock Divisor
				Specifies which divisor is used to generate the system clock from the PLL output.
				The PLL VCO frequency is 200 MHz.
				Value Divisor (BYPASS=1) Frequency (BYPASS=0)
				0x0 reserved reserved
				0x1 /2 reserved
				0x2 /3 reserved
				0x3 /4 reserved
				0x4 /5 reserved
				0x5 /6 reserved
				0x6 /7 reserved
				0x7 /8 25 MHz
				0x8 /9 22.22 MHz
				0x9 /10 20 MHz
				0xA /11 18.18 MHz
				0xB /12 16.67 MHz
				0xC /13 15.38 MHz
				0xD /14 14.29 MHz
				0xE /15 13.33 MHz
				0xF /16 12.5 MHz (default)
				When reading the Run-Mode Clock Configuration (RCC) register (see page 67), the SYSDIV value is MINSYSDIV if a lower divider was requested and the PLL is being used. This lower value is allowed to divide a non-PLL source.
22	USESYSDIV	R/W	0	Enable System Clock Divider
				Use the system clock divider as the source for the system clock. The system clock divider is forced to be used when the PLL is selected as the source.
21:14	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
13	PWRDN	R/W	1	PLL Power Down
				This bit connects to the PLL PWRDN input. The reset value of 1 powers down the PLL. See Table 6-2 on page 70 for PLL mode control.
12	OEN	R/W	1	PLL Output Enable
				This bit specifies whether the PLL output driver is enabled. If cleared, the driver transmits the PLL clock to the output. Otherwise, the PLL clock does not oscillate outside the PLL module.
				Note: Both PWRDN and OEN must be cleared to run the PLL.

Bit/Field	Name	Туре	Reset	Description		
11	BYPASS	R/W	1	PLL Bypass	;	
				the OSC so source. Oth	nether the system clock is de urce. If set, the clock that driv erwise, the clock that drives t d by the system divider.	
10	PLLVER	R/W	0	PLL Verifica	tion	
				timer is ena	rols the PLL verification timer bled and an interrupt is gene Otherwise, the verification ti	
9:6	XTAL	R/W	0xB	Crystal Valu	e	
					ecifies the crystal value attac r this field is provided below.	hed to the main oscillator. The
				Value	Crystal Frequency (MHz) Not Using the PLL	Crystal Frequency (MHz) Using the PLL
				0x0	1.000	reserved
				0x1	1.8432	reserved
				0x2	2.000	reserved
				0x3	2.4576	reserved
				0x4	3.579	545 MHz
				0x5	3.68	64 MHz
				0x6	4	MHz
				0x7	4.09	96 MHz
				0x8	4.91	52 MHz
				0x9	5	MHz
				0xA	5.1	2 MHz
				0xB	6 MHz (1	reset value)
				0xC	6.14	14 MHz
				0xD	7.37	28 MHz
				0xE	8	MHz
				0xF	8.19	92 MHz
5:4	OSCSRC	R/W	0x0	Oscillator S	ource	
				Picks amon	g the four input sources for the	ne OSC. The values are:
				Value Inpu	t Source	
				0x0 Mair	n oscillator (default)	
				0x1 Inter	nal oscillator	
				0x2 Inter	nal oscillator / 4 (this is nece	ssary if used as input to PLL)
				0x3 rese	rved	
3	IOSCVER	R/W	0	Internal Osc	illator Verification Timer	
				the verificati	on timer is enabled and an inf	rification timer function. If set, terrupt is generated if the timer ification timer is not enabled.

June 04, 2008

Bit/Field	Name	Туре	Reset	Description
2	MOSCVER	R/W	0	Main Oscillator Verification Timer
				This bit controls the main oscillator verification timer function. If set, the verification timer is enabled and an interrupt is generated if the timer becomes inoperative. Otherwise, the verification timer is not enabled.
1	IOSCDIS	R/W	0	Internal Oscillator Disable
				0: Internal oscillator (IOSC) is enabled.
				1: Internal oscillator is disabled.
0	MOSCDIS	R/W	0	Main Oscillator Disable
				0: Main oscillator is enabled (default).
				1: Main oscillator is disabled .

Table 6-2. PLL Mode Control

PWRDN	OEN	Mode
1	Х	Power down
0	0	Normal

Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064

This register provides a means of translating external crystal frequencies into the appropriate PLL settings. This register is initialized during the reset sequence and updated anytime that the XTAL field changes in the **Run-Mode Clock Configuration (RCC)** register (see page 67).

The PLL frequency is calculated using the PLLCFG field values, as follows:

PLLFreq = OSCFreq * (F + 2) / (R + 2)

XTAL to PLL Translation (PLLCFG)

Base 0x400F.E000

Offset 0x064 Type RO, reset -

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1						res	served	1	1	1	1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	0	i D					F			1	Í		1	R	Î	Î	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
E	Bit/Field		Nar	ne	Т	уре	Rese	t [Description								
	31:16		resei	rved	I	RO	0x0	C	Software should not rely on the value of a reserved bit. To p compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.								
	15:14		O	D	I	RO	-	F	PLL OD V	/alue							
								-	This field	specifies	the val	ue suppl	lied to th	e PLL's	OD innu	ıt	
										opeemee		uo ouppi			ob inpe		
									Value D	escriptio	n						
									0x0 D	ivide by [·]	1						
									0x1 D	ivide by 2	2						
									0x2 D	ivide by 4	1						
										eserved							
									0,0 1								
	13:5		F		I	RO	_	F	PLL F Va	lue							
										specifies	s the val	ue suppl	lied to th	e PLL's	F input.		
	4:0		F	•	1	RO	-		PLL R Va								
			1.	•							thour		liad to th		Dinnut		
									i nis tield	specifies	s the val	ue suppl	lied to th	IE PLL'S	к input.		

Register 10: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144

This register is used to automatically switch from the main oscillator to the internal oscillator when entering Deep-Sleep mode. The system clock source is the main oscillator by default. When this register is set, the internal oscillator is powered up and the main oscillator is powered down. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode.

	et 0x144 R/W, res	et 0x078	30.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1		1	r r	rese	rved	1	r	1	1 1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	•				reserved		•	1	1	1	•	1	IOSC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Na	me	T	Гуре	Reset	D	escriptio	n						
	31:1		rese	rved		RO	0x0	cc	ompatibil	ity with	future pr	oducts,	alue of a the value rrite oper	e of a re		provide bit should
	0		108	SC	I	R/W	0	IC	SC Cloo	ck Sourc	e					
									'hen set , SOSCSR(oe clock	source d	uring De	ep-Slee	p (overrid

Deep Sleep Clock Configuration (DSLPCLKCFG) Base 0x400F.E000

Offset 0x144

Register 11: Clock Verification Clear (CLKVCLR), offset 0x150

This register is provided as a means of clearing the clock verification circuits by software. Since the clock verification circuits force a known good clock to control the process, the controller is allowed the opportunity to solve the problem and clear the verification fault. This register clears all clock verification faults. To clear a clock verification fault, the VERCLR bit must be set and then cleared by software. This bit is not self-clearing.

Offse	0x400F. t 0x150 R/W, res	set 0x000	0.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1			1	1	1 1	rese	erved			1	1 1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		1				1		reserved	1			1		1	1	VERCLR
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0
В	it/Field		Nar	me	ſ	уре	Reset	D	escriptio	n						
	31:1		reser	rved		RO	0	C	oftware s ompatibil reserved	ity with f	uture pr	oducts,	the value	e of a re		provide bit should be
	0		VER	CLR	F	R/W	0		lock Veri lears clo			ults.				

Clock Verification Clear (CLKVCLR) Base 0x400F.E000

Register 12: Allow Unregulated LDO to Reset the Part (LDOARST), offset 0x160

This register is provided as a means of allowing the LDO to reset the part if the voltage goes unregulated. Use this register to choose whether to automatically reset the part if the LDO goes unregulated, based on the design tolerance for LDO fluctuation.

Allow Unregulated LDO to Reset the Part (LDOARST)

Base 0x400F.E000

Offset 0x160 Type R/W, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I					1		rese	rved		•				•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ					1		reserved							1	LDOARST
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	٦	Гуре	Reset	De	escriptio	n						
	31:1		reser	ved		RO	0	cc	oftware s ompatibil eserved	ity with f	future pr	oducts, t	he value	e of a re		provide bit should be
	0		LDOA	RST	I	R/W	0		DO Rese							
								W	hen set,	allows	unregula	ted LDC	output	to reset	the par	t.

Register 13: Device Identification 1 (DID1), offset 0x004

This register identifies the device family, part number, temperature range, and package type.

Base Offse	rice Iden 0x400F.E et 0x004 RO, reset	000	on 1 (D	ID1)												
туре	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[T	VE				I	AM			1		PAR		1 1		
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved					TEMP		PK		ROHS	QL	JAL
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO -	RO -	RO -	RO 0	RO 1	RO 1	RO -	RO -
E	Bit/Field		Nar	ne	Т	уре	Reset	I	Descriptio	n						
	31:28		VE	R		RO	0x0	I	DID1 Vers	ion						
								i		. The va	lue of th					sion number s (all other
											register	r format	definitio	n, indica	ting a St	tellaris
	27:24		FA	М		RO	0x0	I	Family							
								I	This field p Luminary I other enco	Micro pro	oduct po	ortfolio. T				hin the follows (all
									Value De	ecription						
									0x0 Ste	ellaris fai	mily of n			that is, al	l device	s with
									ext	ernal pa	irt numb	ers start	ing with	LM3S.		
	23:16		PART	ΓΝΟ		RO	0x19	I	Part Numb	ber						
									This field p value is er							family. The red):
									Value De 0x19 LM		I					
	15:8		reser	ved	l	RO	0	(Software s compatibil preserved	ity with f	uture pr	oducts, t	he valu	e of a res		provide it should be

Bit/Field	Name	Туре	Reset	Description
7:5	TEMP	RO	-	Temperature RangeThis field specifies the temperature rating of the device. The value is encoded as follows (all other encodings are reserved):Value Description0x0Commercial temperature range (0°C to 70°C)0x1Industrial temperature range (-40°C to 85°C)0x2Extended temperature range (-40°C to 105°C)
4:3	PKG	RO	0x1	Package Type This field specifies the package type. The value is encoded as follows (all other encodings are reserved): Value Description 0x1 48-pin LQFP package
2	ROHS	RO	1	RoHS-Compliance This bit specifies whether the device is RoHS-compliant. A 1 indicates the part is RoHS-compliant.
1:0	QUAL	RO	-	Qualification StatusThis field specifies the qualification status of the device. The value is encoded as follows (all other encodings are reserved):Value Description0x0 Engineering Sample (unqualified)0x1 Pilot Production (unqualified)0x2 Fully Qualified

Register 14: Device Capabilities 0 (DC0), offset 0x008

This register is predefined by the part and can be used to verify features.

Base Offse	ice Cap 0x400F.l t 0x008 RO, rese	E000	es 0 (DC	CO)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ			1	1		1	1 1	SR	RAMSZ	I		1	1	I	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[ł	I	r	I I	I	1	т т	FL/	ASHSZ	I	ſ	1	1	ſ	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1
E	Bit/Field		Na	me	٦	Гуре	Rese	t [Descriptio	n						
	31:16		SRA	MSZ		RO	0x000		SRAM Siz		of the o	n-chip S	RAM me	emory.		
									Value [0x000F 4	Descripti I KB of S						
	15:0		FLAS	SHSZ		RO	0x000		Flash Size		of the o	a chia fl	ash mor			
										Descripti				ioi y.		
									0x0007 1	•						

Device Capabilities 1 (DC1)

Register 15: Device Capabilities 1 (DC1), offset 0x010

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: PWM, ADC, Watchdog timer, and debug capabilities. This register also indicates the maximum clock frequency and maximum ADC sample rate. The format of this register is consistent with the **RCGC0**, **SCGC0**, and **DCGC0** clock control registers and the **SRCR0** software reset control register.

Base Offse	0x400F.l et 0x010 RO, rese	E000	-	(1,												
r	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								res	erved		•					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		MINS	YSDIV			rese	erved		MPU	rese	erved	PLL	WDT	SWO	SWD	JTAG
Type Reset	RO 0	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1
E	Bit/Field		Na	me	Т	уре	Reset	D	escriptio	n						
	31:16		rese	rved		RO	0	С	oftware s ompatibi reserved	ity with f	future pr	oducts,	the value	e of a res		provide bit should b
	15:12		MINS	YSDIV		RO	0x7	S	ystem C	lock Divi	ider					
								h	1inimum ardware- ystem clo	depend	ent. See	the RC	C registe	er for ho		
								١	/alue De	escription	n					
								()x7 Sp	ecifies a	a 25-MH	z clock v	with a Pl	L divide	r of 8.	
	11:8		rese	rved		RO	0	С	oftware s ompatibi reserved	ity with f	future pr	oducts,	the value	e of a res		provide bit should b
	7		MF	⊃U		RO	1	Ν	1PU Pres	ent						
								n		present.	See the					Unit (MPL ence Manu
	6:5		rese	rved		RO	0	С	oftware s ompatibi reserved	ity with f	future pr	oducts,	the value	e of a res		provide it should b
	4		Pl	LL		RO	1	Р	LL Prese	ent						
									Vhen set, resent.	indicate	es that th	ne on-ch	ip Phase	e Lockeo	l Loop (I	PLL) is
	3		WI	DT		RO	1	V	Vatchdog	Timer F	Present					
								v	Vhen set	indicate	es that a	watchd	og timer	is prese	nt.	
													-	•		

Bit/Field	Name	Туре	Reset	Description
2	SWO	RO	1	SWO Trace Port Present
				When set, indicates that the Serial Wire Output (SWO) trace port is present.
1	SWD	RO	1	SWD Present
				When set, indicates that the Serial Wire Debugger (SWD) is present.
0	JTAG	RO	1	JTAG Present
				When set, indicates that the JTAG debugger interface is present.

Device Capabilities 2 (DC2)

Register 16: Device Capabilities 2 (DC2), offset 0x014

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparators, General-Purpose Timers, I2Cs, QEIs, SSIs, and UARTs. The format of this register is consistent with the **RCGC1**, **SCGC1**, and **DCGC1** clock control registers and the **SRCR1** software reset control register.

Offset	0x400F t 0x014 RO, res	.E000 et 0x0707	7.1013	-,												
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			reserved			COMP2	COMP1	COMP0			reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		12C0		'	•	reserved	· '		'	SSI0	rese	erved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 1
В	lit/Field		Nar	ne	Т	уре	Rese	et D	Description	n						
	31:27		reser	ved	I	RO	0	C	Software s compatibili preserved	ity with t	future pro	oducts, t	he value	e of a res		provide it should be
	26		CON	1P2	1	RO	1	A	Analog Co	mparate	or 2 Pres	ent				
									Vhen set,				mparato	or 2 is pr	esent.	
	25		CON	1P1	I	RO	1	A	analog Co	mparate	or 1 Pres	ent				
									Vhen set,			•	mparato	or 1 is pr	esent.	
	24		CON	1P0	I	RO	1	A	Analog Co	mparate	or 0 Pres	ent				
									Vhen set,			•	-			
	23:19		reser	ved	I	RO	0	C	Software s compatibili preserved	ity with t	future pro	oducts, t	he value	e of a res		orovide it should be
	18		TIME	R2	I	RO	1	Т	īmer 2 Pr	esent						
								V	Vhen set,	indicate	es that G	eneral-F	Purpose	Timer m	odule 2	is present.
	17		TIME	ER1	I	RO	1	Т	ïmer 1 Pr	esent						
								V	Vhen set,	indicate	es that G	eneral-F	Purpose	Timer m	odule 1	is present.
	16		TIME	ER0	I	RO	1	Т	īmer 0 Pr	esent						
								V	Vhen set,	indicate	es that G	eneral-F	Purpose	Timer m	odule 0	is present.
	15:13		reser	ved	I	RO	0	С	Software s compatibili preserved	ity with t	future pro	oducts, t	he value	e of a res		provide it should be
	12		120	0	I	RO	1	Ľ	2C Modul	e 0 Pre	sent					
								٧	Vhen set,	indicate	es that I2	C modu	le 0 is p	resent.		

Bit/Field	Name	Туре	Reset	Description
11:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSI0	RO	1	SSI0 Present
				When set, indicates that SSI module 0 is present.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	RO	1	UART1 Present
				When set, indicates that UART module 1 is present.
0	UART0	RO	1	UART0 Present
				When set, indicates that UART module 0 is present.

Device Capabilities 3 (DC3)

Register 17: Device Capabilities 3 (DC3), offset 0x018

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparator I/Os, CCP I/Os, ADC I/Os, and PWM I/Os.

Offse	e 0x400F.l et 0x018 e RO, rese		0.7FC0													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	32KHZ	reserved	CCP5	CCP4	CCP3	CCP2	CCP1	CCP0		і I		rese	rved		1	
Type Reset	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	C2O	C2PLUS	C2MINUS	C10	C1PLUS	C1MINUS	C0O	COPLUS	COMINUS			rese	rved		
Type Reset	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Na	me	г	уре	Rese	t D	escriptio	'n						
	31		32K	ΉZ		RO	1	3	2KHz Inp	out Clock	Availat	ole				
										, indicate ed as a 3				ven CCF	P pin is p	present and
	30		rese	rved		RO	0	С	ompatibi	should no lity with fu l across a	uture pr	oducts, t	he value	e of a res		provide it should be
	29		СС	P5		RO	1	C	CP5 Pin	Present						
										, indicate		apture/C	Compare	/PWM p	oin 5 is p	resent.
	28		СС	P4		RO	1	C	CP4 Pin	Present						
								V	hen set	, indicate	s that C	apture/C	Compare	/PWM p	oin 4 is p	resent.
	27		СС	P3		RO	1	С	CP3 Pin	Present						
								V	/hen set	, indicate	s that C	apture/C	Compare	/PWM p	oin 3 is p	resent.
	26		СС	P2		RO	1	С	CP2 Pin	Present						
								V	hen set	, indicate	s that C	apture/C	Compare	/PWM p	oin 2 is p	resent.
	25		СС	P1		RO	1	C	CP1 Pin	Present						
								V	/hen set	, indicate	s that C	apture/C	Compare	/PWM p	oin 1 is p	resent.
	24		СС	P0		RO	1	C	CP0 Pin	Present						
								۷	hen set	, indicate	s that C	apture/C	Compare	/PWM p	oin 0 is p	resent.
	23:15		rese	rved		RO	0	С	ompatibi	should no lity with fu l across a	uture pr	oducts, t	he value	of a res		provide it should be
	14		C2	20		RO	1	C	20 Pin P	resent						
								V	/hen set,	, indicates	s that th	e analog	g compa	rator 2 o	output pir	n is present.

Bit/Field	Name	Туре	Reset	Description
13	C2PLUS	RO	1	C2+ Pin Present
				When set, indicates that the analog comparator 2 (+) input pin is present.
12	C2MINUS	RO	1	C2- Pin Present
				When set, indicates that the analog comparator 2 (-) input pin is present.
11	C10	RO	1	C1o Pin Present
				When set, indicates that the analog comparator 1 output pin is present.
10	C1PLUS	RO	1	C1+ Pin Present
				When set, indicates that the analog comparator 1 (+) input pin is present.
9	C1MINUS	RO	1	C1- Pin Present
				When set, indicates that the analog comparator 1 (-) input pin is present.
8	C0O	RO	1	C0o Pin Present
				When set, indicates that the analog comparator 0 output pin is present.
7	COPLUS	RO	1	C0+ Pin Present
				When set, indicates that the analog comparator 0 (+) input pin is present.
6	COMINUS	RO	1	C0- Pin Present
				When set, indicates that the analog comparator 0 (-) input pin is present.
5:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Device Capabilities 4 (DC4)

Register 18: Device Capabilities 4 (DC4), offset 0x01C

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of GPIOs in the specific device. The format of this register is consistent with the RCGC2, SCGC2, and DCGC2 clock control registers and the SRCR2 software reset control register.

Base Offse	0x400F. et 0x01C RO, rese	E000	0.001F	у-т)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Î	1			1	r r		l erved	r r		1) 	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1			reserved	г г		1	1 1		GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1
E	Bit/Field		Nar	me	-	Гуре	Reset	D	escriptic	n						
	31:5		rese	rved		RO	0	C	ompatibi	should no lity with fi I across a	uture pr	oducts, t	the value	e of a res		provide it should
	4		GPI	OE		RO	1	-		t E Prese , indicate		SPIO Poi	rt E is pr	esent.		
	3		GPI	OD		RO	1			t D Prese , indicate			t D is pr	rosont		
	2		GPI	ос		RO	1			t C Prese			t D is pi	esent.		
										, indicate		SPIO Poi	rt C is pr	esent.		
	1		GPI	OB		RO	1			t B Prese , indicate		SPIO Poi	rt B is pr	esent.		
	0		GPI	OA		RO	1	G	PIO Por	t A Prese	ent					
								V	/hen set	, indicate	s that G	SPIO Poi	rt A is pr	esent.		

84

Register 19: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

	Node		Gating	Control	Regist	er u (Ru	JGC0)									
Offse	0x400F.E et 0x100 R/W, res		00040													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ì		Î	1		1	1 1	rese	n erved	1		1	1 I		1 I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[r		ı	1		rese	erved		1			1	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
E	Bit/Field		Na	me	٦	Гуре	Reset	D	escriptio	n						
	31:4		rese	rved		RO	0	СС	ompatibil	ity with f	uture pr	oducts,		e of a re	ed bit. To p eserved bi	
	3		W	т	I	R/W	0	W	DT Cloc	k Gating) Contro	I				
								re di	ceives a	i clock ai If the uni	nd funct	ions. Ot	herwise,	the uni	dule. If set it is uncloo o the unit g	ked and
	2:0		rese	rved		RO	0	СС	ompatibil	ity with f	uture pr	oducts,		e of a re	ed bit. To p eserved bi	

Run Mode Clock Gating Control Register 0 (RCGC0)

.

Register 20: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.E t 0x110 R/W, res		00040													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[T		1			I	г т	res	erved	1	1	1	1	I	1 I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset				-	-	-	0	0			0	0			0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						rese	erved				-		WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
	Bit/Field 31:4	Ū	Nar	ne	1	⊽pe RO	Reset	S	escriptio oftware s ompatibil	n should n lity with f	ot rely o future pr	n the va	lue of a the value	reserve e of a re	d bit. To p	
	3		WE	DT	F	R/W	0	V T re d	eceives a	ck Gating ontrols th clock a If the uni	g Contro le clock nd funct	l gating fo	or the Wi	DT mod the uni	t is uncloo	, the unit cked and generates
	2:0		reser	ved		RO	0	С		ity with f	future pr	oducts, t	the value	e of a re	d bit. To p served bi	orovide t should be

Sleep Mode Clock Gating Control Register 0 (SCGC0)

Register 21: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	e 0x400F.E et 0x120 R/W, rese		00040													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		r	1		I	1 1	res	erved	I		1	, , , , , , , , , , , , , , , , , , ,		1 1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[ľ		r		1	rese	erved			1		1	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
E	Bit/Field		Na	me	٦	Гуре	Reset	D	escriptic	on						
	31:4		rese	rved		RO	0	С	ompatibi	lity with f	uture pr	oducts, t		e of a re	d bit. To p served bi	provide it should be
	3		W	от	I	R/W	0	V	VDT Cloo	ck Gating	g Contro	d				
								re d	eceives a	a clock a If the uni	nd funct	ions. Ot	herwise,	the uni	t is unclo	t, the unit cked and generates
	2:0		rese	rved		RO	0	С	ompatibi	lity with f	uture pr	oducts, t		e of a re	d bit. To p eserved bi	provide it should be

Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)

Register 22: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base	0x400F. 0x400F. 0x104	E000	Jating	Control	Regist	er 1 (RC	GC1)									
		set 0x000	00000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	reserved			COMP2	COMP1	COMP			reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		I2C0		1	1	reserve	d		-	SSI0	rese	rved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
E	Bit/Field		Nar	me	Ţ	Гуре	Rese	et l	Descriptior	ı						
	31:27		resei	rved		RO	0		Software si compatibili preserved	ty with	future pro	oducts, t	the value	e of a res		provide it should be
	26		CON	/IP2	I	R/W	0		Analog Co	mparat	tor 2 Cloc	k Gating	g			
								1	receives a	clock a the un	and functi	ons. Ot	herwise,	the unit	is unclo	set, the uni ocked and vill generate
	25		CON	/IP1	I	R/W	0		Analog Co	mparat	tor 1 Cloc	k Gating	g			
								1	receives a	clock a the un	and functi	ons. Otl	herwise,	the unit	is unclo	set, the uni ocked and vill generate
	24		CON	/IP0	I	R/W	0		Analog Co	mparat	tor 0 Cloc	k Gating	g			
								1	receives a	clock a the un	and functi	ons. Otl	herwise,	the unit	is unclo	set, the uni icked and vill generate
	23:19		rese	rved		RO	0	(Software sl compatibili preserved	ty with	future pro	oducts, t	the value	e of a res		provide iit should be

Run Mode Clock Gating Control Register 1 (RCGC1)

LM3S300 Microcontroller

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 23: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F t 0x114 R/W, re	.E000 set 0x0000	00000	,	0	, , , , , , , , , , , , , , , , , , ,		,								
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			reserved			COMP2	COMP1	COMP	0	1	reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		I2C0				reserve	d	•	•	SSI0	rese	erved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
-	Bit/Field		Nar	m o	-	īvno	Boog	.+	Descriptic	2						
C	SIVEICIU		INdi	ne		Гуре	Rese	÷L	Descriptic	11						
	31:27		reser	rved		RO	0		Software compatibi preservec	lity with	future pro	oducts, t	the value	e of a res		provide it should be
	26		CON	/IP2	F	R/W	0		Analog C	omparat	or 2 Cloc	k Gating	9			
									receives a	a clock a If the un	and functi	ons. Otl	nerwise,	the unit	is unclo	set, the unit cked and ⁄ill generate
	25		CON	/IP1	F	R/W	0		Analog C	omparat	or 1 Cloc	k Gating	9			
									receives a	a clock a If the un	and functi	ons. Otl	nerwise,	the unit	is unclo	set, the unit cked and /ill generate
	24		CON	/IP0	F	R/W	0		Analog C	omparat	or 0 Cloc	k Gating	9			
									receives a	a clock a If the un	and functi	ons. Otl	nerwise,	the unit	is unclo	set, the unit cked and /ill generate
	23:19		reser	rved		RO	0		Software compatibi preservec	lity with	future pro	oducts, f	the value	e of a res		provide it should be

Sleep Mode Clock Gating Control Register 1 (SCGC1)

LM3S300 Microcontroller

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 24: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F. t 0x124																
Туре		set 0x0000															
I	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			reserved		,	COMP2	COMP1	COMP			reserved			TIMER2	TIMER1	TIMER0	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
I	15	reserved	10	12				reserve	1		·	SSI0		rved	UART1	UART0	
Туре	RO	RO	RO	R/W	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nar	ne	Т	уре	Rese	et l	Descriptio	n							
	31:27		reser	ved	F	20	0		Software s compatibil preserved	ity with t	future pro	oducts, t	he value	e of a res		provide it should be	е
	26 COMP2		F	R/W	0		Analog Co	mparate	or 2 Cloc	k Gating	9						
								1	receives a	clock a f the uni	nd functi	ons. Otł	nerwise,	the unit	is unclo	set, the un cked and ⁄ill generat	
	25		CON	1P1	F	R/W	0		Analog Co	mparate	or 1 Cloc	k Gating	9				
								1	receives a	clock a f the uni	nd functi	ons. Oth	nerwise,	the unit	is unclo	set, the un cked and vill generate	
	24		CON	1P0	F	R/W	0		Analog Co	mparate	or 0 Cloc	k Gating	9				
								1	receives a	clock a f the uni	nd functi	ons. Oth	nerwise,	the unit	is unclo	set, the un cked and /ill generate	
	23:19		reser	ved	F	20	0		Software s compatibil preserved	ity with t	future pro	oducts, t	he value	e of a res		provide it should b	е

Deep Sleep Mode Clock Gating Control Register 1 (DCGC1)

LM3S300 Microcontroller

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 25: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Run	woue	CIUCK	Gating	CONTROL	Registe		JG(J2)									
Offse	0x400F. t 0x108 R/W, res	E000 set 0x000	00000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ		1	1	1	1	1		rese	erved		1		1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	U	0	0	U	U	U	0	0	U	0	0	U	U	U	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-	•	-	I	reserved	<u> </u>				-	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Resei	0	U	0	U	U	0	0	U	0	0	0	0	U	U	U	0
В	sit/Field		Nai	me	г	уре	Reset	D	escriptio	n						
						•										
	31:5		rese	rved		RO	0		oftware s							
									reserved						served b	it should b
				~-	-						. .		·			
	4		GPI	OE	ŀ	R/W	0	Р	ort E Clo	ck Gatir	ng Contr	ol				
																eceives a
																isabled. If a bus fau
								u			su, reau		5 10 110		generate	a bus lau
	3		GPI	OD	F	R/W	0	Р	ort D Clo	ck Gatir	ng Contr	ol				
								Т	his bit co	ntrols th	e clock	gating fo	or Port D	. If set, t	he unit r	eceives a
												,				isabled. If
								th	e unit is i	unclocke	ed, reads	s or write	es to the	unit will	generate	a bus fau
	2		GPI	OC	F	R/W	0	Р	ort C Clo	ock Gatir	ng Contr	ol				
								Т	his bit co	ntrols th	e clock	gating fo	or Port C	. If set, t	he unit r	eceives a
												-				isabled. If a bus fau
	1		GPI	OB	F	R/W	0	Р	ort B Clo	ck Gatir	ng Contr	ol				
								Т	his bit co	ntrols th	e clock	gating fo	or Port B	. If set. t	he unit r	eceives a
								cl	ock and	function	s. Other	wise, the	e unit is	unclock	ed and d	isabled. If a bus fau

Run Mode Clock Gating Control Register 2 (RCGC2)

the unit is unclocked, reads or writes to the unit will generate a bus fault.

Bit/Field	Name	Туре	Reset	Description
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If

June 04, 2008

-		
Prol	iminarv	
1 1 61	iminary	

Downloaded from **Elcodis.com** electronic components distributor

Register 26: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse	0x400F.I et 0x118 R/W, res	E000		y contax	orriogi		0002)										
[31	30	29	28	27	26	25	24 res	23 erved	22	21	20	19	18 I	17 I	16	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			1	1	1	reserved					I	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Na	me	٦	уре	Reset	D	Description								
	31:5		rese	rved		RO	0	С	oftware s ompatibil reserved	ity with f	future pr	oducts, f	the value	e of a re		provide it should	
	4		GPIOE		I	R/W		Ρ	ort E Clo	ck Gatir	ng Contr	ol					
	4							С	lock and	function	s. Other	wise, the	e unit is	unclock	ed and d	eceives a lisabled. I e a bus fau	
	3		GPI	OD	I	R/W	0	Ρ	Port D Clock Gating Control								
								С	lock and	function	s. Other	wise, the	e unit is	unclock	ed and d	receives a lisabled. I e a bus fau	
	2		GPI	OC	I	R/W	0	Р	ort C Clo	ock Gatir	ng Contr	ol					
								С	lock and	function	s. Other	wise, the	e unit is	unclock	ed and d	receives a lisabled. I e a bus fau	
	1		GPI	ЮВ	I	R/W	0	P	ort B Clo	ck Gatir	ng Contr	ol					
								С	lock and	function	s. Other	wise, the	e unit is	unclock	ed and d	eceives a lisabled. I e a bus fau	

Sleep Mode Clock Gating Control Register 2 (SCGC2)

Bit/Field	Name	Туре	Reset	Description
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If

clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 27: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse	0x400F.l et 0x128 R/W, res	E000 et 0x000	00000	Ū		•											
[31	30	29	28	27	26	25	24 rese	23 erved	22	21	20	19	18	17	16	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			1	•		reserved			1			GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nai	Name Type				D	Description								
	31:5		rese	rved	RO 0			C	ompatibi	should n lity with f across a	future pr	oducts, f	the value	e of a re		provide it should b	
	4		GPI	IOE	I	R/W	0	Ρ	ort E Clo	ock Gatir	ng Contr	ol					
	4							cl	ock and	function	s. Other	wise, the	e unit is	unclock	ed and d	eceives a isabled. If a bus fau	
	3		GPI	OD	I	R/W	0	Р	Port D Clock Gating Control								
								cl	ock and	function	s. Other	wise, the	e unit is	unclock	ed and d	eceives a isabled. If a bus fau	
	2		GPI	OC	I	R/W	0	Ρ	ort C Clo	ock Gatir	ng Contr	ol					
								cl	ock and	function	s. Other	wise, the	e unit is	unclock	ed and d	eceives a isabled. If a bus fau	
	1		GPI	ЮB	I	R/W	0	Р	ort B Clo	ock Gatir	ng Contr	ol					
								cl	ock and	function	s. Other	wise, the	e unit is	unclock	ed and d	eceives a isabled. If a bus fau	

Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)

the unit is unclocked, reads or writes to the unit will generate a bus fault.

Bit/Field	Name	Туре	Reset	Description
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If

June 04, 2008

-		
Droi	liminary	
FIG	mmary	/

Downloaded from **Elcodis.com** electronic components distributor

Software Reset Control 0 (SRCR0)

Register 28: Software Reset Control 0 (SRCR0), offset 0x040

Writes to this register are masked by the bits in the **Device Capabilities 1 (DC1)** register.

Base Offse	0x400F. t 0x040 R/W, res	E000	000000	(-,											
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1		1		rese	rved			1	1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1		rese	erved					1	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
E	Bit/Field		Na	me	Т	уре	Reset	t D	escriptio	n						
	31:4		reserved		RO		0	co	ompatibil	ity with f	uture pr	oducts,		e of a re	d bit. To p eserved bi	
	3		W	Т	F	R/W	0	W	DT Rese	et Contro	ol					
								R	eset con	trol for V	Vatchdo	g unit.				
	2:0		rese	rved		RO	0	СС	ompatibil	ity with f	uture pr	oducts,		e of a re	d bit. To p served bi	

Register 29: Software Reset Control 1 (SRCR1), offset 0x044

Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.

Base Offse	0x400F.I t 0x044	E000 et 0x0000			,														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			reserved			COMP2	COMP1	COMP	D	•	reserved			TIMER2	TIMER1	TIMER0			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
		reserved		I2C0				reserve	d			SSI0	rese	erved	UART1	UART0			
Type Reset	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0			
В	Bit/Field		Nar	ne	Т	уре	Rese	et l	Descriptio	'n									
	31:27		reserved			RO	0	(Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
	26		COM	1P2	F	R/W	0	,	Analog Co	omp 2 R	eset Cor	itrol							
	25								Reset control for analog comparator 2.										
	25		CON	1P1	F	R/W	0		Analog Co Reset con				or 1						
	24 CON		1P0	F	R/W	0		Analog Co		0		01 1.							
			001				Ū		Reset con				or 0.						
	23:19		reserved			RO	0	(Software s compatibi preserved	lity with	future pro	oducts, t	the valu	e of a res		provide it should be			
	18		TIME	R2	F	R/W	0	-	Timer 2 R	eset Co	ntrol								
									Reset con			Purpose	Timer r	module 2					
	17		TIME	R1	F	R/W	0		Timer 1 R Reset con			Durnoso	Timor	modulo 1					
	16		TIME	-R0	F	R/W	0		Timer 0 R			uipose		nouule i	•				
	10		TIVIL		I		0		Reset con			ourpose	Timer r	module 0					
	15:13		reser	ved		RO	0	(Software s compatibi preserved	lity with	future pro	oducts, t	the valu	e of a res		provide it should be			
	12		120	0	F	R/W	0	I	2C0 Rese	et Contro	ol								
								I	Reset control for I2C unit 0.										
	11:5		reser	ved		RO	0	(Software s compatibi preserved	lity with	future pro	oducts, t	the valu	e of a res		provide it should be			

Software Reset Control 1 (SRCR1)

June 04, 2008

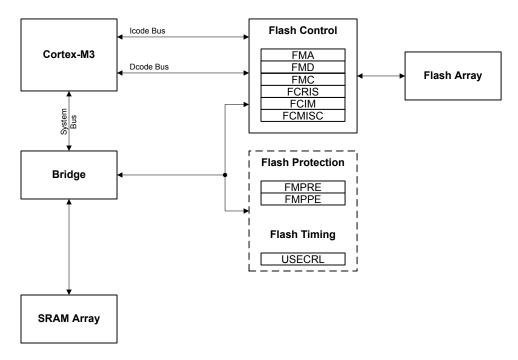
Bit/Field	Name	Туре	Reset	Description
4	SSI0	R/W	0	SSI0 Reset Control
				Reset control for SSI unit 0.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Reset Control
				Reset control for UART unit 1.
0	UART0	R/W	0	UART0 Reset Control
				Reset control for UART unit 0.

Register 30: Software Reset Control 2 (SRCR2), offset 0x048

Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.

Base Offse	0x400F.I t 0x048 R/W, res	E000	00000		~_)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1		1	, ,		rese	rved	1	1	1	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1			reserved				1	1	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Name		T	Туре		D	Description							
31:5			reserved			RO	0	C	Software should not rely on the value of a rese compatibility with future products, the value of a preserved across a read-modify-write operation				e of a re			
	4		GPI	OE	F	R/W	0			set Cont atrol for C		ort E.				
	3		GPI	OD	f	R/W	0			set Cont		ort D.				
	2		GPI	OC	F	R/W	0			set Cont						
	1		GPI	ОВ	F	₹/W	0			ntrol for C		ort C.				
								R	eset cor	ntrol for C	GPIO Po	ort B.				
	0		GPI	OA	F	R/W	0			set Cont		ort A.				

Software Reset Control 2 (SRCR2)


7 Internal Memory

The LM3S300 microcontroller comes with 4 KB of bit-banded SRAM and 16 KB of flash memory. The flash controller provides a user-friendly interface, making flash programming a simple task. Flash protection can be applied to the flash memory on a 2-KB block basis.

7.1 Block Diagram

Figure 7-1 on page 104 illustrates the Flash functions. The dashed boxes in the figure indicate registers residing in the System Control module rather than the Flash Control module.

Figure 7-1. Flash Block Diagram

7.2 Functional Description

This section describes the functionality of the SRAM and Flash memories.

7.2.1 SRAM Memory

The internal SRAM of the Stellaris[®] devices is located at address 0x2000.0000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)

For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:

0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C

With the alias address calculated, an instruction performing a read/write to address 0x2202.000C allows direct access to only bit 3 of the byte at address 0x2000.1000.

For details about bit-banding, please refer to Chapter 4, "Memory Map" in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual.*

7.2.2 Flash Memory

The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB blocks that can be individually protected. The protection allows blocks to be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

See also "Serial Flash Loader" on page 362 for a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface.

7.2.2.1 Flash Memory Timing

The timing for the flash is automatically handled by the flash controller. However, in order to do so, it must know the clock rate of the system in order to time its internal signals properly. The number of clock cycles per microsecond must be provided to the flash controller for it to accomplish this timing. It is software's responsibility to keep the flash controller updated with this information via the **USec Reload (USECRL)** register.

On reset, the **USECRL** register is loaded with a value that configures the flash timing so that it works with the maximum clock rate of the part. If software changes the system operating frequency, the new operating frequency minus 1 (in MHz) must be loaded into **USECRL** before any flash modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value of 0x13 (20-1) must be written to the **USECRL** register.

7.2.2.2 Flash Memory Protection

The user is provided two forms of flash protection per 2-KB flash blocks in two 32-bit wide registers. The protection policy for each form is controlled by individual bits (per policy per block) in the **FMPPEn** and **FMPREn** registers.

- Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed (written) or erased. If cleared, the block may not be changed.
- Flash Memory Protection Read Enable (FMPREn): If set, the block may be executed or read by software or debuggers. If cleared, the block may only be executed and contents of the memory block are prohibited from being accessed as data.

The policies may be combined as shown in Table 7-1 on page 105.

Table 7-1. Flash Protection Policy Combinations

FMPPEn	FMPREn	Protection	
0	0	Execute-only protection. The block may only be executed and may not be written or erased. This mode	
		is used to protect code.	

FMPPEn	FMPREn	Protection
1	0	The block may be written, erased or executed, but not read. This combination is unlikely to be used.
0		Read-only protection. The block may be read or executed but may not be written or erased. This mode is used to lock the block from further modification while allowing any read or execute access.
1	1	No protection. The block may be written, erased, executed or read.

An access that attempts to program or erase a PE-protected block is prohibited. A controller interrupt may be optionally generated (by setting the AMASK bit in the **FIM** register) to alert software developers of poorly behaving software during the development and debug phases.

An access that attempts to read an RE-protected block is prohibited. Such accesses return data filled with all 0s. A controller interrupt may be optionally generated to alert software developers of poorly behaving software during the development and debug phases.

The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence.

7.2.2.3 Flash Protection by Disabling Debug Access

Flash memory may also be protected by permanently disabling access to the Debug Access Port (DAP) through the JTAG and SWD interfaces. This is accomplished by clearing the DBG field of the **FMPRE** register.

Flash Memory Protection Read Enable (DBG field): If set to 0x2, access to the DAP is enabled through the JTAG and SWD interfaces. If clear, access to the DAP is disabled. The DBG field programming becomes permanent, and irreversible, after a commit sequence is performed.

In the initial state, provided from the factory, access is enabled in order to facilitate code development and debug. Access to the DAP may be disabled at the end of the manufacturing flow, once all tests have passed and software loaded. This change will not take effect until the next power-up of the device. Note that it is recommended that disabling access to the DAP be combined with a mechanism for providing end-user installable updates (if necessary) such as the Stellaris boot loader.

Important: Once the DBG field is cleared and committed, this field can never be restored to the factory-programmed value—which means JTAG/SWD interface to the debug module can never be re-enabled. This sequence does NOT disable the JTAG controller, it only disables the access of the DAP through the JTAG or SWD interfaces. The JTAG interface remains functional and access to the Test Access Port remains enabled, allowing the user to execute the IEEE JTAG-defined instructions (for example, to perform boundary scan operations).

If the user will also be using the **FMPRE** bits to protect flash memory from being read as data (to mark sets of 2 KB blocks of flash memory as execute-only), these one-time-programmable bits should be written at the same time that the debug disable bits are programmed. Mechanisms to execute the one-time code sequence to disable all debug access include:

- Selecting the debug disable option in the Stellaris boot loader
- Loading the debug disable sequence into SRAM and running it once from SRAM after programming the final end application code into flash

7.3 Flash Memory Initialization and Configuration

This section shows examples for using the flash controller to perform various operations on the contents of the flash memory.

7.3.1 Changing Flash Protection Bits

As discussed in "Flash Memory Protection" on page 105, changes to the protection bits must be committed before they take effect. The sequence below is used change and commit a block protection bit in the **FMPRE** or **FMPPE** registers. The sequence to change and commit a bit in software is as follows:

- 1. The Flash Memory Protection Read Enable (FMPRE) and Flash Memory Protection Program Enable (FMPPE) registers are written, changing the intended bit(s). The action of these changes can be tested by software while in this state.
- 2. The Flash Memory Address (FMA) register (see page 110) bit 0 is set to 1 if the FMPPE register is to be committed; otherwise, a 0 commits the FMPRE register.
- 3. The Flash Memory Control (FMC) register (see page 112) is written with the COMT bit set. This initiates a write sequence and commits the changes.

There is a special sequence to change and commit the DBG bits in the **Flash Memory Protection Read Enable (FMPRE)** register. This sequence also sets and commits any changes from 1 to 0 in the block protection bits (for execute-only) in the **FMPRE** register.

- 1. The Flash Memory Protection Read Enable (FMPRE) register is written, changing the intended bit(s). The action of these changes can be tested by software while in this state.
- 2. The Flash Memory Address (FMA) register (see page 110) is written with a value of 0x900.
- 3. The Flash Memory Control (FMC) register (see page 112) is written with the COMT bit set. This initiates a write sequence and commits the changes.

Below is an example code sequence to permanently disable the JTAG and SWD interface to the debug module using Luminary Micro's DriverLib peripheral driver library:

```
#include "hw_types.h"
#include "hw_flash.h"
void
permanently_disable_jtag_swd(void)
{
     11
     // Clear the DBG field of the FMPRE register. Note that the value
     // used in this instance does not affect the state of the BlockN
     // bits, but were the value different, all bits in the FMPRE are
     // affected by this function!
     11
     HWREG(FLASH FMPRE) &= 0x3ffffff;
     11
     // The following sequence activates the one-time
     // programming of the FMPRE register.
     11
     HWREG(FLASH FMA) = 0 \times 900;
```

```
HWREG(FLASH_FMC) = (FLASH_FMC_WRKEY | FLASH_FMC_COMT);
//
// Wait until the operation is complete.
//
while (HWREG(FLASH_FMC) & FLASH_FMC_COMT)
{
}
```

7.3.2 Flash Programming

}

The Stellaris[®] devices provide a user-friendly interface for flash programming. All erase/program operations are handled via three registers: **FMA**, **FMD**, and **FMC**.

7.3.2.1 To program a 32-bit word

- 1. Write source data to the **FMD** register.
- 2. Write the target address to the **FMA** register.
- 3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the **FMC** register.
- 4. Poll the **FMC** register until the WRITE bit is cleared.

7.3.2.2 To perform an erase of a 1-KB page

- 1. Write the page address to the **FMA** register.
- 2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the FMC register.
- 3. Poll the **FMC** register until the ERASE bit is cleared.

7.3.2.3 To perform a mass erase of the flash

- 1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the **FMC** register.
- 2. Poll the **FMC** register until the MERASE bit is cleared.

7.4 Register Map

Table 7-2 on page 108 lists the Flash memory and control registers. The offset listed is a hexadecimal increment to the register's address. The **FMA**, **FMD**, **FMC**, **FCRIS**, **FCIM**, and **FCMISC** registers are relative to the Flash control base address of 0x400F.D000. The **FMPREn**, **FMPPEn**, **USECRL**, **USER_DBG**, and **USER_REGn** registers are relative to the System Control base address of 0x400F.E000.

Offset	Name	Туре	Reset	Description	See page							
Flash Registers (Flash Control Offset)												
0x000	FMA	R/W	0x0000.0000	Flash Memory Address	110							
0x004	FMD	R/W	0x0000.0000	Flash Memory Data	111							

Table 7-2. Flash Register Map

Offset	Name	Туре	Reset	Description	See page
0x008	FMC	R/W	0x0000.0000	Flash Memory Control	112
0x00C	FCRIS	RO	0x0000.0000	Flash Controller Raw Interrupt Status	114
0x010	FCIM	R/W	0x0000.0000	Flash Controller Interrupt Mask	115
0x014	FCMISC	R/W1C	0x0000.0000	Flash Controller Masked Interrupt Status and Clear	116
Flash Reg	gisters (System Control C	Offset)			
0x130	FMPRE	R/W	0x8000.00FF	Flash Memory Protection Read Enable	118
0x134	FMPPE	R/W	0x0000.00FF	Flash Memory Protection Program Enable	119
0x140	USECRL	R/W	0x18	USec Reload	117

7.5 Flash Register Descriptions (Flash Control Offset)

This section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the Flash control base address of 0x400F.D000.

Register 1: Flash Memory Address (FMA), offset 0x000

During a write operation, this register contains a 4-byte-aligned address and specifies where the data is written. During erase operations, this register contains a 1 KB-aligned address and specifies which page is erased. Note that the alignment requirements must be met by software or the results of the operation are unpredictable.

	et 0x000 R/W, res	set 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I	1	I		1	· ·	rese	erved		1	I	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
reserved OFFSET																
Туре	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F	eset 0 0 0 Bit/Field Nar				г	- уре	Reset	D	escriptio	n						
-			110			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110001	D	0001101101							
	31:14 reserved					RO	0x0	C	oftware s ompatibili reserved	ity with	future pr	oducts,	the value	e of a re		provide it should be
	13:0		OFF	SET	F	R/W	0x0	A	ddress C	offset						
Address offset in flash where operation is performed.																

Flash Memory Address (FMA) Base 0x400F.D000

Register 2: Flash Memory Data (FMD), offset 0x004

This register contains the data to be written during the programming cycle or read during the read cycle. Note that the contents of this register are undefined for a read access of an execute-only block. This register is not used during the erase cycles.

Base Offse	0x400F. et 0x004	-	ta (FMI 0.0000))												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	1		ı I	1	1 I	DA	I ATA	1	r		1	1	r	·
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1			1		D	ATA	1	1		1	1	1	'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nai	me	Т	уре	Reset	D	escriptio	n						
	31:0		DA	TA	F	R/W	0x0	D	ata Valu	е						
	Data value for write operation.															

June 04, 2008

Register 3: Flash Memory Control (FMC), offset 0x008

When this register is written, the flash controller initiates the appropriate access cycle for the location specified by the **Flash Memory Address (FMA)** register (see page 110). If the access is a write access, the data contained in the **Flash Memory Data (FMD)** register (see page 111) is written.

This is the final register written and initiates the memory operation. There are four control bits in the lower byte of this register that, when set, initiate the memory operation. The most used of these register bits are the ERASE and WRITE bits.

It is a programming error to write multiple control bits and the results of such an operation are unpredictable.

Flas	sh Mem	ory Co	ntrol (F	MC)												
Base Offse	e 0x400F.l et 0x008 R/W, res	D000		,												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Ĩ		1	1	1	I	r r	WF	RKEY		I	I	1	1	I	1
Туре	WO	WO	WO	WO	wo	WO	wo	WO	wo	WO	WO	WO	wo	wo	WO	wo
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					1		erved		1				COMT	MERASE	ERASE	WRITE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Na	me	٦	Гуре	Reset	C	escriptio	n						
	31:16		WR	KEY	,	WO	0x0	F	lash Writ	e Kev						
	01.10						0,10			,						
														ed to mir 42 must		
														C register		
								v	alue are i	ignored.	A read	of this fi	eld retu	rns the va	alue 0.	
	15:4		rese	rved		RO	0x0	S	oftware s	should n	ot rely o	n the va	alue of a	reserved	d bit. To	provide
								С	ompatibil	ity with f	future pr	oducts,	the valu	e of a res		•
								р	reserved	across	a read-r	nodify-w	rite ope	eration.		
	3		CO	MT	I	R/W	0	C	commit R	egister V	/alue					
								C	Commit (v	vrite) of	register	value to	nonvol	atile stora	age. A w	rite of 0 h
								n	o effect c	on the st	ate of th	is bit.				
														ccess is	•	
									revious c ommit ac			•			d; other	wise, if th
									his can ta			•	110100	inica.		
										une up t	ο ου μο.					
	2		MER	ASE	I	R/W	0	Ν	lass Eras	se Flash	Memor	у				
									this bit is rite of 0 l						e is all e	erased. A
								р	revious n	nass era	ise acce	ess is co	mplete,		urned; c	vided. If th otherwise, urned.
									his can ta					•		
										une up t	5 <u>200</u> m	0.				

Bit/Field	Name	Туре	Reset	Description
1	ERASE	R/W	0	Erase a Page of Flash Memory
				If this bit is set, the page of flash main memory as specified by the contents of FMA is erased. A write of 0 has no effect on the state of this bit.
				If read, the state of the previous erase access is provided. If the previous erase access is complete, a 0 is returned; otherwise, if the previous erase access is not complete, a 1 is returned.
				This can take up to 25 ms.
0	WRITE	R/W	0	Write a Word into Flash Memory
				If this bit is set, the data stored in FMD is written into the location as specified by the contents of FMA . A write of 0 has no effect on the state of this bit.
				If read, the state of the previous write update is provided. If the previous write access is complete, a 0 is returned; otherwise, if the write access is not complete, a 1 is returned.
				This can take up to 50 µs.

June 04, 2008

Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C

This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled if the corresponding FCIM register bit is set.

Flash Controller Raw Interrupt Status (FCRIS)

Base 0x400F.D000 Offset 0x00C Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1		1		re	served		1			1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	15				11	10	9		7		5				1	
	15	14	13	12	1	1	reser	8	· · ·	6	1	4	3	2	PRIS	0 ARIS
-																
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nai	me		Туре	Reset		Descriptio	n						
	24.0			m i a al			00		Cofficience	المراجع والمراجع					1 h:4 Ta	- u - u i el -
31:2 reserved RO 0x0 Software should not rely compatibility with future									,							
									preserved	across	a read-r	nodify-w	rite opei	ration.		
	1		PR	lS		RO	0		Programm	ing Rav	w Interru	pt Status	6			
									This bit inc	U				roaramm	nina cvel	a lfeat th
									programm				•	0	0,	,
									not comple		0	0,				
									generated page 112)	•	n the FIa	sn Mem	ory Cor	itrol (FM	IC) regis	ter bits (se
	0 ARIS RO 0						0		Access Ra	w Inter	rupt Stat	us				
									This bit ind			•			-	
									tried to acc Protectior				• •	•		
									Program I	Enable	(FMPPE	n) regis	,		-	

to improperly access the flash.

Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010

This register controls whether the flash controller generates interrupts to the controller.

Offse	0x400F. t 0x010 R/W, res	D000 set 0x000	00.0000	(,											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•			1	1		res	erved	•	J	1	1 1	•	1	
Type	RO	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO	RO	RO	RO 0	RO 0	RO 0	RO 0	RO	RO
Reset	0	U	0	0	0	0	U	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•				•	reserv	red		•		•	1	•	PMASK	AMASK
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Field Name Type Reset Description 31:2 reserved RO 0x0 Software should not rely on a compatibility with future procepreserved across a read-model 1 PMASK R/W 0 Programming Interrupt Mask								oducts, nodify-w	the value	e of a re						
	1		PMA	ASK		R/W	0	F	rogramm	ning Inte	rrupt Ma	ask				
This bit controls the reporting of the programming raw interrupt is to the controller. If set, a programming-generated interrupt is to the controller. Otherwise, interrupts are recorded but suppre- the controller.								is promot								
	0		AMA	SK		R/W	0	A	ccess In	terrupt N	lask					
								c c	ontroller.	lf set, a Otherwi	n acces	s-genera	ated inte	rrupt is j	, promoteo	atus to th I to the ed from tl

Flash Controller Interrupt Mask (FCIM)

Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014

This register provides two functions. First, it reports the cause of an interrupt by indicating which interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the interrupt reporting.

Flash Controller Masked Interrupt Status and Clear (FCMISC) Base 0x400F.D000 Offset 0x014 Type R/W1C, reset 0x0000.0000 28 26 25 24 22 21 20 17 16 31 30 29 27 23 19 18 reserved RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 10 9 6 5 4 2 0 11 8 7 3 1 PMISC AMISC reserved R/W1C R/W1C RO Type 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Name Туре Reset Description 31:2 RO 0x0 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 1 PMISC R/W1C 0 Programming Masked Interrupt Status and Clear This bit indicates whether an interrupt was signaled because a programming cycle completed and was not masked. This bit is cleared by writing a 1. The PRIS bit in the FCRIS register (see page 114) is also cleared when the PMISC bit is cleared. 0 AMISC R/W1C 0 Access Masked Interrupt Status and Clear This bit indicates whether an interrupt was signaled because an improper access was attempted and was not masked. This bit is cleared by writing a 1. The ARIS bit in the FCRIS register is also cleared when the AMISC bit is cleared.

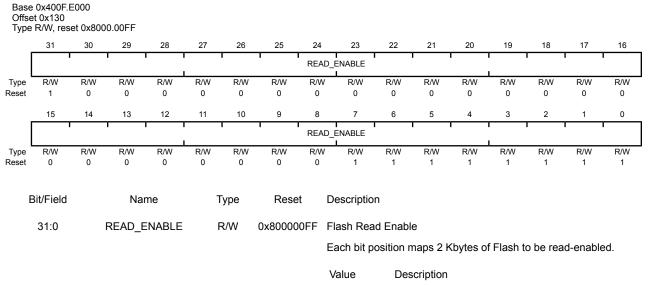
7.6 Flash Register Descriptions (System Control Offset)

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the System Control base address of 0x400F.E000.

Register 7: USec Reload (USECRL), offset 0x140

Note: Offset is relative to System Control base address of 0x400F.E000

This register is provided as a means of creating a 1-µs tick divider reload value for the flash controller. The internal flash has specific minimum and maximum requirements on the length of time the high voltage write pulse can be applied. It is required that this register contain the operating frequency (in MHz -1) whenever the flash is being erased or programmed. The user is required to change this value if the clocking conditions are changed for a flash erase/program operation.

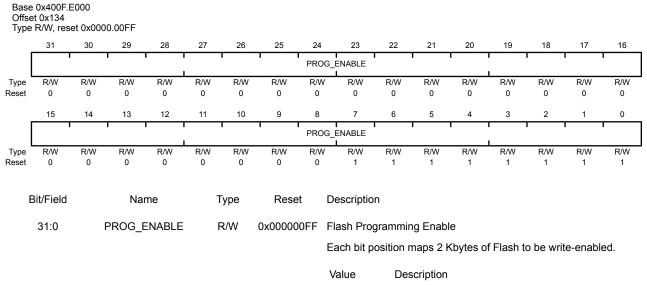

USe	ec Relo	ad (US	ECRL)													
Offse	0x400F. t 0x140 R/W, res															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	r r	rese	i erved	1			r I	1	Î	r
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[reserved USEC USEC USEC USEC USEC USEC USEC USEC															
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	Bit/Field		Nar	ne	٦	уре	Reset	D	escriptio	n						
31:8 reserved RO 0x0								CC	ompatibi	should n lity with f across	uture pr	oducts, f	the value	e of a re		provide it should
	7:0		USE	EC	F	R/W	0x18	М	icroseco	ond Relo	ad Value	e				
									Hz -1 of ogramm	the cont ed.	troller cl	ock whe	n the fla	sh is bei	ing erase	ed or
									-			-			uld be set rammed.	

Flash Memory Protection Read Enable (FMPRE)

Register 8: Flash Memory Protection Read Enable (FMPRE), offset 0x130

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (see the **FMPPE** registers for the execute-only protection bits). This register is loaded during the power-on reset sequence. The factory settingsare a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.


0x800000FF Enables 16 KB of flash.

Register 9: Flash Memory Protection Program Enable (FMPPE), offset 0x134

Note: Offset is relative to System Control base address of 0x400FE000.

Flash Memory Protection Program Enable (FMPPE)

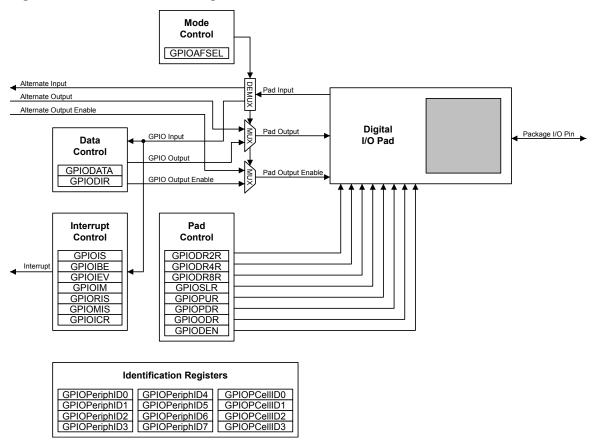
This register stores the execute-only protection bits for each 2-KB flash block (see the **FMPRE** registers for the read-only protection bits). This register is loaded during the power-on reset sequence. The factory settings are a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

0x00000FF Enables 16 KB of flash.

8 General-Purpose Input/Outputs (GPIOs)

The GPIO module is composed of five physical GPIO blocks, each corresponding to an individual GPIO port (Port A, Port B, Port C, Port D, and Port E,). The GPIO module supports 8-36 programmable input/output pins, depending on the peripherals being used.

The GPIO module has the following features:


- Programmable control for GPIO interrupts
 - Interrupt generation masking
 - Edge-triggered on rising, falling, or both
 - Level-sensitive on High or Low values
- 5-V-tolerant input/outputs
- Bit masking in both read and write operations through address lines
- Pins configured as digital inputs are Schmitt-triggered.
- Programmable control for GPIO pad configuration:
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables

8.1 Functional Description

Important: All GPIO pins are inputs by default (**GPIODIR=0** and **GPIOAFSEL=0**), with the exception of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG functionality (**GPIOAFSEL=1**). A Power-On-Reset (POR) or asserting an external reset (RST) puts both groups of pins back to their default state.

Each GPIO port is a separate hardware instantiation of the same physical block (see Figure 8-1 on page 121). The LM3S300 microcontroller contains five ports and thus five of these physical GPIO blocks.

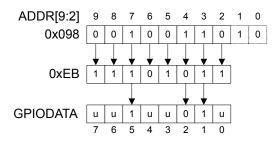
Figure 8-1. GPIO Port Block Diagram

8.1.1 Data Control

The data control registers allow software to configure the operational modes of the GPIOs. The data direction register configures the GPIO as an input or an output while the data register either captures incoming data or drives it out to the pads.

8.1.1.1 Data Direction Operation

The **GPIO Direction (GPIODIR)** register (see page 128) is used to configure each individual pin as an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and the corresponding data register bit will capture and store the value on the GPIO port. When the data direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit will be driven out on the GPIO port.


8.1.1.2 Data Register Operation

To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the **GPIO Data (GPIODATA)** register (see page 127) by using bits [9:2] of the address bus as a mask. This allows software drivers to modify individual GPIO pins in a single instruction, without affecting the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write operation to set or clear an individual GPIO pin. To accommodate this feature, the **GPIODATA** register covers 256 locations in the memory map.

During a write, if the address bit associated with that data bit is set to 1, the value of the **GPIODATA** register is altered. If it is cleared to 0, it is left unchanged.

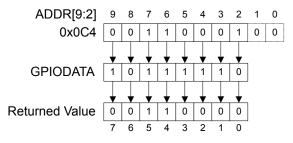

For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in Figure 8-2 on page 122, where u is data unchanged by the write.

Figure 8-2. GPIODATA Write Example

During a read, if the address bit associated with the data bit is set to 1, the value is read. If the address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 8-3 on page 122.

Figure 8-3. GPIODATA Read Example

8.1.2 Interrupt Control

The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these registers, it is possible to select the source of the interrupt, its polarity, and the edge properties. When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source holds the level constant for the interrupt to be recognized by the controller.

Three registers are required to define the edge or sense that causes interrupts:

- **GPIO Interrupt Sense (GPIOIS)** register (see page 129)
- **GPIO Interrupt Both Edges (GPIOIBE)** register (see page 130)
- **GPIO Interrupt Event (GPIOIEV)** register (see page 131)

Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 132).

When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations: the **GPIO Raw Interrupt Status (GPIORIS)** and **GPIO Masked Interrupt Status (GPIOMIS)** registers (see page 133 and page 134). As the name implies, the **GPIOMIS** register only shows interrupt conditions that are allowed to be passed to the controller. The **GPIORIS** register indicates that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.

Interrupts are cleared by writing a 1 to the appropriate bit of the **GPIO Interrupt Clear (GPIOICR)** register (see page 135).

When programming the following interrupt control registers, the interrupts should be masked (**GPIOIM** set to 0). Writing any value to an interrupt control register (**GPIOIS**, **GPIOIBE**, or **GPIOIEV**) can generate a spurious interrupt if the corresponding bits are enabled.

8.1.3 Mode Control

The GPIO pins can be controlled by either hardware or software. When hardware control is enabled via the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 136), the pin state is controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO mode, where the **GPIODATA** register is used to read/write the corresponding pins.

8.1.4 Pad Control

The pad control registers allow for GPIO pad configuration by software based on the application requirements. The pad control registers include the **GPIODR2R**, **GPIODR4R**, **GPIODR8R**, **GPIOODR**, **GPIOPUR**, **GPIOPDR**, **GPIOSLR**, and **GPIODEN** registers. These registers control drive strength, open-drain configuration, pull-up and pull-down resistors, slew-rate control and digital input enable.

8.1.5 Identification

The identification registers configured at reset allow software to detect and identify the module as a GPIO block. The identification registers include the **GPIOPeriphID0-GPIOPeriphID7** registers as well as the **GPIOPCeIIID0-GPIOPCeIIID3** registers.

8.2 Initialization and Configuration

To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit field (GPIOn) in the **RCGC2** register.

On reset, all GPIO pins (except for the five JTAG pins) default to general-purpose input mode (**GPIODIR=**0 and **GPIOAFSEL=**0). Table 8-1 on page 123 shows all possible configurations of the GPIO pads and the control register settings required to achieve them. Table 8-2 on page 124 shows how a rising edge interrupt would be configured for pin 2 of a GPIO port.

Configuration	GPIO Reg	ister Bit Va	lue ^a							
	AFSEL	DIR	ODR	DEN	PUR	PDR	DR2R	DR4R	DR8R	SLR
Digital Input (GPIO)	0	0	0	1	?	?	Х	Х	Х	Х
Digital Output (GPIO)	0	1	0	1	?	?	?	?	?	?
Open Drain Input (GPIO)	0	0	1	1	X	X	X	X	X	Х
Open Drain Output (GPIO)	0	1	1	1	X	X	?	?	?	?
Open Drain Input/Output (I ² C)	1	X	1	1	X	X	?	?	?	?
Digital Input (Timer CCP)	1	X	0	1	?	?	X	X	X	X
Digital Output (Timer PWM)	1	X	0	1	?	?	?	?	?	?
Digital Input/Output (SSI)	1	X	0	1	?	?	?	?	?	?

Table 8-1. GPIO Pad Configuration Examples

Configuration	GPIO Reg	gister Bit Va	lue ^a							
	AFSEL	DIR	ODR	DEN	PUR	PDR	DR2R	DR4R	DR8R	SLR
Digital Input/Output (UART)	1	X	0	1	?	?	?	?	?	?
Analog Input (Comparator)	0	0	0	0	0	0	X	X	X	X
Digital Output (Comparator)	1	X	0	1	?	?	?	?	?	?

a. X=Ignored (don't care bit)

?=Can be either 0 or 1, depending on the configuration

Table 8-2. GPIO Interrupt	Configuration Example
---------------------------	-----------------------

Register	Desired	Pin 2 Bit Va	lue ^a						
	Interrupt Event Trigger	7	6	5	4	3	2	1	0
GPIOIS	0=edge 1=level	x	x	x	X	х	0	х	Х
GPIOIBE	0=single edge 1=both edges	X	X	X	Х	Х	0	Х	Х
GPIOIEV	0=Low level, or negative edge 1=High level, or positive edge		x	x	X	X	1	X	x
GPIOIM	0=masked 1=not masked	0	0	0	0	0	1	0	0

a. X=Ignored (don't care bit)

8.3 Register Map

Table 8-3 on page 125 lists the GPIO registers. The offset listed is a hexadecimal increment to the register's address, relative to that GPIO port's base address:

- GPIO Port A: 0x4000.4000
- GPIO Port B: 0x4000.5000
- GPIO Port C: 0x4000.6000
- GPIO Port D: 0x4000.7000
- GPIO Port E: 0x4002.4000

Important: The GPIO registers in this chapter are duplicated in each GPIO block, however, depending on the block, all eight bits may not be connected to a GPIO pad. In those

cases, writing to those unconnected bits has no effect and reading those unconnected bits returns no meaningful data.

Note: The default reset value for the **GPIOAFSEL** register is 0x0000.0000 for all GPIO pins, with the exception of the five JTAG pins (PB7 and PC[3:0]). These five pins default to JTAG functionality. Because of this, the default reset value of **GPIOAFSEL** for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Table 8-3. GPIO Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	GPIODATA	R/W	0x0000.0000	GPIO Data	127
0x400	GPIODIR	R/W	0x0000.0000	GPIO Direction	128
0x404	GPIOIS	R/W	0x0000.0000	GPIO Interrupt Sense	129
0x408	GPIOIBE	R/W	0x0000.0000	GPIO Interrupt Both Edges	130
0x40C	GPIOIEV	R/W	0x0000.0000	GPIO Interrupt Event	131
0x410	GPIOIM	R/W	0x0000.0000	GPIO Interrupt Mask	132
0x414	GPIORIS	RO	0x0000.0000	GPIO Raw Interrupt Status	133
0x418	GPIOMIS	RO	0x0000.0000	GPIO Masked Interrupt Status	134
0x41C	GPIOICR	W1C	0x0000.0000	GPIO Interrupt Clear	135
0x420	GPIOAFSEL	R/W	-	GPIO Alternate Function Select	136
0x500	GPIODR2R	R/W	0x0000.00FF	GPIO 2-mA Drive Select	138
0x504	GPIODR4R	R/W	0x0000.0000	GPIO 4-mA Drive Select	139
0x508	GPIODR8R	R/W	0x0000.0000	GPIO 8-mA Drive Select	140
0x50C	GPIOODR	R/W	0x0000.0000	GPIO Open Drain Select	141
0x510	GPIOPUR	R/W	0x0000.00FF	GPIO Pull-Up Select	142
0x514	GPIOPDR	R/W	0x0000.0000	GPIO Pull-Down Select	143
0x518	GPIOSLR	R/W	0x0000.0000	GPIO Slew Rate Control Select	144
0x51C	GPIODEN	R/W	0x0000.00FF	GPIO Digital Enable	145
0xFD0	GPIOPeriphID4	RO	0x0000.0000	GPIO Peripheral Identification 4	146
0xFD4	GPIOPeriphID5	RO	0x0000.0000	GPIO Peripheral Identification 5	147
0xFD8	GPIOPeriphID6	RO	0x0000.0000	GPIO Peripheral Identification 6	148
0xFDC	GPIOPeriphID7	RO	0x0000.0000	GPIO Peripheral Identification 7	149
0xFE0	GPIOPeriphID0	RO	0x0000.0061	GPIO Peripheral Identification 0	150
0xFE4	GPIOPeriphID1	RO	0x0000.0000	GPIO Peripheral Identification 1	151
0xFE8	GPIOPeriphID2	RO	0x0000.0018	GPIO Peripheral Identification 2	152
0xFEC	GPIOPeriphID3	RO	0x0000.0001	GPIO Peripheral Identification 3	153
0xFF0	GPIOPCellID0	RO	0x0000.000D	GPIO PrimeCell Identification 0	154

June 04, 2008

Offset	Name	Туре	Reset	Description	See page
0xFF4	GPIOPCellID1	RO	0x0000.00F0	GPIO PrimeCell Identification 1	155
0xFF8	GPIOPCellID2	RO	0x0000.0005	GPIO PrimeCell Identification 2	156
0xFFC	GPIOPCellID3	RO	0x0000.00B1	GPIO PrimeCell Identification 3	157

8.4 Register Descriptions

The remainder of this section lists and describes the GPIO registers, in numerical order by address offset.

Register 1: GPIO Data (GPIODATA), offset 0x000

The **GPIODATA** register is the data register. In software control mode, values written in the **GPIODATA** register are transferred onto the GPIO port pins if the respective pins have been configured as outputs through the **GPIO Direction (GPIODIR)** register (see page 128).

In order to write to **GPIODATA**, the corresponding bits in the mask, resulting from the address bus bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause the corresponding bits in **GPIODATA** to be read, and bits that are 0 in the address mask cause the corresponding bits in **GPIODATA** to be read as 0, regardless of their value.

A read from **GPIODATA** returns the last bit value written if the respective pins are configured as outputs, or it returns the value on the corresponding input pin when these are configured as inputs. All bits are cleared by a reset.

GPIO Data (GPIODATA)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x000

Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1		1		rese	rved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved	1	1 1					DA	TΑ	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E	Bit/Field Name Type Rese						D	escriptio	n							
		reserved RO			0x00	CC	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation.									
	7:0		DA	TA	I	₹/W	0x00	G	PIO Data	а						
								Тс	nis regist o facilitat	e the rea	ading an	d writing	g of data	to these	e registe	

To facilitate the reading and writing of data to these registers by independent drivers, the data read from and the data written to the registers are masked by the eight address lines ipaddr[9:2]. Reads from this register return its current state. Writes to this register only affect bits that are not masked by ipaddr[9:2] and are configured as outputs. See "Data Register Operation" on page 121 for examples of reads and writes.

Register 2: GPIO Direction (GPIODIR), offset 0x400

The **GPIODIR** register is the data direction register. Bits set to 1 in the **GPIODIR** register configure the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

GPIO Direction (GPIODIR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x400 Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1		rese	erved			1		1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	1	г т				ſ	D	I IR I	1	I	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field Name Type Reset								escriptio	n						
	31:8 reserved			RO 0x00			СС	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.								
	7:0 DIR R/W		R/W	0x00	G	GPIO Data Direction										
						TI	ne DIR V	alues ar	e define	ed as foll	ows:					

- 0 Pins are inputs.
- 1 Pins are outputs.

Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404

The **GPIOIS** register is the interrupt sense register. Bits set to 1 in **GPIOIS** configure the corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits are cleared by a reset.

GPIO Interrupt Sense (GPIOIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x404 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			Î	1		1	1 1	rese	rved	1	i	1	1	1	1	•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			1	rese	rved	1				I	r	1	I S I	1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Na	ame		Туре	Reset	D	escriptic	on							
	31:8		res	erved		RO	0x00	S	oftware	should n	ot rely c	on the va	lue of a	reserve	d bit. To	provide	
	31:8 reserved RO							compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								be	
	7:0			IS		R/W	0x00	G	PIO Inte	errupt Se	nse						
								T	he IS Va	alues are	defined	d as follo	ws:				

- 0 Edge on corresponding pin is detected (edge-sensitive).
- 1 Level on corresponding pin is detected (level-sensitive).

Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408

The GPIOIBE register is the interrupt both-edges register. When the corresponding bit in the GPIO Interrupt Sense (GPIOIS) register (see page 129) is set to detect edges, bits set to High in GPIOIBE configure the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the GPIO Interrupt Event (GPIOIEV) register (see page 131). Clearing a bit configures the pin to be controlled by GPIOIEV. All bits are cleared by a reset.

GPIO Interrupt Both Edges (GPIOIBE)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x408 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							I	E			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IBE	R/W	0x00	GPIO Interrupt Both Edges

nterrupt Both Edges The IBE values are defined as follows:

- Interrupt generation is controlled by the GPIO Interrupt Event 0 (GPIOIEV) register (see page 131).
- Both edges on the corresponding pin trigger an interrupt. 1
 - Single edge is determined by the corresponding bit Note: in GPIOIEV.

Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C

The **GPIOIEV** register is the interrupt event register. Bits set to High in **GPIOIEV** configure the corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in the **GPIO Interrupt Sense (GPIOIS)** register (see page 129). Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in **GPIOIS**. All bits are cleared by a reset.

GPIO Interrupt Event (GPIOIEV)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.5000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x40C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							J
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							IE	V			'
Type Reset	RO 0	R/W 0														

Bit/Field	Name	Туре	Reset	Desc
31:8	reserved	RO	0x00	Softw comp prese
7:0	IEV	R/W	0x00	GPI

Description

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

GPIO Interrupt Event

The IEV values are defined as follows:

- 0 Falling edge or Low levels on corresponding pins trigger interrupts.
- 1 Rising edge or High levels on corresponding pins trigger interrupts.

Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410

The **GPIOIM** register is the interrupt mask register. Bits set to High in **GPIOIM** allow the corresponding pins to trigger their individual interrupts and the combined **GPIOINTR** line. Clearing a bit disables interrupt triggering on that pin. All bits are cleared by a reset.

GPIO Interrupt Mask (GPIOIM)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x410 Type R/W, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1			1		rese	rved	1	1	1	1	1	1	_	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			•	rese	rved	•				1	1	IN	1E	1		•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
E	Bit/Field		Nar	me	г	уре	Reset	D	escriptic	on							
					RO	0x00	cc	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.								be	
	7:0		IM	IE	F	R/W	0x00			errupt Ma values a		ole ed as foll	ows:				

- 0 Corresponding pin interrupt is masked.
- 1 Corresponding pin interrupt is not masked.

Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414

The **GPIORIS** register is the raw interrupt status register. Bits read High in **GPIORIS** reflect the status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the requirements have been met, before they are finally allowed to trigger by the **GPIO Interrupt Mask** (**GPIOIM**) register (see page 132). Bits read as zero indicate that corresponding input pins have not initiated an interrupt. All bits are cleared by a reset.

GPIO Raw Interrupt Status (GPIORIS)

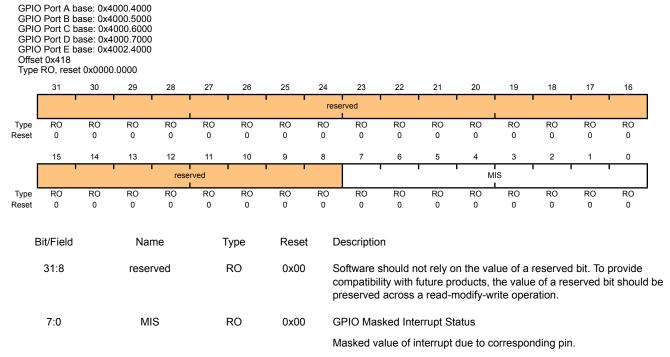
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x414
Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			l					rese	rved							
Type Reset	RO 0															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved							R	S			'
Type Reset	RO 0															

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	RIS	RO	0x00	GPIO Interrupt Raw Status
				Reflects the status of interrupt trigger condition detection on pins (raw,

prior to masking).

The $\ensuremath{\mathtt{RIS}}$ values are defined as follows:


- 0 Corresponding pin interrupt requirements not met.
- 1 Corresponding pin interrupt has met requirements.

Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418

The **GPIOMIS** register is the masked interrupt status register. Bits read High in **GPIOMIS** reflect the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has been generated, or the interrupt is masked.

GPIOMIS is the state of the interrupt after masking.

GPIO Masked Interrupt Status (GPIOMIS)

The ${\tt MIS}$ values are defined as follows:

- 0 Corresponding GPIO line interrupt not active.
- 1 Corresponding GPIO line asserting interrupt.

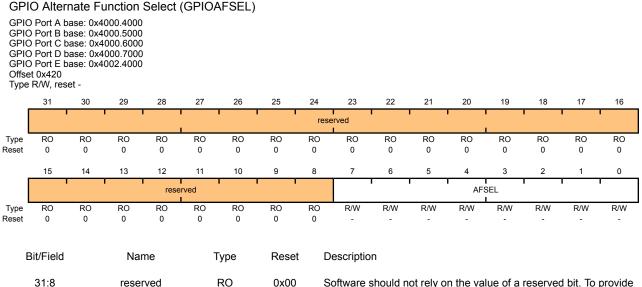
Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C

The **GPIOICR** register is the interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt edge detection logic register. Writing a 0 has no effect.

GPIO Interrupt Clear (GPIOICR) GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x41C Type W1C, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved Туре RO 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0 7 ic reserved W1C RO RO RO RO RO RO RO RO W1C W1C W1C W1C W1C W1C W1C Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description RO 0x00 31:8 reserved Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. IC W1C 0x00 **GPIO** Interrupt Clear 7:0 The IC values are defined as follows: Value Description 0 Corresponding interrupt is unaffected.

1

Corresponding interrupt is cleared.


Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420

The **GPIOAFSEL** register is the mode control select register. Writing a 1 to any bit in this register selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore no GPIO line is set to hardware control by default.

Important: All GPIO pins are inputs by default (**GPIODIR=**0 and **GPIOAFSEL=**0), with the exception of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG functionality (**GPIOAFSEL=**1). A Power-On-Reset (POR) or asserting an external reset (RST) puts both groups of pins back to their default state.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply RST or power-cycle the part.

It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris[®] microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
7:0	AFSEL	R/W	-	GPIO Alternate Function Select
				The AFSEL values are defined as follows:
				Value Description
				0 Software control of corresponding GPIO line (GPIO mode).
				 Hardware control of corresponding GPIO line (alternate hardware function).
				Note: The default reset value for the GPIOAFSEL register is 0x0000.0000 for all GPIO pins, with the exception of the five JTAG pins (PB7 and PC[3:0]). These five pins default to JTAG functionality. Because of this, the default reset value of GPIOAFSEL for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500

The **GPIODR2R** register is the 2-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO signal, the corresponding DRV4 bit in the **GPIODR4R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 2-mA Drive Select (GPIODR2R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x500 Type R/W, reset 0x0000.00FF

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved		1	1	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber	15	14	13	12	11	10	9	8	7	6	5	-	3	2	1	
I	15	14	13			10	, g	0	, 	0	- ⁵	4	· ·	2	1 1	0
				rese	rved							DF	RV2			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
E	Bit/Field		Nar	ne	Туре		Reset	D	escriptio	n						
	31:8 reserved				RO		0x00	C	Software should not rely on the value of a reserved across a read-modify-write operation.				e of a re		•	
	7:0		DR	V2	I	₹/W	0xFF		utput Pa							
								A	write of	i to eith	er GPIO	UR4IN1	or GPIC	URSINI	clears t	ne

A write of 1 to either **GPIODR4[n]** or **GPIODR8[n]** clears the corresponding 2-mA enable bit. The change is effective on the second clock cycle after the write.

Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504

The **GPIODR4R** register is the 4-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 4-mA Drive Select (GPIODR4R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x504 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1		rese	erved	1	1	1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset				-	-							0	-		0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	reserved									DRV4						
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field Name Type Reset						D	Description								
	31:8 reserved					RO	0x00	СС	Software should not rely on the value of a reserved bit. T compatibility with future products, the value of a reserved preserved across a read-modify-write operation.						•	
	7:0 DRV			DRV4 R/W		0x00	0	Output Pad 4-mA Drive Enable								
								A	write of	1 to eith	er GPIC	DR2[n]	or GPIC	DR8[n]	clears t	he

A write of 1 to either **GPIODR2[n]** or **GPIODR8[n]** clears the corresponding 4-mA enable bit. The change is effective on the second clock cycle after the write.

Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508

The **GPIODR8R** register is the 8-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV4 bit in the **GPIODR4R** register are automatically cleared by hardware.

GPIO 8-mA Drive Select (GPIODR8R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x508 Type R/W, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1				1		rese	rved					1	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
[1		rese	rved	1			DRV8								
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	
E	Bit/Field		Nar	ne	٦	Гуре	Reset	D	escriptio	n							
	31:8 reserved					С			Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.								
	7:0		DR	V8	I	₹/W	0x00	0	utput Pa	d 8-mA	Drive Er	nable					
								А	write of	1 to eith	er GPIO	DR2[n]	or GPIC	DR4[n]	clears t	ne	

A write of 1 to either GPIODR2[n] or GPIODR4[n] clears the corresponding 8-mA enable bit. The change is effective on the second clock cycle after the write.

Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C

The **GPIOODR** register is the open drain control register. Setting a bit in this register enables the open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the corresponding bit should also be set in the **GPIO Digital Input Enable (GPIODEN)** register (see page 145). Corresponding bits in the drive strength registers (**GPIODR2R**, **GPIODR4R**, **GPIODR8R**, and **GPIOSLR**) can be set to achieve the desired rise and fall times. The GPIO acts as an open drain input if the corresponding bit in the **GPIODIR** register is set to 0; and as an open drain output when set to 1.

When using the l²C module, in addition to configuring the pin to open drain, the **GPIO Alternate Function Select (GPIOAFSEL)** register bit for the l²C clock and data pins should be set to 1 (see examples in "Initialization and Configuration" on page 123).

GPIO Open Drain Select (GPIOODR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x50C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ODE reserved Туре RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Type Reset RO 0x00 31:8 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 ODE R/W 0x00 Output Pad Open Drain Enable The ODE values are defined as follows:

Value Description

0 Open drain configuration is disabled.

1 Open drain configuration is enabled.

Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510

The **GPIOPUR** register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up resistor on the corresponding GPIO signal. Setting a bit in **GPIOPUR** automatically clears the corresponding bit in the **GPIO Pull-Down Select (GPIOPDR)** register (see page 143).

GPIO Pull-Up Select (GPIOPUR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x510 Type R/W, reset 0x0000.00FF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1		1		rese	rved	1	r	1	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	l		•	rese	rved					I	I	Pl	JE I	I	I	·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	Bit/Field		Na	ame	٦	Type Reset		D	escriptic	n						
	31:8 reserved RO 0x00						C	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.								
	7:0 PUE			R/W		0xFF	Р	Pad Weak Pull-Up Enable								
											-	-		•	0	OPUR[n] e after the

write.

Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514

The **GPIOPDR** register is the pull-down control register. When a bit is set to 1, it enables a weak pull-down resistor on the corresponding GPIO signal. Setting a bit in **GPIOPDR** automatically clears the corresponding bit in the **GPIO Pull-Up Select (GPIOPUR)** register (see page 142).

GPIO Pull-Down Select (GPIOPDR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x514 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
								rese	erved	1 1		1		1	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1		r 1	rese	rved	1			PDE								
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
E	Bit/Field Name Type Reset						D	escriptio	'n								
	31:8 reserved						0x00	СС	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should l preserved across a read-modify-write operation.								
	7:0 PDE			I	R/W 0x00		P	ad Weak	k Pull-Do	wn Ena	ble						
											-	-		•	0	OPDR[n] after the	

write.

June 04, 2008

Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518

The **GPIOSLR** register is the slew rate control register. Slew rate control is only available when using the 8-mA drive strength option via the **GPIO 8-mA Drive Select (GPIODR8R)** register (see page 140).

GPIO Slew Rate Control Select (GPIOSLR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x518 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1	•		1	г г	rese	rved	1		1		1	1	,	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		•	•	rese	rved			SF	RL		1	'					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field Name					Гуре	Reset	D	escriptio	escription							
	31:8		rese	erved		RO	0x00		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be								
									•		•	nodify-w					
	7:0		S	RL	F	R/W	0x00	S	ew Rate	e Limit Ei	nable (8	8-mA driv	e only)				
								TI	ne SRL V	alues ar	e define	ed as foll	ows:				

- 0 Slew rate control disabled.
- 1 Slew rate control enabled.

Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C

Note: Pins configured as digital inputs are Schmitt-triggered.

The **GPIODEN** register is the digital input enable register. By default, all GPIO signals are configured as digital inputs at reset. If a pin is being used as a GPIO or its Alternate Hardware Function, it should be configured as a digital input. The only time that a pin should not be configured as a digital input is when the GPIO pin is configured to be one of the analog input signals for the analog comparators.

GPIO Digital Enable (GPIODEN)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0x51C Type R/W, reset 0x0000.00FF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved			•		•	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1	rese	rved	r	ı ı			ſ	r	D	EN	I	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	Bit/Field		Nar	me	Т	уре	Reset	: D	escriptio	n						
	31:8		reser	rved		RO	0x00	C	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide it should t
	7:0		DE	N	F	R/W	0xFF		igital Ena		e define	ed as foll	ows:			

Value Description

- 0 Digital functions disabled.
- 1 Digital functions enabled.

Register 19: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•			1	1 1	res	erved	1				1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		rved	Î	1			1	1	PI	D4	I	Î	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field Name			Ţ	Гуре	Rese	t D	Descriptio	n							
	31:8 reserved					RO	0x00	С	Software s ompatibi reserved	lity with	future pr	oducts, t	the valu	e of a re		provide it should b
	7:0		PI	04		RO	0x00	6	SPIO Per	ipheral I	D Regis	ter[7:0]				

Register 20: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 5 (GPIOPeriphID5)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ					•		res	erved	1	•		1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	1				I	1	I PI	D5	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F	Bit/Field			me	-	уре	Rese	+ г	escriptio	n						
L			INGI	ne	•	ype	IXE3C		escriptio							
	31:8 reserved					RO	0x00	С	oftware s ompatibil reserved	ity with	future pr	oducts, t	the valu	e of a re		provide it should be
	7:0		PIE	05		RO	0x00	Ģ	SPIO Per	ipheral I	D Regis	ter[15:8]				

Register 21: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						•		res	erved	•	•	'		•	•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved	•				1	1	PI	D6	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	Т	уре	Rese	t D	Descriptio	'n						
	Bit/Field Name 31:8 reserve			ved		RO	0x00	С	Software s ompatibil preserved	lity with t	future pr	oducts, t	the value	e of a re		provide it should be
	7:0		PIE	06		RO	0x00	G	SPIO Per	ipheral I	D Regis	ter[23:16	6]			

148

Register 22: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 7 (GPIOPeriphID7)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFDC Type RO, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								res	erved	•	•	•				·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved					1	1	PI	D7	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field Name			ſ	Гуре	Rese	t C	Descriptio	n							
	31:8 reserved					RO	0x00	С	Software s compatibi preserved	lity with t	future pr	oducts, t	the value	e of a re		provide it should be
	7:0		PIE	70		RO	0x00		GPIO Per	ipheral I	D Regis	ter[31:24	4]			

Register 23: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFE0 Type RO, reset 0x0000.0061

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1		rese	erved					1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	rese	rved	1	1 1					I Pli	D0	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1
E	Bit/Field		Nar	me	T	уре	Reset	: D	escriptio	n						
	31:8		resei	rved		RO	0x00	C	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide it should be
	7:0		PI	00		RO	0x61		iPIO Peri	•	Ũ				of the is used	winds a well
								C	an be us	ea by so	Inware	to identif	y the pre	esence	or this pe	eripheral.

Register 24: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 1 (GPIOPeriphID1)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFE4 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
						1		rese	erved					•			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
[-		1	rese		Î	r r	-				PI		I	Ì		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nar	ne	٦	Гуре	Reset	D	escriptio	n							
	31:8		reser	ved		RO	0x00	C	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	he value	e of a re			be
	7:0		PIE	01		RO	0x00		PIO Peri an be us		Ũ			esence o	of this pe	ripheral.	

June 04, 2008

Register 25: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 2 (GPIOPeriphID2)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1		rese	erved			1		1	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	rese	rved	1	r î					I PI	D2	1	Î	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	Bit/Field		Nar	me	Т	уре	Reset	: D	escriptio	n						
	31:8		resei	rved		RO	0x00	C	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide bit should b
	7:0		PI	02		RO	0x18		iPIO Peri	•	Ũ	-	-		of this pr	rinharal
								U	an be us	eu by so	Jiware	lo identii	y the pre	esence	or uns pe	eripheral.

Register 26: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved			1	1	1	•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type RO														1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E					٦	Гуре	Reset	t D	escriptio	n						
	31:8		reser	ved		RO	0x00	C	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide it should be
	7:0		PIE	03		RO	0x01		iPIO Peri		Ũ	•	-		of this no	riphorol

Can be used by software to identify the presence of this peripheral.

Register 27: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 0 (GPIOPCellID0)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFF0 Type RO, reset 0x0000.000D

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1		rese	erved					•	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	1						CI	D0	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nar	ne	-	Гуре	Reset	t D	escriptio	n						
	31:8		reser	ved		RO	0x00	C	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide it should b
	7:0		CIE	00		RO	0x0D		iPIO Prin		0		o norinh	orol ido	atification	a ovetem

Register 28: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 1 (GPIOPCellID1)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFF4 Type RO, reset 0x0000.00F0

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								res	erved					•	'	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei												0			0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•	l		rese	rved	•						CI	D1	1	1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nar	T	уре	Reset	t D	escriptio	n							
	31:8		reser	rved		RO	0x00	С	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide it should b
	7:0		CIE	D1		RO	0xF0		PIO Prim		-		o norinh	oralida	ntification	n ovetom

Register 29: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 2 (GPIOPCellID2)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFF8 Type RO, reset 0x0000.0005

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1		res	erved					•	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E						Гуре	Reset	D	escriptio	n						
	31:8		reser	ved		RO	0x00	C	oftware s ompatibil reserved	ity with f	future pr	oducts, t	the value	e of a re		provide it should be
	7:0		CIE	02		RO	0x05		iPIO Prin		-	-		orol ido	atification	a avatam

Register 30: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 3 (GPIOPCellID3)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 Offset 0xFFC Type RO, reset 0x0000.00B1

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved						1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							CI	D3	I		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nar	ne	г	уре	Rese	t D	escriptio	n						
_					-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			0001.pt.0							
	31:8 reserv		ved	RO		0x00	C	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		orovide it should be	
	7:0		CIE	03		RO	0xB1		PIO Prin		Ū	•	-			4

9 General-Purpose Timers

Programmable timers can be used to count or time external events that drive the Timer input pins. The Stellaris[®] General-Purpose Timer Module (GPTM) contains three GPTM blocks (Timer0, Timer1, and Timer 2). Each GPTM block provides two 16-bit timers/counters (referred to as TimerA and TimerB) that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).

The General-Purpose Timer Module is one timing resource available on the Stellaris[®] microcontrollers. Other timer resources include the System Timer (SysTick) (see "System Timer (SysTick)" on page 32).

The following modes are supported:

- 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock using 32.768-KHz input clock
 - Software-controlled event stalling (excluding RTC mode)
- 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
 - Programmable one-shot timer
 - Programmable periodic timer
 - Software-controlled event stalling
- 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal

9.1 Block Diagram

Note: In Figure 9-1 on page 159, the specific CCP pins available depend on the Stellaris[®] device. See Table 9-1 on page 159 for the available CCPs.

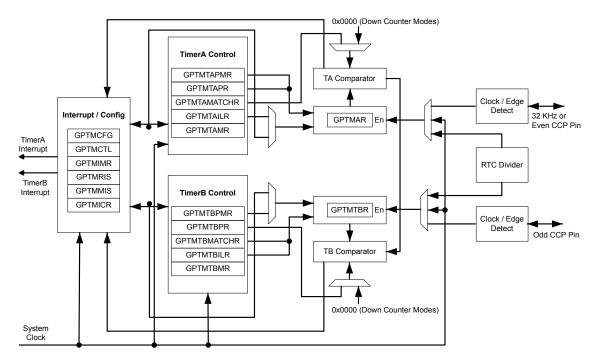


Table 9-1. Available CCP Pins

Timer	16-Bit Up/Down Counter	Even CCP Pin	Odd CCP Pin
Timer 0	TimerA	CCP0	-
	TimerB	-	CCP1
Timer 1	TimerA	CCP2	-
	TimerB	-	CCP3
Timer 2	TimerA	CCP4	-
	TimerB	-	CCP5

9.2 Functional Description

The main components of each GPTM block are two free-running 16-bit up/down counters (referred to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit load/initialization registers and their associated control functions. The exact functionality of each GPTM is controlled by software and configured through the register interface.

Software configures the GPTM using the **GPTM Configuration (GPTMCFG)** register (see page 170), the **GPTM TimerA Mode (GPTMTAMR)** register (see page 171), and the **GPTM TimerB Mode (GPTMTBMR)** register (see page 173). When in one of the 32-bit modes, the timer can only act as a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers configured in any combination of the 16-bit modes.

9.2.1 GPTM Reset Conditions

After reset has been applied to the GPTM module, the module is in an inactive state, and all control registers are cleared and in their default states. Counters TimerA and TimerB are initialized to 0xFFFF, along with their corresponding load registers: the **GPTM TimerA Interval Load**

(GPTMTAILR) register (see page 184) and the GPTM TimerB Interval Load (GPTMTBILR) register (see page 185). The prescale counters are initialized to 0x00: the GPTM TimerA Prescale (GPTMTAPR) register (see page 188) and the GPTM TimerB Prescale (GPTMTBPR) register (see page 189).

9.2.2 32-Bit Timer Operating Modes

This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1 (RTC mode) to the **GPTM Configuration (GPTMCFG)** register. In both configurations, certain GPTM registers are concatenated to form pseudo 32-bit registers. These registers include:

- **GPTM TimerA Interval Load (GPTMTAILR)** register [15:0], see page 184
- **GPTM TimerB Interval Load (GPTMTBILR)** register [15:0], see page 185
- GPTM TimerA (GPTMTAR) register [15:0], see page 192
- **GPTM TimerB (GPTMTBR)** register [15:0], see page 193

In the 32-bit modes, the GPTM translates a 32-bit write access to **GPTMTAILR** into a write access to both **GPTMTAILR** and **GPTMTBILR**. The resulting word ordering for such a write operation is:

GPTMTBILR[15:0]:GPTMTAILR[15:0]

Likewise, a read access to GPTMTAR returns the value:

GPTMTBR[15:0]:GPTMTAR[15:0]

9.2.2.1 32-Bit One-Shot/Periodic Timer Mode

In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is determined by the value written to the TAMR field of the **GPTM TimerA Mode (GPTMTAMR)** register (see page 171), and there is no need to write to the **GPTM TimerB Mode (GPTMTBMR)** register.

When software writes the TAEN bit in the **GPTM Control (GPTMCTL)** register (see page 175), the timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the timer reloads its start value from the concatenated **GPTMTAILR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TAEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the GPTM generates interrupts and triggers when it reaches the 0x000.0000 state. The GPTM sets the TATORIS bit in the GPTM Raw Interrupt Status (GPTMRIS) register (see page 180), and holds it until it is cleared by writing the GPTM Interrupt Clear (GPTMICR) register (see page 182). If the time-out interrupt is enabled in the GPTM Interrupt Mask (GPTIMR) register (see page 178), the GPTM also sets the TATOMIS bit in the GPTM Masked Interrupt Status (GPTMMIS) register (see page 181). The trigger is enabled by setting the TAOTE bit in GPTMCTL, and can trigger SoC-level events.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the **GPTMCTL** register is asserted, the timer freezes counting until the signal is deasserted.

9.2.2.2 32-Bit Real-Time Clock Timer Mode

In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is loaded with a value of 0x0000.0001. All subsequent load values must be written to the **GPTM TimerA Match (GPTMTAMATCHR)** register (see page 186) by the controller.

The input clock on the CCP0, CCP2, or CCP4 pins is required to be 32.768 KHz in RTC mode. The clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit in the **GPTMCTL** register, the counter starts counting up from its preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the **GPTMTAMATCHR** register, it rolls over to a value of 0x0000.0000 and continues counting until either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs, the GPTM asserts the RTCRIS bit in **GPTMRIS**. If the RTC interrupt is enabled in **GPTIMR**, the GPTM also sets the RTCMIS bit in **GPTMISR** and generates a controller interrupt. The status flags are cleared by writing the RTCCINT bit in **GPTMICR**.

If the TASTALL and/or TBSTALL bits in the **GPTMCTL** register are set, the timer does not freeze if the RTCEN bit is set in **GPTMCTL**.

9.2.3 16-Bit Timer Operating Modes

The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the **GPTM Configuration** (**GPTMCFG**) register (see page 170). This section describes each of the GPTM 16-bit modes of operation. TimerA and TimerB have identical modes, so a single description is given using an *n* to reference both.

9.2.3.1 16-Bit One-Shot/Periodic Timer Mode

In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The selection of one-shot or periodic mode is determined by the value written to the TnMR field of the **GPTMTnMR** register. The optional prescaler is loaded into the **GPTM Timern Prescale (GPTMTnPR)** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer begins counting down from its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from **GPTMTNILR** and **GPTMTNPR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TnEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the timer generates interrupts and triggers when it reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the **GPTMRIS** register, and holds it until it is cleared by writing the **GPTMICR** register. If the time-out interrupt is enabled in **GPTIMR**, the GPTM also sets the TnTOMIS bit in **GPTMISR** and generates a controller interrupt. The trigger is enabled by setting the TnOTE bit in the **GPTMCTL** register, and can trigger SoC-level events.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TRSTALL bit in the **GPTMCTL** register is enabled, the timer freezes counting until the signal is deasserted.

The following example shows a variety of configurations for a 16-bit free running timer while using the prescaler. All values assume a 25-MHz clock with Tc=20 ns (clock period).

Prescale	#Clock (T c) ^a	Max Time	Units
00000000	1	2.6214	mS
00000001	2	5.2428	mS
00000010	3	7.8642	mS
11111100	254	665.8458	mS
11111110	255	668.4672	mS
11111111	256	671.0886	mS

Table 9-2. 16-Bit Timer With Prescaler Configurations

a. Tc is the clock period.

9.2.3.2 16-Bit Input Edge Count Mode

Note: For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling-edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.

Note: The prescaler is not available in 16-Bit Input Edge Count mode.

In Edge Count mode, the timer is configured as a down-counter capable of capturing three types of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit of the **GPTMTnMR** register must be set to 0. The type of edge that the timer counts is determined by the TnEVENT fields of the **GPTMCTL** register. During initialization, the **GPTM Timern Match** (**GPTMTnMATCHR**) register is configured so that the difference between the value in the **GPTMTnILR** register and the **GPTMTnMATCHR** register equals the number of edge events that must be counted.

When software writes the TnEN bit in the **GPTM Control (GPTMCTL)** register, the timer is enabled for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count matches **GPTMTnMATCHR**. When the counts match, the GPTM asserts the CnMRIS bit in the **GPTMRIS** register (and the CnMMIS bit, if the interrupt is not masked). The counter is then reloaded using the value in **GPTMTnILR**, and stopped since the GPTM automatically clears the TnEN bit in the **GPTMCTL** register. Once the event count has been reached, all further events are ignored until TnEN is re-enabled by software.

Figure 9-2 on page 163 shows how input edge count mode works. In this case, the timer start value is set to **GPTMnILR** =0x000A and the match value is set to **GPTMnMATCHR** =0x0006 so that four edge events are counted. The counter is configured to detect both edges of the input signal.

Note that the last two edges are not counted since the timer automatically clears the TnEN bit after the current count matches the value in the **GPTMnMR** register.

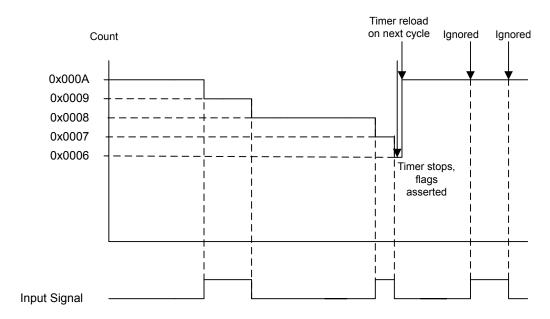
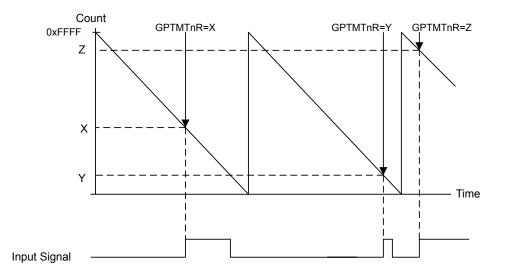


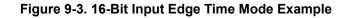
Figure 9-2. 16-Bit Input Edge Count Mode Example

9.2.3.3 16-Bit Input Edge Time Mode

Note: For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.

Note: The prescaler is not available in 16-Bit Input Edge Time mode.


In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value loaded in the **GPTMTnILR** register (or 0xFFFF at reset). This mode allows for event capture of either rising or falling edges, but not both. The timer is placed into Edge Time mode by setting the TnCMR bit in the **GPTMTnMR** register, and the type of event that the timer captures is determined by the TnEVENT fields of the **GPTMCnTL** register.

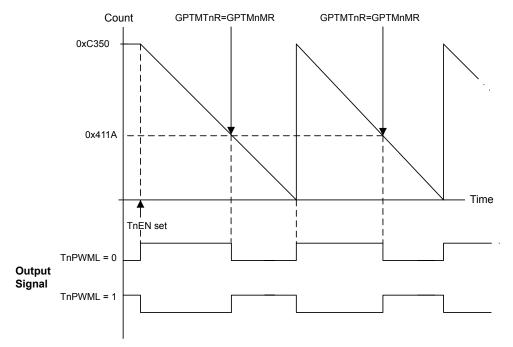

When software writes the TnEN bit in the **GPTMCTL** register, the timer is enabled for event capture. When the selected input event is detected, the current **Tn** counter value is captured in the **GPTMTnR** register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and the CnEMIS bit, if the interrupt is not masked).

After an event has been captured, the timer does not stop counting. It continues to count until the TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the **GPTMnILR** register.

Figure 9-3 on page 164 shows how input edge timing mode works. In the diagram, it is assumed that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture rising edge events.

Each time a rising edge event is detected, the current count value is loaded into the **GPTMTnR** register, and is held there until another rising edge is detected (at which point the new count value is loaded into **GPTMTnR**).

9.2.3.4 16-Bit PWM Mode


Note: The prescaler is not available in 16-Bit PWM mode.

The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a down-counter with a start value (and thus period) defined by **GPTMTnILR**. PWM mode is enabled with the **GPTMTnMR** register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.

When software writes the TnEN bit in the **GPTMCTL** register, the counter begins counting down until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from **GPTMTNILR** and continues counting until disabled by software clearing the TnEN bit in the **GPTMCTL** register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the **GPTMTnILR** register (its start state), and is deasserted when the counter value equals the value in the **GPTM Timern Match Register (GPTMnMATCHR)**. Software has the capability of inverting the output PWM signal by setting the TnPWML bit in the **GPTMCTL** register.

Figure 9-4 on page 165 shows how to generate an output PWM with a 1-ms period and a 66% duty cycle assuming a 50-MHz input clock and **TnPWML** =0 (duty cycle would be 33% for the **TnPWML** =1 configuration). For this example, the start value is **GPTMnIRL**=0xC350 and the match value is **GPTMnMR**=0x411A.

Figure 9-4. 16-Bit PWM Mode Example

9.3 Initialization and Configuration

To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMERO, TIMER1, and TIMER2 bits in the **RCGC1** register.

This section shows module initialization and configuration examples for each of the supported timer modes.

9.3.1 32-Bit One-Shot/Periodic Timer Mode

The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TAEN bit in the **GPTMCTL** register is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.
- 3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):
 - a. Write a value of 0x1 for One-Shot mode.
 - b. Write a value of 0x2 for Periodic mode.
- 4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).
- 5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 7 on page 166. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

9.3.2 32-Bit Real-Time Clock (RTC) Mode

To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2, or CCP4 pins. To enable the RTC feature, follow these steps:

- 1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.
- 3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).
- 4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.
- 5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

When the timer count equals the value in the **GPTMTAMATCHR** register, the counter is re-loaded with 0x0000.0000 and begins counting. If an interrupt is enabled, it does not have to be cleared.

9.3.3 16-Bit One-Shot/Periodic Timer Mode

A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.
- 3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:
 - a. Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- 4. If a prescaler is to be used, write the prescale value to the **GPTM Timern Prescale Register** (GPTMTnPR).
- 5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).
- 6. If interrupts are required, set the TnTOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 7. Set the TREN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start counting.
- 8. Poll the TRTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TRTOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 8 on page 166. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

9.3.4 16-Bit Input Edge Count Mode

A timer is configured to Input Edge Count mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR field to 0x3.
- 4. Configure the type of event(s) that the timer captures by writing the **TREVENT** field of the **GPTM Control (GPTMCTL)** register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.
- 7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 8. Set the TREN bit in the **GPTMCTL** register to enable the timer and begin waiting for edge events.
- 9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM Interrupt Clear (GPTMICR) register.

In Input Edge Count Mode, the timer stops after the desired number of edge events has been detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 167 through step 9 on page 167.

9.3.5 16-Bit Input Edge Timing Mode

A timer is configured to Input Edge Timing mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the **GPTM Configuration (GPTMCFG)** register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR field to 0x3.
- 4. Configure the type of event that the timer captures by writing the TREVENT field of the **GPTM Control (GPTMCTL)** register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 7. Set the TNEN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.
- 8. Poll the CnERIS bit in the **GPTMRIS** register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the **GPTM**

Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained by reading the **GPTM Timern (GPTMTnR)** register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected, but the timer interval can be changed at any time by writing the **GPTMTnILR** register. The change takes effect at the next cycle after the write.

9.3.6 16-Bit PWM Mode

A timer is configured to PWM mode using the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.
- 4. Configure the output state of the PWM signal (whether or not it is inverted) in the TREVENT field of the **GPTM Control (GPTMCTL)** register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.
- 7. Set the TREN bit in the **GPTM Control (GPTMCTL)** register to enable the timer and begin generation of the output PWM signal.

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The PWM period can be adjusted at any time by writing the **GPTMTnILR** register, and the change takes effect at the next cycle after the write.

9.4 Register Map

Table 9-3 on page 168 lists the GPTM registers. The offset listed is a hexadecimal increment to the register's address, relative to that timer's base address:

- Timer0: 0x4003.0000
- Timer1: 0x4003.1000
- Timer2: 0x4003.2000

Table 9-3. Timers Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	GPTMCFG	R/W	0x0000.0000	GPTM Configuration	170
0x004	GPTMTAMR	R/W	0x0000.0000	GPTM TimerA Mode	171
0x008	GPTMTBMR	R/W	0x0000.0000	GPTM TimerB Mode	173
0x00C	GPTMCTL	R/W	0x0000.0000	GPTM Control	175
0x018	GPTMIMR	R/W	0x0000.0000	GPTM Interrupt Mask	178

Offset	Name	Туре	Reset	Description	See page
0x01C	GPTMRIS	RO	0x0000.0000	GPTM Raw Interrupt Status	180
0x020	GPTMMIS	RO	0x0000.0000	GPTM Masked Interrupt Status	181
0x024	GPTMICR	W1C	0x0000.0000	GPTM Interrupt Clear	182
0x028	GPTMTAILR	R/W	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA Interval Load	184
0x02C	GPTMTBILR	R/W	0x0000.FFFF	GPTM TimerB Interval Load	185
0x030	GPTMTAMATCHR	R/W	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA Match	186
0x034	GPTMTBMATCHR	R/W	0x0000.FFFF	GPTM TimerB Match	187
0x038	GPTMTAPR	R/W	0x0000.0000	GPTM TimerA Prescale	188
0x03C	GPTMTBPR	R/W	0x0000.0000	GPTM TimerB Prescale	189
0x040	GPTMTAPMR	R/W	0x0000.0000	GPTM TimerA Prescale Match	190
0x044	GPTMTBPMR	R/W	0x0000.0000	GPTM TimerB Prescale Match	191
0x048	GPTMTAR	RO	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA	192
0x04C	GPTMTBR	RO	0x0000.FFFF	GPTM TimerB	193

9.5 Register Descriptions

The remainder of this section lists and describes the GPTM registers, in numerical order by address offset.

Register 1: GPTM Configuration (GPTMCFG), offset 0x000

This register configures the global operation of the GPTM module. The value written to this register determines whether the GPTM is in 32- or 16-bit mode.

GPTM Configuration (GPTMCFG)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x000 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	1	1	rese	erved					1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	1	1	reserved			1					GPTMCFG	I
Туре	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:3	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2:0	GPTMCFG	R/W	0x0	GPTM Configuration The GPTMCFG values are defined as follows:
				The Grimer G values are defined as follows.

- 0x0 32-bit timer configuration.
- 0x1 32-bit real-time clock (RTC) counter configuration.
- 0x2 Reserved
- 0x3 Reserved
- 0x4-0x7 16-bit timer configuration, function is controlled by bits 1:0 of **GPTMTAMR** and **GPTMTBMR**.

Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to 0x2.

GPTM TimerA Mode (GPTMTAMR)

Time Time Offse	r0 base: (r1 base: (r2 base: (et 0x004 R/W, res	0x4003.1 0x4003.2	0000 1000 2000		,												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	1		1	1	1	1		rese	erved	1	1			1 1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	I		1	Ì		rese	erved			1	r		TAAMS	TACMR	TA	MR	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	
Bit/Field Name Type Reset Description																	
31:4 reserved RO 0x				0x00	C	ompatibi	lity with f	future pr	oducts,	alue of a the value vrite oper	e of a res		provide it should be				
	3		TAA	MS	F	R/W	0	G	PTM Tir	merA Alte	ernate M	ode Se	lect				
								Т	he taam	AMS values are defined as follows:							
								١	/alue De	escription	n						
									0 Ca	apture m	ode is e	nabled.					
									1 P\	VM mod	e is ena	bled.					
									N				mode, yo 'AMR fielo		lso clea	T the TACMR	
	2		TAC	MR	F	R/W	0	G	PTM Tir	nerA Ca	pture Mo	ode					
								Т	he tacm	IR values	s are def	ined as	follows:				
								١	/alue De	escription	n						
									0 Eo	lge-Cou	nt mode						
									1 Eo	dge-Time	e mode						

Bit/Field	Name	Туре	Reset	Description
1:0	TAMR	R/W	0x0	GPTM TimerA Mode
				The TAMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The Timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register (16-or 32-bit).
				In 16-bit timer configuration, TAMR controls the 16-bit timer modes for TimerA.

In 32-bit timer configuration, this register controls the mode and the contents of **GPTMTBMR** are ignored.

Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to 0x2.

GPTM TimerB Mode (GPTMTBMR)

Time Time Offse	r0 base: (r1 base: (r2 base: (et 0x008 R/W, res	0x4003.1 0x4003.2	000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1		1		res	erved		1	1		1		•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		•	•		rese	erved					•	TBAMS	TBCMR	ТВ	MR
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nai	me	ſ	Гуре	Reset	0	Descriptio	n						
31:4 reserved RO 0x00 Software should not rely on the value of a reserved compatibility with future products, the value of a reserved across a read-modify-write operation.																
	3		TBA	MS	F	R/W	0	C	GPTM Tin	nerB Alt	ernate N	lode Se	lect			
								Г	he tbam	s values	s are def	ined as	follows:			
								,	Value De	scriptio	n					
									0 Ca	Capture mode is enabled.						
									1 PV	VM mod	le is ena	bled.				
									No				mode, yo BMR field		lso clea	r the TBCM
	2			TBCMR R/W			0	0 GPTM TimerB Capture Mode								
								٦	he tbcm	R values	s are def	ined as	follows:			
								,	Value De	scriptio	n					
									0 Ed	ge-Cou	nt mode					
									1 Ed	ge-Time	e mode					

Bit/Field	Name	Туре	Reset	Description
1:0	TBMR	R/W	0x0	GPTM TimerB Mode
				The TBMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register.
				In 16-bit timer configuration, these bits control the 16-bit timer modes for TimerB.
				In 32-bit timer configuration, this register's contents are ignored and

In 32-bit timer configuration, this register's contents are ignored and **GPTMTAMR** is used.

Register 4: GPTM Control (GPTMCTL), offset 0x00C

This register is used alongside the **GPTMCFG** and **GMTMTnMR** registers to fine-tune the timer configuration, and to enable other features such as timer stall.

Timer Timer Timer Offse	r0 base: (r1 base: (r2 base: (t 0x00C	ntrol (GI 0x4003.0 0x4003.1 0x4003.2 set 0x000	000 000 000	L)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved					•		
Type eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	TBPWML	TBOTE	reserved	TBE\	/ENT	TBSTALL	TBEN	reserved	TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
Type eset	RO 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nai	me	т	уре	Rese	et D	escriptic	n						
	31:15		rese	rved	I	20	0x00	C	ompatibi		uture pr	oducts, t	the value	e of a re	d bit. To served b	
	14		TBP\	NML	F	R/W	0	G	PTM Tir	nerB PW	/M Outp	ut Level				
								Т	he TBPW	ML value	es are de	efined as	s follows	:		
								、	/alua Da	escriptior	`					
								v		utput is u		d.				
										utput is in						
										•						
	13		твс	DTE	F	R/W	0	G	PTM Tir	nerB Ou	tput Trig	ger Ena	ble			
								Т	he твот	E values	are def	ined as t	follows:			
								N	/alue De	escriptior	ı					
									0 Th	ne output	TimerB	trigger i	s disabl	ed.		
									1 Th	ne output	TimerB	trigger i	s enable	ed.		
	12		rese	rved	I	20	0	C	ompatibi		uture pr	oducts, t	the value	e of a re	d bit. To j served b	
	11:10		TBEV	/ENT	F	R/W	0x0	G	PTM Tir	nerB Eve	ent Mod	e				
								Т	he TBEV	ENT valu	ues are o	defined a	as follow	/s:		
								N	/alue De	escriptior	ı					
									0x0 Pc	ositive ec	lge					
									0x1 Ne	egative e	dge					
									0x2 Re	eserved						
									0x3 Bo	oth edges	5					

Bit/Field	Name	Туре	Reset	Description
9	TBSTALL	R/W	0	GPTM TimerB Stall Enable
				The TBSTALL values are defined as follows:
				Value Description
				0 TimerB stalling is disabled.
				1 TimerB stalling is enabled.
8	TBEN	R/W	0	GPTM TimerB Enable
				The TBEN values are defined as follows:
				Value Description
				0 TimerB is disabled.
				1 TimerB is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide
				compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	TAPWML	R/W	0	GPTM TimerA PWM Output Level
				The TAPWML values are defined as follows:
				Value Description
				0 Output is unaffected.
				1 Output is inverted.
5	TAOTE	R/W	0	GPTM TimerA Output Trigger Enable
				The TAOTE values are defined as follows:
				Value Description
				0 The output TimerA trigger is disabled.
				1 The output TimerA trigger is enabled.
4	RTCEN	R/W	0	GPTM RTC Enable
				The RTCEN values are defined as follows:
				Value Description
				0 RTC counting is disabled.
				1 RTC counting is enabled.

1 RTC counting is enabled.

Bit/Field	Name	Туре	Reset	Description
3:2	TAEVENT	R/W	0x0	GPTM TimerA Event Mode
				The TAEVENT values are defined as follows:
				Value Description
				0x0 Positive edge
				0x1 Negative edge
				0x2 Reserved
				0x3 Both edges
1	TASTALL	R/W	0	GPTM TimerA Stall Enable
				The TASTALL values are defined as follows:
				Value Description
				0 TimerA stalling is disabled.
				1 TimerA stalling is enabled.
0	TAEN	R/W	0	GPTM TimerA Enable
				The TAEN values are defined as follows:
				Value Description
				0 TimerA is disabled.
				1 TimerA is enabled and begins counting or the capture log

1 TimerA is enabled and begins counting or the capture logic is enabled based on the **GPTMCFG** register.

Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018

This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables the interrupt, while writing a 0 disables it.

GPTM Interrupt Mask (GPTMIMR)

	•	`
	e: 0x4003.000 e: 0x4003.100	-
Timer2 base	e: 0x4003.200	0
Offset 0x01	8	
Type R/W, r	reset 0x0000.0	0000

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ						1		rese	rved		1	1	1		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved			CBEIM	CBMIM	твтоім		rese	erved	•	RTCIM	CAEIM	CAMIM	ΤΑΤΟΙΜ
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	it/Field		Nar	ne	Т	Гуре	Rese	et De	escriptio	n						
	31:11		reser	ved		RO	0x00	cc	mpatibil	ity with f	future pr	oducts,	alue of a the value rite oper	e of a re		provide it should be
	10		CBE	IM	F	₹/W	0			•	Event Int	•				
											s are def	ined as	follows:			
								V	alue De 0 Int	•	n i disable	d				
											enable					
										onaptio	onabiot					
	9		CBM	1IM	F	R/W	0	G	РТМ Са	ptureB N	Match In	terrupt N	Mask			
								Tł	NE CBMI	M values	s are def	ined as	follows:			
								V	alue De	scription	n					
									0 Int	errupt is	disable	d.				
									1 Int	errupt is	enableo	J.				
	8		TBTO	DIM	F	R/W	0	G	PTM Tin	nerB Tim	ne-Out Ir	nterrupt	Mask			
								Tł	е твто	IM value	es are de	efined a	s follows	:		
								V	alue De	scription	n					
									0 Int	errupt is	disable	d.				
									1 Int	errupt is	enableo	d.				
	7:4		reser	ved		RO	0	cc	mpatibil	ity with f	future pr	oducts,	alue of a the value vrite oper	e of a re		provide it should be

Bit/Field	Name	Туре	Reset	Description
3	RTCIM	R/W	0	 GPTM RTC Interrupt Mask The RTCIM values are defined as follows: Value Description Interrupt is disabled. Interrupt is enabled.
2	CAEIM	R/W	0	 GPTM CaptureA Event Interrupt Mask The CAEIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled.
1	CAMIM	R/W	0	 GPTM CaptureA Match Interrupt Mask The CAMIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled.
0	ΤΑΤΟΙΜ	R/W	0	GPTM TimerA Time-Out Interrupt Mask The TATOIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled.

Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C

This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or not the interrupt is masked in the **GPTMIMR** register. Each bit can be cleared by writing a 1 to its corresponding bit in **GPTMICR**.

GPTM Raw Interrupt Status (GPTMRIS)

Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x01C
Type RO, reset 0x0000.0000

1300	110,1000	. 0//000	0.0000																
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	T		т т					rese	erved										
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			reserved		1	CBERIS	CBMRIS	TBTORIS		rese	erved	-	RTCRIS	CAERIS	CAMRIS	TATORIS			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
E	Bit/Field		Nan	ne		Туре	Rese	t D	escriptio	n									
_																			
	31:11		reser	ved		RO	0x00		oftware s										
									compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.										
	10		005			DO	0												
	10		CBEI	RIS		RO	0		PTM Ca				•						
								Т	This is the CaptureB Event interrupt status prior to masking.										
	9		CBM	RIS		RO 0		G	GPTM CaptureB Match Raw Interrupt										
								This is the CaptureB Match inte						s prior to	maskin	g.			
	•					50	•		DTMT		0.15					-			
	8		TBTO	RIS		RO	0		iPTM Tin				•						
								Т	his is the	TimerB	time-ou	t interru	pt status	prior to	maskin	g.			
	7:4		reser	ved		RO	0x0	S	oftware s	should n	ot rely o	n the va	alue of a	reserve	d bit. To	provide			
									ompatibil						served b	it should			
								p	reserved	across	a read-n	10alty-w	/rite oper	ation.					
	3		RTCI	RIS		RO	0	G	PTM RT	C Raw I	nterrupt								
								Т	his is the	RTC E	vent inte	rrupt sta	atus prio	r to mas	king.				
	2 CAERIS					RO 0		G	GPTM CaptureA Event Raw Interrupt										
	L		UALI			NO	0								un a a luira	_			
								I	his is the	Captur	ea Even	t interfu	pi status	prior to	masking	J.			
	1		CAM	RIS		RO	0	G	іРТМ Са	ptureA I	Match Ra	aw Inter	rupt						
								Т	his is the	Captur	eA Matc	h interru	upt status	s prior to	maskin	g.			
	0		TATO	RIS		RO	0	C	PTM Tin	nor∆ Tin	ne₋Out ¤	aw Into	rrunt						
	U		IAIU			NU	U	-	–			aw me	inupt						

Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020

This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in **GPTMIMR**, and there is an event that causes the interrupt to be asserted, the corresponding bit is set in this register. All bits are cleared by writing a 1 to the corresponding bit in **GPTMICR**.

Time Time Time Offse	er0 base: (er1 base: (er2 base: (er 0x020 e RO, rese	0x4003.0 0x4003.1 0x4003.2	1000 2000			MIC)										
г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								re	served							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
]	ľ		reserved		ì	CBEMIS	CBMMIS	твтом	IS	rese	i erved	1	RTCMIS	CAEMIS	CAMMIS	TATOMIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nan	ne	Т	уре	Rese	et l	Descriptic	on						
	31:11		reser	ved		RO	0x00	(Software compatibi preserved	ility with	future pr	oducts,	the value	e of a re		provide it should be
	10		CBE	MIS		RO	0		GPTM Са	aptureB I	Event Ma	asked Ir	nterrupt			
									This is the	e Captur	eB even	t interru	ıpt status	after m	asking.	
	9		CBMI	MIS		RO	0		GPTM Ca	•			•			
									This is the	•					asking.	
	8		ТВТО	MIS		RO	0		GPTM Tir							
									This is the						Ū	
	7:4		reser	ved		RO	0x0		Software compatibi preserved	ility with	future pr	oducts,	the value	e of a re		provide it should be
	3		RTC	MIS		RO	0		GPTM R1	FC Mask	ed Interi	rupt				
									This is the	e RTC e	vent inte	rrupt sta	atus after	r maskin	g.	
	2		CAE	MIS		RO	0		GPTM Ca	aptureA I	Event Ma	asked Ir	nterrupt			
									This is the	e Captur	eA even	t interru	ıpt status	after m	asking.	
	1		CAM	MIS		RO	0		GPTM Ca	aptureA I	Match M	asked I	nterrupt			
									This is the	e Captur	eA mato	h interru	upt status	s after m	nasking.	
	0		TATO	MIS		RO	0		GPTM Tir	merA Tin	ne-Out N	lasked	Interrupt			
									This is the	e TimerA	time-ou	ıt interru	upt status	s after m	asking.	

GPTM Masked Interrupt Status (GPTMMIS)

June 04, 2008

Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024

This register is used to clear the status bits in the **GPTMRIS** and **GPTMMIS** registers. Writing a 1 to a bit clears the corresponding bit in the **GPTMRIS** and **GPTMMIS** registers.

GP 1	TM Inte	rrupt C	Clear (GF	тміс	R)											
Time Time Offse	r0 base: (r1 base: (r2 base: (et 0x024 W1C, res	0x4003. 0x4003.	1000 2000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Í	1				1	1	1 1	rese	rved	1		1	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'		reserved			CBECINT	CBMCINT	TBTOCINT		rese	rved	•	RTCCINT	CAECINT	CAMCINT	TATOCINT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0
E	Bit/Field		Nan	ne	r	Гуре	Rese	t D	escriptio	n						
31:11 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit should not rely on the value of a reserved bit should not rely																
	10		CBEC	INT	V	V1C	0	G	РТМ Са	ptureB E	Event Int	errupt (Clear			
								Т	1e CBEC	INT valu	ues are o	defined	as follov	vs:		
								V		escriptior e interru		affected				
										e interru						
												aroa.				
	9		CBMC	CINT	V	V1C	0	G	PTM Ca	ptureB N	/latch In	terrupt	Clear			
													as follov	vs:		
								V	alua Da	escriptior						
								v		e interru		affected	1			
										e interru						
	8		TBTO	CINT	V	V1C	0	G	PTM Tin	nerB Tim	ne-Out Ir	nterrupt	Clear			
								TI	1е ТВТО	CINT VA	lues are	e define	d as follo	ws:		
								V	alue De	escriptior	ı					
										e interru		affected	I.			
									1 Th	e interru	pt is cle	ared.				
	7:4		reser	ved		RO	0x0	co	mpatibil	ity with f	uture pr	oducts,	alue of a the valu vrite ope	e of a re		provide it should be

Bit/Field	Name	Туре	Reset	Description
3	RTCCINT	W1C	0	 GPTM RTC Interrupt Clear The RTCCINT values are defined as follows: Value Description The interrupt is unaffected. The interrupt is cleared.
2	CAECINT	W1C	0	 GPTM CaptureA Event Interrupt Clear The CAECINT values are defined as follows: Value Description 0 The interrupt is unaffected. 1 The interrupt is cleared.
1	CAMCINT	W1C	0	GPTM CaptureA Match Raw Interrupt This is the CaptureA match interrupt status after masking.
0	TATOCINT	W1C	0	GPTM TimerA Time-Out Raw Interrupt The TATOCINT values are defined as follows:
				Value Description0 The interrupt is unaffected.1 The interrupt is cleared.

Timer0 base: 0x4003.0000

Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028

This register is used to load the starting count value into the timer. When GPTM is configured to one of the 32-bit modes, **GPTMTAILR** appears as a 32-bit register (the upper 16-bits correspond to the contents of the **GPTM TimerB Interval Load (GPTMTBILR)** register). In 16-bit mode, the upper 16 bits of this register read as 0s and have no effect on the state of **GPTMTBILR**.

Time Time Offse	r1 base: r2 base: et 0x028	0x4003.1 0x4003.1 0x4003.2 set 0x000	1000 2000	16-bit mo	de) and 0	xFFF.	FFFF (32-b	oit mode)							
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	T	1	ı 1	I	1	T/	AILRH	1	1	1	ı 1	1	1	
Type Reset	R/W 0	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[ĺ	Î	1	1	I	Î	Т	AILRL	I	1	1	1	I	1	
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	Bit/Field		Na	me	٦	Гуре	Rese	et I	Descriptic	n						
	31:16		TAIL	_RH	F	R/W	0xFFI (32-bit m 0x0000 (mode	node) 16-bit	GPTM Tir When cor FimerB Ir write. A re	ifigured f Iterval L	for 32-bit .oad (G l	t mode v PTMTBI	ia the GI LR) regi	PTMCFC ster load	ds this va	r, the GPTM alue on a
									n 16-bit n state of G			eads as	0 and dc	es not h	ave an e	effect on the
	15:0		TAII	_RL	F	₹/W	0xFFI	I	GPTM Tir ⁼ or both <i>^</i> FimerA. A	6- and	32-bit m	odes, wr	iting this			counter for

GPTM TimerA Interval Load (GPTMTAILR)

16

RO

0

0

R/W

1

Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C

This register is used to load the starting count value into TimerB. When the GPTM is configured to a 32-bit mode, GPTMTBILR returns the current value of TimerB and ignores writes.

GPTM TimerB Interval Load (GPTMTBILR)

TBILRL

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x02C Type R/W, reset 0x0000.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 TBILRL R/W Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 **Bit/Field** Name Туре Reset Description Software should not rely on the value of a reserved bit. To provide 31:16 RO 0x0000 reserved

R/W

compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

19

RO

0

3

R/W

1

18

RO

0

2

R/W

1

17

RO

0

1

R/W

1

0xFFFF GPTM TimerB Interval Load Register

When the GPTM is not configured as a 32-bit timer, a write to this field updates GPTMTBILR. In 32-bit mode, writes are ignored, and reads return the current value of GPTMTBILR.

15:0

Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

GPTM TimerA Match (GPTMTAMATCHR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x030 Type R/W, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		т т			1	1 1	T/	AMRH			1		[1	
І Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	0	1	0	1	1	1	1	0	1	1	1	1	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ		1 I		1 1	1	1 1	T/	AMRL		1	1	1	r	1	
Type	R/W 1	R/W 1	R/W 1	R/W 1	R/W	R/W 1	R/W 1	R/W 1	R/W	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W
Reset	I	I	I	I	I	I	I	I	1	I	I	1	1	1	I	1
	Bit/Field		Nan	20	-	Tuno	Rese	+ T	Descriptio	n						
C	SIVFIEIU		Indi	lie		Гуре	Rese	i i	Descriptio	11						
31:16 TAMRH R/W 0xFFFF GPTM TimerA Match Register High (32-bit mode)																
(32-bit mode) When configured for 22 bit Real Time Cleak (RTC) made via the														ria the		
	0 0															
							mode	<i>'</i>	GPTMTAF	R, to det	ermine r	natch ev	vents.			
								I	n 16-bit m	node, thi	s field re	ads as () and do	es not h	ave an e	effect on the
								5	state of G	ртмтві	MATCHI	२ .				
	15:0		TAM	RL	I	R/W	0xFFF	F (GPTM Tim	nerA Ma	tch Reg	ister Lov	v			
								١	When con	fiaured f	or 32-bi	t Real-Ti	ime Cloc	k (RTC)) mode v	ia the
								(GPTMCF	G registe	er, this v	alue is c	ompared	• •		
								(GPTMTAF	R, to det	ermine r	match ev	ents.			
										•		-		•		TMTAILR,
								(determine	s the du	ty cycle	of the ou	utput PV	/M signa	al.	
									When con	•	•				•	
																ed. The total
									number of minus this		ents co	unteuls	equalto		ue III GF	TMTAILR

Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034

This register is used in 16-bit PWM and Input Edge Count modes.

Time Time Time Offse	r0 base: r1 base: r2 base: t 0x034	erB Ma 0x4003.0 0x4003.1 0x4003.2 set 0x000	000	РТМТВ	MATCH	IR)										
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1		res	erved	1		1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[· · ·	1	1	1	1	1	1	MRL .	1	1	1	1	1	1	
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	Bit/Field		Na	me	٦	Гуре	Rese	et [Descriptic	on						
	31:16		rese	rved		RO	0x00	C	Software compatibi preservec	lity with f	future pr	oducts,	the valu	e of a re		provide it should be
	15:0		TBN	/IRL	I	R/W	0xFFI	FF (SPTM Tir	nerB Ma	tch Reg	ister Lov	N			
									Vhen cor letermine	0		-		0		TMTBILR,
								(r		ILR, dete f edge e	ermines	how mar	ny edge	events a	re counte	ith ed. The tota PTMTBILR

Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerA Prescale (GPTMTAPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x038 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		, ,			1		rese	rved	1		1	1	1	,	,
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber	15		13	12	11	10	9	8	7			-	3	2	4	
	15	14	13	12	11	10	9	0		6	5	4	<u> </u>	2	<u>'</u>	0
				rese	rved					-		TAF	PSR	-	-	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name Type I							D	escriptio	n						
	31:8 reserved RO						0x00	CC	ompatibi	lity with f	uture pr	on the va roducts, f nodify-w	the value	e of a re		provide bit should be
	7:0		TAP	SR	F	R/W	0x00	G	PTM Tin	nerA Pre	escale					
									ne regist the regi		this valu	ue on a w	vrite. A re	ead retu	rns the c	urrent value

Refer to Table 9-2 on page 162 for more details and an example.

Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerB Prescale (GPTMTBPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x03C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1	г г	rese	rved	1		1			1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I		rese	rved					1		TBF	PSR		1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Na	me	Ţ	Гуре	Reset	D	escriptio	n						
	31:8		rese	rved		RO	0x00	cc	ompatibi	lity with f	uture pr	on the va oducts, f nodify-w	the value	e of a re		provide it should be
	7:0		TBF	PSR	I	R/W	0x00	G	PTM Tin	nerB Pre	escale					
									ne regist this reg		this valu	ue on a w	/rite. A re	ead retu	rns the c	urrent value

Refer to Table 9-2 on page 162 for more details and an example.

Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040

This register effectively extends the range of **GPTMTAMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

events while using a prescaler.

GPTM TimerA Prescale Match (GPTMTAPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x040 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			i i			1	1	rese	rved	i i		r	1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese		1	r T	0		I		1	SMR	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nar	ne		Туре	Reset	D	escriptio	n						
	31:8 reserved RO 0								ompatibil	ity with f	uture pr		the value	e of a re	d bit. To served b	provide it should b
	7:0		TAPS	SMR		R/W	0x00		PTM Tin				итама:		h detect t	imer match
											•					

190

Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044

This register effectively extends the range of **GPTMTBMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

events while using a prescaler.

GPTM TimerB Prescale Match (GPTMTBPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x044 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1		1	1 1	rese	rved	1	r	T		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved	•	1 1			1	I	TBP	SMR	1	I	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Na	me	1	уре	Rese	t D	escriptio	n						
	31:8		rese	rved		RO	0x00	CC	ompatibi	lity with f	future pr		the value	e of a re	d bit. To eserved b	provide it should
	7:0		TBP	SMR	F	R/W	0x00	G	PTM Tin	nerB Pre	escale N	latch				
								Tł	nis value	e is used	alongsi	ide GPT I	MTBMA	TCHR t	o detect	timer mate

Register 17: GPTM TimerA (GPTMTAR), offset 0x048

This register shows the current value of the TimerA counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

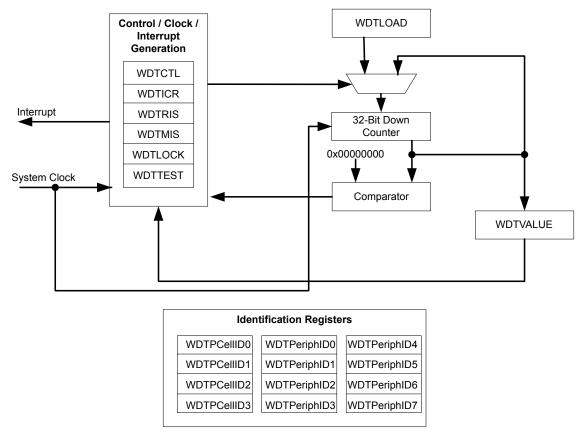
GPTM TimerA (GPTMTAR) Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x048 Type RO, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode) 1 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Type RO, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode) TARH TARH																
Time Time Offse	r1 base: (r2 base: (et 0x048	0x4003. 0x4003.	1000 2000	16-bit moc	le) and 0	xFFF.F	FFF (32-b	it mode)								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[ľ		Ĩ	I	ı 1	1	ſ	т Т	ARH	1	Í	I	1 1	1	1	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[ſ		1	1	г 1	1	1	Т	ARL	1	1	1	ı 1	1	1	
E	Bit/Field		Na	ame		Туре	Res	et D	escripti	on						
	31:16		TA	RH		RO	(32-bit r 0x0000	node) (16-bit	the GP	TMCFG i	s in a 3	2-bit mod				If the
	15:0		TA	RL		RO	0xFF	FF G	BPTM T	imerA Re	gister Lo	w				
								е	xcept in		ge Cou					n t Register , stamp from

Register 18: GPTM TimerB (GPTMTBR), offset 0x04C

This register shows the current value of the TimerB counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

Time Time Time Offse	r0 base: (r1 base: (r1 base: (r2 base: (et 0x04C RO, rese	0x4003.0 0x4003.1 0x4003.2	2000	R)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1	1	1	1	1	re	served	1	1	1	1	I	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset					0	U	U	0	U	U	U	0	U	U	U	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TBRL															
Type Reset	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1
	Bit/Field	I	Nar	·		Туре	Rese		' Descriptio		I	I	I	I	I	I
	31:16		resei	rved		RO	0x000	(Software s compatibi preserved	lity with t	future pr	oducts,	the value	e of a re		provide bit should b
	15:0		TBI	RL		RO	0xFFF	F (GPTM Tir	nerB						
								e		Input Ed	ge Cour					nt Register stamp from

10 Watchdog Timer


A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or due to the failure of an external device to respond in the expected way.

The Stellaris[®] Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, a locking register, and user-enabled stalling.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

10.1 Block Diagram

10.2 Functional Description

The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt. After the first time-out event, the 32-bit counter is re-loaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. Once the

Watchdog Timer has been configured, the **Watchdog Timer Lock (WDTLOCK)** register is written, which prevents the timer configuration from being inadvertently altered by software.

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting resumes from that value.

If **WDTLOAD** is written with a new value while the Watchdog Timer counter is counting, then the counter is loaded with the new value and continues counting.

Writing to **WDTLOAD** does not clear an active interrupt. An interrupt must be specifically cleared by writing to the **Watchdog Interrupt Clear (WDTICR)** register.

The Watchdog module interrupt and reset generation can be enabled or disabled as required. When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its last state.

10.3 Initialization and Configuration

To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the **RCGC0** register. The Watchdog Timer is configured using the following sequence:

- 1. Load the **WDTLOAD** register with the desired timer load value.
- 2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.
- 3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.

If software requires that all of the watchdog registers are locked, the Watchdog Timer module can be fully locked by writing any value to the **WDTLOCK** register. To unlock the Watchdog Timer, write a value of 0x1ACC.E551.

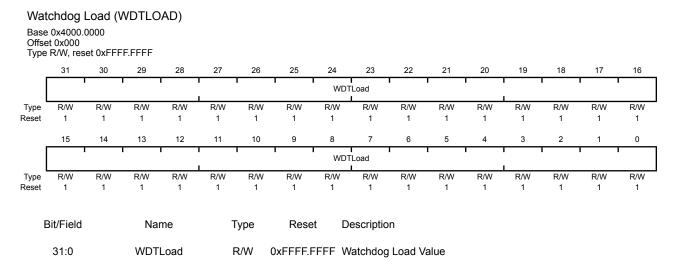
10.4 Register Map

Table 10-1 on page 195 lists the Watchdog registers. The offset listed is a hexadecimal increment to the register's address, relative to the Watchdog Timer base address of 0x4000.0000.

Offset	Name	Туре	Reset	Description	See page
0x000	WDTLOAD	R/W	0xFFFF.FFFF	Watchdog Load	197
0x004	WDTVALUE	RO	0xFFFF.FFFF	Watchdog Value	198
0x008	WDTCTL	R/W	0x0000.0000	Watchdog Control	199
0x00C	WDTICR	WO	-	Watchdog Interrupt Clear	200
0x010	WDTRIS	RO	0x0000.0000	Watchdog Raw Interrupt Status	201
0x014	WDTMIS	RO	0x0000.0000	Watchdog Masked Interrupt Status	202
0x418	WDTTEST	R/W	0x0000.0000	Watchdog Test	203
0xC00	WDTLOCK	R/W	0x0000.0000	Watchdog Lock	204

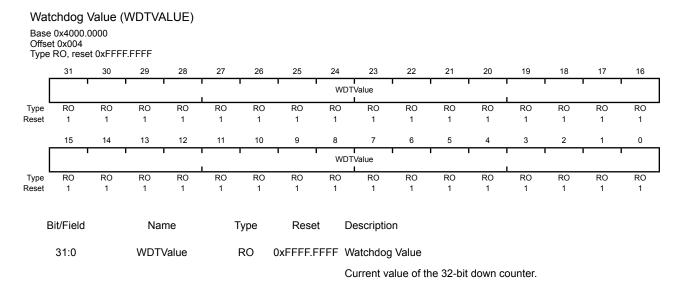
Table 10-1. Watchdog Timer Register Map

June 04, 2008


Offset	Name	Туре	Reset	Description	See page
0xFD0	WDTPeriphID4	RO	0x0000.0000	Watchdog Peripheral Identification 4	205
0xFD4	WDTPeriphID5	RO	0x0000.0000	Watchdog Peripheral Identification 5	206
0xFD8	WDTPeriphID6	RO	0x0000.0000	Watchdog Peripheral Identification 6	207
0xFDC	WDTPeriphID7	RO	0x0000.0000	Watchdog Peripheral Identification 7	208
0xFE0	WDTPeriphID0	RO	0x0000.0005	Watchdog Peripheral Identification 0	209
0xFE4	WDTPeriphID1	RO	0x0000.0018	Watchdog Peripheral Identification 1	210
0xFE8	WDTPeriphID2	RO	0x0000.0018	Watchdog Peripheral Identification 2	211
0xFEC	WDTPeriphID3	RO	0x0000.0001	Watchdog Peripheral Identification 3	212
0xFF0	WDTPCellID0	RO	0x0000.000D	Watchdog PrimeCell Identification 0	213
0xFF4	WDTPCellID1	RO	0x0000.00F0	Watchdog PrimeCell Identification 1	214
0xFF8	WDTPCellID2	RO	0x0000.0005	Watchdog PrimeCell Identification 2	215
0xFFC	WDTPCellID3	RO	0x0000.00B1	Watchdog PrimeCell Identification 3	216

10.5 Register Descriptions

The remainder of this section lists and describes the WDT registers, in numerical order by address offset.

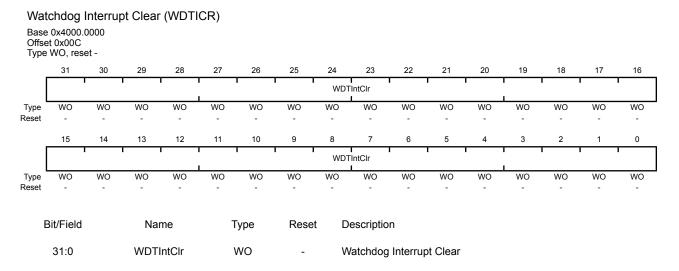

Register 1: Watchdog Load (WDTLOAD), offset 0x000

This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the value is immediately loaded and the counter restarts counting down from the new value. If the **WDTLOAD** register is loaded with 0x0000.0000, an interrupt is immediately generated.

Register 2: Watchdog Value (WDTVALUE), offset 0x004

This register contains the current count value of the timer.

Register 3: Watchdog Control (WDTCTL), offset 0x008


This register is the watchdog control register. The watchdog timer can be configured to generate a reset signal (on second time-out) or an interrupt on time-out.

When the watchdog interrupt has been enabled, all subsequent writes to the control register are ignored. The only mechanism that can re-enable writes is a hardware reset.

Base Offse	tchdog (e 0x4000.0 et 0x008 e R/W, res	0000		CTL)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1			1	1	1		res	l erved			1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				1	1	1	reser	ved	1	1		1	1	1	RESEN	INTEN
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0		INT	EN		R/W	0	Т	he INTE /alue De 0 In	Interrup N values escriptior terrupt eve eared by	are dei n vent dis	fined as abled (or	nce this	bit is se	t, it can c	only be

Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C

This register is the interrupt clear register. A write of any value to this register clears the Watchdog interrupt and reloads the 32-bit counter from the **WDTLOAD** register. Value for a read or reset is indeterminate.

Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010

This register is the raw interrupt status register. Watchdog interrupt events can be monitored via this register if the controller interrupt is masked.

Watchdog Raw Interrupt Status (WDTRIS)

Offse	0x4000.0 t 0x010 RO, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1		r 1	I	r r	res	erved			1	ı 1	1	I	ſ
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ		1			1		reserved				1	1	1	1	WDTRIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	7	Гуре	Reset	t C	Descriptio	n						
	31:1		resei	rved		RO	0x00	C	Software s compatibil preserved	ity with f	uture pr	oducts,	the value	e of a re		provide bit should be
	0		WDT	RIS		RO	0	v	Vatchdog	Raw Int	errupt S	Status				
								C	Gives the	raw inte	rrupt sta	ate (prior	to masl	king) of \		R.

Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014

This register is the masked interrupt status register. The value of this register is the logical AND of the raw interrupt bit and the Watchdog interrupt enable bit.

Base Offse	chdog 0x4000.0 et 0x014 RO, rese	0000	d Interru	ıpt Stat	us (WE	TMIS)					
	31	30	29	28	27	26	25	24	23	22	21
					1	I	r r	rese	rved	I	1 1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5
			, ,		1	1	r r	reserved		I	, ,
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	Т	уре	Rese	t De	escriptio	n	

31:1 RO 0x00 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 0 WDTMIS RO 0 Watchdog Masked Interrupt Status

Gives the masked interrupt state (after masking) of the WDTINTR interrupt.

20

RO

0

4

RO 0

19

RO

0

3

RO 0

17

RO

0

1

RO 0

18

RO

0

2

RO 0

16

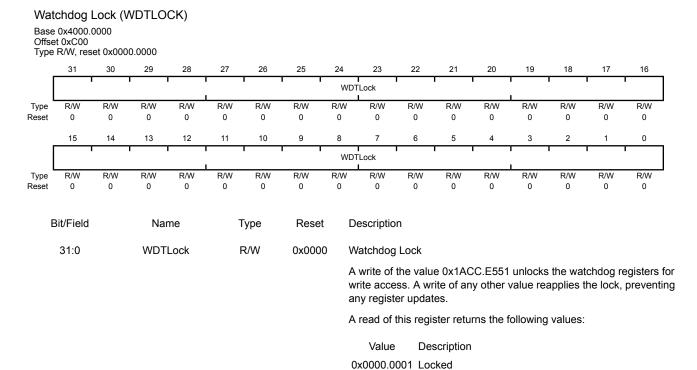
RO

0

0 WDTMIS

RO 0

Register 7: Watchdog Test (WDTTEST), offset 0x418

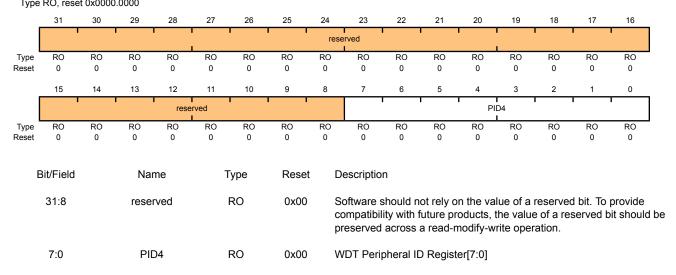

This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag during debug.

Base Offse	chdog 0x4000.4 t 0x418 R/W, res	0000	VDTTE	ST)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	I	1	г т і		1	r r	rese	rved	1	1	r	1	I	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	reserved		1		STALL		•		rese	erved	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Na	me		Туре	Rese	t D	escriptic	'n						
	31:9		rese	rved		RO	0x00	C	ompatibi	lity with t	future pr	oducts,	lue of a the value rrite oper	e of a re		provide bit should
	8		ST	ALL		R/W	0	V	/atchdog	Stall Er	nable					
								d	ebugger,	the wat	chdog tii	ner stop	rocontro os counti sumes c	ng. Onc	e the mid	<i>r</i> ith a crocontro
	7:0		rese	rved		RO	0x00	C	ompatibi	lity with t	future pr	oducts,	llue of a the value rrite oper	e of a re		provide bit should

Register 8: Watchdog Lock (WDTLOCK), offset 0xC00

Writing 0x1ACC.E551 to the **WDTLOCK** register enables write access to all other registers. Writing any other value to the **WDTLOCK** register re-enables the locked state for register writes to all the other registers. Reading the **WDTLOCK** register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are disabled, reading the **WDTLOCK** register returns 0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).

0x0000.0000 Unlocked

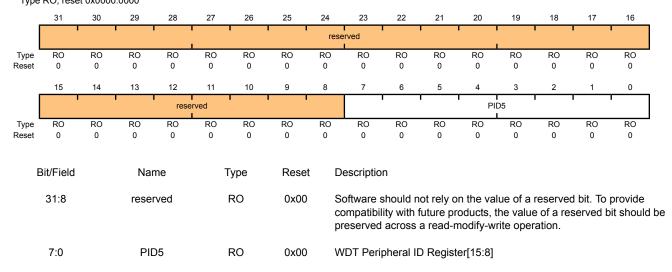


Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 4 (WDTPeriphID4)

Base 0x4000.0000 Offset 0xFD0 Type RO, reset 0x0000.0000



Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 5 (WDTPeriphID5)

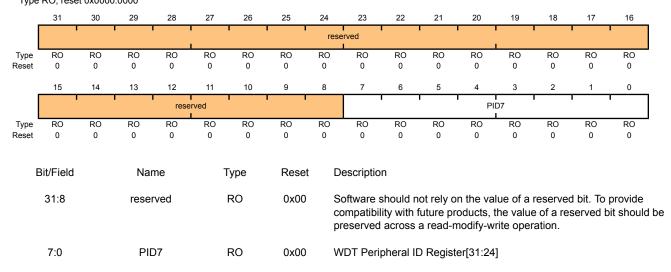
Base 0x4000.0000 Offset 0xFD4 Type RO, reset 0x0000.0000

Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 6 (WDTPeriphID6)

Base 0x4000.0000 Offset 0xFD8 Type RO, reset 0x0000.0000


_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1	1	res	erved					1	1	
Туре	RO	RO	RO	RO 0	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO 0	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved	•	•					PI	D6	1	I	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	me	-	Гуре	Rese	t D	escriptio	n						
	31:8		resei	rved		RO	0x00	С	oftware s ompatibil reserved	ity with f	uture pr	oducts,	the value	e of a re		•
	7:0		PI	D6		RO	0x00	v v	VDT Perij	pheral I) Regist	er[23:16]			

Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 7 (WDTPeriphID7)

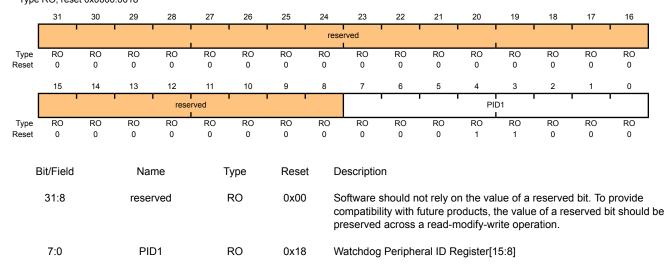
Base 0x4000.0000 Offset 0xFDC Type RO, reset 0x0000.0000

Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 0 (WDTPeriphID0)

Base 0x4000.0000 Offset 0xFE0 Type RO, reset 0x0000.0005


-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•	1		1		res	erved	1	1	1	1	1	1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved	1	1			1	I	PI	1 D0 1	T	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nai	me	٦	Гуре	Rese	t C	Descriptio	n						
	31:8		rese	rved		RO	0x00	С	Software s ompatibi preserved	lity with f	future pr	oducts, t	the value	e of a re		provide it should
	7:0		PI	D0		RO	0x05	i V	Vatchdog	Periphe	eral ID R	egister[7	7:0]			

Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 1 (WDTPeriphID1)

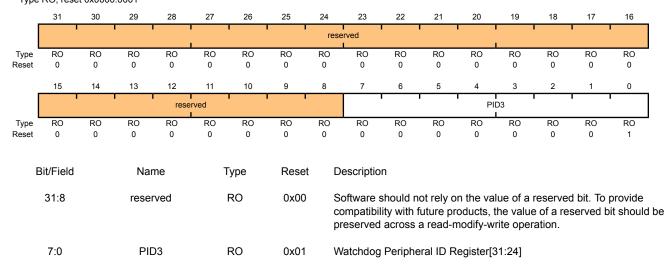
Base 0x4000.0000 Offset 0xFE4 Type RO, reset 0x0000.0018

Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 2 (WDTPeriphID2)

Base 0x4000.0000 Offset 0xFE8 Type RO, reset 0x0000.0018

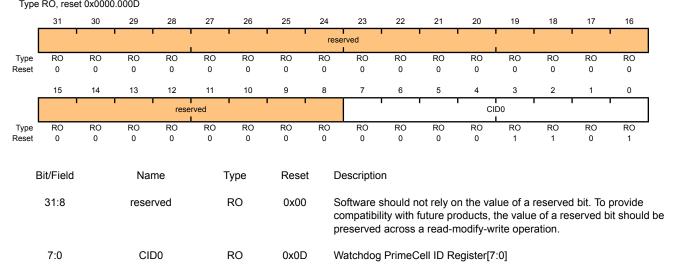

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1				1	1 1	res	erved			1		1	1	
Туре	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO
Reset	U	U	U	0	U	0	0	0	0	U	U	U	U	0	U	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	rved	•						PI	D2	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	Bit/Field		Nar	me	٦	Гуре	Rese	t C	escriptio	n						
	31:8		reser	rved		RO	0x00	С	oftware s ompatibil reserved	ity with f	uture pr	oducts,	the value	e of a re		provide it should
	7:0		PIE	02		RO	0x18	v	Vatchdog	Periphe	eral ID R	egister[2	23:16]			

Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 3 (WDTPeriphID3)

Base 0x4000.0000 Offset 0xFEC Type RO, reset 0x0000.0001



Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 0 (WDTPCelIID0)

Base 0x4000.0000 Offset 0xFF0 Type RO, reset 0x0000.000D

Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 1 (WDTPCellID1)

Offse	e 0x4000. et 0xFF4 RO, rese	0000 et 0x0000	.00F0													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1				1	l l	res	erved		1			1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	rved	•					1	CI	D1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nar	ne	Т	уре	Rese	t C	Descriptio	n						
	31:8		reser	ved		RO	0x00	C	Software s compatibil preserved	ity with	future pr	oducts, t	the value	e of a re		•
	7:0		CIE	D1		RO	0xF0	V	Vatchdog	PrimeC	ell ID R	egister[1	5:8]			

Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 2 (WDTPCelIID2)

Base 0x4000.0000 Offset 0xFF8 Type RO, reset 0x0000.0005

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 Type RO R																	
Type ResetRO <td></td> <td>31</td> <td>30</td> <td>29</td> <td>28</td> <td>27</td> <td>26</td> <td>25</td> <td>24</td> <td>23</td> <td>22</td> <td>21</td> <td>20</td> <td>19</td> <td>18</td> <td>17</td> <td>16</td>		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reset 0 <td></td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td>r r</td> <td>res</td> <td>served</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td>			1	1	1		1	r r	res	served		1	1		1	1	1
Reset 0 <td>Туре</td> <td>RO</td>	Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Type RO <		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Type RO <		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reset 0 0 0 0 0 0 0 0 0 0 1 0 Bit/Field Name Type Reset Description 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved is preserved across a read-modify-write operation.			ı	1	rese	erved	1	r r				1	CI	I ID2	T	1	
Bit/Field Name Type Reset Description 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.	Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.	Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
compatibility with future products, the value of a reserved preserved across a read-modify-write operation.	E	Bit/Field		Na	me		Туре	Rese	t [Descriptio	n						
compatibility with future products, the value of a reserved preserved across a read-modify-write operation.																	
7:0 CID2 RO 0x05 Watchdog PrimeCell ID Register[23:16]		31:8		rese	erved		RO	0x00	C	compatibil	ity with	future p	roducts,	the valu	ie of a re		•
		7:0		CI	D2		RO	0x05	١	Vatchdog	Prime	Cell ID F	Register[2	23:16]			

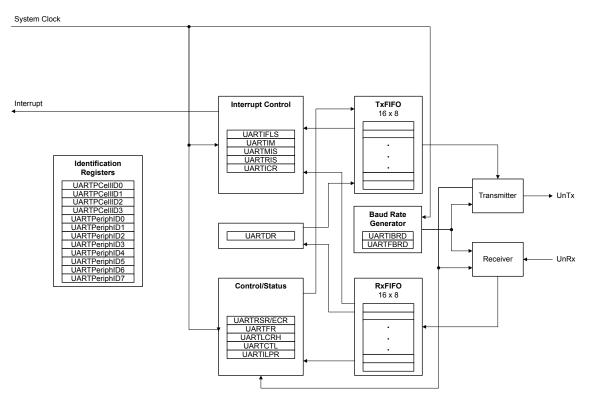
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 3 (WDTPCellID3)

vval	chuog r	liner		uncauc	JI 3 (W	DIFCE	1103)									
Offse	0x4000.0 t 0xFFC RO, rese		0.00B1													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1 1		1	1	ſ	re	eserved		1	1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resel	-	0			-	-	0	0	0	0		0	U	-	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'			rese	erved		•				1	CI	D3	1	1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nar	ne	ſ	Гуре	Reset		Descriptior	١						
	31:8		reser	ved		RO	0x00		Software s compatibili preserved	ty with	future pr	oducts, f	the value	e of a re		•
	7:0		CIE	03		RO	0xB1		Watchdog	PrimeC	Cell ID R	egister[3	1:24]			

11 Universal Asynchronous Receivers/Transmitters (UARTs)


The Stellaris[®] Universal Asynchronous Receiver/Transmitter (UART) provides fully programmable, 16C550-type serial interface characteristics. The LM3S300 controller is equipped with two UART modules.

Each UART has the following features:

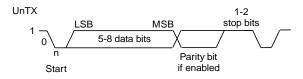
- Separate transmit and receive FIFOs
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Programmable baud-rate generator allowing rates up to 1.5625 Mbps
- Standard asynchronous communication bits for start, stop, and parity
- False start bit detection
- Line-break generation and detection
- Fully programmable serial interface characteristics:
 - 5, 6, 7, or 8 data bits
 - Even, odd, stick, or no-parity bit generation/detection
 - 1 or 2 stop bit generation

11.1 Block Diagram

Figure 11-1. UART Module Block Diagram

11.2 Functional Description

Each Stellaris[®] UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is similar in functionality to a 16C550 UART, but is not register compatible.


The UART is configured for transmit and/or receive via the TXE and RXE bits of the **UART Control** (**UARTCTL**) register (see page 234). Transmit and receive are both enabled out of reset. Before any control registers are programmed, the UART must be disabled by clearing the UARTEN bit in **UARTCTL**. If the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

11.2.1 Transmit/Receive Logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. The control logic outputs the serial bit stream beginning with a start bit, and followed by the data bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control registers. See Figure 11-2 on page 219 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also performed, and their status accompanies the data that is written to the receive FIFO.

Figure 11-2. UART Character Frame

11.2.2 Baud-Rate Generation

The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The number formed by these two values is used by the baud-rate generator to determine the bit period. Having a fractional baud-rate divider allows the UART to generate all the standard baud rates.

The 16-bit integer is loaded through the **UART Integer Baud-Rate Divisor (UARTIBRD)** register (see page 230) and the 6-bit fractional part is loaded with the **UART Fractional Baud-Rate Divisor (UARTFBRD)** register (see page 231). The baud-rate divisor (BRD) has the following relationship to the system clock (where *BRDI* is the integer part of the BRD and *BRDF* is the fractional part, separated by a decimal place.)

BRD = BRDI + BRDF = UARTSysClk / (16 * Baud Rate)

where UARTSysClk is the system clock connected to the UART.

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the **UARTFBRD** register) can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and adding 0.5 to account for rounding errors:

UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)

The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error detection during receive operations.

Along with the **UART Line Control, High Byte (UARTLCRH)** register (see page 232), the **UARTIBRD** and **UARTFBRD** registers form an internal 30-bit register. This internal register is only updated when a write operation to **UARTLCRH** is performed, so any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

- UARTIBRD write, UARTFBRD write, and UARTLCRH write
- UARTFBRD write, UARTIBRD write, and UARTLCRH write
- UARTIBRD write and UARTLCRH write
- UARTFBRD write and UARTLCRH write

11.2.3 Data Transmission

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four bits per character for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated in the **UARTLCRH** register. Data continues to be transmitted until there is no data left in the transmit

FIFO. The BUSY bit in the **UART Flag (UARTFR)** register (see page 228) is asserted as soon as data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register, including the stop bits. The UART can indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has been received), the receive counter begins running and data is sampled on the eighth cycle of Baud16 (described in "Transmit/Receive Logic" on page 218).

The start bit is valid if UnRx is still low on the eighth cycle of Baud16, otherwise a false start bit is detected and it is ignored. Start bit errors can be viewed in the **UART Receive Status (UARTRSR)** register (see page 226). If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later) according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled. Data length and parity are defined in the **UARTLCRH** register.

Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When a full word is received, the data is stored in the receive FIFO, with any error bits associated with that word.

11.2.4 FIFO Operation

The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed via the **UART Data (UARTDR)** register (see page 224). Read operations of the **UARTDR** register return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are enabled by setting the FEN bit in **UARTLCRH** (page 232).

FIFO status can be monitored via the **UART Flag (UARTFR)** register (see page 228) and the **UART Receive Status (UARTRSR)** register. Hardware monitors empty, full and overrun conditions. The **UARTFR** register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the **UARTRSR** register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the **UART Interrupt FIFO Level Select (UARTIFLS)** register (see page 236). Both FIFOs can be individually configured to trigger interrupts at different levels. Available configurations include 1/8, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, and 7/8. For example, if the $\frac{1}{4}$ option is selected for the receive FIFO, the UART generates a receive interrupt after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the $\frac{1}{2}$ mark.

11.2.5 Interrupts

The UART can generate interrupts when the following conditions are observed:

- Overrun Error
- Break Error
- Parity Error
- Framing Error
- Receive Timeout

- Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)
- Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the UART can only generate a single interrupt request to the controller at any given time. Software can service multiple interrupt events in a single interrupt service routine by reading the **UART Masked Interrupt Status (UARTMIS)** register (see page 241).

The interrupt events that can trigger a controller-level interrupt are defined in the **UART Interrupt Mask (UARTIM**) register (see page 238) by setting the corresponding IM bit to 1. If interrupts are not used, the raw interrupt status is always visible via the **UART Raw Interrupt Status (UARTRIS)** register (see page 240).

Interrupts are always cleared (for both the **UARTMIS** and **UARTRIS** registers) by setting the corresponding bit in the **UART Interrupt Clear (UARTICR)** register (see page 242).

The receive timeout interrupt is asserted when the receive FIFO is not empty, and no further data is received over a 32-bit period. The receive timeout interrupt is cleared either when the FIFO becomes empty through reading all the data (or by reading the holding register), or when a 1 is written to the corresponding bit in the **UARTICR** register.

11.2.6 Loopback Operation

The UART can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LBE bit in the **UARTCTL** register (see page 234). In loopback mode, data transmitted on UnTx is received on the UnRx input.

11.3 Initialization and Configuration

To use the UARTs, the peripheral clock must be enabled by setting the UART0 or UART1 bits in the **RCGC1** register.

This section discusses the steps that are required to use a UART module. For this example, the UART clock is assumed to be 20 MHz and the desired UART configuration is:

- 115200 baud rate
- Data length of 8 bits
- One stop bit
- No parity
- FIFOs disabled
- No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the **UARTIBRD** and **UARTFBRD** registers must be written before the **UARTLCRH** register. Using the equation described in "Baud-Rate Generation" on page 219, the BRD can be calculated:

BRD = 20,000,000 / (16 * 115,200) = 10.8507

which means that the DIVINT field of the **UARTIBRD** register (see page 230) should be set to 10. The value to be loaded into the **UARTFBRD** register (see page 231) is calculated by the equation:

UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54

With the BRD values in hand, the UART configuration is written to the module in the following order:

- 1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.
- 2. Write the integer portion of the BRD to the **UARTIBRD** register.
- 3. Write the fractional portion of the BRD to the **UARTFBRD** register.
- 4. Write the desired serial parameters to the **UARTLCRH** register (in this case, a value of 0x0000.0060).
- 5. Enable the UART by setting the UARTEN bit in the **UARTCTL** register.

11.4 Register Map

Table 11-1 on page 222 lists the UART registers. The offset listed is a hexadecimal increment to the register's address, relative to that UART's base address:

- UART0: 0x4000.C000
- UART1: 0x4000.D000
- **Note:** The UART must be disabled (see the UARTEN bit in the **UARTCTL** register on page 234) before any of the control registers are reprogrammed. When the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

Offset	Name	Туре	Reset	Description	See page
0x000	UARTDR	R/W	0x0000.0000	UART Data	224
0x004	UARTRSR/UARTECR	R/W	0x0000.0000	UART Receive Status/Error Clear	226
0x018	UARTFR	RO	0x0000.0090	UART Flag	228
0x024	UARTIBRD	R/W	0x0000.0000	UART Integer Baud-Rate Divisor	230
0x028	UARTFBRD	R/W	0x0000.0000	UART Fractional Baud-Rate Divisor	231
0x02C	UARTLCRH	R/W	0x0000.0000	UART Line Control	232
0x030	UARTCTL	R/W	0x0000.0300	UART Control	234
0x034	UARTIFLS	R/W	0x0000.0012	UART Interrupt FIFO Level Select	236
0x038	UARTIM	R/W	0x0000.0000	UART Interrupt Mask	238
0x03C	UARTRIS	RO	0x0000.000F	UART Raw Interrupt Status	240
0x040	UARTMIS	RO	0x0000.0000	UART Masked Interrupt Status	241
0x044	UARTICR	W1C	0x0000.0000	UART Interrupt Clear	242
0xFD0	UARTPeriphID4	RO	0x0000.0000	UART Peripheral Identification 4	244
0xFD4	UARTPeriphID5	RO	0x0000.0000	UART Peripheral Identification 5	245
0xFD8	UARTPeriphID6	RO	0x0000.0000	UART Peripheral Identification 6	246

Table 11-1. UART Register Map

Offset	Name	Туре	Reset	Description	See page
0xFDC	UARTPeriphID7	RO	0x0000.0000	UART Peripheral Identification 7	247
0xFE0	UARTPeriphID0	RO	0x0000.0011	UART Peripheral Identification 0	248
0xFE4	UARTPeriphID1	RO	0x0000.0000	UART Peripheral Identification 1	249
0xFE8	UARTPeriphID2	RO	0x0000.0018	UART Peripheral Identification 2	250
0xFEC	UARTPeriphID3	RO	0x0000.0001	UART Peripheral Identification 3	251
0xFF0	UARTPCellID0	RO	0x0000.000D	UART PrimeCell Identification 0	252
0xFF4	UARTPCellID1	RO	0x0000.00F0	UART PrimeCell Identification 1	253
0xFF8	UARTPCellID2	RO	0x0000.0005	UART PrimeCell Identification 2	254
0xFFC	UARTPCellID3	RO	0x0000.00B1	UART PrimeCell Identification 3	255

11.5 Register Descriptions

The remainder of this section lists and describes the UART registers, in numerical order by address offset.

Register 1: UART Data (UARTDR), offset 0x000

This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO). A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity, and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and status are stored in the receiving holding register (the bottom word of the receive FIFO). The received data can be retrieved by reading this register.

UART Data (UARTDR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x000 Type R/W, reset 0x0000.0000

rype	R/W, Tese		0.0000														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
ſ			1			1	1 1	res	erved	1	1			1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		rese	rved		OE	BE	PE	FE		•		DA	TA	•	•		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
Reset	U	0	0	0	0	0	0	0	0	0	U	0	U	U	U	0	
E	Bit/Field		Nar	me	Т	уре	Rese	t D	escriptio	n							
	04.40						0	0	. 0						. L. 14 T.		
	31:12		resei	rvea		RO	0				ot rely o future pr					provide it should	
											a read-n						
	11		0	F		RO	0	L	ART OV	errun Fr	ror						
			0	-			Ū				e defined	aa falla					
								1	HE OF Ve	alues ale	e denned	as 10110	ws.				
								Value Description									
									0 Th	iere has	been no	data los	ss due to	o a FIFC) overrur	۱.	
											was rece	eived wh	en the F	FIFO was	s full, res	sulting in	
									da	ta loss.							
	10		В	E		RO	0	U	ART Bre	eak Erro	r						
								т	his bit is	set to 1	when a	break co	ondition	is detect	ted india	ating the	
								This bit is set to 1 when a break condition is detected, indicat the receive data input was held Low for longer than a full-wor						/ord			
								transmission time (defined as start, data, parity, and stop b						id stop b	its).		
										-						t the top	
																ded into d data ing	
											ing state						

Bit/Field	Name	Туре	Reset	Description
9	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				In FIFO mode, this error is associated with the character at the top of the FIFO.
8	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
7:0	DATA	R/W	0	Data Transmitted or Received
				When written, the data that is to be transmitted via the UART. When read, the data that was received by the UART.

Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004

The UARTRSR/UARTECR register is the receive status register/error clear register.

In addition to the **UARTDR** register, receive status can also be read from the **UARTRSR** register. If the status is read from this register, then the status information corresponds to the entry read from **UARTDR** prior to reading **UARTRSR**. The status information for overrun is set immediately when an overrun condition occurs.

The **UARTRSR** register cannot be written.

A write of any value to the **UARTECR** register clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 on reset.

Read-Only Receive Status (UARTRSR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x004 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1			1 1	re	served	1	1	1		1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	1		rese	erved			1	1	1	OE	BE	PE	FE
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Na	me	Т	уре	Rese	t I	Descriptio	n						
	31:4		rese	rved	F	20	0		Software		,					
															eserved b	it should b
								F	preserved	across	a read-r	nodify-w	rite opei	ration.		
	3		0	E	F	20	0	ι	JART Ov	errun Er	ror					
								,								اسم مطرر فلارا
					When this bit is set to 1, o This bit is cleared to 0 by										FIFO IS a	liready full
								-		contont	e romair	valid ci	nco no f	urthor d	ata ie wr	itten when
																verwritten.
									The CPU		-			-		
															.,	
	2		В	E	F	RO	0	ι	JART Bre	eak Erro	r					
								-	This bit is	set to 1	when a	break co	ondition	is detec	ted. indi	cating that
									he receiv							
								transmission time (defined as start, data, parity, and stop bi						oits).		
								-	This bit is	cleared	to 0 by a	a write to	D UART	ECR.		
								I	n FIFO m	node thi	s error is	associa	ated with	the ch	aracter a	t the top o
										-						ded into th
																data input
									goes to a			,				

Bit/Field	Name	Туре	Reset	Description
1	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				This bit is cleared to 0 by a write to UARTECR .
0	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
				This bit is cleared to 0 by a write to UARTECR .
				In FIFO mode, this error is associated with the character at the top of the FIFO.

Write-Only Error Clear (UARTECR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x004 Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	l	•	1				rese	erved						•	
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	1					1	DA	TA		1	
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
I	Bit/Field Name Type					Reset	D	Description								
				WO	0	Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved preserved across a read-modify-write operation.							•			
	7:0 DATA			TA	WO				rror Clea		otor of o	ov doto v	alaara th	o framin	a nority	brook or
									write to i	•	ster of ar	iy uata d	liears th	enamin	ig, parity	, break, ar

overrun flags.

Register 3: UART Flag (UARTFR), offset 0x018

The **UARTFR** register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and TXFE and RXFE bits are 1.

UAF	RT Flag	(UAF	RTFR)													
UAR Offse	T0 base: 0 T1 base: 0 et 0x018)x4000).D000													
Туре	RO, reset			00	07	00	05		00	00	01	00	10	40	47	10
1	31	30	29	28	27	26	25	24	23	22	21	20	19 I	18 I	17	16
_ l	50								erved				L			50
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•			rese	erved				TXFE	RXFF	TXFF	RXFE	BUSY		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Na	ame	-	Гуре	Reset	D	escriptio	n						
	31:8		res	erved		RO	0	С		lity with f	future pr	oducts, t	the valu	e of a re	ed bit. To p eserved bit	rovide should be
	7		T	KFE		RO	1	U	ART Tra	insmit FI	FO Emp	oty				
								The meaning of this bit depends on the state of the FEN bi UARTLCRH register.							e fen bit	in the
									the FIFC		oled (FEI	ī is 0), th	is bit is s	set whe	n the trans	mit holding
									the FIF0 empty.) is enat	oled (FE	n is 1), tl	his bit is	set wh	en the trar	nsmit FIFO
	6		R	XFF		RO	0	U	ART Re	ceive FII	FO Full					
									he mear ARTLCI			pends o	n the sta	ate of th	e FEN bit	in the
									the FIFC full.) is disa	bled, this	s bit is se	et when	the rec	eive holdir	ng register
								lf	the FIFC) is enat	oled, this	bit is se	et when	the reco	eive FIFO	is full.
	5		T	KFF		RO	0	U	ART Tra	insmit FI	FO Full					
									he mear ARTLCI			pends o	n the sta	ate of th	e fen bit	in the
									the FIFC full.) is disal	bled, this	s bit is se	et when	the trar	nsmit holdi	ng register
								lf	the FIF) is enat	oled, this	bit is se	et when	the trar	nsmit FIFO	is full.

LM3S300 Microcontroller

Bit/Field	Name	Туре	Reset	Description
4	RXFE	RO	1	UART Receive FIFO Empty
				The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register.
				If the FIFO is disabled, this bit is set when the receive holding register is empty.
				If the FIFO is enabled, this bit is set when the receive FIFO is empty.
3	BUSY	RO	0	UART Busy
				When this bit is 1, the UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register.
				This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled).
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 4: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024

The **UARTIBRD** register is the integer part of the baud-rate divisor value. All the bits are cleared on reset. The minimum possible divide ratio is 1 (when **UARTIBRD=0**), in which case the **UARTFBRD** register is ignored. When changing the **UARTIBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 219 for configuration details.

UART Integer Baud-Rate Divisor (UARTIBRD)

UAR Offse	T0 base: T1 base: et 0x024 R/W, res	0x4000. et 0x000	D000 00.0000		,	,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					I			res	erved				1 1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					1		I	DI	I /INT					1	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	Т	уре	Reset	t D	escriptio	n						
	31:16 reserved					RO 0			oftware s ompatibi reserved	ity with f	uture pr	oducts, f	the value	e of a res		provide it should be
	15:0		DIVI	NT	F	R/W	0x000	0 Ir	nteger Ba	ud-Rate	Divisor					

Register 5: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028

The **UARTFBRD** register is the fractional part of the baud-rate divisor value. All the bits are cleared on reset. When changing the **UARTFBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 219 for configuration details.

UART Fractional Baud-Rate Divisor (UARTFBRD)

UAR Offse	T1 base: (T1 base: (et 0x028 R/W, rese	0x4000	.D000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		1		1 1	1	і і	re	served	1	1	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		•	l	rese	erved			1	1		1		FRAC	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Reset 0 0 Bit/Field		Name		T	Гуре	Reset	t	Descriptio	n						
	Bit/Field 31:6				RO	0x00		Software s compatibi preserved	ity with	future p	roducts, f	the valu	e of a re		•	
	5:0		DIVF	RAC	I	R/W	0x000)	Fractional	Baud-R	Rate Divi	sor				

UART Fractional Baud-F UART0 base: 0x4000.C000

June 04, 2008

Register 6: UART Line Control (UARTLCRH), offset 0x02C

The **UARTLCRH** register is the line control register. Serial parameters such as data length, parity, and stop bit selection are implemented in this register.

When updating the baud-rate divisor (**UARTIBRD** and/or **UARTIFRD**), the **UARTLCRH** register must also be written. The write strobe for the baud-rate divisor registers is tied to the **UARTLCRH** register.

UART Line Control (UARTLCRH)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x02C Type R/W, reset 0x0000.0000

Туре	R/W, res	set 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1				1		res	erved		1	1			1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	1 1	rese	rved	1	1 1		SPS	W	LEN	FEN	STP2	EPS	PEN	BRK
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nar	ne	٦	уре	Reset	D	escriptio	n						
	31:8		reser	ved		RO	0	С	oftware s ompatibil reserved	ity with	future pr	oducts,	the value	e of a re		provide it should b
	7		SP	S	I	R/W	0	U	IART Stic	k Parity	Select					
								а		ed as a	0. When	n bits 1 a	and 7 are	e set and		transmitte ared, the
								V	Vhen this	bit is cl	eared, s	tick pari	ty is disa	bled.		
	6:5		WL	EN	I	₹/W	0	U	IART Wo	rd Leng	th					
									he bits ir ame as f		he numt	per of da	ita bits tr	ansmitte	ed or rec	eived in a
								١	/alue De	escriptio	n					
									0x3 8 t							
									0x2 7 b	oits						
									0x1 6 t	oits						
									0x0 5 b	oits (defa	ault)					
	4		FE	N	I	R/W	0	U	IART Ena	able FIF	Os					
									this bit is node).	set to 1	, transm	it and ree	ceive FIF	O buffei	rs are en	abled (FIF
									Vhen clea ecome 1					naracter	mode).	The FIFOs

Bit/Field	Name	Туре	Reset	Description
3	STP2	R/W	0	UART Two Stop Bits Select If this bit is set to 1, two stop bits are transmitted at the end of a frame. The receive logic does not check for two stop bits being received.
2	EPS	R/W	0	UART Even Parity Select If this bit is set to 1, even parity generation and checking is performed during transmission and reception, which checks for an even number of 1s in data and parity bits. When cleared to 0, then odd parity is performed, which checks for an odd number of 1s.
1	PEN	R/W	0	This bit has no effect when parity is disabled by the PEN bit.
				If this bit is set to 1, parity checking and generation is enabled; otherwise, parity is disabled and no parity bit is added to the data frame.
0	BRK	R/W	0	UART Send Break If this bit is set to 1, a Low level is continually output on the UnTX output, after completing transmission of the current character. For the proper execution of the break command, the software must set this bit for at least two frames (character periods). For normal use, this bit must be cleared to 0.

Register 7: UART Control (UARTCTL), offset 0x030

The **UARTCTL** register is the control register. All the bits are cleared on reset except for the Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration change in the module, the UARTEN bit must be cleared before the configuration changes are written. If the UART is disabled during a transmit or receive operation, the current transaction is completed prior to the UART stopping.

- **Note:** The **UARTCTL** register should not be changed while the UART is enabled or else the results are unpredictable. The following sequence is recommended for making changes to the **UARTCTL** register.
 - 1. Disable the UART.
 - 2. Wait for the end of transmission or reception of the current character.
 - 3. Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register (UARTLCRH).
 - 4. Reprogram the control register.
 - 5. Enable the UART.

UART Control (UARTCTL)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x030 Type R/W, reset 0x0000.0300

	,															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1	1	1	res	l erved	1	1		1	1	1	-
Т уре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
]		1	l rese	l erved	1	1	RXE	TXE	LBE		T	l rese	l erved	1	ſ	UARTEN
І Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
E	Bit/Field		Na	me	-	Гуре	Rese	et D	escriptio	n						
							-	_								
	31:10 reserved			rved		RO	0		offware :							•
									reserved						serveu	bit should
								٢					nie ope	attorn		
	9		R۶	ΚE		R/W	1	ι	UART Receive Enable							
								li	this bit is	s set to	1, the re	ceive se	ction of	the UAR	T is en	abled. Wh
													of a rec	eive, it co	omplete	s the curr
								C	haracter	before s	stopping					
								N	lote:	To enab	ole recep	tion, the	UARTE	N bit mu	st also b	be set.
	8		ТХ			R/W	1			nomit E	nabla					
	0		12			r./ v v	1	1 UART Transmit Enable								
											,					abled. Wł
									urrent ch				e of a tra	INSMISSI	on, it co	mpletes t
								N	lote:	To enab	ole transi	mission,	the UAR	TEN bit	must al	so be set.
												,				

Bit/Field	Name	Туре	Reset	Description
7	LBE	R/W	0	UART Loop Back Enable If this bit is set to 1, the UnTX path is fed through the UnRX path.
6:1	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	UARTEN	R/W	0	UART Enable
				If this bit is set to 1, the UART is enabled. When the UART is disabled in the middle of transmission or reception, it completes the current

character before stopping.

Register 8: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034

The **UARTIFLS** register is the interrupt FIFO level select register. You can use this register to define the FIFO level at which the TXRIS and RXRIS bits in the **UARTRIS** register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the level. That is, the interrupts are generated when the fill level progresses through the trigger level. For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt at the half-way mark.

	et 0x034 R/W, res	et 0x000	0.0012													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ï		r	1		1	r r	rese	rved	1	r	1		1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'		•	•	rese	erved				•		RXIFLSEL	1 1		TXIFLSEL	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 1	R/W 0	R/W 0	R/W 1	R/W 0
E	Bit/Field		Nai	me	Т	уре	Reset	De	escriptio	n						
	31:6		rese	rved		RO	0x00	mpatibi		future pr	oducts, t	the value	e of a re	d bit. To served b	provide it should t	
	5:3		RXIFLSEL		R/W		0x2	UA	UART Receive Interrupt FIFO Level Select							
								Th	ne trigge	er points	for the r	eceive ir	nterrupt	are as fo	ollows:	
								Ň	Value	Descript	ion					
									0x0	RX FIFC) ≥ 1/8 fu	ıll				
									0x1	RX FIFC) ≥ ¼ ful	I				
									0x2	RX FIFC) ≥ ½ ful	l (defaul	t)			
									0x3	RX FIFC) ≥ ¾ ful	I				
									0x4	RX FIFC) ≥ 7/8 fu	ull				
								0:	x5-0x7	Reserve	d					

UART Interrupt FIFO Level Select (UARTIFLS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x034 Type R/W_reset 0x0000.001

Bit/Field	Name	Туре	Reset	Description
2:0	TXIFLSEL	R/W	0x2	UART Transmit Interrupt FIFO Level SelectThe trigger points for the transmit interrupt are as follows:ValueDescription0x0TX FIFO $\leq 1/8$ full0x1TX FIFO $\leq 1/4$ full0x2TX FIFO $\leq 1/2$ full (default)0x3TX FIFO $\leq 3/4$ full0x4TX FIFO $\leq 7/8$ full
				0x5-0x7 Reserved

Register 9: UART Interrupt Mask (UARTIM), offset 0x038

The **UARTIM** register is the interrupt mask set/clear register.

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a 0 prevents the raw interrupt signal from being sent to the interrupt controller.

UAF	RT Inter	rrupt N	lask (UA	RTIM)															
UAR [®] Offse	T0 base: T1 base: et 0x038 R/W, res	0x4000	.D000																
туре	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
[1 1		1	1		i res	l erved	I	I	1	1	1	I				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
[15	14	13 reserved	12	11	10 OEIM	9 BEIM	8 PEIM	7 FEIM	6 RTIM	5 TXIM	4 RXIM	3	2	1 I erved	0			
Туре	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
E	Bit/Field		Nan	ne	г	уре	Rese	et D	escriptio	n									
	31:11		reser	ved		RO	0x00	С	oftware s ompatibil reserved	ity with f	future pr	oducts, t	the value	e of a re		provide bit should be			
	10		OEI	М	F	R/W	0	U	ART Ove	errun Eri	ror Inter	rupt Mas	sk						
	IU GEIW							С	n a read	, the cur	rent ma	sk for th	е оеімі	interrupt	is retur	ned.			
								S	etting thi	s bit to 1	promote	es the OE	IM interr	rupt to th	e interru	pt controlle			
	9 BEIM				F	R/W	0	U	ART Bre	ak Error	Interru	ot Mask							
								С	n a read	, the cur	rent ma	sk for th	е веімі	interrupt	is retur	ned.			
								Setting this bit to 1 promotes the BEIM						nterrupt to the interrupt controller.					
	8		PEI	М	F	R/W	0	0 UART Parity Error Interrupt Mask											
								С	On a read, the current mask for the PEIM interrupt is returned.										
								s	Setting this bit to 1 promotes the PEIM interrupt to the interrupt controller.										
	7		FEI	м	F	R/W	0	U	ART Fra	mina Fr	ror Inter	rupt Mas	sk						
									UART Framing Error Interrupt Mask On a read, the current mask for the FEIM interrupt is returned.										
																pt controlle			
	6		RTI	м	F	R/W	0			coivo Tir	ne-Out I	nterrunt	Mask						
	0		IXII	111	I		Ū	UART Receive Time-Out Interrupt Mask On a read, the current mask for the RTIM interrupt is returned.											
																ipt controllei			
	5		ТХІ	NA	r		0		U										
	5		IXI	IVI	ľ	R/W	0		ART Tra				۵ ጥ ΥΤΜ i	interrunt	is retur	ned			
																is returned. e interrupt controller.			
								5	eungin		promote	s uie TX	.IM Interr	upi to th	emenu	ipi controllel			

238

Bit/Field	Name	Туре	Reset	Description
4	RXIM	R/W	0	UART Receive Interrupt Mask
				On a read, the current mask for the $\ensuremath{\mathtt{RXIM}}$ interrupt is returned.
				Setting this bit to 1 promotes the $\ensuremath{\mathtt{RXIM}}$ interrupt to the interrupt controller.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 10: UART Raw Interrupt Status (UARTRIS), offset 0x03C

The **UARTRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt. A write has no effect.

UART Raw Interrupt Status (UARTRIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x03C Type RO, reset 0x0000.000F

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16					
[1		т т		1 -	1		rese	1 erved	r	r			1	1						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0					
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
	•		reserved			OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS									
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1					
E	Bit/Field		Nan	ne	٦	Гуре	Rese	t D	escriptio	n											
	0 0 0 15 14 13 reserved reserved RO RO RO 0 0 0 it/Field Name 31:11 reserved 10 OERIS 9 BERIS 7 FERIS 6 RTRIS		ved		RO	0x00	C	ompatibil	ity with f	future pr	oducts, t	he value	e of a re								
	10		OEF	RIS		RO	0	U	UART Overrun Error Raw Interrupt Status												
								G	ives the	raw inte	rrupt sta	ite (prior	to mask	king) of t	nis interrupt.						
	9		BER	ยร	RO RO <th< td=""><td>terrupt S</td><td>tatus</td><td></td><td></td><td></td></th<>							terrupt S	tatus								
	C						Ū					•		kina) of t	his inter	rupt.					
	0		DEE			PO	0				•			5,							
	0		FER	413		RU	U							(ing) of t	bic intor	runt					
											·			0,		սրւ					
	7		FER	RIS		RO	0			Ũ		•									
								G	ives the	raw inte	rrupt sta	ite (prior	to mask	king) of t	this inter	rupt.					
	6		RTF	RIS		RO	0	U	UART Receive Time-Out Raw Interrupt Status												
								G	ives the	raw inte	rrupt sta	ite (prior	to mask	king) of t	his inter	rupt.					
	5		TXF	RO RO <th< td=""><td></td></th<>																	
				O RO RO </td <td>king) of t</td> <td>his inter</td> <td>rupt.</td>									king) of t	his inter	rupt.						
	et 0																				
								G	ives the	raw inte	rrupt sta	ite (prior	to mask	king) of t	his inter	rupt.					
	3:0		reser	ved		RO	0xF	C	ompatibil	ity with f	future pr	oducts, t	he value	e of a re							

Register 11: UART Masked Interrupt Status (UARTMIS), offset 0x040

The **UARTMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

UART Masked Interrupt Status (UARTMIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x040 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
			т т			1		rese	erved	1	1			1	1					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0				
Reset																				
Г	15	14	13 reserved	12	11 I	10 OEMIS	9 BEMIS	8 PEMIS	7 FEMIS	6 RTMIS	5 TXMIS	4 RXMIS	3	2	1 I erved	0				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
В	sit/Field		Nan	ne	Т	уре	Rese	et D	escriptio	n										
	31:11		reser	ved		RO	0x00					n the val				•				
												oducts, t nodify-wi			served b	it should be				
												-								
	10		OEM	lis		RO	0	U	ART Ov	errun Er	ror Masł	ced Inter	rupt Sta	tus						
								G	ives the	masked	interrup	ot state o	f this int	errupt.						
	10OEMISRO0UART Overrun Error Masked Interrupt Status Gives the masked interrupt state of this interrupt.9BEMISRO0UART Break Error Masked Interrupt Status Gives the masked interrupt state of this interrupt.8PEMISRO0UART Parity Error Masked Interrupt Status																			
								G	ives the	masked	interrup	ot state o	f this int	errupt.						
	Q		DEM	110		PO	0			rity Error	Maskor	1 Intorrur	ot Statue							
	0		ΓLIV	I LINIO		ΝŪ	0													
								G	ives the	masked	Interrup	ot state o	r this int	errupt.						
	7		FEN	IIS		RO	0	U	UART Framing Error Masked Interrupt Status											
								G	ives the	masked	interrup	ot state o	f this int	errupt.						
	6		RTM	IIS		RO	0	U	ART Re	ceive Tir	ne-Out I	Masked I	nterrupt	t Status						
								G	ives the	masked	interrup	ot state o	f this int	errupt.						
	-						0				A a lia al liu		N-4-1-							
	5		TXM	115		RO	0					terrupt S								
								G	Gives the masked interrupt state of this interrupt.											
	4		RXM	lis		RO	0	U	UART Receive Masked Interrupt Status											
								G	ives the	masked	interrup	ot state o	f this int	errupt.						
	3:0		reser	ved		RO	0	CC	ompatibi	lity with f	future pr	n the val oducts, t nodify-wi	he value	e of a res		provide it should be				

Register 12: UART Interrupt Clear (UARTICR), offset 0x044

The **UARTICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

UAR UAR Offse	RT Inter T0 base: T1 base: et 0x044 W1C, re:	0x4000.0 0x4000.1	D000	RTICR	?)																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16					
			•					res	erved		•										
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0					
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
			reserved			OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC		rese	erved						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0					
E	Bit/Field		Nan	ne	Т	уре	Rese	t D	escriptio	n											
	Bit/FieldName31:11reserved10OEIC			ved		RO	0x00	C	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.												
	10		OE	IC	V	V1C	0	С	Overrun Error Interrupt Clear												
								Т	he OEIC	values	are defir	ied as fo	llows:								
								١	/alue De	escription	n										
									0 No	effect o	on the int	errupt.									
									1 Cl	ears inte	errupt.										
	9		BEI	IC	V	V1C	0	В	reak Erro	or Interru	upt Clea	r									
								Т	he BEIC	values	are defir	ied as fo	llows:								
								١	/alue De	escription	n										
									0 No	effect o	on the int	errupt.									
									1 Cl	ears inte	errupt.										
	8		PEI	IC	v	V1C	0	Ρ	arity Erro	or Interru	upt Clear	-									
								Т	he PEIC	values	are defir	ied as fo	llows:								
								١	/alue De	escription	n										
											on the int	errupt.									
									1 Cl	ears inte	errupt.										

Bit/Field	Name	Туре	Reset	Description
7	FEIC	W1C	0	Framing Error Interrupt Clear
				The FEIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
6	RTIC	W1C	0	Receive Time-Out Interrupt Clear
				The RTIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
5	TXIC	W1C	0	Transmit Interrupt Clear
				The TXIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
4	RXIC	W1C	0	Receive Interrupt Clear
				The RXIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 13: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 4 (UARTPeriphID4)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD0 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	ľ		1	1	1	1		rese	erved			1		1	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ſ	10	17	10		rved	1	· · · ·	0	, 	0		PI		1	1		
				1000	I								I				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
F	Bit/Field Name Type Reset								escriptio	n							
L			Ind	ine i		ype	Rese		Description								
	31:8		rese	rved		RO	0x00	C	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		•	
	7:0		PI	D4		RO	0x000	0 U	ART Per	ipheral l	D Regis	ster[7:0]					
								С	an be us	ed by so	oftware	to identif	y the pre	esence (of this pe	ripheral.	

244

Register 14: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 5 (UARTPeriphID5)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD4 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1			1		rese	erved	1	1	1	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset												-			0	
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	1	rese	rved I	1	1			I	1	PI	l D5 l	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field 31:8		Nar			Туре	Rese		escriptio		ot roly o	an the ve			d bit To	nrovido
	31.0		resei	iveu		RO	0x00	C	ompatibil	ity with f	future pr	on the va roducts, f nodify-w	the value	e of a re		provide it should
	7:0		PI	D5		RO	0x000	00 U	ART Per	ipheral l	D Regis	ster[15:8]]			
								С	an be us	ed by so	oftware	to identif	y the pre	esence o	of this pe	eripheral.

Register 15: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 6 (UARTPeriphID6)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD8 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ						1		rese	erved			1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г	15	14	13	12	11	10		0		0	- J	4			<u>'</u>	
				rese	rved							PI	D6			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	sit/Field		Nar	ne		Туре	Rese	t D	escriptio	n						
	31:8		resei	rved		RO	0x00	C	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		
	7:0		PI	06		RO	0x000	0 U	ART Per	ipheral I	D Regis	ster[23:10	6]			
								С	an be us	ed by so	oftware	to identif	y the pre	esence o	of this pe	ripheral.

Register 16: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 7 (UARTPeriphID7)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFDC Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1			1		res	erved	1	1	1		1	1	J
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset												-	-		0	
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		1	1	rese	rved	1				1	1	PI	D7	1	1	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field 31:8		Nar			Гуре RO	Rese 0		escriptio		ot roly o	n tho vo		rosonuo	d bit. To	provido
	51.0		lesei	Iveu		ĸo	0	C		lity with f	future pr	oducts, f	the value	e of a re		piovide it should
	7:0		PI	70		RO	0x000	10 U	ART Per	ripheral I	D Regis	ster[31:2-	4]			
								С	an be us	ed by so	oftware	to identif	y the pro	esence o	of this pe	eripheral.

Register 17: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 0 (UARTPeriphID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE0 Type RO, reset 0x0000.0011

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ			1	1	1	1		rese	rved		1			I	1	
Type	RO 0	RO 0	RO	RO 0	RO	RO 0	RO 0	RO	RO	RO 0	RO 0	RO	RO	RO 0	RO 0	RO
Reset	0	0	0	U	0	U	0	0	0	U	U	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved						1	PII	D0	1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
B	8it/Field		Nai	me	٦	Гуре	Reset	D	escriptio	n						
	31:8		rese	rved		RO	0x00	C	oftware s ompatibili reserved	ity with f	future pr	oducts, t	he value	e of a re		provide bit should
	7:0		PI	D0		RO	0x11	U	ART Per	ipheral I	D Regis	ter[7:0]				
								С	an be us	ed by so	oftware t	o identif	y the pre	esence o	of this pe	eripheral.

248

Register 18: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 1 (UARTPeriphID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE4 Type RO, reset 0x0000.0000

210.0	-,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		1	1	r r	rese	erved			1		I	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset												0	-	-	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved	1						I Pl	D1	1	T	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nai	me	-	Туре	Rese	t D	escriptio	n						
	31:8 reserved				RO	0x00	C	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide bit should	
	7:0		PI	D1		RO	0x00	U	ART Per	ipheral I	D Regis	ster[15:8]]			
								С	an be us	ed by so	oftware	to identif	y the pre	esence	of this pe	eripheral.

Register 19: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 2 (UARTPeriphID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE8 Type RO, reset 0x0000.0018

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I			1	1	1		rese	erved		1	1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	-	0
Γ	13		13	1	rved	1	r r	0	, ,	0		I Pli		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0
В	it/Field		Nai	me	٦	Гуре	Reset	D	escriptio	n						
	31:8		rese	rved		RO	0x00	C	oftware s ompatibil reserved	ity with f	future pr	oducts, t	the value	e of a re		
	7:0		PI	D2		RO	0x18		ART Per an be us	•	0	•	-	esence	of this pe	ripheral.

250

Register 20: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 3 (UARTPeriphID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFEC Type RO, reset 0x0000.0001

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ		1	1			1		rese	erved			1		1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	-				-	-	-					0	-	-	0	
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved	1						PI	D3	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
B	Bit/Field		Nar	me	-	Туре	Reset	D	escriptio	n						
	31:8		resei	rved		RO	0x00	СС	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	he valu	e of a re		•
	7:0		PI	03		RO	0x01	U	ART Per	ipheral I	D Regis	ster[31:24	4]			
								С	an be us	ed by so	oftware	to identif	y the pre	esence o	of this pe	eripheral

June 04, 2008

Register 21: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 0 (UARTPCelIID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF0 Type RO, reset 0x0000.000D

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ					•		rese	rved			•		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1			rese	rved	1						CI	D0	I	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1
E	Bit/Field		Nar	ne	٦	уре	Reset	D	escriptio	n						
	31:8		reser	ved		RO	0x00	СС	oftware s ompatibili reserved	ity with f	uture pr	oducts, f	the value	e of a re		provide it should b
	7:0		CIE	00		RO	0x0D		ART Prin rovides s		Ū		s-periph	eral idei	ntificatio	n system.

252

Register 22: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 1 (UARTPCellID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF4 Type RO, reset 0x0000.00F0

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		1		rese	rved	1	1	1		1	1	J
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset												-	-		0	
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ĺ		1	1	rese	rved	1				1	1	CI	D1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field 31:8		Nai			Гуре RO	Reset 0x00	S		should n	,	on the va				•
	7:0		CII	D1		RO	0xF0	pı U	reserved ART Prir	across meCell II	a read-r D Regis	roducts, 1 nodify-w ter[15:8]	rite opei	ration.		
								P	rovides s	software	a stand	ard cros	s-periph	eral ide	ntificatio	n system

June 04, 2008

Register 23: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

Provides software a standard cross-peripheral identification system.

UART PrimeCell Identification 2 (UARTPCellID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF8 Type RO, reset 0x0000.0005

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 6 5 4 2 0 8 7 3 1 CID2 reserved RO RO RO RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 Bit/Field Name Туре Reset Description RO 0x00 31:8 reserved Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 CID2 RO 0x05 UART PrimeCell ID Register[23:16]

Register 24: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC

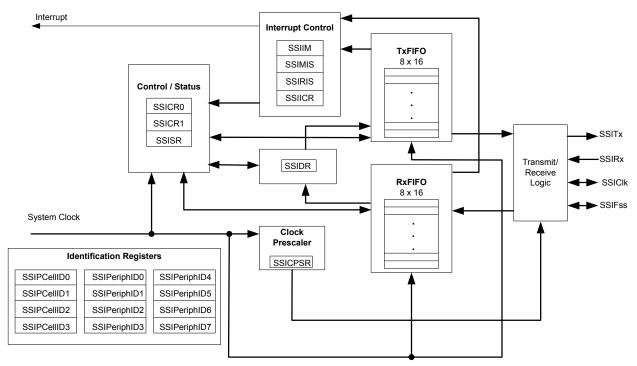
The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 3 (UARTPCelIID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFFC Type RO, reset 0x0000.00B1

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1	1		rese	erved			1		1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei												0			U	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved	1						CI	D3	1	T	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Na	me	٦	Гуре	Reset	: D	escriptio	n						
	31:8		rese	rved		RO	0x00	C	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide bit should
	7:0		CII	D3		RO	0xB1	U	ART Prir	neCell I	D Regis	ter[31:24	!]			
								Р	rovides s	oftware	a stand	ard cros	s-periph	eral ide	ntificatio	n system

12 Synchronous Serial Interface (SSI)


The Stellaris[®] Synchronous Serial Interface (SSI) is a master or slave interface for synchronous serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces.

The Stellaris[®] SSI module has the following features:

- Master or slave operation
- Programmable clock bit rate and prescale
- Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
- Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing

12.1 Block Diagram

Figure 12-1. SSI Module Block Diagram

12.2 Functional Description

The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses data, control, and status information. The transmit and receive paths are buffered with

internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit and receive modes.

12.2.1 Bit Rate Generation

The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output clock. Bit rates are supported to 2 MHz and higher, although maximum bit rate is determined by peripheral devices.

The serial bit rate is derived by dividing down the input clock (FSysClk). The clock is first divided by an even prescale value CPSDVSR from 2 to 254, which is programmed in the **SSI Clock Prescale** (**SSICPSR**) register (see page 275). The clock is further divided by a value from 1 to 256, which is 1 + SCR, where SCR is the value programmed in the **SSI Control0** (SSICR0) register (see page 268).

The frequency of the output clock SSIClk is defined by:

```
SSIClk = FSysClk / (CPSDVSR * (1 + SCR))
```

Note: Although the SSIClk transmit clock can theoretically be 12.5 MHz, the module may not be able to operate at that speed. For master mode, the system clock must be at least two times faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster than the SSIClk.

See "Synchronous Serial Interface (SSI)" on page 354 to view SSI timing parameters.

12.2.2 FIFO Operation

12.2.2.1 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The CPU writes data to the FIFO by writing the **SSI Data (SSIDR)** register (see page 272), and data is stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

12.2.2.2 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. Received data from the serial interface is stored in the buffer until read out by the CPU, which accesses the read FIFO by reading the **SSIDR** register.

When configured as a master or slave, serial data received through the SSIRx pin is registered prior to parallel loading into the attached slave or master receive FIFO, respectively.

12.2.3 Interrupts

The SSI can generate interrupts when the following conditions are observed:

- Transmit FIFO service
- Receive FIFO service
- Receive FIFO time-out
- Receive FIFO overrun

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI can only generate a single interrupt request to the controller at any given time. You can mask each of the four individual maskable interrupts by setting the appropriate bits in the **SSI Interrupt Mask** (**SSIIM**) register (see page 276). Setting the appropriate mask bit to 1 enables the interrupt.

Provision of the individual outputs, as well as a combined interrupt output, allows use of either a global interrupt service routine, or modular device drivers to handle interrupts. The transmit and receive dynamic dataflow interrupts have been separated from the status interrupts so that data can be read or written in response to the FIFO trigger levels. The status of the individual interrupt sources can be read from the **SSI Raw Interrupt Status (SSIRIS)** and **SSI Masked Interrupt Status (SSIMIS)** registers (see page 278 and page 279, respectively).

12.2.4 Frame Formats

Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is transmitted starting with the MSB. There are three basic frame types that can be selected:

- Texas Instruments synchronous serial
- Freescale SPI
- MICROWIRE

For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk transitions at the programmed frequency only during active transmission or reception of data. The idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

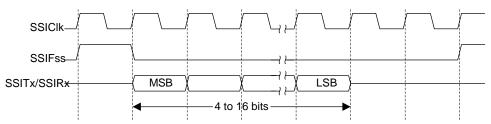
For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFSS) pin is active Low, and is asserted (pulled down) during the entire transmission of the frame.

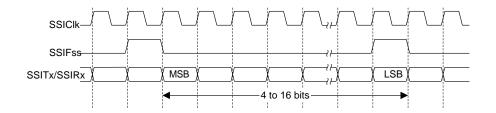
For Texas Instruments synchronous serial frame format, the SSIFSS pin is pulsed for one serial clock period starting at its rising edge, prior to the transmission of each frame. For this frame format, both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a special master-slave messaging technique, which operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the requested data. The returned data can be 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

12.2.4.1 Texas Instruments Synchronous Serial Frame Format

Figure 12-2 on page 259 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.




Figure 12-2. TI Synchronous Serial Frame Format (Single Transfer)

In this mode, SSIClk and SSIFSS are forced Low, and the transmit data line SSITx is tristated whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFSS is pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each SSIC1k. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SSIC1k after the LSB has been latched.

Figure 12-3 on page 259 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

Figure 12-3. TI Synchronous Serial Frame Format (Continuous Transfer)

12.2.4.2 Freescale SPI Frame Format

The Freescale SPI interface is a four-wire interface where the SSIFSS signal behaves as a slave select. The main feature of the Freescale SPI format is that the inactive state and phase of the SSIClk signal are programmable through the SPO and SPH bits within the **SSISCR0** control register.

SPO Clock Polarity Bit

When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not being transferred.

SPH Phase Control Bit

The SPH phase control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the SPH phase control bit is Low, data is captured on the first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.

12.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and SPH=0 are shown in Figure 12-4 on page 260 and Figure 12-5 on page 260.

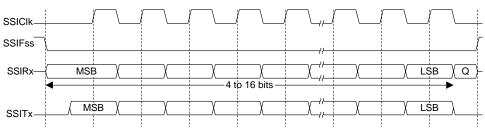
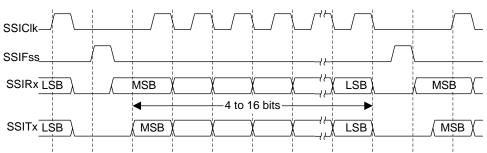



Figure 12-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0

Note: Q is undefined.

In this configuration, during idle periods:

- SSICIK is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto the SSIRx input line of the master. The master SSITx output pad is enabled.

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the master and slave data have been set, the SSIClk master clock pin goes High after one further half SSIClk period.

The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFSS signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its

serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFSS pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFSS pin is returned to its idle state one SSIClk period after the last bit has been captured.

12.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure 12-6 on page 261, which covers both single and continuous transfers.

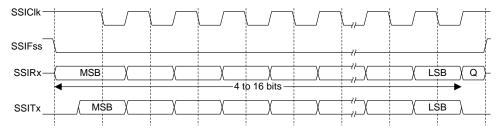
SSICIk SSIFss SSIFss SSIRx Q MSB MSB SSITx MSB SSITx MSB SSITx MSB SSIF
Figure 12-6. Freescale SPI Frame Format with SPO=0 and SPH=1

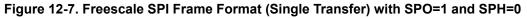
Note: Q is undefined.

In this configuration, during idle periods:

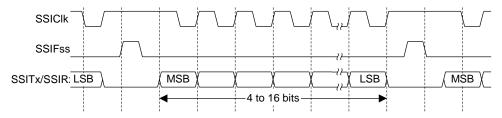
- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After a further one half SSIClk period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.


Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.


In the case of a single word transfer, after all bits have been transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.


12.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and SPH=0 are shown in Figure 12-7 on page 262 and Figure 12-8 on page 262.

Figure 12-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low, which causes slave data to be immediately transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.

One half period later, valid master data is transferred to the SSITx line. Now that both the master and slave data have been set, the SSIClk master clock pin becomes Low after one further half SSIClk period. This means that data is captured on the falling edges and propagated on the rising edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFSS signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFSS pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFSS pin is returned to its idle state one SSIC1k period after the last bit has been captured.

Note: Q is undefined.

12.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure 12-9 on page 263, which covers both single and continuous transfers.

SSICIk							
SSIFss							/r
SSIRx—	(Q) MSB (X	χ	4 to 16 bits	<u>~</u>	χ	<u>(LSB</u>)Q)-
SSITx	MSB (X	χ	X		χ	LSB

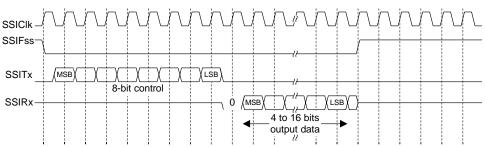
Figure 12-9. Freescale SPI Frame Format with SPO=1 and SPH=1

Note: Q is undefined.

In this configuration, during idle periods:

- SSICIK is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled. After a further one-half SSIClk period, both master and slave data are enabled onto their respective transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SSIClk signal.


After all bits have been transferred, in the case of a single word transmission, the SSIFss line is returned to its idle high state one SSIClk period after the last bit has been captured.

For continuous back-to-back transmissions, the SSIFSS pin remains in its active Low state, until the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

12.2.4.7 MICROWIRE Frame Format

Figure 12-10 on page 264 shows the MICROWIRE frame format, again for a single frame. Figure 12-11 on page 265 shows the same format when back-to-back frames are transmitted.

Figure 12-10. MICROWIRE Frame Format (Single Frame)

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:

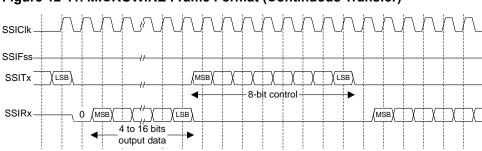
- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFSS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SSITx pin. SSIFSS remains Low for the duration of the frame transmission. The SSIRx pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one clock period after the last bit has been latched in the receive serial shifter, which causes the data to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIClk after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the SSIFSS line is continuously asserted (held Low) and transmission of data occurs back-to-back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge of SSIC1k, after the LSB of the frame has been latched into the SSI.



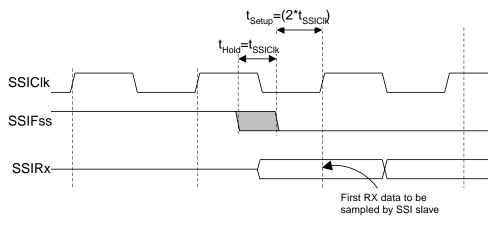


Figure 12-11. MICROWIRE Frame Format (Continuous Transfer)

In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 12-12 on page 265 illustrates these setup and hold time requirements. With respect to the SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss must have a setup of at least two times the period of SSIClk on which the SSI operates. With respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one SSIClk period.

12.3 Initialization and Configuration

To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.

For each of the frame formats, the SSI is configured using the following steps:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled before making any configuration changes.
- 2. Select whether the SSI is a master or slave:
 - a. For master operations, set the **SSICR1** register to 0x0000.0000.
 - b. For slave mode (output enabled), set the **SSICR1** register to 0x0000.0004.
 - c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.
- 3. Configure the clock prescale divisor by writing the **SSICPSR** register.

- 4. Write the **SSICR0** register with the following configuration:
 - Serial clock rate (SCR)
 - Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)
 - The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)
 - The data size (DSS)
- 5. Enable the SSI by setting the SSE bit in the SSICR1 register.

As an example, assume the SSI must be configured to operate with the following parameters:

- Master operation
- Freescale SPI mode (SPO=1, SPH=1)
- 1 Mbps bit rate
- 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
1x106 = 20x106 / (CPSDVSR * (1 + SCR))
```

In this case, if CPSDVSR=2, SCR must be 9.

The configuration sequence would be as follows:

- 1. Ensure that the SSE bit in the SSICR1 register is disabled.
- 2. Write the **SSICR1** register with a value of 0x0000.0000.
- 3. Write the **SSICPSR** register with a value of 0x0000.0002.
- 4. Write the **SSICR0** register with a value of 0x0000.09C7.
- 5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.

12.4 Register Map

Table 12-1 on page 266 lists the SSI registers. The offset listed is a hexadecimal increment to the register's address, relative to that SSI module's base address:

- SSI0: 0x4000.8000
- Note: The SSI must be disabled (see the SSE bit in the **SSICR1** register) before any of the control registers are reprogrammed.

Table 12-1. SSI Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	SSICR0	R/W	0x0000.0000	SSI Control 0	268

Offset	Name	Туре	Reset	Description	See page
0x004	SSICR1	R/W	0x0000.0000	SSI Control 1	270
0x008	SSIDR	R/W	0x0000.0000	SSI Data	272
0x00C	SSISR	RO	0x0000.0003	SSI Status	273
0x010	SSICPSR	R/W	0x0000.0000	SSI Clock Prescale	275
0x014	SSIIM	R/W	0x0000.0000	SSI Interrupt Mask	276
0x018	SSIRIS	RO	0x0000.0008	SSI Raw Interrupt Status	278
0x01C	SSIMIS	RO	0x0000.0000	SSI Masked Interrupt Status	279
0x020	SSIICR	W1C	0x0000.0000	SSI Interrupt Clear	280
0xFD0	SSIPeriphID4	RO	0x0000.0000	SSI Peripheral Identification 4	281
0xFD4	SSIPeriphID5	RO	0x0000.0000	SSI Peripheral Identification 5	282
0xFD8	SSIPeriphID6	RO	0x0000.0000	SSI Peripheral Identification 6	283
0xFDC	SSIPeriphID7	RO	0x0000.0000	SSI Peripheral Identification 7	284
0xFE0	SSIPeriphID0	RO	0x0000.0022	SSI Peripheral Identification 0	285
0xFE4	SSIPeriphID1	RO	0x0000.0000	SSI Peripheral Identification 1	286
0xFE8	SSIPeriphID2	RO	0x0000.0018	SSI Peripheral Identification 2	287
0xFEC	SSIPeriphID3	RO	0x0000.0001	SSI Peripheral Identification 3	288
0xFF0	SSIPCellID0	RO	0x0000.000D	SSI PrimeCell Identification 0	289
0xFF4	SSIPCellID1	RO	0x0000.00F0	SSI PrimeCell Identification 1	290
0xFF8	SSIPCelIID2	RO	0x0000.0005	SSI PrimeCell Identification 2	291
0xFFC	SSIPCellID3	RO	0x0000.00B1	SSI PrimeCell Identification 3	292

12.5 Register Descriptions

The remainder of this section lists and describes the SSI registers, in numerical order by address offset.

Register 1: SSI Control 0 (SSICR0), offset 0x000

SSICR0 is control register 0 and contains bit fields that control various functions within the SSI module. Functionality such as protocol mode, clock rate, and data size are configured in this register.

SSI0 Offse	Contro base: 0x et 0x000 R/W, res	4000.80	00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				•		•		res	erved	•		•		•	•	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ĺ	15	14	13 1	12 I	11	10 1	9	8	7	6	5	4	3	2	1	0
					CR I				SPH	SPO		RF			SS	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nai	me	-	Гуре	Rese	et D	Descriptio	n						
	31:16		rese	rved		RO	0x00	c	Software : compatibi preserved	lity with f	uture pr	oducts,	the value	e of a res		provide it should be
	15:8		SC	R	I	R/W	0x000	00 8	SSI Seria	I Clock R	Rate					
The value s the SSI. Th							generate	the trar	ismit an	d receive	e bit rate of					
								E	R=FSSI	Clk/(CI	PSDVSR	* (1	+ SCR))		
									where CP						rammed	in the
	7		SF	РΗ	I	R/W	0	5	SSI Seria	I Clock P	hase					
								T	his bit is	only app	licable	to the Fr	eescale	SPI For	mat.	
The SPH control bit selects the cloc it to change state. It has the most						he clock edge that captures data and allows e most impact on the first bit transmitted by ng a clock transition before the first data										
									Vhen the f SPH is 1			•			-	e transition. sition.
	6		SF	o	I	R/W	0	5	SSI Seria	I Clock P	olarity					
								r	his bit is	only app	licable	to the Fr	eescale	SPI For	mat.	
								S	Vhen the SSIClk p SSIClk p	oin. If SPO	o is 1, a	steady s	state Hig	h value		

Bit/Field	Name	Туре	Reset	Description
5:4	FRF	R/W	0x0	SSI Frame Format Select
				The FRF values are defined as follows:
				Value Frame Format
				0x0 Freescale SPI Frame Format
				0x1 Texas Intruments Synchronous Serial Frame Format
				0x2 MICROWIRE Frame Format
				0x3 Reserved
3:0	DSS	R/W	0x00	SSI Data Size Select
				The DSS values are defined as follows:
				Value Data Size
				0x0-0x2 Reserved
				0x3 4-bit data
				0x4 5-bit data
				0x5 6-bit data
				0x6 7-bit data
				0x7 8-bit data
				0x8 9-bit data
				0x9 10-bit data
				0xA 11-bit data
				0xB 12-bit data
				0xC 13-bit data
				0xD 14-bit data
				0xE 15-bit data
				0xF 16-bit data

Register 2: SSI Control 1 (SSICR1), offset 0x004

SSICR1 is control register 1 and contains bit fields that control various functions within the SSI module. Master and slave mode functionality is controlled by this register.

SSI0 Offse	Contro base: 0x et 0x004 R/W, res	4000.800	00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•	•			· ·	re	served		•	•				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15	14	1	1	1	1	erved	0	1	1	·		SOD	MS	SSE	LBM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F	Bit/Field		Na	me	٦	Гуре	Reset	1	Descriptio	'n						
			Nu	ine	I	ype	Reser		Jegonipuo							
	31:4		rese	rved		RO	0x00	(Software compatibi preserved	lity with t	future pr	oducts,	the value	e of a re		provide it should b
	3		SC	DD	I	R/W	0	;	SSI Slave	Mode C	Dutput D	isable				
								 SSI Slave Mode Output Disable This bit is relevant only in the Slave mode (MS=1). In multiple-slave systems, it is possible for the SSI master to broadcast a message is slaves in the system while ensuring that only one slave drives data the serial output line. In such systems, the TXD lines from multiple slacould be tied together. To operate in such a system, the SOD bit ca configured so that the SSI slave does not drive the SSITx pin. The SOD values are defined as follows: Value Description 0 SSI can drive SSITx output in Slave Output mode. 1 SSI must not drive the SSITx output in Slave mode. 								essage to a es data on ultiple slave ⊡ bit can b pin.
	2		М	IS	I	R/W	0	:	SSI Maste	er/Slave	Select					
									This bit se SSI is disa			Slave m	ode and	can be	modified	l only whe
								-	The MS va	alues are	defined	as follo	WS:			
									Value De	escriptio	n					
										•	nfigured	as a ma	ister.			
											nfigured					
											-					

Bit/Field	Name	Туре	Reset	Description
1	SSE	R/W	0	SSI Synchronous Serial Port Enable
				Setting this bit enables SSI operation.
				The SSE values are defined as follows:
				Value Description
				0 SSI operation disabled.
				1 SSI operation enabled.
				Note: This bit must be set to 0 before any control registers are reprogrammed.
0	LBM	R/W	0	SSI Loopback Mode
				Setting this bit enables Loopback Test mode.
				The LBM values are defined as follows:
				Value Description
				0 Normal serial port operation enabled.

1 Output of the transmit serial shift register is connected internally to the input of the receive serial shift register.

Register 3: SSI Data (SSIDR), offset 0x008

SSIDR is the data register and is 16-bits wide. When **SSIDR** is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When **SSIDR** is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer. The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the **SSICR1** register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

SSI Data (SSIDR)

SSI0 base: 0x4000.8000 Offset 0x008

Type R/W, reset 0x0000.0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	1						res	erved								
RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
T	1				r		C	ATA			r		r	1		
R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
sit/Field		Nar	ne	Т	уре	Rese	et E	Descriptio	n							
31:16		reser	rved	I	RO	0x000	c	ompatibil	ity with f	uture pr	oducts, f	the value	e of a re			be
15:0		DA	TA	F	R/W	0x000					-		A write o	neration	writes th	he
	0 15 R/W 0 it/Field 31:16	0 0 15 14 R/W R/W 0 0 it/Field 31:16	0 0 0 15 14 13 R/W R/W R/W 0 0 0 it/Field Nar 31:16 reser	0 0 0 0 15 14 13 12 R/W R/W R/W 0 0 0 0 0 it/Field Name 31:16 reserved	0 0 0 0 0 0 15 14 13 12 11 R/W R/W R/W R/W R/W 0 0 0 0 0 it/Field Name T 31:16 reserved I	0 0 0 0 0 0 15 14 13 12 11 10 R/W R/W R/W R/W R/W 0 0 0 0 0 it/Field Name Type 31:16 reserved RO	0 0 0 0 0 0 0 15 14 13 12 11 10 9 Image: Right of the state of t	RO RO<	0 0	RO RO<	RO RO<	RO RO<	RO RO<	RO RO <th< td=""><td>RO RO <th< td=""><td>RO RO RO<</td></th<></td></th<>	RO RO <th< td=""><td>RO RO RO<</td></th<>	RO RO<

transmit FIFO.

Software must right-justify data when the SSI is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by the transmit logic. The receive logic automatically right-justifies the data.

Register 4: SSI Status (SSISR), offset 0x00C

SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

SSI0 Offse	base: 0x t 0x00C	(SSISI 4000.800 et 0x0000	00														
ſ	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
l					1				erved								
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			1	1		reserved				1	1	BSY	RFF	RNE	TNF	TFE	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	R0 1	
E	Bit/Field		Nai	me	T	уре	Reset	D	escriptic	'n							
	31:5		rese	rved		RO	0x00	CC	ompatibi		future pr	oducts,	the valu			provide it should be	
	4		BS	SY		RO	0	S	SI Busy	Bit							
								T	ne BSY N	alues ar	re define	ed as foll	ows:				
								V	alue De	escriptior	ı						
										SI is idle.							
							 SSI is currently transmitting and/or receiving a f transmit FIFO is not empty. 							ing a frame, or the			
	3		RF	F		RO	0	S	SI Rece	ive FIFO	Full						
								T	1e RFF V	alues ar	re define	ed as foll	ows:				
								V	alue De	escriptior	า						
										eceive FI							
									1 Re	eceive FI	FO is fu	II.					
	2		RN	NE		RO	0	S	SI Rece	ive FIFO	Not Em	pty					
								TI	ne RNE V	/alues ar	re define	ed as foll	ows:				
								V	alue De	escriptior	า						
										eceive FI							
									1 Re	eceive FI	FO is no	ot empty					
	1		TN	١F		RO	1	S	SI Trans	mit FIFC) Not Fu	II					
								TI	Ne TNF V	alues ar	re define	ed as foll	ows:				
								V	alue De	escriptior	า						
										ansmit F		ull.					
									1 Tra	ansmit F	IFO is n	ot full.					

Bit/Field	Name	Туре	Reset	Description
0	TFE	R0	1	SSI Transmit FIFO Empty The TFE values are defined as follows:
				Value Description 0 Transmit FIFO is not empty.

1 Transmit FIFO is empty.

Register 5: SSI Clock Prescale (SSICPSR), offset 0x010

SSICPSR is the clock prescale register and specifies the division factor by which the system clock must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The least-significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least-significant bit as zero.

Offse	et 0x010	4000.800 et 0x000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			, , , ,			1	1 I	rese	erved		1	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1	rese	rved	î .	1 1				î	CPSI	DVSR	1	Î	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F	Bit/Field		Nar	mo	г	уре	Reset	П	escriptio	n						
			Indi	IIC		ype	Reset	U	escriptio							
	31:8		reser	rved		RO	0x00	C	oftware s ompatibil reserved	ity with	future pr	oducts, t	the value	e of a re		provide bit should
	7:0		CPSD	VSR	F	R/W	0x00	S	SI Clock	Prescal	e Diviso	r				
									his value equency							ling on th

June 04, 2008

SSI Clock Prescale (SSICPSR)

SSI Interrupt Mask (SSIIM)

Register 6: SSI Interrupt Mask (SSIIM), offset 0x014

The **SSIIM** register is the interrupt mask set or clear register. It is a read/write register and all bits are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

SSI0 Offse	base: 0x4 t 0x014 R/W, rese	000.800		vi)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•					res	erved		•				•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	- 11	10	9	8	7	6	5	4	3	2	1	0
[ſ		1	1	1	Î	i i erved	-	1	1	1	1	TXIM	RXIM	RTIM	RORIM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nai	me	Т	уре	Reset	[Descriptio	n						
	31:4		rese	rved		RO	0x00	C	Software s compatibi preserved	ity with f	future pr	oducts,	the value	e of a re		
	3		тх	IM	F	R/W	0	ę	SSI Trans	mit FIFC) Interru	pt Mask				
								٦	he TXIM	values	are defir	ned as fo	ollows:			
									Value De	escription	n					
									0 TX	(FIFO h	alf-full o	r less co	ondition i	nterrupt	is mask	ed.
									1 TX	(FIFO h	alf-full o	r less co	ondition i	nterrupt	is not m	nasked.
	2		RX	IM	F	R/W	0	ę	SSI Recei	ve FIFO	Interrup	ot Mask				
								٦	he RXIM	values	are defir	ned as fo	ollows:			
									Value De	escription	n					
									0 R)	(FIFO h	alf-full c	or more o	condition	interrup	ot is mas	sked.
									1 R)	(FIFO h	alf-full c	or more o	condition	interrup	ot is not	masked.
	1		RT	ΊM	F	R/W	0	5	SSI Recei	ve Time	-Out Inte	errupt M	ask			
								٦	he rtim	values	are defir	ned as fo	ollows:			
									Value De	escription	n					
									0 R)	(FIFO ti	ime-out	interrupt	t is mask	ked.		
									1 R)	K FIFO ti	ime-out	interrupt	t is not m	nasked.		

276

Bit/Field	Name	Туре	Reset	Description
0	RORIM	R/W	0	SSI Receive Overrun Interrupt Mask
				The RORIM values are defined as follows:
				Value Description

1

0 RX FIFO overrun interrupt is masked.

RX FIFO overrun interrupt is not masked.

Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018

The **SSIRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

SSI0 Offse	Raw Ir base: 0x et 0x018 RO, rese	4000.80		(SSIRI	S)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	I	1	1	r 1	rese	n erved	1	1	1		1	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			î	1	1	rese	erved		1	1	Î	1	TXRIS	RXRIS	RTRIS	RORRIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0
E	Bit/Field		Nai	me	٦	уре	Reset	D	escriptio	n						
	31:4		rese	rved		RO	0x00	CC	ompatibi	lity with f	future pr	on the va oducts, f nodify-w	the value	e of a re		provide it should be
	3		TXF	RIS		RO	1					THE STREET		or less,	when se	et.
	2		RXI	RIS		RO	0					terrupt S FIFO is I		or more,	when se	et.
	1		RTF	RIS		RO	0					w Interru time-out	•		hen set	
	0		ROR	RIS		RO	0	S	SI Recei	ive Over	run Rav	/ Interrup FIFO ha	ot Status	5		

Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C

The **SSIMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

SSI	Maske	d Interr	upt Sta	tus (SS	SIMIS)											
Offse	t 0x01C	4000.800 t 0x0000														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ						1	і I	rese	erved	1				1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	r	ľ				rese	erved			1		1	TXMIS	RXMIS	RTMIS	RORMIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
В	it/Field		Nar	me	-	Гуре	Reset	t D	escriptio	n						
	31:4		resei	rved		RO	0	C	ompatibi	should n lity with f l across	uture pr	oducts, t	the value	e of a re		provide it should
	3		TXN	<i>I</i> IS		RO	0			mit FIFC			•		when se	et.
	2		RXN	MIS		RO	0			ive FIFO					when se	et.
	1		RTM	AIS		RO	0	S	SI Rece	ive Time	-Out Ma	sked Int	errupt S	tatus		
	0		ROR	MIS		RO	0	S		that the live Over	run Mas	ked Inte	rrupt Sta	atus		

SSI Masked Interrupt Status (SSIMIS)

Register 9: SSI Interrupt Clear (SSIICR), offset 0x020

The **SSIICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

SSI	Interru	pt Clea	r (SSII	CR)												
Offse	et 0x020	4000.800 set 0x000														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				I	1 1	1	1 1		l erved	1		I	1 1	I	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				•		1	reser	rved	1	•		1	1	•	RTIC	RORIC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0
E	Bit/Field		Na	me	٦	Гуре	Rese	t D	escriptic	'n						
	31:2		rese	rved		RO	0x00	C	ompatibi	should n lity with f across	uture pr	oducts,	the value	e of a re		provide iit should
	1		RT	ĨĊ	۷	V1C	0			ive Time values a						
								١	/alue De	escriptior	ı					
									0 No	effect o	n interru	upt.				
									1 CI	ears inte	rrupt.					
	0		RO	RIC	V	V1C	0	S	SI Rece	ive Over	run Inte	rrupt Cle	ear			
								Т	he RORI	c values	are def	fined as	follows:			
								١	/alue De	escriptior	ı					
									0 No	effect o	n interru	upt.				
									1 CI	ears inte	rrupt.					

Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 4 (SSIPeriphID4)

SSI0 base: 0x4000.8000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1	г т Т	rese	rved						1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I			rese	rved	1						PI	D4		I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	٦	Гуре	Reset	D	escriptio	n						
	31:8		reser	ved		RO	0x00	cc	oftware s ompatibili reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide it should b
	7:0		PI	04		RO	0x00		SI Periph		U		v tho pro		of this or	eripheral.
								0	an de us	eu by st			y the pre			inplieral.

Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 5 (SSIPeriphID5)

SSI0 base: 0x4000.8000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1		rese	erved		•			•	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	1					1	PI	D5	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	me	-	Гуре	Reset	D	escriptio	n						
	31:8		resei	rved		RO	0x00	CC	oftware s ompatibil reserved	ity with f	future pr	oducts, t	the value	e of a re		provide it should be
	7:0		PIE	D5		RO	0x00	S	SI Peripł	neral ID	Register	r[15:8]				
								С	an be us	ed by so	oftware t	o identif	y the pre	esence o	of this pe	eripheral.

Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 6 (SSIPeriphID6)

SSI0 base: 0x4000.8000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1		rese	rved						1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ			rese	rved	1						PI	D6		I	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	٦	Гуре	Reset	D	escriptio	n						
	31:8		resei	rved		RO	0x00	cc	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide bit should be
	7:0		PI	06		RO	0x00		SI Periph		U		v the pro		of this pr	eripheral.
								U	an be us	eu by st	niwale		y the pre	sence	or uns pe	inprieral.

Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 7 (SSIPeriphID7)

SSI0 base: 0x4000.8000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ					•		rese	rved		•			•	•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	1	ı ı				I	PI	D7	I	1	·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	T	уре	Reset	D	escriptio	n						
	31:8		reser	ved		RO	0x00	co	oftware s ompatibili reserved	ity with f	future pr	oducts, t	the value	e of a re		provide it should be
	7:0		PIE)7		RO	0x00	S	SI Periph	neral ID	Register	[31:24]				
								С	an be us	ed by so	oftware t	o identif	y the pre	esence o	of this pe	eripheral.

Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 0 (SSIPeriphID0)

SSI0 base: 0x4000.8000 Offset 0xFE0 Type RO, reset 0x0000.0022

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1		rese	rved					I	'	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I			rese	rved	1						PI	D0	I	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
E	Bit/Field		Nar	ne	٦	Гуре	Reset	D	escriptio	n						
	31:8		resei	rved		RO	0	cc	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide it should be
	7:0		PIE	00		RO	0x22	S	SI Periph	eral ID	Registe	r[7:0]				
								С	an be us	ed by so	oftware t	o identif	y the pre	esence	of this pe	ripheral.

Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 1 (SSIPeriphID1)

SSI0 base: 0x4000.8000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1		rese	erved					1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved	1					I	PI	D1	I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	me	٦	Гуре	Reset	D	escriptio	n						
	31:8		resei	rved		RO	0x00	CC	oftware s ompatibil reserved	ity with f	future pr	oducts, f	the value	e of a re		provide it should be
	7:0		PIE	01		RO	0x00		SI Periph an be us		0		y the pre	esence (of this pe	ripheral.

Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 2 (SSIPeriphID2)

SSI0 base: 0x4000.8000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	reserved																
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved								PID2								
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	
Bit/Field			Name		Туре		Reset	: D	Description								
31:8			reserved		RO		0x00	-	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be					•			
									preserved across a read-modify-write operation.								
	7:0		PID2		RO		0x18	S	SSI Peripheral ID Register [23:16]								
								С	Can be used by software to identify the presence of this peripheral.								

Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 3 (SSIPeriphID3)

SSI0 base: 0x4000.8000 Offset 0xFEC Type RO, reset 0x0000.0001

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	reserved													1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved								PID3								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Bit/Field			Name		Туре		Reset	D	escription								
31:8			reserved			RO	C		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0	7:0		PID3		RO		S	SSI Peripheral ID Register [31:24]								
							С	Can be used by software to identify the presence of this peripheral.									

Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 0 (SSIPCelIID0)

SSI0 base: 0x4000.8000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1		rese	rved			1		r	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ			rese	rved	1						CI	D0	I	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nar	ne	Т	Гуре	Reset	D	escriptio	n						
	31:8		reser	ved		RO	0x00	cc	oftware s ompatibil reserved	ity with f	uture pr	oducts, t	the value	e of a re		provide vit should b
	7:0		CIE	00		RO	0x0D		SI Prime		Ū		s-periph	oral ido	ntificatio	n system.
								F	UNIDES S	onware	a stanu		s-heithu		nuncatio	i system.

Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 1 (SSIPCelIID1)

SSI0 base: 0x4000.8000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1		1	· ·	rese	rved	1	1	1	ı 1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		T	rese	rved	1	1 1			1	T	C	ID1	I	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Na	me	٦	Гуре	Reset	: D(escriptio	on						
	31:8		rese	rved		RO	0x00	cc	ompatib	ility with	future p	on the va roducts, modify-w	the valu	e of a re		provide bit should
	7:0		CII	D1		RO	0xF0	S	SI Prime	eCell ID	Registe	r [15:8]				
								Pi	rovides	software	a stand	dard cros	s-periph	neral ide	entificatio	on system

Register 20: SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 2 (SSIPCelIID2)

SSI0 base: 0x4000.8000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1	1	1	1	1 1	rese	rved	1	1	1	1 1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1	T	rese	rved	1	1 1			1	1	С	ID2	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	•
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	
E	Bit/Field		N	ame		Туре	Rese	t D	escripti	on							
	31:8		res	erved		RO	0x00	CC	ompatib	ility with	future p	on the va products, modify-w	the valu	ue of a r		provide bit should	1 be
	7:0		С	ID2		RO	0x05	S	SI Prim	eCell ID	Registe	er [23:16]					
								Ρ	rovides	software	e a stan	dard cros	s-perip	heral ide	entificatio	on system	۱.

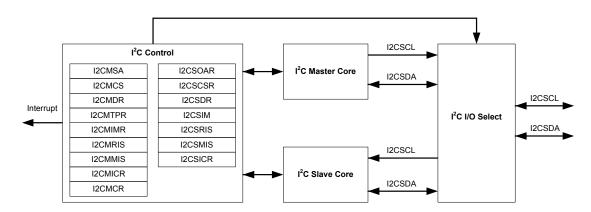
Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 3 (SSIPCelIID3)

SSI0 base: 0x4000.8000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	1					1		rese	rved	1	1	1		1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	ľ	l		rese	rved					I	I	CI	D3	I	I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	
E	Bit/Field		Nar	ne	-	Гуре	Reset	t D	escriptic	n							
	31:8		reser	ved		RO	0x00	co	ompatibi	lity with f	future p	on the va roducts, f modify-w	the valu	e of a re		provide bit should	be
	7:0		CIE	03		RO	0xB1	S	SI Prime	eCell ID I	Registe	r [31:24]					
								P	rovides	software	a stand	lard cros	s-periph	neral ide	entificatio	n system	

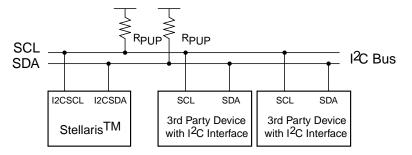

13 Inter-Integrated Circuit (I²C) Interface

The Inter-Integrated Circuit (I^2C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL), and interfaces to external I^2C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I^2C bus may also be used for system testing and diagnostic purposes in product development and manufacture. The LM3S300 microcontroller includes one I^2C module, providing the ability to interact (both send and receive) with other I^2C devices on the bus.

Devices on the I²C bus can be designated as either a master or a slave. The Stellaris[®] I²C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. There are a total of four I²C modes: Master Transmit, Master Receive, Slave Transmit, and Slave Receive. The Stellaris[®] I²C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I^2C master and slave can generate interrupts; the I^2C master generates interrupts when a transmit or receive operation completes (or aborts due to an error) and the I^2C slave generates interrupts when data has been sent or requested by a master.

13.1 Block Diagram

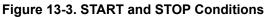

Figure 13-1. I²C Block Diagram

13.2 Functional Description

I²C module is comprised of both master and slave functions which are implemented as separate peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional open-drain pads. A typical I²C bus configuration is shown in Figure 13-2 on page 294.

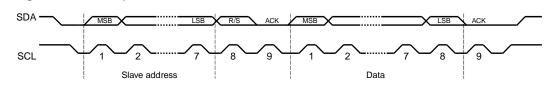
See "I²C" on page 353 for I²C timing diagrams.

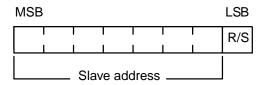
13.2.1 I²C Bus Functional Overview


The I²C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris[®] microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock line. The bus is considered idle when both lines are high.

Every transaction on the I²C bus is nine bits long, consisting of eight data bits and a single acknowledge bit. The number of bytes per transfer (defined as the time between a valid START and STOP condition, described in "START and STOP Conditions" on page 294) is unrestricted, but each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.

13.2.1.1 START and STOP Conditions

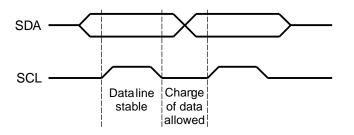

The protocol of the I^2C bus defines two states to begin and end a transaction: START and STOP. A high-to-low transition on the SDA line while the SCL is high is defined as a START condition, and a low-to-high transition on the SDA line while SCL is high is defined as a STOP condition. The bus is considered busy after a START condition and free after a STOP condition. See Figure 13-3 on page 294.


13.2.1.2 Data Format with 7-Bit Address

Data transfers follow the format shown in Figure 13-4 on page 295. After the START condition, a slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction bit (R/S bit in the **I2CMSA** register). A zero indicates a transmit operation (send), and a one indicates a request for data (receive). A data transfer is always terminated by a STOP condition generated by the master, however, a master can initiate communications with another device on the bus by generating a repeated START condition and addressing another slave without first generating a STOP condition. Various combinations of receive/send formats are then possible within a single transfer.

The first seven bits of the first byte make up the slave address (see Figure 13-5 on page 295). The eighth bit determines the direction of the message. A zero in the R/S position of the first byte means that the master will write (send) data to the selected slave, and a one in this position means that the master will receive data from the slave.

Figure 13-5. R/S Bit in First Byte



13.2.1.3 Data Validity

The data on the SDA line must be stable during the high period of the clock, and the data line can only change when SCL is low (see Figure 13-6 on page 295).

Figure 13-6. Data Validity During Bit Transfer on the I²C Bus

Figure 13-4. Complete Data Transfer with a 7-Bit Address

13.2.1.4 Acknowledge

All bus transactions have a required acknowledge clock cycle that is generated by the master. During the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line. To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data validity requirements described in "Data Validity" on page 295.

When a slave receiver does not acknowledge the slave address, SDA must be left high by the slave so that the master can generate a STOP condition and abort the current transfer. If the master device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer made by the slave. Since the master controls the number of bytes in the transfer, it signals the end of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave transmitter must then release SDA to allow the master to generate the STOP or a repeated START condition.

13.2.1.5 Arbitration

A master may start a transfer only if the bus is idle. It's possible for two or more masters to generate a START condition within minimum hold time of the START condition. In these situations, an arbitration scheme takes place on the SDA line, while SCL is high. During arbitration, the first of the competing master devices to place a '1' (high) on SDA while another master transmits a '0' (low) will switch off its data output stage and retire until the bus is idle again.

Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if both masters are trying to address the same device, arbitration continues on to the comparison of data bits.

13.2.2 Available Speed Modes

The I²C clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and SCL_HP.

where:

CLK_PRD is the system clock period

 $\tt SCL_LP$ is the low phase of SCL (fixed at 6)

SCL_HP is the high phase of SCL (fixed at 4)

TIMER_PRD is the programmed value in the I²C Master Timer Period (I2CMTPR) register (see page 313).

The I²C clock period is calculated as follows:

SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD

For example:

```
CLK_PRD = 50 ns
TIMER_PRD = 2
SCL_LP=6
SCL_HP=4
```

yields a SCL frequency of:

1/T = 333 Khz

Table 13-1 on page 296 gives examples of timer period, system clock, and speed mode (Standard or Fast).

System Clock	Timer Period	Standard Mode	Timer Period	Fast Mode
4 Mhz	0x01	100 Kbps	-	-
6 Mhz	0x02	100 Kbps	-	-
12.5 Mhz	0x06	89 Kbps	0x01	312 Kbps
16.7 Mhz	0x08	93 Kbps	0x02	278 Kbps
20 Mhz	0x09	100 Kbps	0x02	333 Kbps
25 Mhz	0x0C	96.2 Kbps	0x03	312 Kbps

Table 13-1. Examples of I²C Master Timer Period versus Speed Mode

13.2.3 Interrupts

The I²C can generate interrupts when the following conditions are observed:

- Master transaction completed
- Master transaction error
- Slave transaction received
- Slave transaction requested

There is a separate interrupt signal for the I^2C master and I^2C slave modules. While both modules can generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt controller.

13.2.3.1 I²C Master Interrupts

The I²C master module generates an interrupt when a transaction completes (either transmit or receive), or when an error occurs during a transaction. To enable the I²C master interrupt, software must write a '1' to the I²C Master Interrupt Mask (I2CMIMR) register. When an interrupt condition is met, software must check the ERROR bit in the I²C Master Control/Status (I2CMCS) register to verify that an error didn't occur during the last transaction. An error condition is asserted if the last transaction wasn't acknowledge by the slave or if the master was forced to give up ownership of the bus due to a lost arbitration round with another master. If an error is not detected, the application can proceed with the transfer. The interrupt is cleared by writing a '1' to the I²C Master Interrupt Clear (I2CMICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the I²C Master Raw Interrupt Status (I2CMRIS) register.

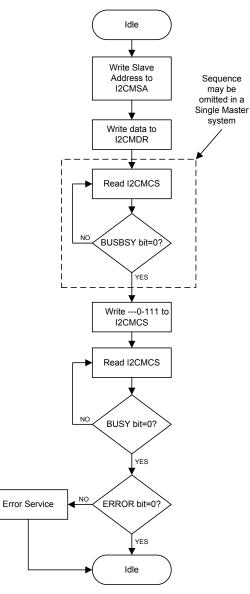
13.2.3.2 I²C Slave Interrupts

The slave module generates interrupts as it receives requests from an I^2C master. To enable the I^2C slave interrupt, write a '1' to the I^2C Slave Interrupt Mask (I2CSIMR) register. Software determines whether the module should write (transmit) or read (receive) data from the I^2C Slave Data (I2CSDR) register, by checking the RREQ and TREQ bits of the I^2C Slave Control/Status (I2CSCSR) register. If the slave module is in receive mode and the first byte of a transfer is received, the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a '1' to the I^2C Slave Interrupt Clear (I2CSICR) register.

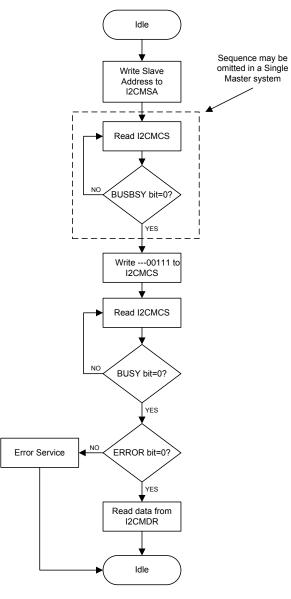
If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the I²C Slave Raw Interrupt Status (I2CSRIS) register.

13.2.4 Loopback Operation

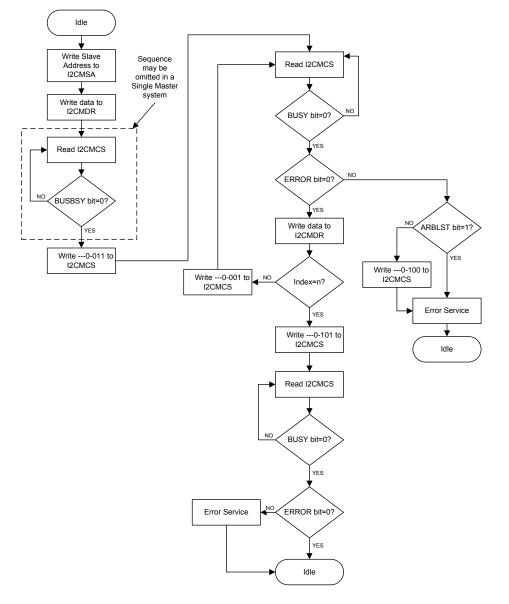
The I²C modules can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LPBK bit in the I²C Master Configuration (I2CMCR) register. In loopback mode, the SDA and SCL signals from the master and slave modules are tied together.

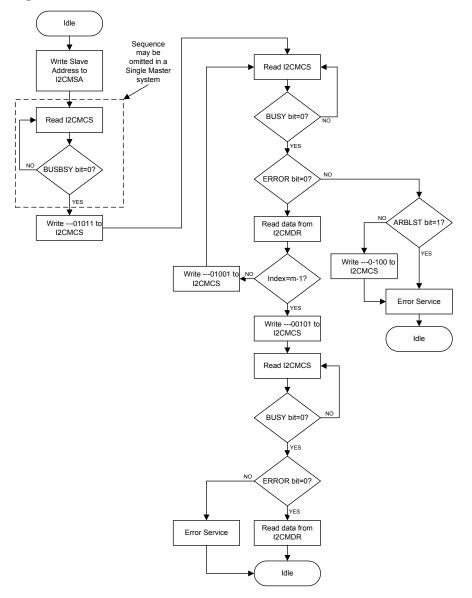

13.2.5 Command Sequence Flow Charts

This section details the steps required to perform the various I²C transfer types in both master and slave mode.


13.2.5.1 I²C Master Command Sequences

The figures that follow show the command sequences available for the I^2C master.


Figure 13-7. Master Single SEND



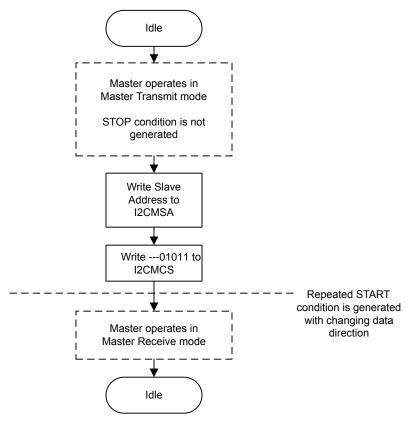


Figure 13-11. Master Burst RECEIVE after Burst SEND

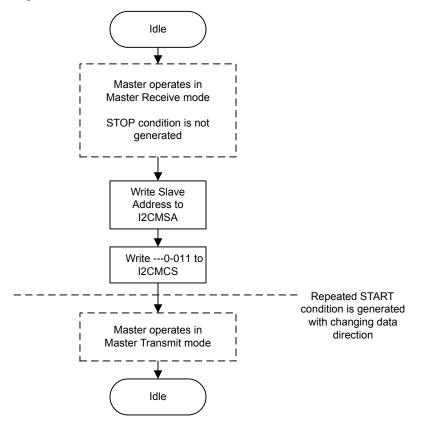
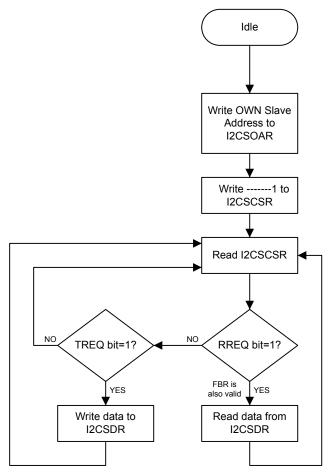



Figure 13-12. Master Burst SEND after Burst RECEIVE

13.2.5.2 I²C Slave Command Sequences

Figure 13-13 on page 304 presents the command sequence available for the I^2C slave.

13.3 Initialization and Configuration

The following example shows how to configure the I^2C module to send a single byte as a master. This assumes the system clock is 20 MHz.

- 1. Enable the I²C clock by writing a value of 0x0000.1000 to the **RCGC1** register in the System Control module.
- 2. Enable the clock to the appropriate GPIO module via the **RCGC2** register in the System Control module.
- 3. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register. Also, be sure to enable the same pins for Open Drain operation.
- 4. Initialize the I²C Master by writing the I2CMCR register with a value of 0x0000.0020.
- 5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct value. The value written to the I2CMTPR register represents the number of system clock periods in one SCL clock period. The TPR value is determined by the following equation:

TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1; TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1; TPR = 9

Write the I2CMTPR register with the value of 0x0000.0009.

- 6. Specify the slave address of the master and that the next operation will be a Send by writing the **I2CMSA** register with a value of 0x0000.0076. This sets the slave address to 0x3B.
- 7. Place data (byte) to be sent in the data register by writing the **I2CMDR** register with the desired data.
- Initiate a single byte send of the data from Master to Slave by writing the I2CMCS register with a value of 0x0000.0007 (STOP, START, RUN).
- 9. Wait until the transmission completes by polling the I2CMCS register's BUSBSY bit until it has been cleared.

13.4 I²C Register Map

Table 13-2 on page 305 lists the I^2C registers. All addresses given are relative to the I^2C base addresses for the master and slave:

- I²C Master 0: 0x4002.0000
- I²C Slave 0: 0x4002.0800

Table 13-2. Inter-Integrated Circuit (I²C) Interface Register Map

Offset	Name	Туре	Reset	Description	See page
I ² C Maste	r				, ,
0x000	I2CMSA	R/W	0x0000.0000	I2C Master Slave Address	307
0x004	I2CMCS	R/W	0x0000.0000	I2C Master Control/Status	308
0x008	I2CMDR	R/W	0x0000.0000	I2C Master Data	312
0x00C	I2CMTPR	R/W	0x0000.0001	I2C Master Timer Period	313
0x010	I2CMIMR	R/W	0x0000.0000	I2C Master Interrupt Mask	314
0x014	I2CMRIS	RO	0x0000.0000	I2C Master Raw Interrupt Status	315
0x018	I2CMMIS	RO	0x0000.0000	I2C Master Masked Interrupt Status	316
0x01C	I2CMICR	WO	0x0000.0000	I2C Master Interrupt Clear	317
0x020	I2CMCR	R/W	0x0000.0000	I2C Master Configuration	318
I ² C Slave					
0x000	I2CSOAR	R/W	0x0000.0000	I2C Slave Own Address	320
0x004	I2CSCSR	RO	0x0000.0000	I2C Slave Control/Status	321
0x008	I2CSDR	R/W	0x0000.0000	I2C Slave Data	323
0x00C	I2CSIMR	R/W	0x0000.0000	I2C Slave Interrupt Mask	324

June 04, 2008

Offset	Name	Туре	Reset	Description	See page
0x010	I2CSRIS	RO	0x0000.0000	I2C Slave Raw Interrupt Status	325
0x014	I2CSMIS	RO	0x0000.0000	I2C Slave Masked Interrupt Status	326
0x018	I2CSICR	WO	0x0000.0000	I2C Slave Interrupt Clear	327

13.5 Register Descriptions (I²C Master)

The remainder of this section lists and describes the I²C master registers, in numerical order by address offset. See also "Register Descriptions (I2C Slave)" on page 319.

Register 1: I²C Master Slave Address (I2CMSA), offset 0x000

This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which determines if the next operation is a Receive (High), or Send (Low).

I2C M Offse		base: 0x4	Addres: 4002.0000 00.0000	•	ISA)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1 1			1	1 1		l erved	1	1	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ			, , , ,	rese	rved	1				1	1	SA	ı ı	1	1	R/S
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nar	ne		Туре	Reset	D	escriptic	n						
	31:8		reser	ved		RO	0x00	C	ompatibi	should n lity with f l across	future pr	oducts,	the value	e of a re		provide it should
	7:1		S	4		R/W	0	l ²	C Slave	Address	6					
								т	his field	specifies	s bits A6	through	A0 of th	ne slave	address	i.
	0		R/	S		R/W	0	R	eceive/S	Send						
									her/st .ow).	oit specif	ies if the	e next op	peration	is a Rec	eive (Hi	gh) or Se
								١	/alue De	escription	n					
									0 Se	end.						
									1 Re	eceive.						

Register 2: I²C Master Control/Status (I2CMCS), offset 0x004

This register accesses four control bits when written, and accesses seven status bits when read.

The status register consists of seven bits, which when read determine the state of the I²C bus controller.

The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes the generation of the START, or REPEATED START condition.

The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst. To generate a single send cycle, the I^2C Master Slave Address (I2CMSA) register is written with the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1), STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed (or aborted due an error), the interrupt pin becomes active and the data may be read from the I2CMDR register. When the I^2C module operates in Master receiver mode, the ACK bit must be set normally to logic 1. This causes the I^2C bus controller to send an acknowledge automatically after each byte. This bit must be reset when the I^2C bus controller requires no further data to be sent from the slave transmitter.

Read-Only Status Register

I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000

Offset 0x004 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1			res	served	1 I		1	1	1	1	
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1 1		reserved		г г		1	BUSBSY	IDLE	ARBLST	DATACK	ADRACK	ERROR	BUSY
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	т	уре	Reset	[Descriptio	n						
	24-7 record DO 0				•											
	31:7	reser	rved		RO	0x00			should no							
											y with future products, the value across a read-modify-write open		served b	it should		
							ŀ	breserved	across a	a read-r	noaity-w	nte opei	ration.			
	6		BUSI	BSY		RO	0	E	Bus Busy							
								-	- 			-f.4h-a 12		1		
										pecifies th , the bus						-
									STOP cor	·	is luie.		lianges	Daseu (in the St	ARIAN
								,		lations.						
	5		IDL	.E		RO	0	I	² C Idle							
								-	Thio hit or	pecifies th	no 1 ² C o	ontrollor	ototo li	foot the	oontroll	or ia idla
										the cont				sei, ine	CONTROLL	
								,				not luic.				
	4		ARB	LST		RO	0	1	Arbitration	n Lost						
								٦	This bit sr	pecifies th	ne resul	t of bus	arbitratio	on. If set	, the con	troller lo
										; otherwi					-	
										•	, -					

Bit/Field	Name	Туре	Reset	Description
3	DATACK	RO	0	Acknowledge Data
				This bit specifies the result of the last data operation. If set, the transmitted data was not acknowledged; otherwise, the data was acknowledged.
2	ADRACK	RO	0	Acknowledge Address
				This bit specifies the result of the last address operation. If set, the transmitted address was not acknowledged; otherwise, the address was acknowledged.
1	ERROR	RO	0	Error
				This bit specifies the result of the last bus operation. If set, an error occurred on the last operation; otherwise, no error was detected. The error can be from the slave address not being acknowledged, the transmit data not being acknowledged, or because the controller lost arbitration.
0	BUSY	RO	0	I ² C Busy
				This bit specifies the state of the controller. If set, the controller is busy; otherwise, the controller is idle. When the BUSY bit is set, the other status bits are not valid.

Write-Only Control Register

I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000 Offset 0x004 Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1 1			1	1 I	res	erved		1	1		1	1		
Туре	WO	WO	WO	WO	wo	WO	WO	WO	WO	WO	WO	WO	wo	WO	WO	WO	1
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	-
		1			1 1	rese	erved		1 I		J		ACK	STOP	START	RUN	
Туре	wo	wo	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	wo	wo							
Reset	0	0	0	0	0	0	U	0	U	U	0	0	0	0	0	0	
E	Bit/Field		Nar	me	٦	уре	Rese	t C	escriptio	n							
	31:4		resei	rved	,	WO	0x00	S	oftware s	should n	ot rely o	n the va	lue of a	reserved	d bit. To j	orovide	
									ompatibil reserved		•	-			served b	it should	l be
	2		10				0	-			- Frahla						
	3		AC	'n		WO	0	L	ata Ackr	iowieage	e Enable	2					
									Vhen set, y the ma						•		ally
	2		STO	OP	,	WO	0	Ģ	Generate	STOP							
									Vhen set, ecoding i		•			TOP con	dition. S	ee field	

Bit/Field	Name	Туре	Reset	Description
1	START	WO	0	Generate START
				When set, causes the generation of a START or repeated START condition. See field decoding in Table 13-3 on page 310.
0	RUN	WO	0	I ² C Master Enable
				When set, allows the master to send or receive data. See field decoding in Table 13-3 on page 310.

Table 13-3. Wr	rite Field Decoding	I for I2CMCS[3:01	Field (Sheet 1 of 3)
	ne i icia Decouling		

Current	I2CMSA[0]		I2CMC	S[3:0]		Description				
State	R/S	ACK	STOP	START	RUN					
Idle	0	X ^a	0	1	1	START condition followed by SEND (master goes to the Master Transmit state).				
	0	х	1	1	1	START condition followed by a SEND and STOP condition (master remains in Idle state).				
State R/S ACK STOP START RUN Idle 0 X^a 0 1 1 START of Master T 0 X 1 1 1 START of Master T 0 X 1 1 1 START of Condition 1 0 X 1 1 START of Condition 1 0 0 1 1 START of Condition 1 0 1 1 START of Condition Integrative 1 0 1 1 START of Condition Integrative 1 1 0 1 1 START of Condition 1 1 1 1 Ittegration START of Condition 1 1 1 1 1 Ittegration START of Condition 1 1 1 1 1 Ittegration START of Condition Master X X 0 1 SEND of St						START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state).				
StateR/SACKSTOPSTARTRUNIdle0Xª011START condition followed by SEND (master goes to the Master Transmit state).0X111START condition followed by a SEND and STOP condition (master remains in Idle state).10011START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state)10111START condition followed by RECEIVE and STOP condition (master remains in Idle state).11111START condition followed by RECEIVE and STOP condition (master remains in Idle state).11111START condition followed by RECEIVE (master goes to the Master Receive state).11111Illegal.All other combinations not listed are non-operations.NOP.Master TransmitXX00XX101SEND operation (master remains in Master Transmit state).XX101SEND operation (master goes to Idle state).XX101Repeated START condition followed by SEND and STOP condition followed by SEND and STOP0X111Repeated START condition followed by a SEND (master remains in Master Transmit state).0X111Repeated START condition followed by SEND and STOP condition followed by SEND and STOP0X11										
StateR/SACKSTOPSTARTRUNIdle0Xa011START condition followed by SEND (master goes to the Master Transmit state).0X111START condition followed by a SEND and STOP condition (master remains in Idle state).10011START condition followed by a SEND and STOP condition (master goes to the Master Receive state).1011START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state).1011START condition followed by RECEIVE and STOP condition (master remains in Idle state).11011START condition followed by RECEIVE (master goes to the Master Receive state).11111Illegal.All other combinations not listed are non-operations.NOP.Master TransmitXX00XX101SEND operation (master remains in Master Transmit state).XX101SEND operation (master goes to Idle state).XX101SEND operation (master goes to Idle state).0X111Repeated START condition followed by a SEND and STOP condition (master goes to Idle state).10111Repeated START condition followed by a SEND and STOP condition (master goes to Idle state).1011Repeated START condition followed by										
	1	1	1	1	1	Illegal.				
	All other co	mbinations	s not listed	are non-op	perations.	NOP.				
	Х	х	0	0	1					
	Х	STOP condition (master goes to Idle state).								
State R/S ACK STOP START RUN Idle 0 X ^a 0 1 1 START condition followed by SEND (master goes to the Master Transmit state). 0 X 1 1 1 START condition followed by a SEND and STOP condition (master remains in Idle state). 1 0 0 1 1 START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state). 1 0 1 1 START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state). 1 1 0 1 1 START condition followed by RECEIVE (master goes to the Master Receive state). 1 1 1 1 1 Illegal. All other combinations not listed are non-operations. NOP. NOP. Master Transmit X X 1 0 SEND operation (master goes to Idle state). X X 1 0 1 SEND followed by STOP condition followed by SEND (master goes to Idle state). X X 1 0 1										
State R/S ACK STOP START RUN Idle 0 X ^a 0 1 1 START condition followed by SEND (master goes to the Master Transmit state). 0 X 1 1 1 START condition followed by a SEND and STOP condition (master remains in Idle state). 1 0 0 1 1 START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state). 1 0 1 1 START condition followed by RECEIVE and STOP condition (master remains in Idle state). 1 1 0 1 1 START condition followed by RECEIVE (master goes to the Master Receive state). 1 1 1 1 1 START condition followed by RECEIVE (master goes to the Master goes to the Master goes to the Master goes to Idle state). 1 1 1 1 Illegal. All other combinations not listed are non-operations. NOP. Master X X 0 0 SEND operation (master remains in Master Transmit state). X X 1 0 1 S										
Master Transmit X 1 0 1 1 1 START condition followed by RECEIVE and STOP condition (master remains in Idle state). 1 1 0 1 1 START condition followed by RECEIVE (master good the Master Receive state). 1 1 0 1 1 START condition followed by RECEIVE (master good the Master Receive state). 1 1 1 1 1 Illegal. All other combinations not listed are non-operations. NOP. Master Transmit X X 0 0 1 state). X X 1 0 0 SEND operation (master goes to Idle state). X X 1 0 0 SEND followed by STOP condition (master goes to state). 0 X 1 1 1 Repeated START condition followed by a SEND (matter goes to Idle state). 0 X 1 1 1 Repeated START condition followed by SEND and S condition (master goes to Idle state). 1 0 0 1 1 Repeated START condition followed by										
	1	0	0	1	1	operation with a negative ACK (master goes to Master				
	1	0	1	1	1					
	1	1	0	1	1					
	1	1	1	1	1	Illegal.				
	All other co	mbinations	s not listed	are non-op	perations.	NOP.				

Current	I2CMSA[0]		I2CMC	S[3:0]		Description
State	R/S	ACK	STOP	START	RUN	
Master Receive	Х	0	0	0	1	RECEIVE operation with negative ACK (master remains in Master Receive state).
	Х	Х	1	0	0	STOP condition (master goes to Idle state). ^b
	Х	0	1	0	1	RECEIVE followed by STOP condition (master goes to Idle state).
	Х	1	0	0	1	RECEIVE operation (master remains in Master Receive state).
	Х	1	1	0	1	Illegal.
	1	0	0	1	1	Repeated START condition followed by RECEIVE operation with a negative ACK (master remains in Master Receive state).
	1	0	1	1	1	Repeated START condition followed by RECEIVE and STOP condition (master goes to Idle state).
	1	1	0	1	1	Repeated START condition followed by RECEIVE (master remains in Master Receive state).
	0	Х	0	1	1	Repeated START condition followed by SEND (master goes to Master Transmit state).
	0	Х	1	1	1	Repeated START condition followed by SEND and STOP condition (master goes to Idle state).
	All other co	mbination	s not listed	are non-op	berations.	NOP.

a. An X in a table cell indicates the bit can be 0 or 1.

b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by the master or an Address Negative Acknowledge executed by the slave.

Register 3: I²C Master Data (I2CMDR), offset 0x008

This register contains the data to be transmitted when in the Master Transmit state, and the data received when in the Master Receive state.

I2C	Master	Data (I2CMDF	२)													
Offse	et 0x008		002.0000														
туре	R/W, res	et uxuuu	0.0000														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
					1	1	I	rese	erved		1			I	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				rese	rved						I	DA	TA	1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nar	ne	Т	уре	Reset	D	escriptio	n							
	31:8		reser	ved		RO	0x00	C	oftware s ompatibil reserved	ity with f	future pr	oducts, f	the valu	e of a re		provide it should b	e
	7:0		DA	ΓA	F	R/W	0x00	D	ata Tran	sferred							
								D	ata trans	sferred d	uring tra	insactior	۱.				

Register 4: I²C Master Timer Period (I2CMTPR), offset 0x00C

This register specifies the period of the SCL clock.

I2C N Offse	t 0x00C R/W, res	ase: 0x4 et 0x000	002.0000 0.0001)		00	05	04	00	00	04	00	10	40	47	40
г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved				,			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ			rese	rved	1					I	TF	PR	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field 31:8		Nar reser			Гуре RO	Reset 0x00	S	escriptio oftware s ompatibil	should n						provide it should be
	7:0		TP	'nR		R/W	0x1	•	reserved CL Clock		a read-n	nodify-w	rite oper	ation.		
								Т	his field	specifies	the per	iod of th	e SCL c	lock.		
								S	CL_PRD	= 2*(2	1 + TPI	R)*(SC]	L_LP +	SCL_H	P)*CLK	_PRD
								w	here:							
								S	CL_PRD	is the S	CL line p	eriod (I ²	C clock).		
								Т	PR is the	Timer F	Period re	gister va	alue (ran	ge of 1	to 255).	
								S	CL_LP is	the SC	L Low p	eriod (fix	ed at 6)			

Register 5: I²C Master Interrupt Mask (I2CMIMR), offset 0x010

This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C I Offse	Master 0 et 0x010		upt Masl 4002.0000 00.0000	•	/IMR)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	ſ I		1 1	1	r r	res	erved	I	1	1	1 1	1	ſ	Ì
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1		1 1	1	1 1	reserved		1	1	r	1 1	1	1	IM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field	I	Nar	me		Туре	Rese	t C	Descript	on						
	31:1		reser	rved		RO	0x00	С	ompatik	oility with	not rely o future p a read-i	roducts,	the valu	ue of a re		provide bit should
	0		IN	Λ		R/W	0	li	nterrupt	Mask						
											whether a		•	•		ontroller

This bit controls whether a raw interrupt is promoted to a controller interrupt. If set, the interrupt is not masked and the interrupt is promoted; otherwise, the interrupt is masked.

Register 6: I²C Master Raw Interrupt Status (I2CMRIS), offset 0x014

This register specifies whether an interrupt is pending.

I2C Master Raw Interrupt Status (I2CMRIS)

Offset	laster 0 b t 0x014 RO, rese		4002.0000 0.0000)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1	I	ı 1	1	1 I	res	erved		1	T	ı 1	1	T	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1		1	1	1 1	reserved			1	1	1	I	1	RIS
Туре 🗖	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
eset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nar	me	-	Туре	Rese	t D	escriptio	n						
	31:1		resei	rved		RO	0x00	С	oftware s ompatibil reserved	ity with t	future p	roducts,	the value	e of a re		
	0		RI	S		RO	0	R	Raw Interr	upt Stat	tus					
									his bit sp aster blo			•			0,	

not pending.

June 04, 2008

Register 7: I²C Master Masked Interrupt Status (I2CMMIS), offset 0x018

This register specifies whether an interrupt was signaled.

Offse	/aster 0 b t 0x018 RO, rese		1002.0000).0000)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ſ		1		1		· ·		erved			1	1		1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ		1		1		1 1	reserved				I	1	I	1	MIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	Т	уре	Rese	t D	escriptio	n						
	31:1		resei	ved		RO	0x00	С	oftware s ompatibil reserved	ity with f	uture pr	oducts,	the value	e of a re		provide it should b
	0		MI	S		RO	0	N	lasked In	iterrupt \$	Status					
								Т	his bit sp	ecifies th	ne raw in	iterrupt s	tate (afte	er maski	ng) of the	e I ² C mast

This bit specifies the raw interrupt state (after masking) of the l^2C master block. If set, an interrupt was signaled; otherwise, an interrupt has not been generated since the bit was last cleared.

Register 8: I²C Master Interrupt Clear (I2CMICR), offset 0x01C

This register clears the raw interrupt.

I2C N Offse		base: 0x	upt Clea 4002.000	-	/ICR)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1	1	1 1	1	1	res	served	1	1	1		1	Î	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	1	ı 1	1	1	reserve	1	1	1	ı	1	1	1	IC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Na	me		Туре	Res	et [Descripti	on						
	31:1		rese	rved		RO	0x0	C	compatib		future pr	oducts,	the valu			provide bit should be
	0		10	0		WO	0	I	nterrupt	Clear						
								Г	This bit c	ontrols th	ne cleari	ng of the	e raw in	terrupt. A	write of	1 clears the

This bit controls the clearing of the raw interrupt. A write of 1 clears the interrupt; otherwise, a write of 0 has no affect on the interrupt state. A read of this register returns no meaningful data.

Register 9: I²C Master Configuration (I2CMCR), offset 0x020

This register configures the mode (Master or Slave) and sets the interface for test mode loopback.

Offse	laster 0 b t 0x020 R/W, res		(4002.000 00.0000	0												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[r		T	1	1	1	т т	res	served	1	1	r	1 1	1 1		'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ		1		rese	erved			1	1	SFE	MFE		reserved		LPBK
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					-	_	– (.							
E	Bit/Field		Na	me	I	уре	Reset	L	Descriptio	n						
	31:6		rese	erved		RO	0x00	C		lity with f	future pr	oducts,	the valu			provide bit should be
	5		SI	FE	F	R/W	0		² C Slave							
	0		0.	-	•		U						facem	av operati	a in Sla	ve mode. If
									•					ave mode		
	4		М	FE	F	R/W	0	I	² C Maste	r Functio	on Enab	le				
								-	This bit so	ecifies v	whether	the inter	face ma	av operate	e in Mas	ster mode. If
								5	•	er mode	is enabl	ed; othe				isabled and
	3:1		rese	erved		RO	0x00							reserved		provide bit should be
									preserved							
	0		LP	BK	F	R/W	0	I	² C Loopb	ack						
								L	_oopback	mode. I	f set, the	e device	is put i	operating n a test m ates norm	ode loo	

I2C Master Configuration (I2CMCR)

318

13.6 Register Descriptions (I2C Slave)

The remainder of this section lists and describes the I^2C slave registers, in numerical order by address offset. See also "Register Descriptions (I^2C Master)" on page 306.

Register 10: I²C Slave Own Address (I2CSOAR), offset 0x000

This register consists of seven address bits that identify the Stellaris[®] I^2C device on the I^2C bus.

I2C S Offse		ase: 0x4	ddress (002.0800 00.0000	12CSO	AR)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		ı – – – –		1 1	re	served	1	ï	I		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1		reserved		1 1		1		I	I	OAR	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	Т	уре	Rese	t	Descriptio	n						
	31:7		reser	ved	I	20	0x00		Software s compatibi preserved	lity with f	future pr	oducts,	the value	e of a re		provide it should be
	6:0		OA	R	F	R/W	0x00		I ² C Slave	Own Ad	dress					
									This field	specifies	s bits A6	throuah	n A0 of th	ne slave	address	
												- 5				

Register 11: I²C Slave Control/Status (I2CSCSR), offset 0x004

This register accesses one control bit when written, and three status bits when read.

The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First Byte Received (FBR) bit is set only after the Stellaris[®] device detects its own slave address and receives the first data byte from the l²C master. The Receive Request (RREQ) bit indicates that the Stellaris[®] l²C device has received a data byte from an l²C master. Read one data byte from the l²C Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit indicates that the Stellaris[®] l²C device is addressed as a Slave Transmitter. Write one data byte into the l²C Slave Data (I2CSDR) register to clear the TREQ bit.

The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the Stellaris[®] I^2C slave operation.

Read-Only Status Register

I2C Slave Control/Status (I2CSCSR)

I2C Slave 0 base: 0x4002.0800 Offset 0x004 Type RO, reset 0x0000.0000

	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1	1	1 1	re	served			1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							reserved			•	'			FBR	TREQ	RREQ
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Na	me	-	Гуре	Reset		Descriptio	n						
	31:3		rese	rved		RO	0x00		Software s							•
									compatibil preserved		•				served b	it should
	2		FE	BR		RO	0		First Byte	Receive	ed					
									Indicates t This bit is o when data	only vali	d when t	ne RREQ	bit is set	t, and is a	automatio	
									Note:	This bit	is not us	sed for s	lave trar	nsmit op	erations.	
	1		TR	EQ		RO	0		Transmit F	Request	t					
								1	This bit sp transmit re transmitte been writte transmit re	equests r and us en to the	. If set, tl ses clock	ne I ² C u stretchi	nit has b ing to de	een add lay the r	lressed a naster ui	as a slav ntil data l

Bit/Field	Name	Туре	Reset	Description
0	RREQ	RO	0	Receive Request
				This bit specifies the status of the I^2C slave with regards to outstanding receive requests. If set, the I^2C unit has outstanding receive data from the I^2C master and uses clock stretching to delay the master until the data has been read from the I2CSDR register. Otherwise, no receive data is outstanding.

Write-Only Control Register

I2C S Offse		ase: 0x4	/Status 002.0800 0.0000	(12CSC	SR)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
[ſ	1 1		i I	Í Í	1	re	served		Ì	Ì		İ	Î	Î	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		ſ	1		1	Î	1	reserve	d I		Ì	Ì	r L	1	Î	DA	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Name			Туре			Description								
31:1 rese				rved		0x00		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.									
	0		D	A		WO	0		Device Ac	tive							
									Value De	scription	ı						
										•							

- 0 Disables the I^2C slave operation.
- 1 Enables the I^2C slave operation.

Register 12: I²C Slave Data (I2CSDR), offset 0x008

This register contains the data to be transmitted when in the Slave Transmit state, and the data received when in the Slave Receive state.

I2C	Slave [Data (I2	2CSDR)														
Offse	Blave 0 ba et 0x008 R/W, res																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
[, ,		 	1	1 1		erved		T	T	1	T	T	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
reserved DATA											1	1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nar	ne		Туре	Reset	D	escriptio	n							
	31:8		reser	ved		RO	0x00	C	oftware s ompatibil reserved	ity with	future p	roducts,	the valu	e of a re		provide bit should b	e
	7:0		DA	ΓA		R/W	0x0	D	ata for Ti	ransfer							
This fi							This field contains the data for transfer during a slave receive or transmit operation.										

I2C Slave Interrupt Mask (I2CSIMR)

Register 13: I²C Slave Interrupt Mask (I2CSIMR), offset 0x00C

This register controls whether a raw interrupt is promoted to a controller interrupt.

Offse	Slave 0 ba et 0x00C R/W, rese			·	,												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	r					1		res	erved	1		1		1	1	'	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	r		1 1			1	г г	reserved	ı 1	1		1		1	1	DATAIM	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nar	ne		Гуре	Reset	t D	escriptic	n							
31:1					RO 0x		0x00	C	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.								
	0				0	D	Data Interrupt Mask										
								Т	his bit co	ontrols w	hether t	he raw ii	nterrupt	for data	receive	d and dat	

This bit controls whether the raw interrupt for data received and data requested is promoted to a controller interrupt. If set, the interrupt is not masked and the interrupt is promoted; otherwise, the interrupt is masked.

Register 14: I²C Slave Raw Interrupt Status (I2CSRIS), offset 0x010

This register specifies whether an interrupt is pending.

Offse	t 0x010	ase: 0x40 et 0x0000														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	1	1 1	1	1 1		rved I		I	1	1	I	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[DATARIS			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset E	Bit/Field	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					-	Description								
	31:1 reserved				RO 0x00			ompatibil	ity with	future pr	oducts,		e of a re		provide oit should b	
	0	DATARIS RO 0		0	D	ata Raw	Interrup	ot Status								
		This bit specifies the raw interrupt state for da requested (prior to masking) of the I ² C slave														

is pending; otherwise, an interrupt is not pending.

I2C Slave Raw Interrupt Status (I2CSRIS)

100 Claure 0 hanne 0. 1000 0000

I2C Slave Masked Interrupt Status (I2CSMIS)

Register 15: I²C Slave Masked Interrupt Status (I2CSMIS), offset 0x014

This register specifies whether an interrupt was signaled.

Offse	et 0x014	ase: 0x40 et 0x0000			,	,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1	1 1	res	erved	I	1	1		I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													DATAMIS			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field			Name		уре	Rese	t D	escriptio	n						
	31:1		reserved		RO		c		oftware s ompatibil reserved	ity with f	future pr	oducts,	the value	e of a re		provide bit should b
	0		DATAMIS			RO	0		ata Masl	ked Inter	rrupt Sta	itus				
																ta requeste ⁄as signaleo

cleared.

otherwise, an interrupt has not been generated since the bit was last

326

Register 16: I²C Slave Interrupt Clear (I2CSICR), offset 0x018

This register clears the raw interrupt. A read of this register returns no meaningful data.

I2C S Offse	Slave 0 ba et 0x018 WO, rese	ase: 0x4 et 0x000			·											
r	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				-	I	•		re	served		•			•	•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved DATAIC															
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Name		Туре		Reset		Description Software should not rely on the value of a reserved b							
	31:1		reserved		RO		0x00		compatibil preserved	ity with across	future pr a read-r	oducts,	the valu	e of a re		provide bit should be
	0		DAT	AIC		WO	0	l	Data Inter	rupt Cle	ar					
												-		•		eceived and it; otherwise,

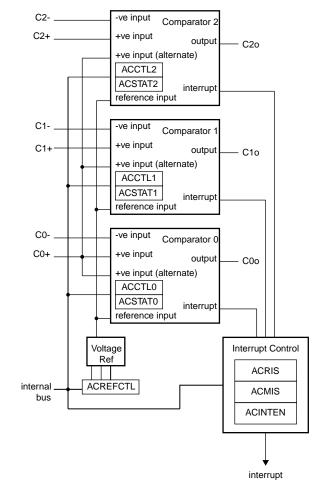
it has no effect on the DATARIS bit value.

June 04, 2008

14 Analog Comparators

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S300 controller provides three independent integrated analog comparators that can be configured to drive an output or generate an interrupt.


Note: Not all comparators have the option to drive an output pin. See the Comparator Operating Mode tables in "Functional Description" on page 329 for more information.

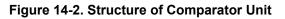
A comparator can compare a test voltage against any one of these voltages:

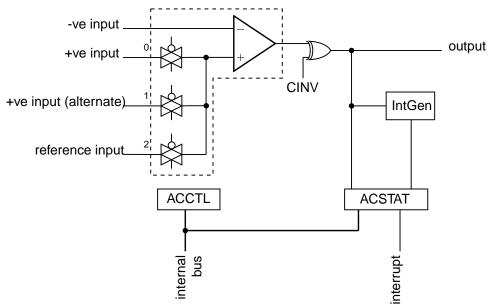
- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts to cause it to start capturing a sample sequence.

14.1 Block Diagram

Figure 14-1. Analog Comparator Module Block Diagram


14.2 Functional Description


Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module) for the analog input pin be disabled to prevent excessive current draw from the I/O pads.

The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.

VIN- < VIN+, VOUT = 1 VIN- > VIN+, VOUT = 0

As shown in Figure 14-2 on page 330, the input source for VIN- is an external input. In addition to an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.

A comparator is configured through two status/control registers (ACCTL and ACSTAT). The internal reference is configured through one control register (ACREFCTL). Interrupt status and control is configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the comparators are shown in the Comparator Operating Mode tables.

Typically, the comparator output is used internally to generate controller interrupts. It may also be used to drive an external pin.

Important: Certain register bit values must be set before using the analog comparators. The proper pad configuration for the comparator input and output pins are described in the Comparator Operating Mode tables.

Table 14-1. Comparator 0 Operating Modes

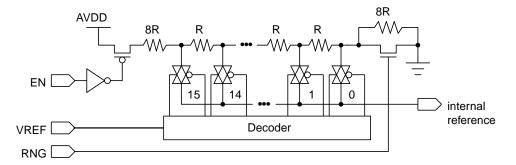
ACCNTL0	Com	parator 0		
ASRCP	VIN-	VIN+	Output	Interrupt
00	C0-	C0+	C0o	yes
01	C0-	C0+	C0o	yes
10	C0-	Vref	C0o	yes
11	C0-	reserved	C0o	yes

Table 14-2. Comparator 1 Operating Modes

ACCNTL1	Com	Comparator 1										
ASRCP	VIN-	VIN+	Output	Interrupt								
00	C1-	C1o/C1+ ^a	C1o/C1+	yes								
01	C1-	C0+	C1o/C1+	yes								
10	C1-	Vref	C1o/C1+	yes								
11	C1-	reserved	C1o/C1+	yes								

a. C1o and C1+ signals share a single pin and may only be used as one or the other.

ACCNTL2	Com	parator 2		
ASRCP	VIN-	VIN+	Output	Interrupt
00	C2-	C2o/C2+ ^a	C2o/C2+	yes
01	C2-	C0+	C2o/C2+	yes
10	C2-	Vref	C2o/C2+	yes
11	C2-	reserved	C2o/C2+	yes


Table 14-3. Comparator 2 Operating Modes

a. C2o and C2+ signals share a single pin and may only be used as one or the other.

14.2.1 Internal Reference Programming

The structure of the internal reference is shown in Figure 14-3 on page 331. This is controlled by a single configuration register (**ACREFCTL**). Table 14-4 on page 331 shows the programming options to develop specific internal reference values, to compare an external voltage against a particular voltage generated internally.

Figure 14-3. Comparator Internal Reference Structure

Table 14-4. Internal Reference Voltage and ACREFCTL Field Values

	Register	Output Reference Voltage Based on VREF Field Value
EN Bit Value	RNG Bit Value	
EN=0		0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0 for the least noisy ground reference.

	legister	Output Reference Voltage Based on VREF Field Value								
EN Bit Value	RNG Bit Value									
EN=1	RNG=0	Total resistance in ladder is 31 R.								
		$V_{RBF} = AV_{DD} \times \frac{Rv_{RBF}}{Rr}$								
		$V_{REF} = AV_{DD} \times \frac{(VREF + 8)}{31}$								
		$V_{RBF} = 0.85 + 0.106 \times VREF$								
		The range of internal reference in this mode is 0.85-2.448 V.								
	RNG=1	Total resistance in ladder is 23 R.								
		$V_{RBF} = AV_{DD} \times \frac{R_{VRBF}}{R_{T}}$								
		$V_{REF} = AV_{DD} \times \frac{VREF}{23}$								
		$V_{RBF} = 0.143 \times VREF$								
		The range of internal reference for this mode is 0-2.152 V.								

14.3 Initialization and Configuration

The following example shows how to configure an analog comparator to read back its output value from an internal register.

- 1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the **RCGC1** register in the System Control module.
- 2. In the GPIO module, enable the GPIO port/pin associated with CO- as a GPIO input.
- **3.** Configure the internal voltage reference to 1.65 V by writing the **ACREFCTL** register with the value 0x0000.030C.
- 4. Configure comparator 0 to use the internal voltage reference and to *not* invert the output on the C0o pin by writing the **ACCTL0** register with the value of 0x0000.040C.
- 5. Delay for some time.
- 6. Read the comparator output value by reading the **ACSTAT0** register's OVAL value.

Change the level of the signal input on CO- to see the OVAL value change.

14.4 Register Map

Table 14-5 on page 333 lists the comparator registers. The offset listed is a hexadecimal increment to the register's address, relative to the Analog Comparator base address of 0x4003.C000.

Offset	Name	Туре	Reset	Description	See page
0x00	ACMIS	R/W1C	0x0000.0000	Analog Comparator Masked Interrupt Status	334
0x04	ACRIS	RO	0x0000.0000	Analog Comparator Raw Interrupt Status	335
0x08	ACINTEN	R/W	0x0000.0000	Analog Comparator Interrupt Enable	336
0x10	ACREFCTL	R/W	0x0000.0000	Analog Comparator Reference Voltage Control	337
0x20	ACSTAT0	RO	0x0000.0000	Analog Comparator Status 0	338
0x24	ACCTL0	R/W	0x0000.0000	Analog Comparator Control 0	339
0x40	ACSTAT1	RO	0x0000.0000	Analog Comparator Status 1	338
0x44	ACCTL1	R/W	0x0000.0000	Analog Comparator Control 1	339
0x60	ACSTAT2	RO	0x0000.0000	Analog Comparator Status 2	338
0x64	ACCTL2	R/W	0x0000.0000	Analog Comparator Control 2	339

Table 14-5. Analog Comparators Register Map

14.5 Register Descriptions

The remainder of this section lists and describes the Analog Comparator registers, in numerical order by address offset.

Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00

This register provides a summary of the interrupt status (masked) of the comparator.

Analog Comparator Maske	ed Interrupt Status (ACMIS)
-------------------------	-----------------------------

Base 0x4003.C000

Offset 0x00 Type R/W1C, reset 0x0000.0000

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1	1	1 1	res	erved		1	1		T	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[T	T	1	1	reserved		1		ì	1	1	IN2	IN1	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Na	ame		Туре	Reset		escriptio							
	31:3		res	erved		RO	0x00	С	Software should not rely on the value of a reserved bit. To p compatibility with future products, the value of a reserved bi preserved across a read-modify-write operation.							
	2		I	N2	R	/W1C	0	C	Comparate	or 2 Mas	sked Inte	errupt S	tatus			
									Gives the lear the p		•		of this in	terrupt. V	Vrite 1 to	o this bit
	1		I	N1	R	/W1C	0	C	Comparate	or 1 Mas	sked Inte	errupt S	tatus			
									Comparator 1 Masked Interrupt Status Gives the masked interrupt state of this interrupt. Write 1 to th clear the pending interrupt.							o this bit
	0		I	N0	R	/W1C	0	C	Comparate	or 0 Ma	sked Inte	errupt S	tatus			
								Comparator 0 Masked Interrupt Status Gives the masked interrupt state of this interrupt. Write 1 to this clear the pending interrupt.								o this bit

Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04

This register provides a summary of the interrupt status (raw) of the comparator.

Analog Comparator Raw Interrupt Status (ACRIS)

Base 0x4003.C000 Offset 0x04 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			1			1	1 1	res	served		1	1		1	1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
					' '		reserved							IN2	IN1	IN0			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	•		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
E	Bit/Field		Nai	me	7	Гуре	Rese	t I	Description										
	31:3 reserved				RO	0x00	ç	Software s	should n	ot rely o	n the va	lue of a	reserver	thit To	nrovide				
							compatibil							•	lbe				
								F	preserved	across	a read-r	nodify-w	rite oper	ation.					
	2		IN	0		RO	0	,	Comporate	or O Into	munt Ct	-							
	2		IIN	Z		RU	0	,	Comparate	or z mie	mupt Sta	atus							
									Nhen set,	indicate	s that ar	n interrup	ot has be	en gene	rated by	compara	ator		
								2	2.										
	1		IN	1		RO	0	(Comparator 1 Interrupt Status										
								,	When set, indicates that an interrupt has been generated by comparato										
									1.	muicale	s li la la	interiup	l nas be	engene	rated by	compara	ator		
	0		IN	0		RO	0	(Comparate	or 0 Inte	rrupt Sta	atus							
	When set, ir							set, indicates that an interrupt has been generated by comparator											
								().										

Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08

This register provides the interrupt enable for the comparator.

Analog C	Comparator	Interrupt Enable	(ACINTEN)
----------	------------	------------------	-----------

Base 0x4003.C000 Offset 0x08 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			Î		1	1	1 1	rese	rved	1	1	Ì	1	I	1	r	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			1		1 1	1	reserved		1 1	•	1	•	1 1	IN2	IN1	IN0	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	-
Reset	0	0	0	0	0	0	0	U	0	0	0	0	0	0	0	0	
E	Bit/Field		Nai	me	٦	Гуре	Reset	D	escriptio	n							
	31:3		rese	rved		RO	0x00	cc	ompatibi	lity with f	future pr	oducts,	lue of a the value	e of a re		•	l be
								pr	eserved	across	a read-r	nodify-w	rite oper	ration.			
	2		IN	2	I	R/W	0	C	omparat	or 2 Inte	errupt Er	able					
								W	'hen set	enables	s the cor	troller in	nterrupt f	rom the	compara	ator 2 out	tout
										onabiot			lionapen		oompare		iput
	1		IN	1	I	R/W	0	C	omparat	or 1 Inte	errupt Er	able					
								W	'hen set,	enables	s the con	troller in	terrupt fr	om the o	compara	tor 1 out	put.
	0		IN	0	I	R/W	0	C	omparat	or 0 Inte	errupt Er	able					
								W	hen set,	enables	s the con	troller in	terrupt fr	om the o	compara	tor 0 out	put.

Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10

This register specifies whether the resistor ladder is powered on as well as the range and tap.

Analog Comparator Reference Voltage Control (ACREFCTL)

Base 0x4003.C000 Offset 0x10 Type R/W, reset 0x0000.0000

Type	10,00,100		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1			1	r	re re	served			I		1	1	1
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
]			rese	г т		1	EN	RNG			rved	'		1	T REF	1
І Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit/Field 31:10		Nar resei			Гуре RO	Rese 0x00)	Descriptio Software s compatibil	should n ity with f	uture pr	oducts, t	the value	e of a re		•
	9		E	N	1	R/W	0		preserved Resistor L			noaity-w	rite oper	ation.		
									The EN bit resistor lac the analog	dder is u						
									This bit is amount of						consume	es the lea
	8		RN	IG	I	R/W	0		Resistor L	adder R	ange					
									The RNG b ladder has resistance	a total i	resistan	•			-	
	7:4		reser	rved		RO	0x00		Software s compatibil preserved	ity with f	uture pr	oducts, t	the value	e of a re		
	3:0		VR	EF	I	R/W	0x00)	Resistor L	adder V	oltage F	Ref				
5.5 VILL 1000						The VREF an analog the interna	multiple	xer. The	e voltage	e corresp	onding	to the ta	p positio			

14-4 on page 331 for some output reference voltage examples.

Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x20 Register 6: Analog Comparator Status 1 (ACSTAT1), offset 0x40 Register 7: Analog Comparator Status 2 (ACSTAT2), offset 0x60

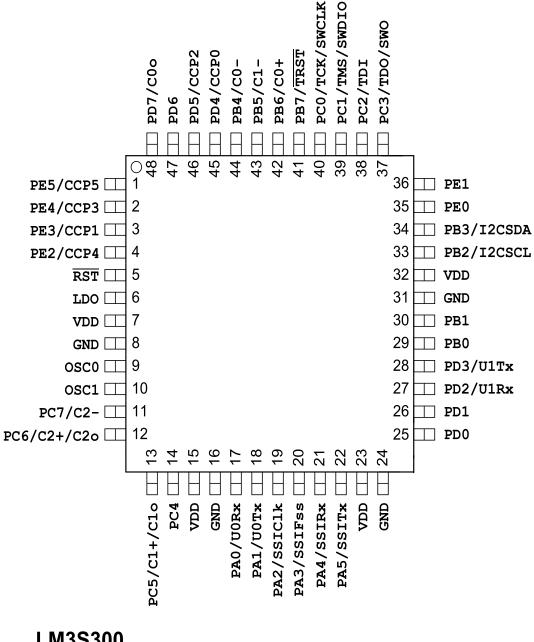
These registers specify the current output value of the comparator.

Ana	log Co	mparat	or Statu	ıs 0 (A0	CSTATO))										
Offse	0x4003. t 0x20 RO, rese	.C000 et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	r I	I	r r	rese	erved				1 1	I	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		1	1	1	1	1	reserv	red	1				1	1	OVAL	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
B	it/Field		Nai	me	F	Гуре	Reset	D	escriptio	n						
	31:2		rese	rved		RO	0x00	СС	oftware s ompatibil reserved	ity with f	uture pr	oducts, f	the value	e of a re		provide bit should
	1		OV	AL		RO	0	С	omparat	or Outpu	ıt Value					
								TI	ne OVAL	bit spec	ifies the	current	output v	alue of t	the com	parator.
	0		rese	rved		RO	0	CC	oftware s ompatibil reserved	ity with f	uture pr	oducts, f	the value	e of a re		provide bit should

Register 8: Analog Comparator Control 0 (ACCTL0), offset 0x24 Register 9: Analog Comparator Control 1 (ACCTL1), offset 0x44 Register 10: Analog Comparator Control 2 (ACCTL2), offset 0x64

These registers configure the comparator's input and output.

	•	•	or Contr	ol 0 (A	CCTL0)										
Offse	0x4003.0 et 0x24 R/W, res		0.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r				1	1		res	erved	1		1	1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Î		reserved			ASI	RCP		res	erved		ISLVAL	IS	I EN	CINV	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0
E	Bit/Field		Nan	ne	Т	уре	Reset	C	escriptio	on						
	31:11		reser	ved		RO	0x00	x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be								
										across					serveu i	
	10:9		ASR	CP	F	R/W	0x00	A	nalog S	ource Po	sitive					
										₽ field sp nparator.						'IN+ termi ws:
								١	/alue Fi	unction						
								(0x0 Pi	n value						
								()x1 Pi	n value c	of C0+					
								()x2 In	ternal vo	ltage ref	ference				
								()x3 R	eserved						
	8:5		reser	ved		RO	0	с	ompatib	should n lity with f l across a	uture pr	oducts, f	the value	e of a re		provide bit should
	4		ISLV	'AL	F	R/W	0	Ir	nterrupt	Sense Le	evel Valu	le				
								а	n interru	pt if in Le or output	evel Sen	se mode	e. If 0, ar	n interru	ot is gen	generate erated if ated if the


comparator output is High.

Bit/Field	Name	Туре	Reset	Description
3:2	ISEN	R/W	0x0	Interrupt Sense
				The ISEN field specifies the sense of the comparator output that generates an interrupt. The sense conditioning is as follows:
				Value Function
				0x0 Level sense, see ISLVAL
				0x1 Falling edge
				0x2 Rising edge
				0x3 Either edge
1	CINV	R/W	0	Comparator Output Invert
				The CINV bit conditionally inverts the output of the comparator. If 0, the output of the comparator is unchanged. If 1, the output of the comparator is inverted prior to being processed by hardware.
0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Pin Diagram 15

The LM3S300 microcontroller pin diagram is shown below.

Figure 15-1. 48-Pin QFP Package Pin Diagram

LM3S300

June 04, 2008

16 Signal Tables

The following tables list the signals available for each pin. Functionality is enabled by software with the **GPIOAFSEL** register.

Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7 and PC[3:0]) which default to the JTAG functionality.

Table 16-1 on page 342 shows the pin-to-signal-name mapping, including functional characteristics of the signals. Table 16-2 on page 344 lists the signals in alphabetical order by signal name.

Table 16-3 on page 346 groups the signals by functionality, except for GPIOs. Table 16-4 on page 347 lists the GPIO pins and their alternate functionality.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
1	PE5	I/O	TTL	GPIO port E bit 5
	CCP5	I/O	TTL	Capture/Compare/PWM 5
2	PE4	I/O	TTL	GPIO port E bit 4
	CCP3	I/O	TTL	Capture/Compare/PWM 3
3	PE3	I/O	TTL	GPIO port E bit 3
	CCP1	I/O	TTL	Capture/Compare/PWM 1
4	PE2	I/O	TTL	GPIO port E bit 2
	CCP4	I/O	TTL	Capture/Compare/PWM 4
5	RST	I	TTL	System reset input.
6	LDO	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater.
7	VDD	-	Power	Positive supply for I/O and some logic.
8	GND	-	Power	Ground reference for logic and I/O pins.
9	OSC0	I	Analog	Main oscillator crystal input or an external clock reference input.
10	OSC1	0	Analog	Main oscillator crystal output.
11	PC7	I/O	TTL	GPIO port C bit 7
	C2-	I	Analog	Analog comparator 2 negative input
12	PC6	I/O	TTL	GPIO port C bit 6
	C2+	I	Analog	Analog comparator positive input
	C20	0	TTL	Analog comparator 2 output
13	PC5	I/O	TTL	GPIO port C bit 5
	C1+	I	Analog	Analog comparator positive input
	C10	0	TTL	Analog comparator 1 output
14	PC4	I/O	TTL	GPIO port C bit 4
15	VDD	-	Power	Positive supply for I/O and some logic.
16	GND	-	Power	Ground reference for logic and I/O pins.
17	PAO	I/O	TTL	GPIO port A bit 0
	UORx		TTL	UART module 0 receive

Table 16-1. Signals by Pin Number

Preliminary

Pin Number	Pin Name	Pin Type	Buffer Type	Description
18	PA1	I/O	TTL	GPIO port A bit 1
	UOTx	0	TTL	UART module 0 transmit
19	PA2	I/O	TTL	GPIO port A bit 2
	SSIClk	I/O	TTL	SSI clock
20	PA3	I/O	TTL	GPIO port A bit 3
	SSIFss	I/O	TTL	SSI frame
21	PA4	I/O	TTL	GPIO port A bit 4
	SSIRx	I	TTL	SSI module 0 receive
22	PA5	I/O	TTL	GPIO port A bit 5
	SSITx	0	TTL	SSI module 0 transmit
23	VDD	-	Power	Positive supply for I/O and some logic.
24	GND	-	Power	Ground reference for logic and I/O pins.
25	PD0	I/O	TTL	GPIO port D bit 0
26	PD1	I/O	TTL	GPIO port D bit 1
27	PD2	I/O	TTL	GPIO port D bit 2
	UlRx	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
28	PD3	I/O	TTL	GPIO port D bit 3
	UlTx	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
29	PB0	I/O	TTL	GPIO port B bit 0
30	PB1	I/O	TTL	GPIO port B bit 1
31	GND	-	Power	Ground reference for logic and I/O pins.
32	VDD	-	Power	Positive supply for I/O and some logic.
33	PB2	I/O	TTL	GPIO port B bit 2
	I2CSCL	I/O	OD	I2C module 0 clock
34	PB3	I/O	TTL	GPIO port B bit 3
	I2CSDA	I/O	OD	I2C module 0 data
35	PE0	I/O	TTL	GPIO port E bit 0
36	PE1	I/O	TTL	GPIO port E bit 1
37	PC3	I/O	TTL	GPIO port C bit 3
	TDO	0	TTL	JTAG TDO and SWO
	SWO	0	TTL	JTAG TDO and SWO
38	PC2	I/O	TTL	GPIO port C bit 2
	TDI	I	TTL	JTAG TDI
39	PC1	I/O	TTL	GPIO port C bit 1
	TMS	I/O	TTL	JTAG TMS and SWDIO
	SWDIO	I/O	TTL	JTAG TMS and SWDIO
40	PC0	I/O	TTL	GPIO port C bit 0
	TCK	l	TTL	JTAG/SWD CLK
	SWCLK	I	TTL	JTAG/SWD CLK
41	PB7	I/O	TTL	GPIO port B bit 7
	TRST	l	TTL	JTAG TRSTn

June 04, 2008

Preliminary

Pin Number	Pin Name	Pin Type	Buffer Type	Description
42	PB6	I/O	TTL	GPIO port B bit 6
	C0+	1	Analog	Analog comparator 0 positive input
43	PB5	I/O	TTL	GPIO port B bit 5
	C1-	1	Analog	Analog comparator 1 negative input
44	PB4	I/O	TTL	GPIO port B bit 4
	C0-	1	Analog	Analog comparator 0 negative input
45	PD4	I/O	TTL	GPIO port D bit 4
	CCP0	I/O	TTL	Capture/Compare/PWM 0
46	PD5	I/O	TTL	GPIO port D bit 5
	CCP2	I/O	TTL	Capture/Compare/PWM 2
47	PD6	I/O	TTL	GPIO port D bit 6
48	PD7	I/O	TTL	GPIO port D bit 7
	COo	0	TTL	Analog comparator 0 output

Table 16-2. Signals by Signal Name

Pin Name	Pin Number	Pin Type	Buffer Type	Description
C0+	42	I	Analog	Analog comparator 0 positive input
C0-	44	I	Analog	Analog comparator 0 negative input
COo	48	0	TTL	Analog comparator 0 output
C1+	13	I	Analog	Analog comparator positive input
C1-	43	I	Analog	Analog comparator 1 negative input
Clo	13	0	TTL	Analog comparator 1 output
C2+	12	I	Analog	Analog comparator positive input
C2-	11	I	Analog	Analog comparator 2 negative input
C2o	12	0	TTL	Analog comparator 2 output
CCP0	45	I/O	TTL	Capture/Compare/PWM 0
CCP1	3	I/O	TTL	Capture/Compare/PWM 1
CCP2	46	I/O	TTL	Capture/Compare/PWM 2
CCP3	2	I/O	TTL	Capture/Compare/PWM 3
CCP4	4	I/O	TTL	Capture/Compare/PWM 4
CCP5	1	I/O	TTL	Capture/Compare/PWM 5
GND	8	-	Power	Ground reference for logic and I/O pins.
GND	16	-	Power	Ground reference for logic and I/O pins.
GND	24	-	Power	Ground reference for logic and I/O pins.
GND	31	-	Power	Ground reference for logic and I/O pins.
I2CSCL	33	I/O	OD	I2C module 0 clock
I 2CSDA	34	I/O	OD	I2C module 0 data
LDO	6	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater.
OSC0	9	I	Analog	Main oscillator crystal input or an external clock reference input.
OSC1	10	0	Analog	Main oscillator crystal output.

Pin Name	Pin Number	Pin Type	Buffer Type	Description
PAO	17	I/O	TTL	GPIO port A bit 0
PA1	18	I/O	TTL	GPIO port A bit 1
PA2	19	I/O	TTL	GPIO port A bit 2
PA3	20	I/O	TTL	GPIO port A bit 3
PA4	21	I/O	TTL	GPIO port A bit 4
PA5	22	I/O	TTL	GPIO port A bit 5
PBO	29	I/O	TTL	GPIO port B bit 0
PB1	30	I/O	TTL	GPIO port B bit 1
PB2	33	I/O	TTL	GPIO port B bit 2
PB3	34	I/O	TTL	GPIO port B bit 3
PB4	44	I/O	TTL	GPIO port B bit 4
PB5	43	I/O	TTL	GPIO port B bit 5
PB6	42	I/O	TTL	GPIO port B bit 6
PB7	41	I/O	TTL	GPIO port B bit 7
PCO	40	I/O	TTL	GPIO port C bit 0
PC1	39	I/O	TTL	GPIO port C bit 1
PC2	38	I/O	TTL	GPIO port C bit 2
PC3	37	I/O	TTL	GPIO port C bit 3
PC4	14	I/O	TTL	GPIO port C bit 4
PC5	13	I/O	TTL	GPIO port C bit 5
PC6	12	I/O	TTL	GPIO port C bit 6
PC7	11	I/O	TTL	GPIO port C bit 7
PDO	25	I/O	TTL	GPIO port D bit 0
PD1	26	I/O	TTL	GPIO port D bit 1
PD2	27	I/O	TTL	GPIO port D bit 2
PD3	28	I/O	TTL	GPIO port D bit 3
PD4	45	I/O	TTL	GPIO port D bit 4
PD5	46	I/O	TTL	GPIO port D bit 5
PD6	47	I/O	TTL	GPIO port D bit 6
PD7	48	I/O	TTL	GPIO port D bit 7
PEO	35	I/O	TTL	GPIO port E bit 0
PE1	36	I/O	TTL	GPIO port E bit 1
PE2	4	I/O	TTL	GPIO port E bit 2
PE3	3	I/O	TTL	GPIO port E bit 3
PE4	2	I/O	TTL	GPIO port E bit 4
PE5	1	I/O	TTL	GPIO port E bit 5
RST	5	I	TTL	System reset input.
SSIClk	19	I/O	TTL	SSI clock
SSIFss	20	I/O	TTL	SSI frame
SSIRx	21	I	TTL	SSI module 0 receive
SSITx	22	0	TTL	SSI module 0 transmit
SWCLK	40	I	TTL	JTAG/SWD CLK

Pin Name	Pin Number	Pin Type	Buffer Type	Description
SWDIO	39	I/O	TTL	JTAG TMS and SWDIO
SWO	37	0	TTL	JTAG TDO and SWO
TCK	40	I	TTL	JTAG/SWD CLK
TDI	38	I	TTL	JTAG TDI
TDO	37	0	TTL	JTAG TDO and SWO
TMS	39	I/O	TTL	JTAG TMS and SWDIO
TRST	41	I	TTL	JTAG TRSTn
UORx	17	I	TTL	UART module 0 receive
UOTx	18	0	TTL	UART module 0 transmit
UlRx	27	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
UlTx	28	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
VDD	7	-	Power	Positive supply for I/O and some logic.
VDD	15	-	Power	Positive supply for I/O and some logic.
VDD	23	-	Power	Positive supply for I/O and some logic.
VDD	32	-	Power	Positive supply for I/O and some logic.

Table 16-3. Signals by Function, Except for GPIO

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
Analog	C0+	42	I	Analog	Analog comparator 0 positive input
Comparators	C0-	44	I	Analog	Analog comparator 0 negative input
	C0o	48	0	TTL	Analog comparator 0 output
	C1+	13	I	Analog	Analog comparator positive input
	C1-	43	I	Analog	Analog comparator 1 negative input
	C10	13	0	TTL	Analog comparator 1 output
	C2+	12	I	Analog	Analog comparator positive input
	C2-	11	I	Analog	Analog comparator 2 negative input
	C20	12	0	TTL	Analog comparator 2 output
General-Purpose Timers	CCP0	45	I/O	TTL	Capture/Compare/PWM 0
	CCP1	3	I/O	TTL	Capture/Compare/PWM 1
	CCP2	46	I/O	TTL	Capture/Compare/PWM 2
	CCP3	2	I/O	TTL	Capture/Compare/PWM 3
	CCP4	4	I/O	TTL	Capture/Compare/PWM 4
	CCP5	1	I/O	TTL	Capture/Compare/PWM 5
I2C	I2CSCL	33	I/O	OD	I2C module 0 clock
	I2CSDA	34	I/O	OD	I2C module 0 data
JTAG/SWD/SWO	SWCLK	40	I	TTL	JTAG/SWD CLK
	SWDIO	39	I/O	TTL	JTAG TMS and SWDIO
	SWO	37	0	TTL	JTAG TDO and SWO
	TCK	40	I	TTL	JTAG/SWD CLK
	TDI	38	I	TTL	JTAG TDI

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
	TDO	37	0	TTL	JTAG TDO and SWO
	TMS	39	I/O	TTL	JTAG TMS and SWDIO
Power	GND	8	-	Power	Ground reference for logic and I/O pins.
	GND	16	-	Power	Ground reference for logic and I/O pins.
	GND	24	-	Power	Ground reference for logic and I/O pins.
	GND	31	-	Power	Ground reference for logic and I/O pins.
	LDO	6	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater.
	VDD	7	-	Power	Positive supply for I/O and some logic.
	VDD	15	-	Power	Positive supply for I/O and some logic.
	VDD	23	-	Power	Positive supply for I/O and some logic.
	VDD	32	-	Power	Positive supply for I/O and some logic.
SSI	SSIClk	19	I/O	TTL	SSI clock
	SSIFss	20	I/O	TTL	SSI frame
	SSIRx	21	I	TTL	SSI module 0 receive
	SSITx	22	0	TTL	SSI module 0 transmit
System Control & Clocks	OSC0	9	I	Analog	Main oscillator crystal input or an external clock reference input.
	OSC1	10	0	Analog	Main oscillator crystal output.
	RST	5	I	TTL	System reset input.
	TRST	41	I	TTL	JTAG TRSTn
UART	UORx	17	I	TTL	UART module 0 receive
	UOTx	18	0	TTL	UART module 0 transmit
	UlRx	27	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
	UlTx	28	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.

Table 16-4. GPIO Pins and Alternate Functions

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PAO	17	UORx	
PA1	18	UOTx	
PA2	19	SSIClk	
PA3	20	SSIFss	
PA4	21	SSIRx	
PA5	22	SSITx	
PBO	29		
PB1	30		
PB2	33	I2CSCL	
PB3	34	I 2CSDA	
PB4	44	C0-	
PB5	43	C1-	

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PB6	42	C0+	
PB7	41	TRST	
PC0	40	TCK	SWCLK
PC1	39	TMS	SWDIO
PC2	38	TDI	
PC3	37	TDO	SWO
PC4	14		
PC5	13	C1+	Clo
PC6	12	C2+	C2o
PC7	11	C2-	
PD0	25		
PD1	26		
PD2	27	UlRx	
PD3	28	UlTx	
PD4	45	CCP0	
PD5	46	CCP2	
PD6	47		
PD7	48	COo	
PEO	35		
PE1	36		
PE2	4	CCP4	
PE3	3	CCP1	
PE4	2	CCP3	
PE5	1	CCP5	

17 Operating Characteristics

Table 17-1. Temperature Characteristics

Characteristic ^a	Symbol	Value	Unit
Industrial operating temperature range	Τ _Α	-40 to +85	°C
Extended operating temperature range	T _A	-40 to +105	°C

a. Maximum storage temperature is 150°C.

Table 17-2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance (junction to ambient) ^a	Θ _{JA}	50	°C/W
Average junction temperature ^b	TJ	$T_A + (P_AVG \bullet \Theta_JA)$	°C
Maximum junction temperature	T _{JMAX}	115 c	°C

a. Junction to ambient thermal resistance θ_{JA} numbers are determined by a package simulator.

b. Power dissipation is a function of temperature.

c. T_{JMAX} calculation is based on power consumption values and conditions as specified in "Power Specifications" on page 383 of the data sheet.

18 Electrical Characteristics

18.1 DC Characteristics

18.1.1 Maximum Ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

Table 18-1. Maximum Ratings

Characteristic ^a	Symbol	Value	Unit
Supply voltage range (V _{DD})	V _{DD}	0.0 to +3.6	V
Input voltage	V _{IN}	-0.3 to 5.5	V
Maximum current for pins, excluding pins operating as GPIOs	I	100	mA
Maximum current for GPIO pins	I	100	mA

a. Voltages are measured with respect to GND.

Important: This device contains circuitry to protect the inputs against damage due to high-static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either GND or V_{DD}).

18.1.2 Recommended DC Operating Conditions

Table 18-2. Recommended DC Operating Conditions

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{DD}	Supply voltage	3.0	3.3	3.6	V
V _{IH}	High-level input voltage	2.0	-	5.0	V
V _{IL}	Low-level input voltage	-0.3	-	1.3	V
V _{SIH}	High-level input voltage for Schmitt trigger inputs	0.8 * V _{DD}	-	V _{DD}	V
V _{SIL}	Low-level input voltage for Schmitt trigger inputs	0	-	0.2 * V _{DD}	V
V _{OH}	High-level output voltage	2.4	-	-	V
V _{OL}	Low-level output voltage	-	-	0.4	V
I _{OH}	High-level source current, V _{OH} =2.4 V				
	2-mA Drive	2.0	-	-	mA
	4-mA Drive	4.0	-	3.6 5.0 1.3 V _{DD} 0.2 * V _{DD} - 0.4 - </td <td>mA</td>	mA
	8-mA Drive	8.0	-	-	mA
I _{OL}	Low-level sink current, V_{OL} =0.4 V				
	2-mA Drive	2.0	-	-	mA
	4-mA Drive	4.0	-	-	mA
	8-mA Drive	8.0	-	-	mA

18.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

Table 18-3. LDO Regulator Characteristics

Parameter	Parameter Name	Min	Nom	Мах	Unit
V _{LDOOUT}	Programmable internal (logic) power supply output value	2.25	-	2.75	V
	Output voltage accuracy	-	2%	-	%
t _{PON}	Power-on time	-	-	100	μs
t _{ON}	Time on	-	-	200	μs
t _{OFF}	Time off	-	-	100	μs
V _{STEP}	Step programming incremental voltage	-	50	-	mV
C _{LDO}	External filter capacitor size for internal power supply	1.0	-	3.0	μF

18.1.4 Power Specifications

The power measurements specified in the tables that follow are run on the core processor using SRAM with the following specifications (except as noted):

- V_{DD} = 3.3 V
- Temperature = 25°C

Table 18-4. Detailed Power Specifications

Parameter	Parameter Name	Conditions	Nom	Мах	Unit
I _{DD_RUN}	Run mode 1 (Flash loop)	LDO = 2.50 V	60	65	mA
		Code = while(1){} executed in Flash			
		Peripherals = All clock-gated ON			
		System Clock = 25 MHz (with PLL)			
	Run mode 2 (Flash loop)	LDO = 2.50 V	40	45	mA
		Code = while(1){} executed in Flash			
		Peripherals = All clock-gated OFF			
		System Clock = 25 MHz (with PLL)			
	Run mode 1 (SRAM loop)	LDO = 2.50 V	50	55	mA
		Code = while(1){} executed in SRAM			
		Peripherals = All clock-gated ON			
		System Clock = 25 MHz (with PLL)			
	Run mode 2 (SRAM loop)	LDO = 2.50 V	30	35	mA
		Code = while(1){} executed in SRAM			
		Peripherals = All clock-gated OFF			
		System Clock = 25 MHz (with PLL)			
I _{DD_SLEEP}	Sleep mode	LDO = 2.50 V	18	21	mA
		Peripherals = All clock-gated OFF			
		System Clock = 25 MHz (with PLL)			

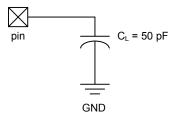
June 04, 2008

Parameter	Parameter Name	Conditions	Nom	Max	Unit
I _{DD_DEEPSLEEP}	Deep-Sleep mode	LDO = 2.25 V	950	1150	μA
		Peripherals = All OFF			
		System Clock = MOSC/16			

18.1.5 Flash Memory Characteristics

Table 18-5. Flash Memory Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
PE _{CYC}	Number of guaranteed program/erase cycles before failure ^a	10,000	100,000	-	cycles
T _{RET}	Data retention at average operating temperature of 85°C (industrial) or 105°C (extended)	10	-	-	years
T _{PROG}	Word program time	20	-	-	μs
T _{ERASE}	Page erase time	20	-	-	ms
T _{ME}	Mass erase time	200	-	-	ms


a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.

18.2 AC Characteristics

18.2.1 Load Conditions

Unless otherwise specified, the following conditions are true for all timing measurements. Timing measurements are for 4-mA drive strength.

Figure 18-1. Load Conditions

18.2.2 Clocks

 Table 18-6. Phase Locked Loop (PLL) Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{ref_crystal}	Crystal reference ^a	3.579545	-	8.192	MHz
f _{ref_ext}	External clock reference ^a	3.579545	-	8.192	MHz
f _{pll}	PLL frequency ^b	-	200	-	MHz
T _{READY}	PLL lock time	-	-	0.5	ms

a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration (RCC) register.

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.

Table 18-7. Clock Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{IOSC}	Internal oscillator frequency	7	12	22	MHz
f _{MOSC}	Main oscillator frequency	1	-	8	MHz
t _{MOSC_per}	Main oscillator period	125	-	1000	ns
f _{ref_crystal_bypass}	Crystal reference using the main oscillator (PLL in BYPASS mode)	1	-	8	MHz
f _{ref_ext_bypass}	External clock reference (PLL in BYPASS mode)	0	-	25	MHz
f _{system_clock}	System clock	0	-	25	MHz

18.2.3 Analog Comparator

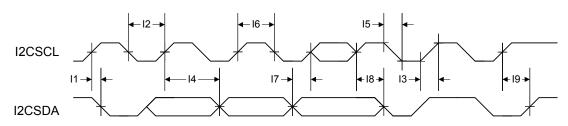
Table 18-8. Analog Comparator Characteristics

Parameter	Parameter Name	Min	Nom	Мах	Unit
V _{OS}	Input offset voltage	-	±10	±25	mV
V _{CM}	Input common mode voltage range	0	-	V _{DD} -1.5	V
C _{MRR}	Common mode rejection ratio	50	-	-	dB
T _{RT}	Response time	-	-	1	μs
T _{MC}	Comparator mode change to Output Valid	-	-	10	μs

Table 18-9. Analog Comparator Voltage Reference Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
R _{HR}	Resolution high range	-	V _{DD} /32	-	LSB
R _{LR}	Resolution low range	-	V _{DD} /24	-	LSB
A _{HR}	Absolute accuracy high range	-	-	±1/2	LSB
A _{LR}	Absolute accuracy low range	-	-	±1/4	LSB

18.2.4 I²C

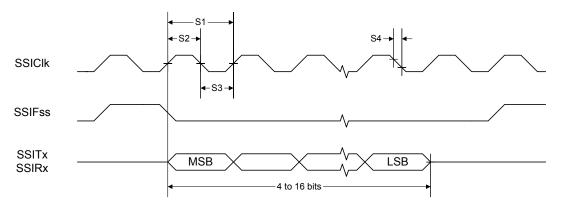

Table 18-10. I²C Characteristics

Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
l1 ^a	t _{SCH}	Start condition hold time	36	-	-	system clocks
l2 ^a	t _{LP}	Clock Low period	36	-	-	system clocks
I3 ^b	t _{SRT}	<code>I2CSCL/I2CSDA</code> rise time (V _{IL} =0.5 V to V $_{\rm IH}$ =2.4 V)	-	-	(see note b)	ns
l4 ^a	t _{DH}	Data hold time	2	-	-	system clocks
I5 ^c	t _{SFT}	I2CSCL/I2CSDA fall time (V _{IH} =2.4 V to V _{IL} =0.5 V)	-	9	10	ns
l6 ^a	t _{HT}	Clock High time	24	-	-	system clocks
I7 ^a	t _{DS}	Data setup time	18	-	-	system clocks
I8 ^a	t _{SCSR}	Start condition setup time (for repeated start condition only)	36	-	-	system clocks
l9 ^a	t _{scs}	Stop condition setup time	24	-	-	system clocks

a. Values depend on the value programmed into the TPR bit in the I²C Master Timer Period (I2CMTPR) register; a TPR programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table above. The I²C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above values are minimum values.

b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.
 c. Specified at a nominal 50 pF load.

Figure 18-2. I²C Timing



18.2.5 Synchronous Serial Interface (SSI)

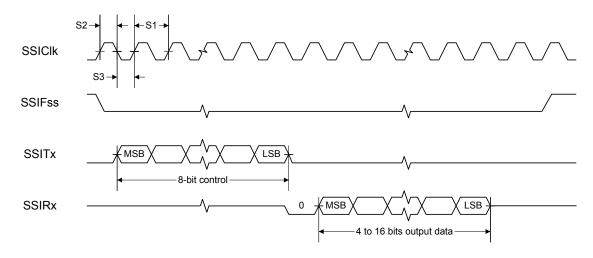
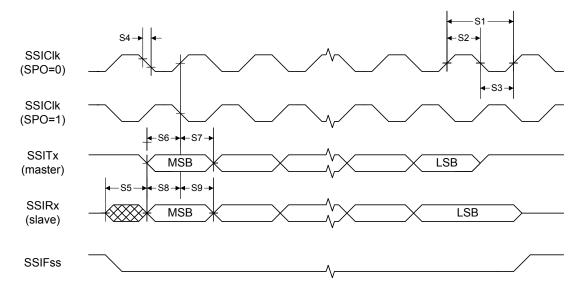

Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
S1	t _{clk_per}	SSIClk cycle time	2	-	65024	system clocks
S2	t _{clk_high}	SSIClk high time	-	1/2	-	t clk_per
S3	t _{clk_low}	SSIClk low time	-	1/2	-	t clk_per
S4	t _{clkrf}	SSIClk rise/fall time	-	7.4	26	ns
S5	t _{DMd}	Data from master valid delay time	0	-	20	ns
S6	t _{DMs}	Data from master setup time	20	-	-	ns
S7	t _{DMh}	Data from master hold time	40	-	-	ns
S8	t _{DSs}	Data from slave setup time	20	-	-	ns
S9	t _{DSh}	Data from slave hold time	40	-	-	ns

Table 18-11. SSI Characteristics

Figure 18-3. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement



354

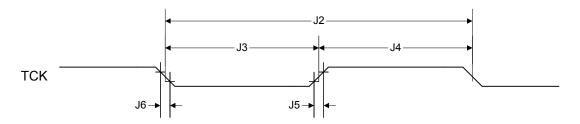
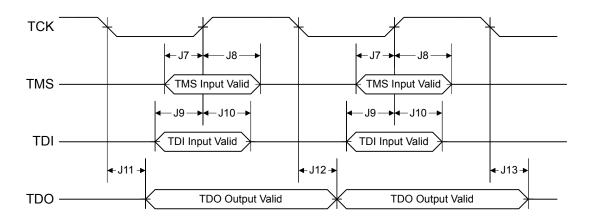

18.2.6 JTAG and Boundary Scan

Table 18-12. JTAG Characteristics


Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
J1	f _{TCK}	TCK operational clock frequency	0	-	10	MHz
J2	t _{TCK}	TCK operational clock period	100	-	-	ns
J3	t _{TCK_LOW}	TCK clock Low time	-	t _{TCK}	-	ns

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
J4	t _{тск_нідн}	тск clock High time	-	t _{TCK}	-	ns
J5	t _{TCK_R}	тск rise time	0	-	10	ns
J6	t _{TCK_F}	TCK fall time	0	-	10	ns
J7	t _{TMS_SU}	TMS setup time to TCK rise	20	-	-	ns
J8	t _{TMS_HLD}	TMS hold time from TCK rise	20	-	-	ns
J9	t _{TDI_SU}	TDI setup time to TCK rise	25	-	-	ns
J10	t _{TDI_HLD}	TDI hold time from TCK rise	25	-	-	ns
J11	TCK fall to Data Valid from High-Z	2-mA drive	-	23	35	ns
t _{TDO_ZDV}		4-mA drive		15	26	ns
		8-mA drive		14	25	ns
		8-mA drive with slew rate control		18	29	ns
J12	TCK fall to Data Valid from Data Valid	2-mA drive	-	21	35	ns
t _{TDO_DV}		4-mA drive		14	25	ns
-		8-mA drive		13	24	ns
		8-mA drive with slew rate control		18	28	ns
J13	TCK fall to High-Z from Data Valid	2-mA drive	-	9	11	ns
t _{TDO_DVZ}		4-mA drive		7	9	ns
-		8-mA drive		6	8	ns
		8-mA drive with slew rate control		7	9	ns
J14	t _{TRST}	TRST assertion time	100	-	-	ns
J15	t _{TRST_SU}	TRST setup time to TCK rise	10	-	-	ns

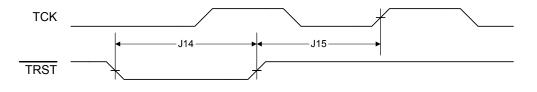

Figure 18-6. JTAG Test Clock Input Timing

Figure 18-8. JTAG TRST Timing

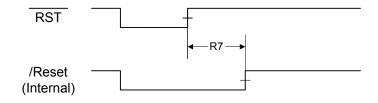
18.2.7 General-Purpose I/O

Note: All GPIOs are 5 V-tolerant.

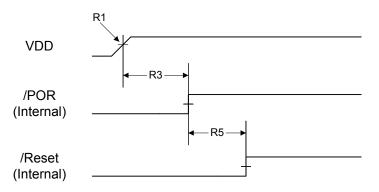
Table 18-13. GPIO Characteristics

Parameter	Parameter Name	Condition	Min	Nom	Max	Unit
t _{GPIOR}	GPIO Rise Time (from 20% to 80% of $V_{\text{DD}})$	2-mA drive	-	17	26	ns
		4-mA drive		9	13	ns
		8-mA drive		6	9	ns
		8-mA drive with slew rate control		10	12	ns
t _{GPIOF}	GPIO Fall Time (from 80% to 20% of V_{DD})	2-mA drive	-	17	25	ns
		4-mA drive		8	12	ns
		8-mA drive		6	10	ns
		8-mA drive with slew rate control		11	13	ns

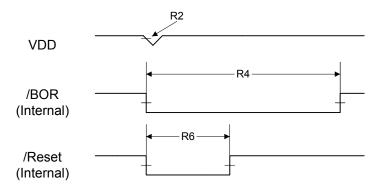
18.2.8 Reset

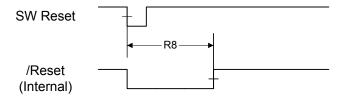

Table 18-14. Reset Characteristics

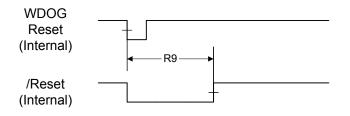
Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
R1	V _{TH}	Reset threshold	-	2.0	I	V


Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
R2	V _{BTH}	Brown-Out threshold	2.85	2.9	2.95	V
R3	T _{POR}	Power-On Reset timeout	-	10	-	ms
R4	T _{BOR}	Brown-Out timeout	-	500	-	μs
R5	T _{IRPOR}	Internal reset timeout after POR	15	-	30	ms
R6	T _{IRBOR}	Internal reset timeout after BOR ^a	2.5	-	20	μs
R7	T _{IRHWR}	Internal reset timeout after hardware reset ($\overline{\mathtt{RST}}$ pin)	15	-	30	ms
R8	T _{IRSWR}	Internal reset timeout after software-initiated system reset ^a	2.5	-	20	μs
R9	T _{IRWDR}	Internal reset timeout after watchdog reset ^a	2.5	-	20	μs
R10	T _{IRLDOR}	Internal reset timeout after LDO reset ^a	2.5	-	20	μs
R11	T _{VDDRISE}	Supply voltage (V _{DD}) rise time (0 V-3.3 V)	-	-	100	ms

a. 20 * t _{MOSC_per}


Figure 18-9. External Reset Timing (RST)


Figure 18-10. Power-On Reset Timing


Figure 18-11. Brown-Out Reset Timing

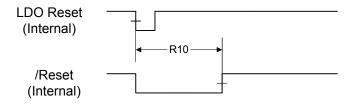

Figure 18-12. Software Reset Timing

Figure 18-13. Watchdog Reset Timing

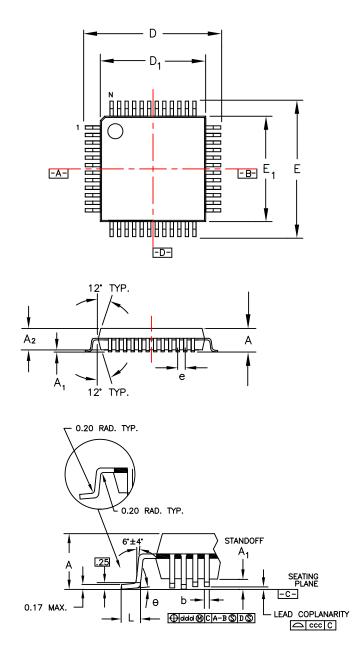


Figure 18-14. LDO Reset Timing

19 Package Information

Figure 19-1. 48-Pin LQFP Package

Note: The following notes apply to the package drawing.

- 1. All dimensions are in mm.
- 2. Dimensions shown are nominal with tolerances indicated.
- 3. Foot length "L" is measured at gage plane 0.25 mm above seating plane.

4. L/F: Eftec 64T Cu or equivalent, 0.127 mm (0.005") thick.

Symbol	Packag	је Туре	Note
	48LD	LQFP	
	MIN	MAX	
A	-	1.60	
A ₁	0.05	0.15	
A ₂	-	1.40	
D	9.	00	
D ₁	7.	00	
E	9.	00	
E ₁	7.	00	
L	0.0	60	
е	0.	50	
b	0.:	22	
theta	0° -	- 7°	
ddd	0.0	08	
ССС	0.0	08	
JEDEC F	Reference	Drawing	MS-026
Variat	tion Desig	nator	BBC

A Serial Flash Loader

A.1 Serial Flash Loader

The Stellaris[®] serial flash loader is a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface. The serial flash loader uses a simple packet interface to provide synchronous communication with the device. The flash loader runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used. The two serial interfaces that can be used are the UART0 and SSI0 interfaces. For simplicity, both the data format and communication protocol are identical for both serial interfaces.

A.2 Interfaces

Once communication with the flash loader is established via one of the serial interfaces, that interface is used until the flash loader is reset or new code takes over. For example, once you start communicating using the SSI port, communications with the flash loader via the UART are disabled until the device is reset.

A.2.1 UART

The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is automatically detected by the flash loader and can be any valid baud rate supported by the host and the device. The auto detection sequence requires that the baud rate should be no more than 1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the same as the hardware limitation for the maximum baud rate for any UART on a Stellaris[®] device which is calculated as follows:

Max Baud Rate = System Clock Frequency / 16

In order to determine the baud rate, the serial flash loader needs to determine the relationship between its own crystal frequency and the baud rate. This is enough information for the flash loader to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows the host to use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the flash loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can use to calculate the ratios needed to program the UART to match the host's baud rate. After the host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received after at least twice the time required to transfer the two bytes, the host can resend another pattern of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has received a synchronization pattern correctly. For example, the time to wait for data back from the flash loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate of 115200, this time is 2*(20/115200) or 0.35 ms.

A.2.2 SSI

The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications, with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See "Frame Formats" on page 258 in the SSI chapter for more information on formats for this transfer protocol. Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running

the flash loader. Since the host device is the master, the SSI on the flash loader device does not need to determine the clock as it is provided directly by the host.

A.3 Packet Handling

All communications, with the exception of the UART auto-baud, are done via defined packets that are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same format for receiving and sending packets, including the method used to acknowledge successful or unsuccessful reception of a packet.

A.3.1 Packet Format

All packets sent and received from the device use the following byte-packed format.

```
struct
{
 unsigned char ucSize;
 unsigned char ucCheckSum;
 unsigned char Data[];
};
ucSize
                               The first byte received holds the total size of the transfer including
                               the size and checksum bytes.
ucChecksum
                               This holds a simple checksum of the bytes in the data buffer only.
                               The algorithm is Data[0]+Data[1]+...+ Data[ucSize-3].
Data
                               This is the raw data intended for the device, which is formatted in
                               some form of command interface. There should be ucSize-2
                               bytes of data provided in this buffer to or from the device.
```

A.3.2 Sending Packets

The actual bytes of the packet can be sent individually or all at once; the only limitation is that commands that cause flash memory access should limit the download sizes to prevent losing bytes during flash programming. This limitation is discussed further in the section that describes the serial flash loader command, COMMAND_SEND_DATA (see "COMMAND_SEND_DATA (0x24)" on page 365).

Once the packet has been formatted correctly by the host, it should be sent out over the UART or SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This does not indicate that the actual contents of the command issued in the data portion of the packet was received correctly.

A.3.3 Receiving Packets

The flash loader sends a packet of data in the same format that it receives a packet. The flash loader may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte is the size of the packet followed by a checksum byte, and finally followed by the data itself. There is no break in the data after the first non-zero byte is sent from the flash loader. Once the device communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to indicate that the transmission was successful. The appropriate response after sending a NAK to the flash loader is to resend the command that failed and request the data again. If needed, the host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the

flash loader only accepts the first non-zero data as a valid response. This zero padding is needed by the SSI interface in order to receive data to or from the flash loader.

A.4 Commands

The next section defines the list of commands that can be sent to the flash loader. The first byte of the data should always be one of the defined commands, followed by data or parameters as determined by the command that is sent.

A.4.1 COMMAND_PING (0X20)

This command simply accepts the command and sets the global status to success. The format of the packet is as follows:

Byte[0] = 0x03; Byte[1] = checksum(Byte[2]); Byte[2] = COMMAND_PING;

The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status, the receipt of an ACK can be interpreted as a successful ping to the flash loader.

A.4.2 COMMAND_GET_STATUS (0x23)

This command returns the status of the last command that was issued. Typically, this command should be sent after every command to ensure that the previous command was successful or to properly respond to a failure. The command requires one byte in the data of the packet and should be followed by reading a packet with one byte of data that contains a status code. The last step is to ACK or NAK the received data so the flash loader knows that the data has been read.

Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_GET_STATUS

A.4.3 COMMAND_DOWNLOAD (0x21)

This command is sent to the flash loader to indicate where to store data and how many bytes will be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit values that are both transferred MSB first. The first 32-bit value is the address to start programming data into, while the second is the 32-bit size of the data that will be sent. This command also triggers an erase of the full area to be programmed so this command takes longer than other commands. This results in a longer time to receive the ACK/NAK back from the board. This command should be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size are valid for the device running the flash loader.

The format of the packet to send this command is a follows:

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_DOWNLOAD
Byte[3] = Program Address [31:24]
Byte[4] = Program Address [23:16]
Byte[5] = Program Address [15:8]
Byte[6] = Program Address [7:0]
Byte[7] = Program Size [31:24]
```

```
Byte[8] = Program Size [23:16]
Byte[9] = Program Size [15:8]
Byte[10] = Program Size [7:0]
```

A.4.4 COMMAND_SEND_DATA (0x24)

This command should only follow a COMMAND_DOWNLOAD command or another COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands automatically increment address and continue programming from the previous location. The caller should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program successfully and not overflow input buffers of the serial interfaces. The command terminates programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has been received. Each time this function is called it should be followed by a COMMAND_GET_STATUS to ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK to this command, the flash loader does not increment the current address to allow retransmission of the previous data.

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]
```

A.4.5 COMMAND_RUN (0x22)

This command is used to tell the flash loader to execute from the address passed as the parameter in this command. This command consists of a single 32-bit value that is interpreted as the address to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK signal back to the host device before actually executing the code at the given address. This allows the host to know that the command was received successfully and the code is now running.

```
Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]
```

A.4.6 COMMAND_RESET (0x25)

This command is used to tell the flash loader device to reset. This is useful when downloading a new image that overwrote the flash loader and wants to start from a full reset. Unlike the COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and set up for the new code. It can also be used to reset the flash loader if a critical error occurs and the host device wants to restart communication with the flash loader.

Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET

The flash loader responds with an ACK signal back to the host device before actually executing the software reset to the device running the flash loader. This allows the host to know that the command was received successfully and the part will be reset.

B Register Quick Reference

04	20	20	00	07	00	05	0.4		00	04	00	40	10	47	40
31 15	30 14	29 13	28 12	27	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0
	Control	.5		L ''	10	Ŭ	3	,	ů,	5			-	•	Ŭ
-	100F.E000														
DID0, type	e RO, offset	0x000, res	et -												
		VER													
			MA	JOR							MIN	NOR			
PBORCTL	, type R/W,	offset 0x03	30, reset 0	x0000.7FFI	D							_			
						BOF	RTIM							BORIOR	BORWT
LDOPCTL	., type R/W,	offset 0x03	34, reset 0	x0000.0000											
)//	DJ		
RIS type	RO, offset 0	1v050 rese	+ 0×0000 0	000								VA	.DJ		
Kio, type	KO, Uliset t	7x030, 1ese													
									PLLLRIS	CLRIS	IOFRIS	MOFRIS	LDORIS	BORRIS	PLLFRIS
IMC, type	R/W, offset	0x054, res	et 0x0000	.0000											
									PLLLIM	CLIM	IOFIM	MOFIM	LDOIM	BORIM	PLLFIM
MISC, typ	e R/W1C, of	ffset 0x058	, reset 0x0	0000.0000											
									PLLLMIS	CLMIS	IOFMIS	MOFMIS	LDOMIS	BORMIS	
RESC, typ	oe R/W, offs	et 0x05C, r	eset -												
										LDO	SW	WDT	BOR	POR	EXT
RCC, type	e R/W, offse	t 0x060, res	set 0x0780			0)//			1050 (051) (
		PWRDN	OEN	ACG BYPASS	PLLVER	513	SDIV XT.	A1	USESYSDIV	080	SRC		MOSCVER		MOSCOIS
PLI CEG. 1	type RO, of			DIFASS	FLLVLIN		~ ~ ~			030	5110	TOSCVER	NOOCVER	1030013	WOOODIG
1 2201 0,1	type ne, of	1001 07004,	10001												
0	D					F							R		
DSLPCLK	CFG, type I	R/W, offset	0x144, res	set 0x0780.	0000										
															IOSC
CLKVCLR	, type R/W,	offset 0x1	50, reset 0	x0000.0000)										
															VERCLR
LDOARST	ſ, type R/W,	offset 0x16	60, reset 0	x0000.0000											
															1001007
	e RO, offset	0x004	ot												LDOARST
ыы, τуρε	e κυ, οπset VE		el-		C.	AM					DAD	TNO			
	VE								TEMP			KG	ROHS	0I	JAL
DC0, type	RO, offset	0x008, rese	et 0x000F.	0007								-			
., ., .,	-,	,		-			SRA	MSZ							
								SHSZ							
DC1, type	RO, offset	0x010, rese	et 0x0000.	709F											
	MINSY	/SDIV						MPU			PLL	WDT	SWO	SWD	JTAG
DC2, type	RO, offset	0x014, rese	et 0x0707.	1013											
					COMP2	COMP1	COMP0						TIMER2	TIMER1	TIMER0
			I2C0								SSI0			UART1	UART0

June 04, 2008

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DC3, type	RO, offset	0x018, res	et 0xBF00.	7FC0				1				1			
32KHZ		CCP5	CCP4	CCP3	CCP2	CCP1	CCP0								
	C2O	C2PLUS	C2MINUS	C10	C1PLUS	C1MINUS	C0O	COPLUS	COMINUS						
DC4, type	RO, offset	0x01C, res	set 0x0000.(001F											
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
RCGC0, ty	/pe R/W, of	fset 0x100	, reset 0x00	000040											
	5.44		(WDT			
SCGC0, ty	/pe R/W, of	tset 0x110	, reset 0x00	000040											
												WDT			
DCGC0. fv	ne R/W. of	fset 0x120	, reset 0x00	000040											
,,	, po : a : i, o		,												
												WDT			
RCGC1, ty	/pe R/W, of	fset 0x104	, reset 0x00	000000											
					COMP2	COMP1	COMP0						TIMER2	TIMER1	TIMER0
			I2C0								SSI0			UART1	UART0
SCGC1, ty	/pe R/W, of	fset 0x114	, reset 0x00	000000											
					COMP2	COMP1	COMP0						TIMER2	TIMER1	TIMER0
			I2C0								SSI0			UART1	UART0
DCGC1, ty	/pe R/W, of	fset 0x124	, reset 0x00	000000				1				1			
			10.00		COMP2	COMP1	COMP0						TIMER2	TIMER1	TIMER0
			I2C0								SSI0			UART1	UART0
RCGC2, ty	/pe k/w, o	TSET UX108	, reset 0x00	000000											
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SCGC2. tv	/pe R/W. of	fset 0x118	, reset 0x00	000000											
, ,															
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
DCGC2, ty	/pe R/W, of	fset 0x128	, reset 0x00	000000								1			
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SRCR0, ty	pe R/W, of	fset 0x040	, reset 0x00	000000											
												WDT			
SRCR1, ty	vpe R/W, of	fset 0x044	, reset 0x00	000000											
			1000		COMP2	COMP1	COMP0				0010		TIMER2	TIMER1	TIMER0
SPCP1 +		feat 0×049	12C0	000000							SSI0			UART1	UART0
ononz, ty	Pe 17.44, 01	1301 VXU40		00000											
											GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Internal	Memor	v													
Flash R		(Flash	Control	Offset)											
			set 0x0000	.0000											
	, 51136														
								OFF	SET						
FMD, type	R/W, offse	et 0x004, re	set 0x0000	.0000											
							DA	TA							
							DA	TA							

04	20		00	07	00	05	04	00	00	01		40	40	47	10
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23	22 6	21 5	20 4	19 3	18 2	17 1	16 0
	R/W, offse				10	5	0	,	0	3	-		2		0
i ino, type	, onse	. 0,000, 16	361 020000				WB	KEY							
												СОМТ	MERASE	ERASE	WRITE
FCRIS. tvi	pe RO, offs	et 0x00C. r	eset 0x000	0.0000											
- / - 31		,													
														PRIS	ARIS
FCIM, type	e R/W, offse	et 0x010, re	eset 0x0000	0.0000											
														PMASK	AMAS
FCMISC, t	type R/W1C	, offset 0x	014, reset 0	x0000.000	0										
														PMISC	AMISC
Internal	I Memory	/													
	Registers	(Syster	n Contro	ol Offset)										
	100F.E000														
USECRL,	type R/W, o	ffset 0x14	0, reset 0x1	18											
	Bar:										U	SEC			
FMPRE, ty	ype R/W, of	set 0x130,	, reset 0x80	00.00FF			DEAE								
	ype R/W, off	a at 0x121	rea at 0×00				READ_	ENABLE							
FINIPPE, ty	урек/w, оп	set ux134,	, reset uxuu	00.00FF			PROC								
								ENABLE ENABLE							
_	I-Purpos		-					,							
GPIO Po	ort D base: ort E base: A, type R/W	0x4002.4	000)x0000.000	0										
											D	ATA			
GPIODIR,	type R/W, c	offset 0x40	0, reset 0x0	0000.0000											
											0	DIR			
GPIOIS, ty	ype R/W, off	set 0x404,	, reset 0x00	000.0000								1			
				<u> </u>								IS			
GPIOIBE,	type R/W, c	ffset 0x40	8, reset 0x0	0000.0000				1				1			
												BE			
	type R/W, o	ffa a 4 0 × 404	C. react 0x0								I	BE			
GPIOIEV,	type R/W, o	mset ux400	C, reset uxt												
												EV			
	ype R/W, of	fset ()v/10	reset 0v00					1			1	- *			
Si ionvi, t	J PC 10 44, 01	JOL 07410	, 16361 0200												
											1	ME			
GPIORIS								1							
- I I I I I I I I I I I I I I I I I I I	type PO of	fset 0v414	reset OvO	000 0000											
	type RO, of	fset 0x414	l, reset 0x0	000.0000											
	type RO, of	fset 0x414	l, reset 0x00	000.0000											
GDIOMIS											F	RIS			
GPIOMIS,	type RO, of type RO, of										F				
gpiomis,															

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIOICR,	, type W1C,	offset 0x4	1C, reset 0	x0000.0000			1	1				1	1		
											I	c			
GPIOAFS	EL, type R/	W, offset 0	x420, reset	t -				-	-						-
											AF	SEL			
GPIODR2	R, type R/V	V, offset 0x	(500, reset (0x0000.00Fl	F										
												 RV2			
CDIODBA	IR type R/M		(504 rosot (0x0000.000	n						Dr	(v2			
GFIODIN		, onset ox	(304, Teset (5										
											DF	 RV4			
GPIODR8	R, type R/V	V, offset 0×	(508, reset (0x0000.000	D			1							
		-													
											DF	RV8			
GPIOODF	R, type R/W,	offset 0x5	50C, reset 0	x0000.0000											
											0	DE			
GPIOPUF	R, type R/W,	offset 0x5	i10, reset 0>	k0000.00FF											
											PI	JE			
GPIOPDF	R, type R/W,	offset 0x5	i14, reset 0>	x0000.0000											
											DI) DE			
	type R/W	offect 0x5	18, reset 0x	/0000 0000							FI				
OFICOLI	, type 1011,	011301 073	10, 10301 07												
											S	I RL			
GPIODEN	I, type R/W,	offset 0x5	i1C, reset 0	x0000.00FF				1							
											DI	EN			
GPIOPeri	phID4, type	RO, offse	t 0xFD0, res	set 0x0000.	0000										
											PI	D4			
GPIOPeri	phID5, type	RO, offse	t 0xFD4, res	set 0x0000.	0000										
											PI	D5			
GPIOPeri	phID6, type	RO, offse	t 0xFD8, res	set 0x0000.	0000										
												 D6			
GPIOPort	nhID7 ture	RO offer	t 0xEDC ro	set 0x0000.	0000			I			PI	50			
Grioren	pino, type	RO, Olise	CON DO, IE												
											PI	 D7			
GPIOPeri	phID0, type	RO, offse	t 0xFE0, res	set 0x0000.0	0061			1							
			., -												
											PI	D0			
GPIOPeri	phID1, type	RO, offse	t 0xFE4, res	set 0x0000.	0000										
											PI	D1			
GPIOPeri	phID2, type	RO, offse	t 0xFE8, res	set 0x0000.	0018										
											PI	D2			

31 15	~~			07		05						10	40	47	40
	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17	16 0
			0xFEC, res			3	0	/	0	5	4	5	2	I	0
SFIOFerip	пьз, туре	KO, Olisei	UXFEC, IE												
											PI	 D3			
GPIOPCell	ID0. type F	20. offset (0xFF0, rese	t 0x0000.0	00D			<u> </u>							
		,													
											CI	I D0			
GPIOPCell	ID1, type F	RO, offset (0xFF4, rese	t 0x0000.0	0F0			I							
		-													
											CI	D1			
GPIOPCell	ID2, type F	RO, offset	0xFF8, rese	t 0x0000.0	005			1							
											CI	D2			
GPIOPCell	ID3, type F	RO, offset	0xFFC, rese	et 0x0000.0	0B1										
											CI	D3			
General	-Purpos	e Timer	s												
Timer0 ba	ase: 0x400	03.0000													
Timer1 ba Timer2 ba															
			000, reset 0	x0000.000	0										
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-										
														GPTMCFG	
GPTMTAM	R, type R/\	N, offset 0	x004, reset	0x0000.00	00										
												TAAMS	TACMR	TA	MR
GPTMTBM	R, type R/	N, offset 0	x008, reset	0x0000.00	00							1			
												TBAMS	TBCMR	TB	MR
GPTMCTL,	, type R/W,	offset 0x0	0C, reset 0	x0000.000	0										
												1			
	TBPWML	TBOTE		TBE	VENT	TBSTALL	TBEN		TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
			18, reset 0)			TBSTALL	TBEN		TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
						TBSTALL	TBEN		TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
						TBSTALL	TBEN		TAPWML	TAOTE	RTCEN	TAE	/ENT CAEIM	CAMIM	
GPTMIMR,	type R/W,	offset 0x0		k0000.0000					TAPWML	TAOTE	RTCEN				
GPTMIMR,	type R/W,	offset 0x0	18, reset 0)	k0000.0000					TAPWML	TAOTE	RTCEN				
gptmimr,	type R/W,	offset 0x0	18, reset 0)	k0000.0000	CBEIM	CBMIM			TAPWML	TAOTE	RTCEN		CAEIM		ΤΑΤΟΙΙ
GPTMIMR, GPTMRIS,	type R/W, type RO, c	offset 0x0 offset 0x01	18, reset 0)	x0000.0000	CBEIM	CBMIM	TBTOIM		TAPWML	TAOTE	RTCEN	RTCIM	CAEIM	CAMIM	ΤΑΤΟΙΝ
GPTMIMR, GPTMRIS,	type R/W, type RO, c	offset 0x0 offset 0x01	18, reset 0) C, reset 0x	x0000.0000	CBEIM	CBMIM	TBTOIM		TAPWML	TAOTE	RTCEN	RTCIM	CAEIM	CAMIM	TATOI
GPTMIMR, GPTMRIS, GPTMMIS,	type R/W, type RO, c type RO, c	offset 0x0 offset 0x01 offset 0x02	18, reset 0) C, reset 0x 0, reset 0x	<pre></pre>	CBEIM CBERIS CBERIS CBEMIS	CBMIM	TBTOIM		TAPWML	TAOTE	RTCEN	RTCIM	CAEIM	CAMIM	TATOI
GPTMIMR, GPTMRIS, GPTMMIS,	type R/W, type RO, c type RO, c	offset 0x0 offset 0x01 offset 0x02	18, reset 0) C, reset 0x	<pre></pre>	CBEIM CBERIS CBERIS CBEMIS	CBMIM	TBTOIM		TAPWML	TAOTE	RTCEN	RTCIM	CAEIM	CAMIM	TATOI
GPTMIMR, GPTMRIS, GPTMMIS,	type R/W, type RO, c type RO, c	offset 0x0 offset 0x01 offset 0x02	18, reset 0) C, reset 0x 0, reset 0x	<pre></pre>	CBEINS CBEMIS	CBMIM	TBTOIM		TAPWML	TAOTE	RTCEN	RTCIM RTCRIS RTCMIS	CAEIIS	CAMIM	TATON
GPTMINR, GPTMRIS, GPTMMIS, GPTMICR,	type R/W, type RO, c type RO, c	offset 0x0 offset 0x01 offset 0x02	18, reset 0) C, reset 0x 0, reset 0x 24, reset 0	x0000.0000	CBEIN CBEIN CBERIS CBEMIS CBEMIS CBECINT	CBMIM CBMRIS CBMMIS CBMCINT	TBTOIM			TAOTE	RTCEN	RTCIM RTCRIS RTCMIS	CAEIM	CAMIM	TATON
GPTMINR, GPTMRIS, GPTMMIS, GPTMICR,	type R/W, type RO, c type RO, c	offset 0x0 offset 0x01 offset 0x02	18, reset 0) C, reset 0x 0, reset 0x 24, reset 0	x0000.0000	CBEIN CBEIN CBERIS CBEMIS CBEMIS CBECINT	CBMIM CBMRIS CBMMIS CBMCINT	TBTOIM TBTORIS TBTOMIS TBTOCINT 0xFFFF.FF			TAOTE	RTCEN	RTCIM RTCRIS RTCMIS	CAEIIS	CAMIM	TATON
GPTMINR, GPTMRIS, GPTMMIS, GPTMICR,	type R/W, type RO, c type RO, c	offset 0x0 offset 0x01 offset 0x02	18, reset 0) C, reset 0x 0, reset 0x 24, reset 0	x0000.0000	CBEIN CBEIN CBERIS CBEMIS CBEMIS CBECINT	CBMIM CBMRIS CBMMIS CBMCINT	TBTOIM TBTORIS TBTOMIS TBTOCINT 0xFFFF.F FI	LRH		TAOTE	RTCEN	RTCIM RTCRIS RTCMIS	CAEIIS	CAMIM	TATON
GPTMINR, GPTMRIS, GPTMMIS, GPTMICR,	type R/W, type RO, c type RO, c	offset 0x0 offset 0x01 offset 0x02	18, reset 0) C, reset 0x 0, reset 0x 24, reset 0	x0000.0000	CBEIN CBEIN CBERIS CBEMIS CBEMIS CBECINT	CBMIM CBMRIS CBMMIS CBMCINT	TBTOIM TBTORIS TBTOMIS TBTOCINT 0xFFFF.F FI			TAOTE	RTCEN	RTCIM RTCRIS RTCMIS	CAEIIS	CAMIM	TATON
GPTMINR, GPTMRIS, GPTMMIS, GPTMICR, GPTMICR,	type R/W, type RO, c type RO, c type W1C, R, type R/N	offset 0x0 offset 0x01 offset 0x02 offset 0x0 W, offset 0	18, reset 0) C, reset 0x 0, reset 0x 24, reset 0	<pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre>	CBERIS CBERIS CBEMIS CBECINT CBECINT FFF (16-bit i	CBMIM CBMRIS CBMMIS CBMCINT	TBTOIM TBTORIS TBTOMIS TBTOCINT 0xFFFF.F FI	LRH		TAOTE	RTCEN	RTCIM RTCRIS RTCMIS	CAEIIS	CAMIM	TATON
GPTMINR, GPTMRIS, GPTMMIS, GPTMICR, GPTMICR,	type R/W, type RO, c type RO, c type W1C, R, type R/N	offset 0x0 offset 0x01 offset 0x02 offset 0x0 W, offset 0	18, reset 0x C, reset 0x 0, reset 0x 24, reset 0 224, reset 0	<pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre>	CBERIS CBERIS CBEMIS CBECINT CBECINT FFF (16-bit i	CBMIM CBMRIS CBMMIS CBMCINT	TBTOIM TBTORIS TBTOMIS TBTOCINT 0xFFFF.F FI	LRH		TAOTE	RTCEN	RTCIM RTCRIS RTCMIS	CAEIIS	CAMIM	TATON
3PTMINR, 3PTMRIS, 3PTMMIS, 3PTMICR, 3PTMICR,	type R/W, type RO, c type RO, c type W1C, R, type R/N	offset 0x0 offset 0x01 offset 0x02 offset 0x0 W, offset 0	18, reset 0x C, reset 0x 0, reset 0x 24, reset 0 224, reset 0	<pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre>	CBERIS CBERIS CBEMIS CBECINT CBECINT FFF (16-bit i	CBMIM CBMRIS CBMMIS CBMCINT	TBTOIM TBTORIS TBTOMIS TBTOCINT 0xFFFF.FF TAII	LRH		TAOTE	RTCEN	RTCIM RTCRIS RTCMIS	CAEIIS	CAMIM	TATON
GPTMINR, GPTMRIS, GPTMMIS, GPTMICR, GPTMTAIL	type R/W, type RO, c type RO, c type W1C, R, type R/I R, type R/I	offset 0x01 offset 0x01 offset 0x02 offset 0x02 W, offset 0x0 W, offset 0	18, reset 0) C, reset 0x 0, reset 0x 024, reset 0 x028, reset x022C, reset	<pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre>	CBERIS CBERIS CBERIS CBERIS CBECINT FFF (16-bit I	CBMIM CBMRIS CBMMIS CBMCINT mode) and	TBTOIM TBTORIS TBTOMIS TBTOCINT 0xFFFF.FF TAII	LRH LRL	node)		RTCEN	RTCIM RTCRIS RTCMIS	CAEIIS	CAMIM	TATOIN
GPTMINR, GPTMRIS, GPTMNIS, GPTMICR, GPTMTAIL	type R/W, type RO, c type RO, c type W1C, R, type R/I R, type R/I	offset 0x01 offset 0x01 offset 0x02 offset 0x02 W, offset 0x0 W, offset 0	18, reset 0) C, reset 0x 0, reset 0x 024, reset 0 x028, reset x022C, reset	<pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre>	CBERIS CBERIS CBERIS CBERIS CBECINT FFF (16-bit I	CBMIM CBMRIS CBMMIS CBMCINT mode) and	TBTOIM TBTORIS TBTOMIS TBTOCINT 0xFFFF.F TAII TAII TAI	LRH LRL	node)		RTCEN	RTCIM RTCRIS RTCMIS	CAEIIS	CAMIM	TATOIN

June 04, 2008

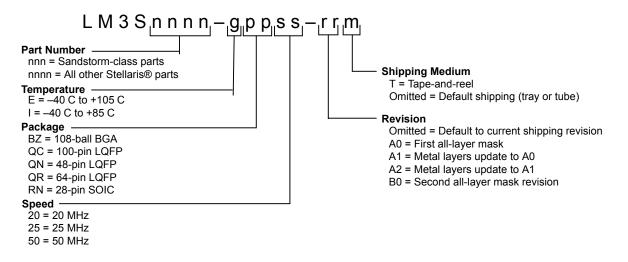
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPTMTB	MATCHR, ty	ype R/W, of	fset 0x034	, reset 0x00	00.FFFF										
							TBN	/IRL							
GPTMTA	PR, type R/	W, offset 0	k038, reset	0x0000.000	00										
											TAF	PSR			
GPTMTB	PR, type R/	W, offset 0	x03C, reset	t 0x0000.00	00										
											TDI				
COTMITA	.PMR, type F		0+040 ====	 -+ 0×0000 0	000						IBI	PSR			
GPTWITA	rwik, type r	vv, onset	0x040, 165		000										
											TAP	 SMR			
GPTMTB	PMR, type I	R/W. offset	0x044, res	et 0x0000.0	000						174	onne			
	, ., .,														
											TBP	I SMR			
GPTMTA	R, type RO,	offset 0x04	48, reset 0>	0000.FFFF	(16-bit mo	de) and 0xF	FFF.FFFF	(32-bit mod	de)						
							TA								
							TA	RL							
GPTMTB	R, type RO,	offset 0x0	4C, reset 0	x0000.FFFF											
							TB	RL							
Watch	dog Time	er													
Base 0x	4000.0000)													
WDTLOA	AD, type R/V	V, offset 0x	000, reset (0xFFFF.FFF	F										
							WDT	Load							
							WDT	Load							
WDTVAL	UE, type RO	D, offset 0x	004, reset	0xFFFF.FFF	F										
							WDT								
							WDT	Value						-	
WDTCTL	., type R/W,	offset 0x00	18, reset 0x	0000.0000											
														DECEN	
WDTICB	tuno WO o	ffoot 0x000	C #00.01											RESEN	INTEN
WDTICK	, type WO, c	inset 0x000	s, reset -				WDT	IntClr							
							WDT								
WDTRIS.	, type RO, o	ffset 0x010	. reset 0x0	000.0000											
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,												
															WDTRIS
WDTMIS	, type RO, o	ffset 0x014	, reset 0x0	000.0000											
															WDTMIS
WDTTES	T, type R/W	, offset 0x4	18, reset 0	x0000.0000							1				
							STALL								
WDTLOC	CK, type R/V	V, offset 0x	C00, reset	0x0000.000	0										
							WDT	Lock							
							WDT	Lock							
WDTPeri	phID4, type	RO, offset	0xFD0, res	set 0x0000.0	0000										
											PI	D4			
WDTPeri	phID5, type	RO, offset	0xFD4, res	set 0x0000.0	0000										
											PI	D5			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NDTPerip	hID6, type l	RO, offset	0xFD8, res	et 0x0000.	0000			1				1			1
											PI	D6			
VDTPerip	hID7, type l	RO, offset	0xFDC, res	set 0x0000.	.0000										
											PI	D7			
NDTPerip	niD0, type i	RO, offset	0xFE0, res	et 0x0000.	0005										
											PI	 D0			
WDTPerip	hID1. type	RO. offset	0xFE4, res	et 0x0000.	0018							20			
		,													
											PI	D1			
WDTPerip	hID2, type l	RO, offset	0xFE8, res	et 0x0000.	0018										
											PI	D2			
NDTPerip	hID3, type l	RO, offset	0xFEC, res	et 0x0000.	0001										
											PI	D3			
WDTPCell	IID0, type R	O, offset 0)xFF0, reset	t 0x0000.00	00D										
											CI	D0			
WDTPCell	IID1 type R	O offset 0)xFF4, reset	t 0x0000 00	DEO						0	50			
WD II Oell	пр і, суре к	0, 011361 0	, 1636		51.0										
											CI	I D1			
WDTPCell	IID2, type R	O, offset 0)xFF8, reset	t 0x0000.00	005										
											CI	D2			
WDTPCell	IID3, type R	O, offset 0	xFFC, rese	t 0x0000.0	0B1	-				-					
											CI	D3			
UART0 b	al Asyno ase: 0x40 ase: 0x40	00.C000	us Receiv	vers/Tra	nsmitter	's (UAR'	ſs)								
			0, reset 0x0	0000.0000											
				OE	BE	PE	FE				DA	ATA			
UARTRSR	VUARTECR	, type RO,	, offset 0x00	04, reset 0	×0000.0000			•							
												OE	BE	PE	FE
UARTRSR	VUARTECR	, type WO	, offset 0x0	04, reset 0	x0000.0000)									
	tune BC	faat 0::010		000.0000							DA	ATA			
UARTER,	type RO, of	iset UXU18	3, reset 0x00	000.0090											
								TXFE	RXFF	TXFF	RXFE	BUSY			
UARTIBRI	D. type R/W	. offset 0×	024, reset 0)x0000.000	0				10011			1 2001			
	, .,	,	,												
							DI	I VINT							
JARTFBR	D, type R/V	l, offset 0>	x028, reset	0x0000.00	00										
												DIVF	RAC		

31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17	16 0
	RH, type R/V					9	0	1	0	5	4	5	2		0
	ti, type tot	, onset of	1020, 1030												
								SPS	WL	.EN	FEN	STP2	EPS	PEN	BRK
UARTCTI	L, type R/W,	offset 0x0	30, reset 0	1 x0000.0300								-	-		
						RXE	TXE	LBE							UARTEN
UARTIFL	S, type R/W,	, offset 0x(034, reset 0	x0000.0012	2			1							
											RXIFLSEL	1		TXIFLSEL	
UARTIM,	type R/W, o	ffset 0x03	8, reset 0x0	0000.0000											
					OEIM	BEIM	PEIM	FEIM	RTIM	TXIM	RXIM				
UARTRIS	s, type RO, o	offset 0x03	C, reset 0x	0000.000F											
					OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS				
JARTMIS	S, type RO, c	onfset 0x04	u, reset 0x	0000.0000											
					OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS				
	R, type W1C,	offect 0x(14 reset 0	×0000 0000		DLIVIIS	F LIVIIS		IXTIVII3	1710113	TANII 3				
UARTICK	., type wro,	UNSEL UXU	, 1eset 0		,			1							
					OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC				
UARTPer	iphID4, type	e RO. offse	et 0xFD0. re	set 0x0000				_							
											PI	D4			
UARTPer	iphID5, type	RO, offse	et 0xFD4, re	set 0x0000	0.0000			1							
											PI	D5			
UARTPer	riphID6, type	e RO, offse	et 0xFD8, re	eset 0x0000	0.0000										
											PI	D6			
UARTPer	iphID7, type	e RO, offse	et 0xFDC, re	eset 0x0000	0.0000										
											PI	D7			
UARTPer	riphID0, type	e RO, offse	et 0xFE0, re	set 0x0000	.0011			1				1			
											PI	D0			
	iphID1, type		t 0vEE4 re	 	0000							50			
U AITI U	ipino i, type	, 110, 01100	,												
											PI	L D1			
UARTPer	iphID2, type	RO, offse	t 0xFE8, re	set 0x0000	.0018			1							
											PI	D2			
UARTPer	riphID3, type	e RO, offse	et 0xFEC, re	eset 0x0000	0.0001										
											PI	D3			
UARTPC	ellID0, type	RO, offset	0xFF0, res	et 0x0000.0	000D										
											CI	D0			
UARTPC	ellID1, type	RO, offset	0xFF4, res	et 0x0000.0	00F0										
											CI	D1			

21	20	20	20	27	26	25	24	22	22	21	20	10	10	17	16
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23	22 6	21 5	20 4	19 3	18 2	17 1	16 0
			0xFF8, rese			0	Ū		Ŭ	Ū			-	•	Ŭ
		,													
											С	ID2			
UARTPCel	IID3, type F	RO, offset	0xFFC, res	et 0x0000.(00B1										
											С	ID3			
Synchro	onous Se	erial Inte	erface (S	SSI)											
SSI0 base	e: 0x4000.	.8000													
SSICR0, ty	pe R/W, of	fset 0x000	, reset 0x00	000.0000											
001004 4			SC					SPH	SPO	FI	RF		D	SS	
SSICR1, ty	pe R/W, of	rset 0x004	, reset 0x00	000.0000											
												SOD	MS	SSE	LBM
SSIDR. tvp	e R/W. offs	et 0x008.	reset 0x000	0.0000								000		002	2011
, - , -, r	.,														
				1			D	I ATA				1			
SSISR, typ	e RO, offse	et 0x00C, r	reset 0x000	0.0003											
											BSY	RFF	RNE	TNF	TFE
SSICPSR,	type R/W, o	offset 0x01	10, reset 0x	0000.0000											
											0.000				
SCIIM turn	D/M offer	at 0x014 m	reast 0x000	0.0000							CPS	DVSR			
зыни, туре	e R/W, ons	et 0x014, r	eset 0x000	0.0000											
												TXIM	RXIM	RTIM	RORIN
SSIRIS, typ	e RO, offs	et 0x018, i	reset 0x000	0.0008								1			
												TXRIS	RXRIS	RTRIS	RORRI
SSIMIS, ty	pe RO, offs	et 0x01C,	reset 0x000	00.000											
												TXMIS	RXMIS	RTMIS	RORMI
SSIICR, typ	be W1C, of	fset 0x020), reset 0x00	000.0000											
														RTIC	RORIC
SSIParinhi	D4 type B		xFD0, reset	+ 0×0000 00	00									RIIC	RURIC
oon enpin	D4, type R	o, onser o	, rese												
											P	I ID4			
SSIPeriphl	D5, type R	O, offset 0	xFD4, reset	t 0x0000.00	000										
											P	ID5			
SSIPeriphl	D6, type R	O, offset 0	xFD8, reset	t 0x0000.00	000										
											Р	ID6			
SSIPeriphl	D7, type R	U, offset 0	xFDC, rese	et 0x0000.0	000										
											D	ID7			
SSIPerinh	D0. type P	0. offsat A	xFE0, reset	t 0x0000 00	122						P				
con enpli	55, type K	o, onser u													
											P	I ID0			
SSIPeriphl	D1, type R	O, offset 0	xFE4, reset	t 0x0000.00	000										
											Р	ID1			

June 04, 2008


31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SIPeriphl	D2, type R	O, offset ()xFE8, rese	et 0x0000.00)18			L							
											PII	D2			
SSIPeriphl	D3, type R	O, offset ()xFEC, rese	et 0x0000.00	001										
											PII	D3			
SSIPCellID	00, type RO	, offset 0x	FF0, reset	0x0000.000	D										
											CI	D0			
SSIPCeIIID	01, type RO	, offset 0x	FF4, reset	0x0000.00F	0										
	2 6 100 00	offeet Ou	ΓΓ Ω ποο ο ά	0~0000.000	F						CI				
SSIPCelliD	2, type RO	, onset ux	FF6, reset	0x0000.000	5										
											CI	D2			
SSIPCellID	3. type RO	. offset 0x	FFC, reset	0x0000.00E	31			<u> </u>							
	., ., .,	,													
											CI	D3			
Inter-Int	egrated	Circuit	(I ² C) Inte	erface											
I ² C Mas			,												
	er 0 base:	0x4002.0	0000												
2CMSA, ty	pe R/W, of	fset 0x000	0, reset 0x0	0000.0000											
-															
											SA	I			R/S
I2CMCS, ty	ype RO, off	set 0x004	, reset 0x00	000.0000											
									BUSBSY	IDLE	ARBLST	DATACK	ADRACK	ERROR	BUSY
I2CMCS, ty	ype WO, of	fset 0x004	l, reset 0x00	000.0000									-		
												ACK	STOP	START	RUN
I2CMDR, ty	ype R/W, of	fset 0x00	8, reset 0x0	0000.0000											
											DA	TA			
ZCIVITPR,	type R/W, d	Jinset UXU	0C, reset 0x	0000.0001											
											TF	PR			
2CMIMR. 1	type R/W. o	offset 0x01	IO, reset Ox(0000.0000				<u>I</u>							
	· ,		.,												
															IM
I2CMRIS, t	ype RO, of	fset 0x014	l, reset 0x00	000.0000											
															RIS
2CMMIS, t	type RO, of	fset 0x018	8, reset 0x0	000.000											
															MIS
2CMICR, t	type WO, o	ffset 0x01	C, reset 0x0	0000.0000											
															IC
2CMCR, ty	ype R/W, of	fset 0x02	0, reset 0x0	000.0000											
										SFE	MFE				LPBK

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Circuit	(I ² C) Inte	erface											
I ² C Slav															
	e 0 base: (
I2CSOAR,	type R/W,	offset 0x0	00, reset 0x	0000.0000				1							
												OAR			
I2CSCSR,	type RO, o	offset 0x00)4, reset 0x0	000.0000								OAN			
													FBR	TREQ	RREQ
I2CSCSR,	type WO, o	offset 0x00	04, reset 0x	0000.0000			_			_				_	_
	DAM -		0												DA
IZCSDR, ty	ype R/W, or	rtset 0x00	8, reset 0x0	000.0000											
											D	 ATA			
I2CSIMR,	type R/W, c	offset 0x00)C, reset 0x	0000.0000				I							
															DATAIM
I2CSRIS, t	ype RO, of	fset 0x010), reset 0x00	000.0000					-					-	
1200MIC (Fact OxOd	1												DATARIS
120511115, 1	уре ко, о	iset uxu14	4, reset 0x00	000.0000											
															DATAMIS
I2CSICR, t	ype WO, o	ffset 0x01	8, reset 0x0	000.0000								1			
															DATAIC
	Compar														
	003.C000														
ACMIS, ty	pe R/W1C,	offset 0x0)0, reset 0x0	0000.0000				1							
													IN2	IN1	INO
ACRIS. tv	oe RO. offs	et 0x04. r	eset 0x0000	.0000									1112		INO
	,														
													IN2	IN1	IN0
ACINTEN,	type R/W,	offset 0x0	8, reset 0x0	000.0000											
													IN2	IN1	IN0
ACREFCT	L, type R/V	V, offset 0	x10, reset 0	x0000.0000											
						EN	RNG						VF	REF	
ACSTATO,	type RO, o	offset 0x20), reset 0x00	000.0000		2.1	1410								
,	. ,														
														OVAL	
ACSTAT1,	type RO, o	offset 0x40), reset 0x00	000.0000											
														OVAL	
ACSTAT2,	type RO, c	onset 0x60), reset 0x00	000000											
														OVAL	
														JVAL	

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ACCTL0,	ACCTL0, type R/W, offset 0x24, reset 0x0000.0000														
					ASRCP						ISLVAL	ISEN		CINV	
ACCTL1,	type R/W, c	offset 0x44,	reset 0x00	00.0000		-	-								
					ASF	RCP					ISLVAL	ISI	EN	CINV	
ACCTL2, type R/W, offset 0x64, reset 0x0000.0000															
					ASF	RCP					ISLVAL	ISI	EN	CINV	

C Ordering and Contact Information

C.1 Ordering Information

Table C-1. Part Ordering Information

Orderable Part Number	Description
LM3S300-IQN25	Stellaris [®] LM3S300 Microcontroller
LM3S300-IQN25(T)	Stellaris [®] LM3S300 Microcontroller
LM3S300-EQN25	Stellaris [®] LM3S300 Microcontroller
LM3S300-EQN25(T)	Stellaris [®] LM3S300 Microcontroller

C.2 Kits

The Luminary Micro Stellaris[®] Family provides the hardware and software tools that engineers need to begin development quickly.

 Reference Design Kits accelerate product development by providing ready-to-run hardware, and comprehensive documentation including hardware design files:

http://www.luminarymicro.com/products/reference_design_kits/

 Evaluation Kits provide a low-cost and effective means of evaluating Stellaris[®] microcontrollers before purchase:

http://www.luminarymicro.com/products/kits.html

 Development Kits provide you with all the tools you need to develop and prototype embedded applications right out of the box:

http://www.luminarymicro.com/products/development_kits.html

See the Luminary Micro website for the latest tools available, or ask your Luminary Micro distributor.

C.3 Company Information

Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based microcontrollers (MCUs). Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3 processor, delivering the world's first silicon implementation of the Cortex-M3 processor. Luminary Micro's introduction of the Stellaris® family of products provides 32-bit performance for the same price as current 8- and 16-bit microcontroller designs. With entry-level pricing at \$1.00 for an ARM technology-based MCU, Luminary Micro's Stellaris product line allows for standardization that eliminates future architectural upgrades or software tool changes.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com sales@luminarymicro.com

C.4 Support Information

For support on Luminary Micro products, contact:

support@luminarymicro.com +1-512-279-8800, ext. 3