PRELIMINARY

LM3S1620 Microcontroller

DATA SHEET

Copyright \circledast 2007-2008 Luminary Micro, Inc.

DS-LM3S1620-3447

Legal Disclaimers and Trademark Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH LUMINARY MICRO PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN LUMINARY MICRO'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES NO LIABILITY WHATSOEVER, AND LUMINARY MICRO DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF LUMINARY MICRO'S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LUMINARY MICRO'S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.

Luminary Micro may make changes to specifications and product descriptions at any time, without notice. Contact your local Luminary Micro sales office or your distributor to obtain the latest specifications before placing your product order.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copyright © 2007-2008 Luminary Micro, Inc. All rights reserved. Stellaris, Luminary Micro, and the Luminary Micro logo are registered trademarks of Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com

Table of Contents

Revis	sion History	
Abou	ut This Document	
Audier	ence	
About	t This Manual	
Relate	ed Documents	
Docun	mentation Conventions	
1	Architectural Overview	
1.1	Product Features	
1.2	Target Applications	
1.3	High-Level Block Diagram	
1.4	Functional Overview	
1.4.1	ARM Cortex™-M3	
1.4.2	Motor Control Peripherals	
1.4.3	Analog Peripherals	
1.4.4	Serial Communications Peripherals	
1.4.5	System Peripherals	
1.4.6	Memory Peripherals	
1.4.7	Additional Features	
1.4.8	Hardware Details	
2	ARM Cortex-M3 Processor Core	
2.1	Block Diagram	
2.2	Functional Description	
2.2.1	Serial Wire and JTAG Debug	
2.2.2	Embedded Trace Macrocell (ETM)	39
2.2.3	Trace Port Interface Unit (TPIU)	
2.2.4	ROM Table	39
2.2.5	Memory Protection Unit (MPU)	
2.2.6	Nested Vectored Interrupt Controller (NVIC)	
3	Memory Map	
4	Interrupts	45
5	JTAG Interface	
5.1	Block Diagram	
5.2	Functional Description	
5.2.1	JTAG Interface Pins	50
5.2.2	JTAG TAP Controller	
5.2.3	Shift Registers	
5.2.4	Operational Considerations	
5.3	Initialization and Configuration	55
5.4	Register Descriptions	55
5.4.1	Instruction Register (IR)	
5.4.2	Data Registers	
6	System Control	59
6.1	Functional Description	
6.1.1	Device Identification	

6.1.2	Reset Control	59
6.1.3	Power Control	62
6.1.4	Clock Control	62
6.1.5	System Control	65
6.2	Initialization and Configuration	66
6.3	Register Map	67
6.4	Register Descriptions	68
7	Hibernation Module	120
7.1	Block Diagram	121
7.2	Functional Description	121
7.2.1	Register Access Timing	121
7.2.2	Clock Source	122
7.2.3	Battery Management	123
7.2.4	Real-Time Clock	124
7.2.5	Non-Volatile Memory	124
7.2.6	Power Control	124
7.2.7	Interrupts and Status	125
7.3	Initialization and Configuration	125
7.3.1	Initialization	125
7.3.2	RTC Match Functionality (No Hibernation)	126
7.3.3	RTC Match/Wake-Up from Hibernation	126
7.3.4	External Wake-Up from Hibernation	126
7.3.5	RTC/External Wake-Up from Hibernation	126
7.4	Register Map	126
7.4 7.5	Register Map Register Descriptions	126 127
7.4 7.5 8	Register Map Register Descriptions Internal Memory	126 127 140
7.4 7.5 8 8.1	Register Map Register Descriptions Internal Memory Block Diagram	126 127 140 140
7.4 7.5 8 8.1 8.2	Register Map Register Descriptions Internal Memory Block Diagram Functional Description	126 127 140 140 140
7.4 7.5 8 8.1 8.2 8.2.1	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory	126 127 140 140 140 140
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory	126 127 140 140 140 140 141
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration	126 127 140 140 140 140 141 142
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming	126 127 140 140 140 140 141 142 142
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming	126 127 140 140 140 140 141 142 142 143
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map	126 127 140 140 140 141 142 142 142 143 143
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset)	126 127 140 140 140 141 142 142 142 143 143
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6	Register Map	126 127 140 140 140 141 142 142 143 143 143 144 151
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset)	126 127 140 140 140 141 142 142 143 143 143 144 151 164
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset)	126 127 140 140 140 141 142 142 143 143 143 144 151 164
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Register Programming Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Data Control Data Control	126 127 140 140 140 141 142 143 143 143 143 144 151 164 165
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Description Data Control Interrupt Control	126 127 140 140 140 141 142 143 143 143 143 144 151 164 165 166
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Description (System Control Offset) Flash Register Descriptions (System Control Offset) Internal Description Data Control Interrupt Control Mode Control	126 127 140 140 140 141 142 142 143 143 143 144 151 164 165 166 167
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Deneral-Purpose Input/Outputs (GPIOS) Functional Description Data Control Interrupt Control Mode Control Commit Control	126 127 140 140 140 141 142 142 143 143 144 151 164 165 166 167 167
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOS) Functional Description Data Control Interrupt Control Mode Control Commit Control Pad Control	126 127 140 140 140 141 142 143 143 143 143 144 151 164 165 166 167 167
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Register Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Description Data Control Interrupt Control Mode Control Commit Control Pad Control Identification	126 127 140 140 140 141 142 143 143 143 143 143 143 143 144 151 164 165 166 167 167 167
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.2	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Flash Memory Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Description (GPIOS) Functional Description Data Control Interrupt Control Mode Control Commit Control Pad Control Identification Initialization and Configuration	126 127 140 140 140 140 141 142 143 143 143 143 144 151 164 165 166 167 167 167
7.4 7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.2 9.3	Register Map Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description Data Control Interrupt Control Mode Control Commit Control Pad Control Identification Initialization and Configuration Register Map	126 127 140 140 140 140 141 142 143 143 143 143 143 144 151 164 165 166 167 167 167 167

10	General-Purpose Timers	205
10.1	Block Diagram	205
10.2	Functional Description	206
10.2.1	GPTM Reset Conditions	206
10.2.2	32-Bit Timer Operating Modes	207
10.2.3	16-Bit Timer Operating Modes	208
10.3	Initialization and Configuration	212
10.3.1	32-Bit One-Shot/Periodic Timer Mode	212
10.3.2	32-Bit Real-Time Clock (RTC) Mode	213
10.3.3	16-Bit One-Shot/Periodic Timer Mode	213
10.3.4	16-Bit Input Edge Count Mode	214
10.3.5	16-Bit Input Edge Timing Mode	214
10.3.6	16-Bit PWM Mode	215
10.4	Register Map	215
10.5	Register Descriptions	216
44	Watabday Timer	244
11	Watchuog Timer	241
11.1	Block Diagram	241
11.2	Functional Description	241
11.3	Initialization and Configuration	242
11.4		242
11.5	Register Descriptions	243
12	Universal Asynchronous Receivers/Transmitters (UARTs)	264
12.1	Block Diagram	265
12.2	Functional Description	265
12.2.1	Transmit/Receive Logic	265
12.2.2	Baud-Rate Generation	266
12.2.3	Data Transmission	266
12.2.4	Serial IR (SIR)	267
12.2.5	FIFO Operation	268
12.2.6	Interrupts	268
12.2.7	Loopback Operation	269
12.2.8	IrDA SIR block	269
12.3	Initialization and Configuration	269
12.4	Register Map	270
12.5	Register Descriptions	271
13	Synchronous Serial Interface (SSI)	305
13 1	Block Diagram	305
13.2	Functional Description	305
13.2.1	Bit Rate Generation	306
13.2.1		306
13.2.2		306
13.2.5	Frame Formate	307
13.2.4	Initialization and Configuration	311
13.0	Register Man	315
13.4	Register Descriptions	316
10.0		510
14	Inter-Integrated Circuit (I ² C) Interface	342
14.1	Block Diagram	342

14.2	Functional Description	342
14.2.1	I ² C Bus Functional Overview	343
14.2.2	Available Speed Modes	345
14.2.3	Interrupts	346
14.2.4	Loopback Operation	346
14.2.5	Command Sequence Flow Charts	346
14.3	Initialization and Configuration	353
14.4	Register Map	354
14.5	Register Descriptions (I ² C Master)	355
14.6	Register Descriptions (I2C Slave)	368
15	Analog Comparators	377
15.1	Block Diagram	378
15.2	Functional Description	378
15.2.1	Internal Reference Programming	380
15.3	Initialization and Configuration	381
15.4	Register Map	381
15.5	Register Descriptions	382
16	Pulse Width Modulator (PWM)	390
16.1	Block Diagram	390
16.2	Functional Description	391
16.2.1	PWM Timer	391
16.2.2	PWM Comparators	391
16.2.3	PWM Signal Generator	392
16.2.4	Dead-Band Generator	393
16.2.5	Interrupt Selector	394
16.2.6	Synchronization Methods	394
16.2.7	Fault Conditions	394
16.2.8	Output Control Block	394
16.3	Initialization and Configuration	395
16.4	Register Map	395
16.5	Register Descriptions	397
17	Quadrature Encoder Interface (QEI)	426
17.1	Block Diagram	426
17.2	Functional Description	427
17.3	Initialization and Configuration	429
17.4	Register Map	429
17.5	Register Descriptions	430
18	Pin Diagram	443
19	Signal Tables	445
19.1	100-Pin LOFP Package Pin Tables	445
19.2	108-Pin BGA Package Pin Tables	458
20	Operating Characteristics	472
21	Flectrical Characteristics	473
21 1	DC Characteristics	473
2111	Maximum Ratings	473
21.1.2	Recommended DC Operating Conditions	473

21.1.3	On-Chip Low Drop-Out (LDO) Regulator Characteristics	474
21.1.4	Power Specifications	474
21.1.5	Flash Memory Characteristics	476
21.1.6	Hibernation	476
21.2	AC Characteristics	476
21.2.1	Load Conditions	476
21.2.2	Clocks	476
21.2.3	Analog Comparator	477
21.2.4	I ² C	478
21.2.5	Hibernation Module	478
21.2.6	Synchronous Serial Interface (SSI)	479
21.2.7	JTAG and Boundary Scan	481
21.2.8	General-Purpose I/O	482
21.2.9	Reset	483
22	Package Information	485
Α	Serial Flash Loader	489
A.1	Serial Flash Loader	489
A.2	Interfaces	489
A.2.1	UART	489
A.2.2	SSI	489
A.3	Packet Handling	490
A.3.1	Packet Format	490
A.3.2	Sending Packets	490
A.3.3	Receiving Packets	490
A.4	Commands	491
A.4.1	COMMAND_PING (0X20)	491
A.4.2	COMMAND_GET_STATUS (0x23)	491
A.4.3	COMMAND_DOWNLOAD (0x21)	491
A.4.4	COMMAND_SEND_DATA (0x24)	492
A.4.5	COMMAND_RUN (0x22)	492
A.4.6	COMMAND_RESET (0x25)	492
В	Register Quick Reference	494
С	Ordering and Contact Information	511
C.1	Ordering Information	511
C.2	Kits	511
C.3	Company Information	512
C.4	Support Information	512

List of Figures

Figure 1-1.	Stellaris [®] 1000 Series High-Level Block Diagram	30
Figure 2-1.	CPU Block Diagram	38
Figure 2-2.	TPIU Block Diagram	39
Figure 5-1.	JTAG Module Block Diagram	49
Figure 5-2.	Test Access Port State Machine	52
Figure 5-3.	IDCODE Register Format	57
Figure 5-4.	BYPASS Register Format	58
Figure 5-5.	Boundary Scan Register Format	58
Figure 6-1.	External Circuitry to Extend Reset	60
Figure 6-2.	Power Architecture	62
Figure 6-3.	Main Clock Tree	64
Figure 7-1.	Hibernation Module Block Diagram	. 121
Figure 7-2.	Clock Source Using Crystal	. 122
Figure 7-3.	Clock Source Using Dedicated Oscillator	. 123
Figure 8-1.	Flash Block Diagram	. 140
Figure 9-1.	GPIO Port Block Diagram	. 165
Figure 9-2.	GPIODATA Write Example	. 166
Figure 9-3.	GPIODATA Read Example	. 166
Figure 10-1.	GPTM Module Block Diagram	. 206
Figure 10-2.	16-Bit Input Edge Count Mode Example	. 210
Figure 10-3.	16-Bit Input Edge Time Mode Example	. 211
Figure 10-4.	16-Bit PWM Mode Example	. 212
Figure 11-1.	WDT Module Block Diagram	. 241
Figure 12-1.	UART Module Block Diagram	. 265
Figure 12-2.	UART Character Frame	. 266
Figure 12-3.	IrDA Data Modulation	. 268
Figure 13-1.	SSI Module Block Diagram	. 305
Figure 13-2.	TI Synchronous Serial Frame Format (Single Transfer)	. 308
Figure 13-3.	TI Synchronous Serial Frame Format (Continuous Transfer)	. 308
Figure 13-4.	Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0	. 309
Figure 13-5.	Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0	. 309
Figure 13-6.	Freescale SPI Frame Format with SPO=0 and SPH=1	. 310
Figure 13-7.	Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0	. 311
Figure 13-8.	Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0	. 311
Figure 13-9.	Freescale SPI Frame Format with SPO=1 and SPH=1	. 312
Figure 13-10.	MICROWIRE Frame Format (Single Frame)	. 313
Figure 13-11.	MICROWIRE Frame Format (Continuous Transfer)	. 314
Figure 13-12.	MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements	. 314
Figure 14-1.	I ² C Block Diagram	. 342
Figure 14-2.	I ² C Bus Configuration	. 343
Figure 14-3.	START and STOP Conditions	. 343
Figure 14-4.	Complete Data Transfer with a 7-Bit Address	. 344
Figure 14-5.	R/S Bit in First Byte	. 344
Figure 14-6.	Data Validity During Bit Transfer on the I ² C Bus	. 344
Figure 14-7.	Master Single SEND	. 347

Figure 14-8.	Master Single RECEIVE	. 348
Figure 14-9.	Master Burst SEND	. 349
Figure 14-10.	Master Burst RECEIVE	. 350
Figure 14-11.	Master Burst RECEIVE after Burst SEND	. 351
Figure 14-12.	Master Burst SEND after Burst RECEIVE	. 352
Figure 14-13.	Slave Command Sequence	. 353
Figure 15-1.	Analog Comparator Module Block Diagram	. 378
Figure 15-2.	Structure of Comparator Unit	. 379
Figure 15-3.	Comparator Internal Reference Structure	. 380
Figure 16-1.	PWM Unit Diagram	. 390
Figure 16-2.	PWM Module Block Diagram	. 391
Figure 16-3.	PWM Count-Down Mode	. 392
Figure 16-4.	PWM Count-Up/Down Mode	. 392
Figure 16-5.	PWM Generation Example In Count-Up/Down Mode	. 393
Figure 16-6.	PWM Dead-Band Generator	. 393
Figure 17-1.	QEI Block Diagram	. 426
Figure 17-2.	Quadrature Encoder and Velocity Predivider Operation	. 428
Figure 18-1.	100-Pin LQFP Package Pin Diagram	. 443
Figure 18-2.	108-Ball BGA Package Pin Diagram (Top View)	. 444
Figure 21-1.	Load Conditions	. 476
Figure 21-2.	I ² C Timing	. 478
Figure 21-3.	Hibernation Module Timing	. 479
Figure 21-4.	SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement	. 480
Figure 21-5.	SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer	. 480
Figure 21-6.	SSI Timing for SPI Frame Format (FRF=00), with SPH=1	. 481
Figure 21-7.	JTAG Test Clock Input Timing	. 482
Figure 21-8.	JTAG Test Access Port (TAP) Timing	. 482
Figure 21-9.	JTAG TRST Timing	. 482
Figure 21-10.	External Reset Timing (RST)	. 483
Figure 21-11.	Power-On Reset Timing	. 484
Figure 21-12.	Brown-Out Reset Timing	. 484
Figure 21-13.	Software Reset Timing	. 484
Figure 21-14.	Watchdog Reset Timing	. 484
Figure 22-1.	100-Pin LQFP Package	. 485
Figure 22-2.	108-Ball BGA Package	. 487

List of Tables

Table 1.	Revision History	. 18
Table 2.	Documentation Conventions	. 20
Table 3-1.	Метогу Мар	. 43
Table 4-1.	Exception Types	. 45
Table 4-2.	Interrupts	. 46
Table 5-1.	JTAG Port Pins Reset State	. 50
Table 5-2.	JTAG Instruction Register Commands	. 55
Table 6-1.	System Control Register Map	. 67
Table 7-1.	Hibernation Module Register Map	127
Table 8-1.	Flash Protection Policy Combinations	141
Table 8-2.	Flash Resident Registers	143
Table 8-3.	Flash Register Map	144
Table 9-1.	GPIO Pad Configuration Examples	168
Table 9-2.	GPIO Interrupt Configuration Example	168
Table 9-3.	GPIO Register Map	169
Table 10-1.	Available CCP Pins	206
Table 10-2.	16-Bit Timer With Prescaler Configurations	209
Table 10-3.	Timers Register Map	215
Table 11-1.	Watchdog Timer Register Map	242
Table 12-1.	UART Register Map	270
Table 13-1.	SSI Register Map	316
Table 14-1.	Examples of I ² C Master Timer Period versus Speed Mode	345
Table 14-2.	Inter-Integrated Circuit (I ² C) Interface Register Map	354
Table 14-3.	Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)	359
Table 15-1.	Comparator 0 Operating Modes	379
Table 15-2.	Comparator 1 Operating Modes	379
Table 15-3.	Comparator 2 Operating Modes	380
Table 15-4.	Internal Reference Voltage and ACREFCTL Field Values	380
Table 15-5.	Analog Comparators Register Map	382
Table 16-1.	PWM Register Map	396
Table 17-1.	QEI Register Map	429
Table 19-1.	Signals by Pin Number	445
Table 19-2.	Signals by Signal Name	449
Table 19-3.	Signals by Function, Except for GPIO	454
Table 19-4.	GPIO Pins and Alternate Functions	456
Table 19-5.	Signals by Pin Number	458
Table 19-6.	Signals by Signal Name	462
Table 19-7.	Signals by Function, Except for GPIO	467
Table 19-8.	GPIO Pins and Alternate Functions	470
Table 20-1.	Temperature Characteristics	472
Table 20-2.	Thermal Characteristics	472
Table 21-1.	Maximum Ratings	473
Table 21-2.	Recommended DC Operating Conditions	473
Table 21-3.	LDO Regulator Characteristics	474
Table 21-4.	Detailed Power Specifications	475
Table 21-5.	Flash Memory Characteristics	476

Table 21-6.	Hibernation Module DC Characteristics	476
Table 21-7.	Phase Locked Loop (PLL) Characteristics	476
Table 21-8.	Clock Characteristics	477
Table 21-9.	Crystal Characteristics	477
Table 21-10.	Analog Comparator Characteristics	477
Table 21-11.	Analog Comparator Voltage Reference Characteristics	477
Table 21-12.	I ² C Characteristics	478
Table 21-13.	Hibernation Module AC Characteristics	478
Table 21-14.	SSI Characteristics	479
Table 21-15.	JTAG Characteristics	481
Table 21-16.	GPIO Characteristics	483
Table 21-17.	Reset Characteristics	483
Table C-1.	Part Ordering Information	511

List of Registers

Register 1: Device Identification 0 (DID0), offset 0x000 69 Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030 71 Register 3: LDD Power Control (LDOPCTL), offset 0x034 72 Register 4: Raw Interrupt Status (RIS), offset 0x050 73 Register 5: Interrupt Mask Control (IMC), offset 0x054 74 Register 7: Reset Cause (RESC), offset 0x05C 76 Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064 81 Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070 82 Register 11: Deep Sleep Clock Configuration (SLPCLKCFG), offset 0x074 84 Register 12: Device Capabilities 1 (DC1), offset 0x014 84 Register 13: Device Capabilities 2 (DC2), offset 0x014 85 Register 14: Device Capabilities 2 (DC2), offset 0x014 90 Register 15: Device Capabilities 2 (DC2), offset 0x014 90 Register 16: Device Capabilities 2 (DC2), offset 0x014 90 Register 17: Device Capabilities 2 (DC2), offset 0x014 90 Register 16: Device Capabilities 2 (DC2), offset 0x010	System Cor	ntrol	59
Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030 71 Register 3: LDO Power Control (LDOPCTL), offset 0x034 72 Register 4: Raw Interrupt Status (RIS), offset 0x050 73 Register 5: Interrupt Mask Control (IMC), offset 0x054 74 Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058 75 Register 7: Reset Cause (RESC), offset 0x064 77 Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064 81 Register 11: Deex Capabilities 0 (DCO), offset 0x064 81 Register 12: Device Capabilities 1 (DC1), offset 0x004 85 Register 13: Device Capabilities 1 (DC1), offset 0x014 80 Register 14: Device Capabilities 3 (DC3), offset 0x018 92 Register 15: Device Capabilities 3 (DC3), offset 0x014 90 Register 19: Device Capabilities 4 (DC4), offset 0x016 94 Register 19: Sleep Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 95 Register 19: Sleep Mode Clock Gating Control Register 1 (RCGC1), offset 0x104 101 Register 21: Run Mode Clock Gatin	Register 1:	Device Identification 0 (DID0), offset 0x000	69
Register 3: LDD Power Control (LDDPCTL), offset 0x034	Register 2:	Brown-Out Reset Control (PBORCTL), offset 0x030	71
Register 4: Raw Interrupt Status (RIS), offset 0x050 73 Register 5: Interrupt Mask Control (IMCC), offset 0x054 74 Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058 75 Register 7: Resct Cause (RESC), offset 0x05C 76 Register 8: Run-Mode Clock Configuration (RCC), offset 0x064 81 Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070 82 Register 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144 84 Register 12: Device Capabilities 0 (DC0), offset 0x004 85 Register 13: Device Capabilities 1 (DC1), offset 0x010 88 Register 14: Device Capabilities 2 (DC2), offset 0x014 90 Register 15: Device Capabilities 3 (DC3), offset 0x016 92 Register 16: Device Capabilities 3 (DC3), offset 0x016 92 Register 17: Device Capabilities 3 (DC3), offset 0x018 92 Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 95 Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x144 104 Register 22: <	Register 3:	LDO Power Control (LDOPCTL), offset 0x034	72
Register 5: Interrupt Mask Control (IMC), offset 0x054 74 Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058 75 Register 7: Reset Cause (RESC), offset 0x05C 76 Register 9: XTAL to PLL Translation (PLLCFG), offset 0x060 77 Register 9: Run-Mode Clock Configuration 2 (RCC2), offset 0x070 82 Register 11: Deep Sleep Clock Configuration 2 (RCC2), offset 0x070 82 Register 12: Device Capabilities 0 (DCO), offset 0x004 85 Register 13: Device Capabilities 2 (DC2), offset 0x014 90 Register 15: Device Capabilities 2 (DC3), offset 0x014 90 Register 16: Device Capabilities 2 (DC3), offset 0x014 90 Register 17: Device Capabilities 4 (DC4), offset 0x01C 94 Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 95 Register 20: Deep Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x124 104 Register 21: Run Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 107 Register 22: Deep Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114 104 </td <td>Register 4:</td> <td>Raw Interrupt Status (RIS), offset 0x050</td> <td> 73</td>	Register 4:	Raw Interrupt Status (RIS), offset 0x050	73
Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058 75 Register 7: Reset Cause (RESC), offset 0x05C 76 Register 8: Run-Mode Clock Configuration (RCC), offset 0x060 77 Register 9: XTAL to PLL Translation (PLLCFG), offset 0x060 81 Register 11: Deep Sleep Clock Configuration 2 (RCC2), offset 0x070 82 Register 12: Device Identification 1 (DID1), offset 0x004 85 Register 13: Device Capabilities 0 (DC0), offset 0x010 88 Register 14: Device Capabilities 3 (DC3), offset 0x014 90 Register 15: Device Capabilities 3 (DC3), offset 0x014 90 Register 16: Device Capabilities 3 (DC3), offset 0x014 90 Register 17: Device Capabilities 3 (DC3), offset 0x014 90 Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 95 Register 19: Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x104 101 Register 21: Run Mode Clock Gating Control Register 1 (SCGC1), offset 0x104 101 Register 22: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x104 101 Register 23: Deep Sleep Mode Clock Gating Control Re	Register 5:	Interrupt Mask Control (IMC), offset 0x054	74
Register 7: Reset Cause (RESC), offset 0x05C 76 Register 8: Run-Mode Clock Configuration (RCC), offset 0x064 77 Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064 81 Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070 82 Register 11: Deep Sleep Clock Configuration 2 (RCC2), offset 0x070 82 Register 13: Device Capabilities 0 (DC0), offset 0x004 85 Register 14: Device Capabilities 1 (DC1), offset 0x014 90 Register 15: Device Capabilities 3 (DC2), offset 0x014 90 Register 16: Device Capabilities 3 (DC3), offset 0x016 92 Register 17: Device Capabilities 3 (DC3), offset 0x010 88 Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x110 97 Register 19: Sleep Mode Clock Gating Control Register 1 (RCGC1), offset 0x12 99 Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x12 107 Register 22: Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 107 Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC2), offset 0x144 104 Register 24: Run Mode Clock Gat	Register 6:	Masked Interrupt Status and Clear (MISC), offset 0x058	75
Register 8: Run-Mode Clock Configuration (RCC), offset 0x060 77 Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064 81 Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070 82 Register 11: Deey Sleep Clock Configuration 2 (RCC2), offset 0x144 84 Register 12: Device Capabilities 1 (DC1), offset 0x004 85 Register 13: Device Capabilities 1 (DC1), offset 0x014 90 Register 15: Device Capabilities 3 (DC3), offset 0x014 90 Register 16: Device Capabilities 3 (DC3), offset 0x014 90 Register 17: Device Capabilities 4 (DC4), offset 0x012 94 Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 97 Register 12: Deep Mode Clock Gating Control Register 0 (DCGC0), offset 0x100 97 Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x114 104 Register 22: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x144 104 Register 23: Deep Mode Clock Gating Control Register 2 (CGC2), offset 0x148 110 Register 24: Run Mode Clock Gating Control Register 2 (CGC2), offset 0x128 114 Register 25: <td>Register 7:</td> <td>Reset Cause (RESC), offset 0x05C</td> <td></td>	Register 7:	Reset Cause (RESC), offset 0x05C	
Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064 81 Register 10: Run-Mode Clock Configuration (DSLPCLKCFG), offset 0x144 84 Register 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144 84 Register 12: Device Capabilities 0 (DC0), offset 0x008 87 Register 13: Device Capabilities 1 (DC1), offset 0x010 88 Register 15: Device Capabilities 2 (DC2), offset 0x014 90 Register 16: Device Capabilities 2 (DC2), offset 0x018 92 Register 17: Device Capabilities 3 (DC3), offset 0x018 92 Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 94 Register 20: Deep Sleep Mode Clock Gating Control Register 1 (DCGC0), offset 0x110 97 Register 21: Run Mode Clock Gating Control Register 1 (DCGC1), offset 0x120 99 Register 22: Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 107 Register 23: Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 107 Register 24: Run Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 114 Register 25: Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x124 107 <t< td=""><td>Register 8:</td><td>Run-Mode Clock Configuration (RCC), offset 0x060</td><td> 77</td></t<>	Register 8:	Run-Mode Clock Configuration (RCC), offset 0x060	77
Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x170 82 Register 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144 84 Register 12: Device Capabilities 0 (DC0), offset 0x004 85 Register 13: Device Capabilities 1 (DC1), offset 0x004 85 Register 14: Device Capabilities 2 (DC2), offset 0x010 88 Register 15: Device Capabilities 3 (DC3), offset 0x014 90 Register 16: Device Capabilities 3 (DC3), offset 0x012 94 Register 17: Device Capabilities 3 (DC3), offset 0x016 92 Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 95 Register 20: Deep Mode Clock Gating Control Register 1 (DCGC1), offset 0x110 97 Register 21: Run Mode Clock Gating Control Register 1 (DCGC1), offset 0x114 104 Register 22: Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 107 Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC2), offset 0x118 114 Register 24: Run Mode Clock Gating Control Register 2 (DCGC2), offset 0x124 107 Register 25: Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 114	Register 9:	XTAL to PLL Translation (PLLCFG), offset 0x064	81
Register 11:Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x14484Register 12:Device Identification 1 (DID1), offset 0x00485Register 13:Device Capabilities 1 (DC1), offset 0x00887Register 14:Device Capabilities 1 (DC1), offset 0x01490Register 15:Device Capabilities 2 (DC2), offset 0x01490Register 16:Device Capabilities 4 (DC4), offset 0x01892Register 17:Device Capabilities 4 (DC4), offset 0x01094Register 17:Device Capabilities 4 (DC4), offset 0x01095Register 18:Run Mode Clock Gating Control Register 0 (SCGC0), offset 0x10095Register 19:Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x10099Register 21:Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104101Register 22:Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x104101Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x114104Register 24:Run Mode Clock Gating Control Register 2 (SCGC2), offset 0x118112Register 25:Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 0 (SRCR0), offset 0x040116Register 28:Software Reset Control 1 (SRCR1), offset 0x040116Register 29:Software Reset Control 1 (SRCR1), offset 0x004129Register 11:Hibernation RTC Counter (HIBRTCC), offset 0x004 </td <td>Register 10:</td> <td>Run-Mode Clock Configuration 2 (RCC2), offset 0x070</td> <td> 82</td>	Register 10:	Run-Mode Clock Configuration 2 (RCC2), offset 0x070	82
Register 12:Device Identification 1 (DID1), offset 0x00485Register 13:Device Capabilities 0 (DC0), offset 0x00887Register 14:Device Capabilities 2 (DC2), offset 0x01088Register 15:Device Capabilities 2 (DC2), offset 0x01490Register 16:Device Capabilities 4 (DC4), offset 0x01191Register 17:Device Capabilities 4 (DC4), offset 0x01294Register 18:Run Mode Clock Gating Control Register 0 (SCGC0), offset 0x11097Register 19:Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x12099Register 20:Deep Sleep Mode Clock Gating Control Register 1 (RCGC1), offset 0x104101Register 23:Deep Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x104101Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108110Register 25:Sleep Mode Clock Gating Control Register 2 (RCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x118112Register 27:Software Reset Control 1 (SRCR1), offset 0x040116Register 28:Software Reset Control 2 (SRCR2), offset 0x048117Register 29:Software Reset Control 2 (SRCR2), offset 0x000128Register 31:Hibernation RTC Match 0 (HIBRTCM), offset 0x004129Register 4:Hibernation RTC Match 0 (HIBRTCD), offset 0x004130Register 5:Hibernation RTC Counter (HIBRTCD), offset 0x014132Register 6:Hibernation RTC Counter (HIBRTCD), offset 0x004132	Register 11:	Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144	84
Register 13:Device Capabilities 0 (DC0), offset 0x00887Register 14:Device Capabilities 1 (DC1), offset 0x01088Register 15:Device Capabilities 3 (DC3), offset 0x01490Register 16:Device Capabilities 4 (DC4), offset 0x01892Register 17:Device Capabilities 4 (DC4), offset 0x01C94Register 18:Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x10095Register 19:Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x12099Register 20:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124101Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x14104Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124107Register 24:Run Mode Clock Gating Control Register 2 (SCGC2), offset 0x118110Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 1 (SRCR1), offset 0x040116Register 28:Software Reset Control 2 (SRCR2), offset 0x048117Register 14:Hibernation RTC Match 0 (HIBRTCM), offset 0x000128Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x004132Register 4:Hibernation RTC Match 1 (HIBRTCM1), offset 0x014134Register 5:Hibernation RTC Match 1 (HIBRTCM1), offset 0x018135Register 6:Hibernation RTC Match 1 (HIBRTCM1), offse	Register 12:	Device Identification 1 (DID1), offset 0x004	85
Register 14:Device Capabilities 1 (DC1), offset 0x01088Register 15:Device Capabilities 2 (DC2), offset 0x01490Register 16:Device Capabilities 3 (DC3), offset 0x01892Register 17:Device Capabilities 4 (DC4), offset 0x01C94Register 18:Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x11097Register 19:Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x11097Register 20:Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x12099Register 21:Run Mode Clock Gating Control Register 1 (SCGC1), offset 0x124101Register 22:Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124107Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124107Register 24:Run Mode Clock Gating Control Register 2 (SCGC2), offset 0x108110Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x128114Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 0 (SRCR0), offset 0x044117Register 28:Software Reset Control 2 (SRCR2), offset 0x048119Hibernation Module120128Register 3:Hibernation RTC Match 0 (HIBRTCM), offset 0x000128Register 4:Hibernation RTC Match 1 (HIBRTCM), offset 0x014134Register 5:Hibernation RTC Match 1 (HIBRTCM), offset 0x014134Register 6:Hibernation RTC Match 1 (HIBRTCM), offset 0x014135<	Register 13:	Device Capabilities 0 (DC0), offset 0x008	87
Register 15: Device Capabilities 2 (DC2), offset 0x014 90 Register 16: Device Capabilities 3 (DC3), offset 0x018 92 Register 17: Device Capabilities 4 (DC4), offset 0x01C 94 Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 95 Register 19: Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120 99 Register 21: Run Mode Clock Gating Control Register 0 (DCGC0), offset 0x120 99 Register 22: Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 101 Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x144 104 Register 24: Run Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 107 Register 25: Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x148 110 Register 26: Deep Sleep Mode Clock Gating Control Register 2 (RCGC2), offset 0x118 112 Register 27: Software Reset Control 0 (SRCR0), offset 0x040 116 Register 28: Software Reset Control 2 (SRCR2), offset 0x044 117 Register 31: Hibernation RTC Counter (HIBRTCC), offset 0x004 129 Register 31: Hibernation RTC Match 1 (HIBRTCM), offset 0x004 129<	Register 14:	Device Capabilities 1 (DC1), offset 0x010	88
Register 16: Device Capabilities 3 (DC3), offset 0x018 92 Register 17: Device Capabilities 4 (DC4), offset 0x01C 94 Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 95 Register 20: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x110 97 Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104 101 Register 22: Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x104 101 Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 107 Register 24: Nu Mode Clock Gating Control Register 2 (RCGC2), offset 0x118 110 Register 25: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118 112 Register 26: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 114 Register 27: Software Reset Control 1 (SRCR0), offset 0x040 116 Register 28: Software Reset Control 2 (SRCR2), offset 0x048 117 Register 29: Software Reset Control 2 (SRCR2), offset 0x000 128 Register 3: Hibernation RTC Match 1 (HIBRTCM), offset 0x000 128 Register 4: Hibernation RTC Match 1 (HIBRTCM), offset 0x004	Register 15:	Device Capabilities 2 (DC2), offset 0x014	90
Register 17:Device Capabilities 4 (DC4), offset 0x01C94Register 18:Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x10095Register 19:Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x11097Register 20:Deep Sleep Mode Clock Gating Control Register 1 (RCGC1), offset 0x12099Register 21:Run Mode Clock Gating Control Register 1 (SCGC1), offset 0x104101Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114104Register 23:Deep Sleep Mode Clock Gating Control Register 2 (RCGC2), offset 0x108110Register 24:Run Mode Clock Gating Control Register 2 (SCGC2), offset 0x108111Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 1 (SRCR1), offset 0x040116Register 29:Software Reset Control 2 (SRCR2), offset 0x048119Hibernation Module120120Register 3:Hibernation RTC Counter (HIBRTCC), offset 0x000128Register 4:Hibernation RTC Match 0 (HIBRTCLD), offset 0x000132Register 5:Hibernation Control (HIBRTCL), offset 0x014134Register 7:Hibernation RTC Load (HIBRTCL), offset 0x000132Register 7:Hibernation Raw Interrupt Status (HIBMIS), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x014136Register 9:Hibernation RAW Interrupt Status	Register 16:	Device Capabilities 3 (DC3), offset 0x018	92
Register 18:Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x10095Register 19:Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x11097Register 20:Deep Sleep Mode Clock Gating Control Register 1 (RCGC1), offset 0x12099Register 21:Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104101Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114104Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124107Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108110Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 1 (SRCR0), offset 0x040116Register 28:Software Reset Control 1 (SRCR1), offset 0x044117Register 29:Software Reset Control 2 (SRCR2), offset 0x004128Register 3:Hibernation RTC Match 1 (HIBRTCC), offset 0x004129Register 4:Hibernation RTC Match 1 (HIBRTCL1), offset 0x004131Register 5:Hibernation RTC Match 1 (HIBRTCL1), offset 0x014134Register 6:Hibernation RTC Match 1 (HIBRTCL1), offset 0x014134Register 7:Hibernation RTC Load (HIBRTCL1), offset 0x014134Register 7:Hibernation RTC Match 1 (HIBRTCL1), offset 0x014135Register 7:Hibernation Raw Interrupt Mask (HIBMIS), offset 0x014136Register 7:	Register 17:	Device Capabilities 4 (DC4), offset 0x01C	94
Register 19:Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x11097Register 20:Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x12099Register 21:Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x114101Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114104Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124107Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108110Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 0 (SRCR0), offset 0x040116Register 28:Software Reset Control 1 (SRCR1), offset 0x044117Register 29:Software Reset Control 2 (SRCR2), offset 0x048119Hibernation Module120Register 3:Hibernation RTC Counter (HIBRTCC), offset 0x004129Register 4:Hibernation RTC Match 0 (HIBRTCM1), offset 0x004129Register 5:Hibernation RTC Match 1 (HIBRTCLD), offset 0x014130Register 7:Hibernation RTC Match 1 (HIBRTCLD), offset 0x014134Register 7:Hibernation RTC Load (HIBRTCLD), offset 0x014134Register 7:Hibernation Interrupt Mask (HIBIN), offset 0x014134Register 7:Hibernation Interrupt Status (HIBRIS), offset 0x012135Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x014 </td <td>Register 18:</td> <td>Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100</td> <td> 95</td>	Register 18:	Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100	95
Register 20:Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x12099Register 21:Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104101Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114104Register 23:Deep Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x124107Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108110Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 0 (SRCR0), offset 0x040116Register 28:Software Reset Control 1 (SRCR1), offset 0x044117Register 29:Software Reset Control 2 (SRCR2), offset 0x048119Hibernation Module120Register 1:Hibernation RTC Counter (HIBRTCM), offset 0x004128Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004129Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x008130Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x014134Register 7:Hibernation RTC Match 1 (HIBRTCLD), offset 0x014135Register 7:Hibernation Interrupt Mask (HIBIN), offset 0x014134Register 7:Hibernation Interrupt Status (HIBRIS), offset 0x018135Register 7:Hibernation Interrupt Status (HIBRIS), offset 0x016136Register 8:Hibernation RTC Trim (HIBRTCT), offset 0x020137 <tr<< td=""><td>Register 19:</td><td>Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110</td><td> 97</td></tr<<>	Register 19:	Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110	97
Register 21:Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104101Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114104Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124107Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108110Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 0 (SRCR0), offset 0x040116Register 28:Software Reset Control 2 (SRCR2), offset 0x044117Register 29:Software Reset Control 2 (SRCR2), offset 0x048119HibernationModule120Register 2:Hibernation RTC Counter (HIBRTCC), offset 0x000128Register 3:Hibernation RTC Match 0 (HIBRTCM1), offset 0x004130Register 4:Hibernation RTC Match 1 (HIBRTCLD), offset 0x002131Register 5:Hibernation RTC Load (HIBRTCLD), offset 0x014134Register 6:Hibernation RTC Load (HIBRTCLD), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016135Register 8:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 10:Hibernation Raw Interrupt Status (HIBRIS), offset 0x01C138Registe	Register 20:	Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120	99
Register 22:Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114104Register 23:Deep Sleep Mode Clock Gating Control Register 2 (RCGC2), offset 0x108117Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108110Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 0 (SRCR0), offset 0x040116Register 28:Software Reset Control 1 (SRCR1), offset 0x044117Register 29:Software Reset Control 2 (SRCR2), offset 0x048119HibernationModule120Register 2:Hibernation RTC Counter (HIBRTCC), offset 0x000128Register 3:Hibernation RTC Counter (HIBRTCM), offset 0x004129Register 4:Hibernation RTC Load (HIBRTCM), offset 0x004130Register 5:Hibernation RTC Load (HIBRTCLD), offset 0x001132Register 6:Hibernation RTC Load (HIBRTCLD), offset 0x014134Register 7:Hibernation RTC Load (HIBRTCLD), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBNIS), offset 0x016135Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016136Register 8:Hibernation RTC Trim (HIBRTCT), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x020137Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation	Register 21:	Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104	101
Register 23:Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124107Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108110Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 0 (SRCR0), offset 0x040116Register 28:Software Reset Control 1 (SRCR1), offset 0x044117Register 29:Software Reset Control 2 (SRCR2), offset 0x048119HibernationModule120Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000128Register 2:Hibernation RTC Match 0 (HIBRTCM1), offset 0x004129Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x000131Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x001132Register 5:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 7:Hibernation Interrupt Mask (HIBIN), offset 0x010135Register 7:Hibernation Raw Interrupt Status (HIBNIS), offset 0x010136Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020137Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x024139Internal Memory140Register 11:Flash Memory Address (FMA), offset 0x000145	Register 22:	Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114	104
Register 24:Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108110Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 0 (SRCR0), offset 0x040116Register 28:Software Reset Control 1 (SRCR1), offset 0x044117Register 29:Software Reset Control 2 (SRCR2), offset 0x048119Hibernation Module120Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000128Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004129Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x008130Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000132Register 5:Hibernation Control (HIBCTL), offset 0x014134Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x01C136Register 9:Hibernation Interrupt Clear (HIBC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x020137Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x020137Register 11:Hibernation Interrupt Clear (HIBC), offset 0x020137Register 11:Hibernation Interrupt Clear (HIBC), offset 0x020137Register 11:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C139Internal Memory140Register 11:Flash M	Register 23:	Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124	107
Register 25:Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118112Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 0 (SRCR0), offset 0x040116Register 28:Software Reset Control 1 (SRCR1), offset 0x044117Register 29:Software Reset Control 2 (SRCR2), offset 0x048119Hibernation Module120Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x004128Register 2:Hibernation RTC Match 0 (HIBRTCM1), offset 0x004129Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x008130Register 4:Hibernation Control (HIBCTL), offset 0x000132Register 5:Hibernation Control (HIBCTL), offset 0x010132Register 7:Hibernation Raw Interrupt Mask (HIBIN), offset 0x018135Register 8:Hibernation Raw Interrupt Status (HIBRIS), offset 0x016136Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory140140140Register 1:Flash Memory Address (FMA), offset 0x000145	Register 24:	Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108	110
Register 26:Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128114Register 27:Software Reset Control 0 (SRCR0), offset 0x040116Register 28:Software Reset Control 1 (SRCR1), offset 0x044117Register 29:Software Reset Control 2 (SRCR2), offset 0x048119HibernationModule120Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000128Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004129Register 3:Hibernation RTC Match 1 (HIBRTCLD), offset 0x008130Register 4:Hibernation Control (HIBCTL), offset 0x000131Register 5:Hibernation Control (HIBCTL), offset 0x010132Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 8:Hibernation RTC Clear (HIBRTCT), offset 0x020137Register 9:Hibernation Interrupt Clear (HIBC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory	Register 25:	Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118	112
Register 27:Software Reset Control 0 (SRCR0), offset 0x040116Register 28:Software Reset Control 1 (SRCR1), offset 0x044117Register 29:Software Reset Control 2 (SRCR2), offset 0x048119HibernationModule120Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000128Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004129Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x004130Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000131Register 5:Hibernation Control (HIBCTL), offset 0x010132Register 6:Hibernation Interrupt Mask (HIBIN), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory140Register 1:Flash Memory Address (FMA), offset 0x000145	Register 26:	Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128	114
Register 28:Software Reset Control 1 (SRCR1), offset 0x044117Register 29:Software Reset Control 2 (SRCR2), offset 0x048119HibernationModule120Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000128Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004129Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008130Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000131Register 5:Hibernation Control (HIBCTL), offset 0x010132Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory140Register 1:Flash Memory Address (FMA), offset 0x000145	Register 27:	Software Reset Control 0 (SRCR0), offset 0x040	116
Register 29:Software Reset Control 2 (SRCR2), offset 0x048119HibernationModule120Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000128Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004129Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008130Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C131Register 5:Hibernation Control (HIBCTL), offset 0x010132Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory140Register 1:Flash Memory Address (FMA), offset 0x000145	Register 28:	Software Reset Control 1 (SRCR1), offset 0x044	117
HibernationModule120Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000128Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004129Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008130Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000131Register 5:Hibernation Control (HIBCTL), offset 0x010132Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 8:Hibernation Interrupt Status (HIBNIS), offset 0x010136Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory	Register 29:	Software Reset Control 2 (SRCR2), offset 0x048	119
Register 1:Hibernation RTC Counter (HIBRTCC), offset 0x000128Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004129Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008130Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x000131Register 5:Hibernation Control (HIBCTL), offset 0x010132Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x010136Register 9:Hibernation RTC Trim (HIBRTCT), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory140Register 1:Flash Memory Address (FMA), offset 0x000145	Hibernation	Module	120
Register 2:Hibernation RTC Match 0 (HIBRTCM0), offset 0x004129Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008130Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C131Register 5:Hibernation Control (HIBCTL), offset 0x010132Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C136Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory140Register 1:Flash Memory Address (FMA), offset 0x000145	Register 1:	Hibernation RTC Counter (HIBRTCC), offset 0x000	128
Register 3:Hibernation RTC Match 1 (HIBRTCM1), offset 0x008130Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C131Register 5:Hibernation Control (HIBCTL), offset 0x010132Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C136Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x030-0x12C138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory	Register 2:	Hibernation RTC Match 0 (HIBRTCM0), offset 0x004	129
Register 4:Hibernation RTC Load (HIBRTCLD), offset 0x00C131Register 5:Hibernation Control (HIBCTL), offset 0x010132Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C136Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory	Register 3:	Hibernation RTC Match 1 (HIBRTCM1), offset 0x008	130
Register 5:Hibernation Control (HIBCTL), offset 0x010132Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C136Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal MemoryIdemonstration (FMA), offset 0x000145	Register 4:	Hibernation RTC Load (HIBRTCLD), offset 0x00C	131
Register 6:Hibernation Interrupt Mask (HIBIM), offset 0x014134Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C136Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory140Register 1:Flash Memory Address (FMA), offset 0x000145	Register 5:	Hibernation Control (HIBCTL), offset 0x010	132
Register 7:Hibernation Raw Interrupt Status (HIBRIS), offset 0x018135Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C136Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory140Register 1:Flash Memory Address (FMA), offset 0x000145	Register 6:	Hibernation Interrupt Mask (HIBIM), offset 0x014	134
Register 8:Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C136Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory140Register 1:Flash Memory Address (FMA), offset 0x000145	Register 7:	Hibernation Raw Interrupt Status (HIBRIS), offset 0x018	135
Register 9:Hibernation Interrupt Clear (HIBIC), offset 0x020137Register 10:Hibernation RTC Trim (HIBRTCT), offset 0x024138Register 11:Hibernation Data (HIBDATA), offset 0x030-0x12C139Internal Memory140Register 1:Flash Memory Address (FMA), offset 0x000145	Register 8:	Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C	136
Register 10: Hibernation RTC Trim (HIBRTCT), offset 0x024 138 Register 11: Hibernation Data (HIBDATA), offset 0x030-0x12C 139 Internal Memory 140 Register 1: Flash Memory Address (FMA), offset 0x000 145	Register 9:	Hibernation Interrupt Clear (HIBIC), offset 0x020	137
Register 11: Hibernation Data (HIBDATA), offset 0x030-0x12C 139 Internal Memory 140 Register 1: Flash Memory Address (FMA), offset 0x000 145	Register 10:	Hibernation RTC Trim (HIBRTCT), offset 0x024	138
Internal Memory140Register 1:Flash Memory Address (FMA), offset 0x000145	Register 11:	Hibernation Data (HIBDATA), offset 0x030-0x12C	139
Register 1: Flash Memory Address (FMA), offset 0x000	Internal Mer	norv	
	Register 1:	Flash Memory Address (FMA), offset 0x000	
Register 2: Flash Memory Data (FMD), offset 0x004146	Register 2:	Flash Memory Data (FMD), offset 0x004	

Register 3:	Flash Memory Control (FMC), offset 0x008	147
Register 4:	Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C	149
Register 5:	Flash Controller Interrupt Mask (FCIM), offset 0x010	150
Register 6:	Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014	151
Register 7:	USec Reload (USECRL), offset 0x140	152
Register 8:	Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200	153
Register 9:	Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400	154
Register 10:	User Debug (USER_DBG), offset 0x1D0	155
Register 11:	User Register 0 (USER_REG0), offset 0x1E0	156
Register 12:	User Register 1 (USER_REG1), offset 0x1E4	157
Register 13:	Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204	158
Register 14:	Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208	159
Register 15:	Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C	160
Register 16:	Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404	161
Register 17:	Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408	162
Register 18:	Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C	163
General-Pur	pose Input/Outputs (GPIOs)	164
Register 1:	GPIO Data (GPIODATA), offset 0x000	171
Register 2:	GPIO Direction (GPIODIR), offset 0x400	172
Register 3:	GPIO Interrupt Sense (GPIOIS), offset 0x404	173
Register 4:	GPIO Interrupt Both Edges (GPIOIBE), offset 0x408	174
Register 5:	GPIO Interrupt Event (GPIOIEV), offset 0x40C	175
Register 6:	GPIO Interrupt Mask (GPIOIM), offset 0x410	176
Register 7:	GPIO Raw Interrupt Status (GPIORIS), offset 0x414	177
Register 8:	GPIO Masked Interrupt Status (GPIOMIS), offset 0x418	178
Register 9:	GPIO Interrupt Clear (GPIOICR), offset 0x41C	179
Register 10:	GPIO Alternate Function Select (GPIOAFSEL), offset 0x420	180
Register 11:	GPIO 2-mA Drive Select (GPIODR2R), offset 0x500	182
Register 12:	GPIO 4-mA Drive Select (GPIODR4R), offset 0x504	183
Register 13:	GPIO 8-mA Drive Select (GPIODR8R), offset 0x508	184
Register 14:	GPIO Open Drain Select (GPIOODR), offset 0x50C	185
Register 15:	GPIO Pull-Up Select (GPIOPUR), offset 0x510	186
Register 16:	GPIO Pull-Down Select (GPIOPDR), offset 0x514	187
Register 17:	GPIO Slew Rate Control Select (GPIOSLR), offset 0x518	188
Register 18:	GPIO Digital Enable (GPIODEN), offset 0x51C	189
Register 19:	GPIO Lock (GPIOLOCK), offset 0x520	190
Register 20:	GPIO Commit (GPIOCR), offset 0x524	191
Register 21:	GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0	193
Register 22:	GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4	194
Register 23:	GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8	195
Register 24:	GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC	196
Register 25:	GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0	197
Register 26:	GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4	198
Register 27:	GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8	199
Register 28:	GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC	200
Register 29:	GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0	201
Register 30:	GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4	202
Register 31:	GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8	203

Register 32:	GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC	204
General-Pur	pose Timers	205
Register 1:	GPTM Configuration (GPTMCFG), offset 0x000	217
Register 2:	GPTM TimerA Mode (GPTMTAMR), offset 0x004	218
Register 3:	GPTM TimerB Mode (GPTMTBMR), offset 0x008	220
Register 4:	GPTM Control (GPTMCTL), offset 0x00C	222
Register 5:	GPTM Interrupt Mask (GPTMIMR), offset 0x018	225
Register 6:	GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C	227
Register 7:	GPTM Masked Interrupt Status (GPTMMIS), offset 0x020	228
Register 8:	GPTM Interrupt Clear (GPTMICR), offset 0x024	229
Register 9:	GPTM TimerA Interval Load (GPTMTAILR), offset 0x028	231
Register 10:	GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C	232
Register 11:	GPTM TimerA Match (GPTMTAMATCHR), offset 0x030	233
Register 12:	GPTM TimerB Match (GPTMTBMATCHR), offset 0x034	234
Register 13:	GPTM TimerA Prescale (GPTMTAPR), offset 0x038	235
Register 14:	GPTM TimerB Prescale (GPTMTBPR), offset 0x03C	236
Register 15:	GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040	237
Register 16:	GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044	238
Register 17:	GPTM TimerA (GPTMTAR), offset 0x048	239
Register 18:	GPTM TimerB (GPTMTBR), offset 0x04C	240
Watchdog T	imer	241
Register 1:	Watchdog Load (WDTLOAD), offset 0x000	244
Register 2:	Watchdog Value (WDTVALUE), offset 0x004	245
Register 3:	Watchdog Control (WDTCTL), offset 0x008	246
Register 4:	Watchdog Interrupt Clear (WDTICR), offset 0x00C	247
Register 5:	Watchdog Raw Interrupt Status (WDTRIS), offset 0x010	248
Register 6:	Watchdog Masked Interrupt Status (WDTMIS), offset 0x014	249
Register 7:	Watchdog Test (WDTTEST), offset 0x418	250
Register 8:	Watchdog Lock (WDTLOCK), offset 0xC00	251
Register 9:	Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0	252
Register 10:	Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4	253
Register 11:	Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8	254
Register 12:	Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC	255
Register 13:	Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0	256
Register 14:	Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4	257
Register 15:	Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8	258
Register 16:	Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC	259
Register 17:	Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0	260
Register 18:	Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4	261
Register 19:	Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8	262
Register 20:	Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC	263
Universal As	synchronous Receivers/Transmitters (UARTs)	264
Register 1:	UART Data (UARTDR), offset 0x000	272
Register 2:	UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004	274
Register 3:	UART Flag (UARTFR), offset 0x018	276
Register 4:	UART IrDA Low-Power Register (UARTILPR), offset 0x020	278
Register 5:	UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024	279
Register 6:	UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028	280

Register 7:	UART Line Control (UARTLCRH), offset 0x02C	281
Register 8:	UART Control (UARTCTL), offset 0x030	283
Register 9:	UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034	285
Register 10:	UART Interrupt Mask (UARTIM), offset 0x038	287
Register 11:	UART Raw Interrupt Status (UARTRIS), offset 0x03C	289
Register 12:	UART Masked Interrupt Status (UARTMIS), offset 0x040	290
Register 13:	UART Interrupt Clear (UARTICR), offset 0x044	291
Register 14:	UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0	293
Register 15:	UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4	294
Register 16:	UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8	295
Register 17:	UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC	296
Register 18:	UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0	297
Register 19:	UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4	298
Register 20:	UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8	299
Register 21:	UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC	300
Register 22:	UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0	301
Register 23:	UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4	302
Register 24:	UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8	303
Register 25:	UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC	304
Synchronou	IS Serial Interface (SSI)	305
Register 1:	SSI Control 0 (SSICR0), offset 0x000	317
Register 2:	SSI Control 1 (SSICR1), offset 0x004	319
Register 3:	SSI Data (SSIDR), offset 0x008	321
Register 4:	SSI Status (SSISR), offset 0x00C	322
Register 5:	SSI Clock Prescale (SSICPSR), offset 0x010	324
Register 6:	SSI Interrupt Mask (SSIIM), offset 0x014	325
Register 7:	SSI Raw Interrupt Status (SSIRIS), offset 0x018	327
Register 8:	SSI Masked Interrupt Status (SSIMIS), offset 0x01C	328
Register 9:	SSI Interrupt Clear (SSIICR), offset 0x020	329
Register 10:	SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0	330
Register 11:	SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4	331
Register 12:	SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8	332
Register 13:	SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC	333
Register 14:	SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0	334
Register 15:	SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4	335
Register 16:	SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8	336
Register 17:	SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC	337
Register 18:	SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0	338
Register 19:	SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4	339
Register 20:	SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8	340
Register 21:	SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC	341
Inter-Integra	ated Circuit (I ² C) Interface	342
Register 1:	I ² C Master Slave Address (I2CMSA), offset 0x000	356
Register 2:	I ² C Master Control/Status (I2CMCS), offset 0x004	357
Register 3:	I ² C Master Data (I2CMDR), offset 0x008	361
Register 4:	I ² C Master Timer Period (I2CMTPR), offset 0x00C	362
Register 5:	I ² C Master Interrupt Mask (I2CMIMR), offset 0x010	363
Register 6:	I ² C Master Raw Interrupt Status (I2CMRIS), offset 0x014	364
~		

Register 7:	I ² C Master Masked Interrupt Status (I2CMMIS), offset 0x018	365
Register 8:	I ² C Master Interrupt Clear (I2CMICR), offset 0x01C	366
Register 9:	I ² C Master Configuration (I2CMCR), offset 0x020	367
Register 10:	I ² C Slave Own Address (I2CSOAR), offset 0x000	369
Register 11:	I ² C Slave Control/Status (I2CSCSR), offset 0x004	370
Register 12:	I ² C Slave Data (I2CSDR), offset 0x008	372
Register 13:	I ² C Slave Interrupt Mask (I2CSIMR), offset 0x00C	373
Register 14:	I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x010	374
Register 15:	I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x014	375
Register 16:	I ² C Slave Interrupt Clear (I2CSICR), offset 0x018	376
Analog Con	nparators	377
Register 1:	Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00	383
Register 2:	Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04	384
Register 3:	Analog Comparator Interrupt Enable (ACINTEN), offset 0x08	385
Register 4:	Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10	386
Register 5:	Analog Comparator Status 0 (ACSTAT0). offset 0x20	387
Register 6:	Analog Comparator Status 1 (ACSTAT1), offset 0x40	387
Register 7:	Analog Comparator Status 2 (ACSTAT2), offset 0x60	387
Register 8:	Analog Comparator Control 0 (ACCTL0), offset 0x24	388
Register 9:	Analog Comparator Control 1 (ACCTL1), offset 0x44	388
Register 10:	Analog Comparator Control 2 (ACCTL2), offset 0x64	388
Pulse Width	Modulator (PWM)	390
Register 1:	PWM Master Control (PWMCTL), offset 0x000	398
Register 2:	PWM Time Base Sync (PWMSYNC), offset 0x004	399
Register 3:	PWM Output Enable (PWMENABLE), offset 0x008	400
0		
Register 4:	PWM Output Inversion (PWMINVERT), offset 0x00C	401
Register 4: Register 5:	PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010	401 402
Register 4: Register 5: Register 6:	PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014	401 402 403
Register 4: Register 5: Register 6: Register 7:	PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018	401 402 403 404
Register 4: Register 5: Register 6: Register 7: Register 8:	PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C	401 402 403 404 405
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9:	PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C PWM Status (PWMSTATUS), offset 0x020	401 402 403 404 405 406
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10:	PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C PWM Status (PWMSTATUS), offset 0x020 PWM0 Control (PWM0CTL), offset 0x040	401 402 403 404 405 406 407
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11:	PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C PWM Status (PWMSTATUS), offset 0x020 PWM0 Control (PWM0CTL), offset 0x040 PWM1 Control (PWM1CTL), offset 0x080	401 402 403 404 405 406 407 407
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12:	PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x0C0	401 402 403 404 405 406 407 407 407
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13:	PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x0C0PWM0 Interrupt Enable (PWM0INTEN), offset 0x044	401 402 403 404 405 406 407 407 407 409
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14:	PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x0C0PWM0 Interrupt Enable (PWM0INTEN), offset 0x044PWM1 Interrupt Enable (PWM1INTEN), offset 0x084	401 402 403 404 405 406 407 407 407 409 409
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15:	PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x020PWM0 Interrupt Enable (PWM0INTEN), offset 0x044PWM1 Interrupt Enable (PWM1INTEN), offset 0x084PWM2 Interrupt Enable (PWM2INTEN), offset 0x024	401 402 403 404 404 405 406 407 407 407 407 409 409 409
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16:	PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x020PWM0 Interrupt Enable (PWM0INTEN), offset 0x044PWM2 Control (PWM2CTL), offset 0x020PWM2 Interrupt Enable (PWM0INTEN), offset 0x044PWM1 Interrupt Enable (PWM2INTEN), offset 0x084PWM2 Interrupt Enable (PWM2INTEN), offset 0x024PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048	401 402 403 404 405 406 407 407 407 407 409 409 409 409
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 13: Register 14: Register 15: Register 16: Register 17:	PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x0C0PWM0 Interrupt Enable (PWM0INTEN), offset 0x044PWM1 Interrupt Enable (PWM1INTEN), offset 0x084PWM2 Interrupt Enable (PWM2INTEN), offset 0x024PWM2 Raw Interrupt Status (PWM0RIS), offset 0x048PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088	401 402 403 404 405 406 407 407 407 407 409 409 409 409 409 409 411
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18:	PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x020PWM0 Interrupt Enable (PWM0INTEN), offset 0x044PWM1 Interrupt Enable (PWM1INTEN), offset 0x044PWM1 Interrupt Enable (PWM2INTEN), offset 0x024PWM2 Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088PWM2 Raw Interrupt Status (PWM2RIS), offset 0x028	401 402 403 404 405 406 407 407 407 407 407 409 409 409 409 409 409 411 411
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19:	PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x020PWM0 Interrupt Enable (PWM0INTEN), offset 0x044PWM1 Interrupt Enable (PWM0INTEN), offset 0x044PWM2 Interrupt Enable (PWM2INTEN), offset 0x084PWM2 Interrupt Enable (PWM2INTEN), offset 0x024PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088PWM2 Raw Interrupt Status (PWM2RIS), offset 0x028PWM2 Raw Interrupt Status (PWM2RIS), offset 0x028PWM2 Raw Interrupt Status (PWM2RIS), offset 0x028PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C	401 402 403 404 405 406 407 407 407 407 407 409 409 409 409 409 409 411 411 411 411
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 10: Register 11: Register 12: Register 13: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20:	PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x0C0PWM0 Interrupt Enable (PWM0INTEN), offset 0x044PWM1 Interrupt Enable (PWM1INTEN), offset 0x084PWM2 Interrupt Enable (PWM2INTEN), offset 0x024PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x088PWM2 Raw Interrupt Status (PWM2RIS), offset 0x028PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04CPWM1 Interrupt Status and Clear (PWM0ISC), offset 0x04CPWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C	401 402 403 404 405 406 407 407 407 407 409 409 409 409 409 409 411 411 411 411 412 412
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21:	PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x040PWM2 Control (PWM2CTL), offset 0x020PWM0 Interrupt Enable (PWM0INTEN), offset 0x044PWM1 Interrupt Enable (PWM0INTEN), offset 0x044PWM1 Interrupt Enable (PWM2INTEN), offset 0x044PWM2 Interrupt Status (PWM0RIS), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x068PWM2 Raw Interrupt Status and Clear (PWM0ISC), offset 0x04CPWM1 Interrupt Status and Clear (PWM0ISC), offset 0x04CPWM1 Interrupt Status and Clear (PWM2ISC), offset 0x08CPWM2 Interrupt Status and Clear (PWM2ISC), offset 0x08CPWM2 Interrupt Status and Clear (PWM2ISC), offset 0x08C	401 402 403 404 405 406 407 407 409 409 411 411 412 412 412
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 21:	PWM Output Inversion (PWMINVERT), offset 0x00CPWM Output Fault (PWMFAULT), offset 0x010PWM Interrupt Enable (PWMINTEN), offset 0x014PWM Raw Interrupt Status (PWMRIS), offset 0x018PWM Interrupt Status and Clear (PWMISC), offset 0x01CPWM Status (PWMSTATUS), offset 0x020PWM0 Control (PWM0CTL), offset 0x040PWM1 Control (PWM1CTL), offset 0x080PWM2 Control (PWM2CTL), offset 0x020PWM0 Interrupt Enable (PWM0INTEN), offset 0x044PWM1 Interrupt Enable (PWM0INTEN), offset 0x044PWM2 Interrupt Enable (PWM2INTEN), offset 0x044PWM2 Interrupt Status (PWM2INTEN), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x048PWM2 Raw Interrupt Status (PWM2RIS), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x048PWM1 Raw Interrupt Status (PWM2RIS), offset 0x048PWM2 Raw Interrupt Status and Clear (PWM0ISC), offset 0x04CPWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08CPWM2 Interrupt Status and Clear (PWM2ISC), offset 0x08CPWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CCPWM0 Load (PWM0LOAD), offset 0x050	401 402 403 404 405 406 407 407 407 409 409 411 411 411 412 412 413
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23:	PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C PWM Status (PWMSTATUS), offset 0x020 PWM0 Control (PWM0CTL), offset 0x040 PWM1 Control (PWM1CTL), offset 0x040 PWM2 Control (PWM2CTL), offset 0x020 PWM0 Interrupt Enable (PWM0INTEN), offset 0x044 PWM0 Interrupt Enable (PWM0INTEN), offset 0x044 PWM1 Interrupt Enable (PWM0INTEN), offset 0x044 PWM2 Interrupt Enable (PWM2INTEN), offset 0x044 PWM1 Interrupt Enable (PWM2INTEN), offset 0x044 PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 PWM1 Raw Interrupt Status (PWM0RIS), offset 0x048 PWM1 Raw Interrupt Status (PWM2RIS), offset 0x048 PWM2 Raw Interrupt Status and Clear (PWM0ISC), offset 0x04C PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x04C PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x04C PWM1 Interrupt Status and Clear (PWM2ISC), offset 0x04C PWM1 Interrupt Status and Clear (PWM2ISC), offset 0x04C PWM1 Interrupt Status and Clear (PWM2ISC), offset 0x04C PWM1 Load (PWM0LOAD), offset 0x050	401 402 403 404 405 406 407 407 407 407 407 409 409 409 409 409 409 411 411 411 411 411 412 412 412 413 413
Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 10: Register 12: Register 13: Register 13: Register 14: Register 15: Register 15: Register 16: Register 17: Register 18: Register 19: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24:	PWM Output Inversion (PWMINVERT), offset 0x00C PWM Output Fault (PWMFAULT), offset 0x010 PWM Interrupt Enable (PWMINTEN), offset 0x014 PWM Raw Interrupt Status (PWMRIS), offset 0x018 PWM Interrupt Status and Clear (PWMISC), offset 0x01C PWM Status (PWMSTATUS), offset 0x020 PWMO Control (PWM0CTL), offset 0x020 PWM1 Control (PWM0TL), offset 0x040 PWM2 Control (PWM2CTL), offset 0x020 PWM0 Interrupt Enable (PWM0INTEN), offset 0x044 PWM0 Interrupt Enable (PWM0INTEN), offset 0x044 PWM1 Interrupt Enable (PWM2INTEN), offset 0x044 PWM2 Interrupt Status (PWM2INTEN), offset 0x048 PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 PWM1 Raw Interrupt Status (PWM0RIS), offset 0x048 PWM1 Raw Interrupt Status (PWM2RIS), offset 0x048 PWM1 Raw Interrupt Status (PWM2RIS), offset 0x048 PWM2 Raw Interrupt Status and Clear (PWM0ISC), offset 0x047 PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x047 PWM1 Interrupt Status and Clear (PWM2ISC), offset 0x047 PWM1 Interrupt Status and Clear (PWM2ISC), offset 0x047 PWM1 Load (PWM0LOAD), offset 0x050 PWM2 Load (PWM1LOAD), offset 0x000	401 402 403 404 405 406 407 407 407 407 407 409 409 409 409 409 409 409 411 411 411 411 412 412 412 412 413 413

Register 26:	PWM1 Counter (PWM1COUNT), offset 0x094	414
Register 27:	PWM2 Counter (PWM2COUNT), offset 0x0D4	414
Register 28:	PWM0 Compare A (PWM0CMPA), offset 0x058	415
Register 29:	PWM1 Compare A (PWM1CMPA), offset 0x098	415
Register 30:	PWM2 Compare A (PWM2CMPA), offset 0x0D8	415
Register 31:	PWM0 Compare B (PWM0CMPB), offset 0x05C	416
Register 32:	PWM1 Compare B (PWM1CMPB), offset 0x09C	416
Register 33:	PWM2 Compare B (PWM2CMPB), offset 0x0DC	416
Register 34:	PWM0 Generator A Control (PWM0GENA), offset 0x060	417
Register 35:	PWM1 Generator A Control (PWM1GENA), offset 0x0A0	417
Register 36:	PWM2 Generator A Control (PWM2GENA), offset 0x0E0	417
Register 37:	PWM0 Generator B Control (PWM0GENB), offset 0x064	420
Register 38:	PWM1 Generator B Control (PWM1GENB), offset 0x0A4	420
Register 39:	PWM2 Generator B Control (PWM2GENB), offset 0x0E4	420
Register 40:	PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068	423
Register 41:	PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8	423
Register 42:	PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8	423
Register 43:	PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C	424
Register 44:	PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC	424
Register 45:	PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset 0x0EC	424
Register 46:	PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070	425
Register 47:	PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0	425
Register 48:	PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset 0x0F0	425
Quadrature	Encoder Interface (QEI)	426
Register 1:	QEI Control (QEICTL), offset 0x000	431
Register 2:	QEI Status (QEISTAT), offset 0x004	433
Register 3:	QEI Position (QEIPOS), offset 0x008	434
Register 4:	QEI Maximum Position (QEIMAXPOS), offset 0x00C	435
Register 5:	QEI Timer Load (QEILOAD), offset 0x010	436
Register 6:	QEI Timer (QEITIME), offset 0x014	437
Register 7:	QEI Velocity Counter (QEICOUNT), offset 0x018	438
Register 8:	QEI Velocity (QEISPEED), offset 0x01C	439
Register 9:	QEI Interrupt Enable (QEIINTEN), offset 0x020	440
Register 10:	QEI Raw Interrupt Status (QEIRIS), offset 0x024	441
Register 11:	QEI Interrupt Status and Clear (QEIISC), offset 0x028	442

Revision History

The revision history table notes changes made between the indicated revisions of the LM3S1620 data sheet.

Table 1. Revision History

Date	Revision	Description	
March 2008	2550	Started tracking revision history.	
April 2008	2881	 The Θ_{JA} value was changed from 55.3 to 34 in the "Thermal Characteristics" table in the Operating Characteristics chapter. 	
			 Bit 31 of the DC3 register was incorrectly described in prior versions of the datasheet. A reset of 1 indicates that an even CCP pin is present and can be used as a 32-KHz input clock.
		 Values for I_{DD_HIBERNATE} were added to the "Detailed Power Specifications" table in the "Electrical Characteristics" chapter. 	
		The "Hibernation Module DC Electricals" table was added to the "Electrical Characteristics" chapter.	
		 The T_{VDDRISE} parameter in the "Reset Characteristics" table in the "Electrical Characteristics" chapter was changed from a max of 100 to 250. 	
		 The maximum value on Core supply voltage (V_{DD25}) in the "Maximum Ratings" table in the "Electrical Characteristics" chapter was changed from 4 to 3. 	
		 The operational frequency of the internal 30-kHz oscillator clock source is 30 kHz ± 50% (prior datasheets incorrectly noted it as 30 kHz ± 30%). 	
		• A value of 0x3 in bits 5:4 of the MISC register (OSCSRC) indicates the 30-KHz internal oscillator is the input source for the oscillator. Prior datasheets incorrectly noted 0x3 as a reserved value.	
		The reset for bits 6:4 of the RCC2 register (OSCSRC2) is 0x1 (IOSC). Prior datasheets incorrectly noted the reset was 0x0 (MOSC).	
		Two figures on clock source were added to the "Hibernation Module":	
		 Clock Source Using Crystal 	
		 Clock Source Using Dedicated Oscillator 	
		The following notes on battery management were added to the "Hibernation Module" chapter:	
		 Battery voltage is not measured while in Hibernate mode. 	
		 System level factors may affect the accuracy of the low battery detect circuit. The designer should consider battery type, discharge characteristics, and a test load during battery voltage measurements. 	
		A note on high-current applications was added to the GPIO chapter:	
		For special high-current applications, the GPIO output buffers may be used with the following restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the VOL value is specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only a maximum of two per side of the physical package or BGA pin group with the total number of high-current GPIO outputs not exceeding four for the entire package.	
		A note on Schmitt inputs was added to the GPIO chapter:	
		Pins configured as digital inputs are Schmitt-triggered.	
		The Buffer type on the WAKE pin changed from OD to - in the Signal Tables.	
		The "Differential Sampling Range" figures in the ADC chapter were clarified.	

Date	Revision	Description
		The last revision of the datasheet (revision 2550) introduced two errors that have now been corrected:
		 The LQFP pin diagrams and pin tables were missing the comparator positive and negative input pins.
		- The base address was listed incorrectly in the FMPRE0 and FMPPE0 register bit diagrams.
		 Additional minor datasheet clarifications and corrections.
May 2008	2972	 As noted in the PCN, the option to provide VDD25 power from external sources was removed. Use the LDO output as the source of VDD25 input.
		 Additional minor datasheet clarifications and corrections.
July 2008	3108	 Additional minor datasheet clarifications and corrections.
August 2008	3447	 Added note on clearing interrupts to Interrupts chapter.
		 Added Power Architecture diagram to System Control chapter.
		 Additional minor datasheet clarifications and corrections.

About This Document

This data sheet provides reference information for the LM3S1620 microcontroller, describing the functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex[™]-M3 core.

Audience

This manual is intended for system software developers, hardware designers, and application developers.

About This Manual

This document is organized into sections that correspond to each major feature.

Related Documents

The following documents are referenced by the data sheet, and available on the documentation CD or from the Luminary Micro web site at www.luminarymicro.com:

- ARM® Cortex™-M3 Technical Reference Manual
- ARM® CoreSight Technical Reference Manual
- ARM® v7-M Architecture Application Level Reference Manual
- Stellaris[®] Peripheral Driver Library User's Guide
- Stellaris[®] ROM User's Guide

The following related documents are also referenced:

IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the Luminary Micro web site for additional documentation, including application notes and white papers.

Documentation Conventions

This document uses the conventions shown in Table 2 on page 20.

Table 2. Documentation Conventions

Notation	Meaning
General Register Notation	
REGISTER	APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more than one register. For example, SRCRn represents any (or all) of the three Software Reset Control registers: SRCR0, SRCR1 , and SRCR2 .
bit	A single bit in a register.
bit field	Two or more consecutive and related bits.
offset 0xnnn	A hexadecimal increment to a register's address, relative to that module's base address as specified in "Memory Map" on page 43.

Notation	Meaning
Register N	Registers are numbered consecutively throughout the document to aid in referencing them. The register number has no meaning to software.
reserved	Register bits marked <i>reserved</i> are reserved for future use. In most cases, reserved bits are set to 0; however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
уу:хх	The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in that register.
Register Bit/Field Types	This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field.
RC	Software can read this field. The bit or field is cleared by hardware after reading the bit/field.
RO	Software can read this field. Always write the chip reset value.
R/W	Software can read or write this field.
R/W1C	Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.
	This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reported at the time the register was read.
R/W1S	Software can read or write a 1 to this field. A write of a 0 to a R/W1S bit does not affect the bit value in the register.
W1C	Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data.
	This register is typically used to clear the corresponding bit in an interrupt register.
WO	Only a write by software is valid; a read of the register returns no meaningful data.
Register Bit/Field Reset Value	This value in the register bit diagram shows the bit/field value after any reset, unless noted.
0	Bit cleared to 0 on chip reset.
1	Bit set to 1 on chip reset.
-	Nondeterministic.
Pin/Signal Notation	
[]	Pin alternate function; a pin defaults to the signal without the brackets.
pin	Refers to the physical connection on the package.
signal	Refers to the electrical signal encoding of a pin.
assert a signal	Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below).
deassert a signal	Change the value of the signal from the logically True state to the logically False state.
SIGNAL	Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.
SIGNAL	Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.
Numbers	
x	An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and so on.

Notation	<i>Nearing</i>
0x He All bir wi	An Anter Section Anter Section 2015 Anter Section 2

1 Architectural Overview

The Luminary Micro Stellaris[®] family of microcontrollers—the first ARM® Cortex[™]-M3 based controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package with a small footprint.

The Stellaris[®] family offers efficient performance and extensive integration, favorably positioning the device into cost-conscious applications requiring significant control-processing and connectivity capabilities. The Stellaris[®] LM3S1000 series extends the Stellaris[®] family with larger on-chip memories, enhanced power management, and expanded I/O and control capabilities.

The LM3S1620 microcontroller is targeted for industrial applications, including remote monitoring, electronic point-of-sale machines, test and measurement equipment, network appliances and switches, factory automation, HVAC and building control, gaming equipment, motion control, medical instrumentation, and fire and security.

For applications requiring extreme conservation of power, the LM3S1620 microcontroller features a Battery-backed Hibernation module to efficiently power down the LM3S1620 to a low-power state during extended periods of inactivity. With a power-up/power-down sequencer, a continuous time counter (RTC), a pair of match registers, an APB interface to the system bus, and dedicated non-volatile memory, the Hibernation module positions the LM3S1620 microcontroller perfectly for battery applications.

In addition, the LM3S1620 microcontroller offers the advantages of ARM's widely available development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community. Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost. Finally, the LM3S1620 microcontroller is code-compatible to all members of the extensive Stellaris[®] family; providing flexibility to fit our customers' precise needs.

Luminary Micro offers a complete solution to get to market quickly, with evaluation and development boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong support, sales, and distributor network. See "Ordering and Contact Information" on page 511 for ordering information for Stellaris[®] family devices.

1.1 Product Features

The LM3S1620 microcontroller includes the following product features:

- 32-Bit RISC Performance
 - 32-bit ARM® Cortex[™]-M3 v7M architecture optimized for small-footprint embedded applications
 - System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism
 - Thumb®-compatible Thumb-2-only instruction set processor core for high code density
 - 25-MHz operation
 - Hardware-division and single-cycle-multiplication

- Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt handling
- 31 interrupts with eight priority levels
- Memory protection unit (MPU), providing a privileged mode for protected operating system functionality
- Unaligned data access, enabling data to be efficiently packed into memory
- Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control
- Internal Memory
 - 128 KB single-cycle flash
 - User-managed flash block protection on a 2-KB block basis
 - User-managed flash data programming
 - User-defined and managed flash-protection block
 - 32 KB single-cycle SRAM
- General-Purpose Timers
 - Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers. Each GPTM can be configured to operate independently:
 - As a single 32-bit timer
 - As one 32-bit Real-Time Clock (RTC) to event capture
 - For Pulse Width Modulation (PWM)
 - 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock when using an external 32.768-KHz clock as the input
 - User-enabled stalling in periodic and one-shot mode when the controller asserts the CPU Halt flag during debug
 - 16-bit Timer modes
 - · General-purpose timer function with an 8-bit prescaler
 - Programmable one-shot timer
 - Programmable periodic timer
 - User-enabled stalling when the controller asserts CPU Halt flag during debug

- 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal
- ARM FiRM-compliant Watchdog Timer
 - 32-bit down counter with a programmable load register
 - Separate watchdog clock with an enable
 - Programmable interrupt generation logic with interrupt masking
 - Lock register protection from runaway software
 - Reset generation logic with an enable/disable
 - User-enabled stalling when the controller asserts the CPU Halt flag during debug
- Synchronous Serial Interface (SSI)
 - Two SSI modules, each with the following features:
 - Master or slave operation
 - Programmable clock bit rate and prescale
 - Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
 - Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
 - Programmable data frame size from 4 to 16 bits
 - Internal loopback test mode for diagnostic/debug testing
- UART
 - Two fully programmable 16C550-type UARTs with IrDA support
 - Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs to reduce CPU interrupt service loading
 - Programmable baud-rate generator allowing speeds up to 1.5625 Mbps
 - Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
 - FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
 - Standard asynchronous communication bits for start, stop, and parity

- False-start-bit detection
- Line-break generation and detection
- Analog Comparators
 - Three independent integrated analog comparators
 - Configurable for output to: drive an output pin or generate an interrupt
 - Compare external pin input to external pin input or to internal programmable voltage reference
- I²C
 - Master and slave receive and transmit operation with transmission speed up to 100 Kbps in Standard mode and 400 Kbps in Fast mode
 - Interrupt generation
 - Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing mode
- PWM
 - Three PWM generator blocks, each with one 16-bit counter, two comparators, a PWM generator, and a dead-band generator
 - One 16-bit counter
 - Runs in Down or Up/Down mode
 - Output frequency controlled by a 16-bit load value
 - Load value updates can be synchronized
 - · Produces output signals at zero and load value
 - Two PWM comparators
 - Comparator value updates can be synchronized
 - Produces output signals on match
 - PWM generator
 - Output PWM signal is constructed based on actions taken as a result of the counter and PWM comparator output signals
 - Produces two independent PWM signals
 - Dead-band generator
 - Produces two PWM signals with programmable dead-band delays suitable for driving a half-H bridge
 - Can be bypassed, leaving input PWM signals unmodified

- Flexible output control block with PWM output enable of each PWM signal
 - PWM output enable of each PWM signal
 - Optional output inversion of each PWM signal (polarity control)
 - Optional fault handling for each PWM signal
 - Synchronization of timers in the PWM generator blocks
 - Synchronization of timer/comparator updates across the PWM generator blocks
 - · Interrupt status summary of the PWM generator blocks
- QEI
 - Hardware position integrator tracks the encoder position
 - Velocity capture using built-in timer
 - The input frequency of the QEI inputs may be as high as 1/4 of the processor frequency (for example, 12.5 MHz PhA/PhB/IDX for a 50-MHz system)
 - Interrupt generation on index pulse, velocity-timer expiration, direction change, and quadrature error detection
- GPIOs
 - 11-52 GPIOs, depending on configuration
 - 5-V-tolerant input/outputs
 - Programmable interrupt generation as either edge-triggered or level-sensitive
 - Low interrupt latency; as low as 6 cycles and never more than 12 cycles
 - Bit masking in both read and write operations through address lines
 - Pins configured as digital inputs are Schmitt-triggered.
 - Programmable control for GPIO pad configuration:
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be configured with an 18-mA pad drive for high-current applications
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables
- Power
 - On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable from 2.25 V to 2.75 V

- Hibernation module handles the power-up/down 3.3 V sequencing and control for the core digital logic and analog circuits
- Low-power options on controller: Sleep and Deep-sleep modes
- Low-power options for peripherals: software controls shutdown of individual peripherals
- User-enabled LDO unregulated voltage detection and automatic reset
- 3.3-V supply brown-out detection and reporting via interrupt or reset
- Flexible Reset Sources
 - Power-on reset (POR)
 - Reset pin assertion
 - Brown-out (BOR) detector alerts to system power drops
 - Software reset
 - Watchdog timer reset
 - Internal low drop-out (LDO) regulator output goes unregulated
- Additional Features
 - Six reset sources
 - Programmable clock source control
 - Clock gating to individual peripherals for power savings
 - IEEE 1149.1-1990 compliant Test Access Port (TAP) controller
 - Debug access via JTAG and Serial Wire interfaces
 - Full JTAG boundary scan
- Industrial and extended temperature 100-pin RoHS-compliant LQFP package
- Industrial-range 108-ball RoHS-compliant BGA package

1.2 Target Applications

- Remote monitoring
- Electronic point-of-sale (POS) machines
- Test and measurement equipment
- Network appliances and switches
- Factory automation
- HVAC and building control

- Gaming equipment
- Motion control
- Medical instrumentation
- Fire and security
- Power and energy
- Transportation

1.3 High-Level Block Diagram

Figure 1-1 on page 30 represents the full set of features in the Stellaris[®] 1000 series of devices; not all features may be available on the LM3S1620 microcontroller.

Figure 1-1. Stellaris[®] 1000 Series High-Level Block Diagram

1.4 Functional Overview

The following sections provide an overview of the features of the LM3S1620 microcontroller. The page number in parenthesis indicates where that feature is discussed in detail. Ordering and support information can be found in "Ordering and Contact Information" on page 511.

1.4.1 ARM Cortex[™]-M3

1.4.1.1 Processor Core (see page 37)

All members of the Stellaris[®] product family, including the LM3S1620 microcontroller, are designed around an ARM Cortex[™]-M3 processor core. The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

"ARM Cortex-M3 Processor Core" on page 37 provides an overview of the ARM core; the core is detailed in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

1.4.1.2 System Timer (SysTick) (see page 40)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

1.4.1.3 Nested Vectored Interrupt Controller (NVIC) (see page 45)

The LM3S1620 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the ARM® Cortex[™]-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions (system handlers) and 31 interrupts.

"Interrupts" on page 45 provides an overview of the NVIC controller and the interrupt map. Exceptions and interrupts are detailed in the ARM® Cortex™-M3 Technical Reference Manual.

1.4.2 Motor Control Peripherals

To enhance motor control, the LM3S1620 controller features Pulse Width Modulation (PWM) outputs and the Quadrature Encoder Interface (QEI).

1.4.2.1 PWM

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control.

On the LM3S1620, PWM motion control functionality can be achieved through:

- Dedicated, flexible motion control hardware using the PWM pins
- The motion control features of the general-purpose timers using the CCP pins

PWM Pins (see page 390)

The LM3S1620 PWM module consists of three PWM generator blocks and a control block. Each PWM generator block contains one timer (16-bit down or up/down counter), two comparators, a PWM signal generator, a dead-band generator, and an interrupt. The control block determines the polarity of the PWM signals, and which signals are passed through to the pins.

Each PWM generator block produces two PWM signals that can either be independent signals or a single pair of complementary signals with dead-band delays inserted. The output of the PWM generation blocks are managed by the output control block before being passed to the device pins.

CCP Pins (see page 211)

The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable to support a simple PWM mode with a software-programmable output inversion of the PWM signal.

1.4.2.2 QEI (see page 426)

A quadrature encoder, also known as a 2-channel incremental encoder, converts linear displacement into a pulse signal. By monitoring both the number of pulses and the relative phase of the two signals, you can track the position, direction of rotation, and speed. In addition, a third channel, or index signal, can be used to reset the position counter.

The Stellaris quadrature encoder with index (QEI) module interprets the code produced by a quadrature encoder wheel to integrate position over time and determine direction of rotation. In addition, it can capture a running estimate of the velocity of the encoder wheel.

1.4.3 Analog Peripherals

For support of analog signals, the LM3S1620 microcontroller offers three analog comparators.

1.4.3.1 Analog Comparators (see page 377)

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S1620 microcontroller provides three independent integrated analog comparators that can be configured to drive an output or generate an interrupt .

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts to cause it to start capturing a sample sequence.

1.4.4 Serial Communications Peripherals

The LM3S1620 controller supports both asynchronous and synchronous serial communications with:

- Two fully programmable 16C550-type UARTs
- Two SSI modules
- One I²C module

1.4.4.1 UART (see page 264)

A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.

The LM3S1620 controller includes two fully programmable 16C550-type UARTs that support data transfer speeds up to 1.5625 Mbps. (Although similar in functionality to a 16C550 UART, it is not register-compatible.) In addition, each UART is capable of supporting IrDA.

Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs reduce CPU interrupt service loading. The UART can generate individually masked interrupts from the RX, TX, modem status, and error conditions. The module provides a single combined interrupt when any of the interrupts are asserted and are unmasked.

1.4.4.2 SSI (see page 305)

Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface.

The LM3S1620 controller includes two SSI modules that provide the functionality for synchronous serial communications with peripheral devices, and can be configured to use the Freescale SPI, MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also configurable, and can be set between 4 and 16 bits, inclusive.

Each SSI module performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

Each SSI module can be configured as either a master or slave device. As a slave device, the SSI module can also be configured to disable its output, which allows a master device to be coupled with multiple slave devices.

Each SSI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the SSI module's input clock. Bit rates are generated based on the input clock and the maximum bit rate is determined by the connected peripheral.

1.4.4.3 I²C (see page 342)

The Inter-Integrated Circuit (I²C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL).

The I^2C bus interfaces to external I^2C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I^2C bus may also be used for system testing and diagnostic purposes in product development and manufacture.

The LM3S1620 controller includes one I^2C module that provides the ability to communicate to other IC devices over an I^2C bus. The I^2C bus supports devices that can both transmit and receive (write and read) data.

Devices on the I²C bus can be designated as either a master or a slave. The I²C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. The four I²C modes are: Master Transmit, Master Receive, Slave Transmit, and Slave Receive.

A Stellaris[®] I²C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I^2C master and slave can generate interrupts. The I^2C master generates interrupts when a transmit or receive operation completes (or aborts due to an error). The I^2C slave generates interrupts when data has been sent or requested by a master.

1.4.5 System Peripherals

1.4.5.1 **Programmable GPIOs** (see page 164)

General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.

The Stellaris[®] GPIO module is comprised of eight physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time Microcontrollers specification) and supports 11-52 programmable input/output pins. The number of GPIOs available depends on the peripherals being used (see "Signal Tables" on page 445 for the signals available to each GPIO pin).

The GPIO module features programmable interrupt generation as either edge-triggered or level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in both read and write operations through address lines. Pins configured as digital inputs are Schmitt-triggered.

1.4.5.2 Three Programmable Timers (see page 205)

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris[®] General-Purpose Timer Module (GPTM) contains three GPTM blocks. Each GPTM block provides two 16-bit timers/counters that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).

When configured in 32-bit mode, a timer can run as a Real-Time Clock (RTC), one-shot timer or periodic timer. When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event capture or Pulse Width Modulation (PWM) generation.

1.4.5.3 Watchdog Timer (see page 241)

A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or to the failure of an external device to respond in the expected way.

The Stellaris[®] Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

1.4.6 Memory Peripherals

The LM3S1620 controller offers both single-cycle SRAM and single-cycle Flash memory.

1.4.6.1 SRAM (see page 140)

The LM3S1620 static random access memory (SRAM) controller supports 32 KB SRAM. The internal SRAM of the Stellaris[®] devices is located at offset 0x0000.0000 of the device memory map. To reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

1.4.6.2 Flash (see page 141)

The LM3S1620 Flash controller supports 128 KB of flash memory. The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

1.4.7 Additional Features

1.4.7.1 Memory Map (see page 43)

A memory map lists the location of instructions and data in memory. The memory map for the LM3S1620 controller can be found in "Memory Map" on page 43. Register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

The *ARM*® *Cortex*™-*M*3 *Technical Reference Manual* provides further information on the memory map.

1.4.7.2 JTAG TAP Controller (see page 48)

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is composed of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.

1.4.7.3 System Control and Clocks (see page 59)

System control determines the overall operation of the device. It provides information about the device, controls the clocking of the device and individual peripherals, and handles reset detection and reporting.

1.4.7.4 Hibernation Module (see page 120)

The Hibernation module provides logic to switch power off to the main processor and peripherals, and to wake on external or time-based events. The Hibernation module includes power-sequencing logic, a real-time clock with a pair of match registers, low-battery detection circuitry, and interrupt signalling to the processor. It also includes 64 32-bit words of non-volatile memory that can be used for saving state during hibernation.

1.4.8 Hardware Details

Details on the pins and package can be found in the following sections:

- "Pin Diagram" on page 443
- "Signal Tables" on page 445
- "Operating Characteristics" on page 472
- "Electrical Characteristics" on page 473
- "Package Information" on page 485
2 ARM Cortex-M3 Processor Core

The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Features include:

- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Rapid application execution through Harvard architecture characterized by separate buses for instruction and data.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Migration from the ARM7[™] processor family for better performance and power efficiency.
- Full-featured debug solution with a:
 - Serial Wire JTAG Debug Port (SWJ-DP)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
- Optimized for single-cycle flash usage
- Three sleep modes with clock gating for low power
- Single-cycle multiply instruction and hardware divide
- Atomic operations
- ARM Thumb2 mixed 16-/32-bit instruction set
- 1.25 DMIPS/MHz

The Stellaris[®] family of microcontrollers builds on this core to bring high-performance 32-bit computing to cost-sensitive embedded microcontroller applications, such as factory automation and control, industrial control power devices, building and home automation, and stepper motors.

For more information on the ARM Cortex-M3 processor core, see the ARM® Cortex[™]-M3 Technical Reference Manual. For information on SWJ-DP, see the ARM® CoreSight Technical Reference Manual.

2.1 Block Diagram

Figure 2-1. CPU Block Diagram

2.2 Functional Description

Important: The ARM® Cortex[™]-M3 Technical Reference Manual describes all the features of an ARM Cortex-M3 in detail. However, these features differ based on the implementation. This section describes the Stellaris[®] implementation.

Luminary Micro has implemented the ARM Cortex-M3 core as shown in Figure 2-1 on page 38. As noted in the *ARM*® *Cortex*[™]-*M3 Technical Reference Manual*, several Cortex-M3 components are flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.

2.2.1 Serial Wire and JTAG Debug

Luminary Micro has replaced the ARM SW-DP and JTAG-DP with the ARM CoreSight[™]-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. This means Chapter 12, "Debug Port," of the *ARM*® *Cortex[™]-M3 Technical Reference Manual* does not apply to Stellaris[®] devices.

Preliminary

The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the *CoreSight™ Design Kit Technical Reference Manual* for details on SWJ-DP.

2.2.2 Embedded Trace Macrocell (ETM)

ETM was not implemented in the Stellaris[®] devices. This means Chapters 15 and 16 of the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual* can be ignored.

2.2.3 Trace Port Interface Unit (TPIU)

The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace Port Analyzer. The Stellaris[®] devices have implemented TPIU as shown in Figure 2-2 on page 39. This is similar to the non-ETM version described in the *ARM*® *Cortex*™-*M3 Technical Reference Manual*, however, SWJ-DP only provides SWV output for the TPIU.

Figure 2-2. TPIU Block Diagram

2.2.4 ROM Table

The default ROM table was implemented as described in the *ARM*[®] *Cortex*[™]-*M3 Technical Reference Manual*.

2.2.5 Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) is included on the LM3S1620 controller and supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

2.2.6 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC):

Facilitates low-latency exception and interrupt handling

- Controls power management
- Implements system control registers

The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256 levels of priority. The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked (nested) interrupts to enable tail-chaining of interrupts.

You can only fully access the NVIC from privileged mode, but you can pend interrupts in user-mode if you enable the Configuration Control Register (see the ARM® Cortex[™]-M3 Technical Reference Manual). Any other user-mode access causes a bus fault.

All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.

2.2.6.1 Interrupts

The ARM® Cortex[™]-M3 Technical Reference Manual describes the maximum number of interrupts and interrupt priorities. The LM3S1620 microcontroller supports 31 interrupts with eight priority levels.

2.2.6.2 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

Functional Description

The timer consists of three registers:

- A control and status counter to configure its clock, enable the counter, enable the SysTick interrupt, and determine counter status.
- The reload value for the counter, used to provide the counter's wrap value.
- The current value of the counter.

A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris® devices.

When enabled, the timer counts down from the reload value to zero, reloads (wraps) to the value in the SysTick Reload Value register on the next clock edge, then decrements on subsequent clocks. Writing a value of zero to the Reload Value register disables the counter on the next wrap. When the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

Writing to the Current Value register clears the register and the COUNTFLAG status bit. The write does not trigger the SysTick exception logic. On a read, the current value is the value of the register at the time the register is accessed.

If the core is in debug state (halted), the counter will not decrement. The timer is clocked with respect to a reference clock. The reference clock can be the core clock or an external clock source.

SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features. The reset is 0x0000.0000.

Bit/Field	Name	Туре	Reset	Description
31:17	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
16	COUNTFLAG	R/W	0	Count Flag
				Returns 1 if timer counted to 0 since last time this was read. Clears on read by application. If read by the debugger using the DAP, this bit is cleared on read-only if the MasterType bit in the AHB-AP Control Register is set to 0. Otherwise, the COUNTFLAG bit is not changed by the debugger read.
15:3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	CLKSOURCE	R/W	0	Clock Source
				Value Description
				0 External reference clock. (Not implemented for Stellaris microcontrollers.)
				1 Core clock
				If no reference clock is provided, it is held at 1 and so gives the same time as the core clock. The core clock must be at least 2.5 times faster than the reference clock. If it is not, the count values are unpredictable.
1	TICKINT	R/W	0	Tick Interrupt
				Value Description
				0 Counting down to 0 does not generate the interrupt request to the NVIC. Software can use the COUNTFLAG to determine if ever counted to 0.
				1 Counting down to 0 pends the SysTick handler.
0	ENABLE	R/W	0	Enable
				Value Description
				0 Counter disabled.
				1 Counter operates in a multi-shot way. That is, counter loads with the Reload value and then begins counting down. On reaching 0, it sets the COUNTFLAG to 1 and optionally pends the SysTick handler, based on TICKINT. It then loads the Reload value again, and begins counting.

SysTick Reload Value Register

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the counter reaches 0. It can be any value between 1 and 0x00FF.FFFF. A start value

of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0.

Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is any value from 1 to 0x00FF.FFFF. So, if the tick interrupt is required every 100 clock pulses, 99 must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as single shot, then the actual count down must be written. For example, if a tick is next required after 400 clock pulses, 400 must be written into the RELOAD.

Bit/Field	Name	Туре	Reset	Description
31:24	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23:0	RELOAD	W1C	-	Reload Value to load into the SysTick Current Value Register when the counter reaches 0.

SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

Bit/Field	Name	Туре	Reset	Description
31:24	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23:0	CURRENT	W1C	-	Current Value
				Current value at the time the register is accessed. No read-modify-write protection is provided, so change with care.
				This register is write-clear. Writing to it with any value clears the register to 0. Clearing this register also clears the COUNTFLAG bit of the SysTick Control and Status Register.

SysTick Calibration Value Register

The SysTick Calibration Value register is not implemented.

3 Memory Map

The memory map for the LM3S1620 controller is provided in Table 3-1 on page 43.

In this manual, register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map. See also Chapter 4, "Memory Map" in the *ARM*® *Cortex*™*-M3 Technical Reference Manual*.

Table 3-1. Memory Map^a

Start	End	Description	For details on registers, see
			page
Memory			
0x0000.0000	0x0001.FFFF	On-chip flash ^b	144
0x0002.0000	0x1FFF.FFFF	Reserved	-
0x2000.0000	0x2000.7FFF	Bit-banded on-chip SRAM ^c	144
0x2000.8000	0x21FF.FFFF	Reserved	-
0x2200.0000	0x220F.FFFF	Bit-band alias of 0x2000.0000 through 0x200F.FFFF	140
0x2210.0000	0x3FFF.FFFF	Reserved	-
FiRM Peripherals			
0x4000.0000	0x4000.0FFF	Watchdog timer	243
0x4000.1000	0x4000.3FFF	Reserved	-
0x4000.4000	0x4000.4FFF	GPIO Port A	170
0x4000.5000	0x4000.5FFF	GPIO Port B	170
0x4000.6000	0x4000.6FFF	GPIO Port C	170
0x4000.7000	0x4000.7FFF	GPIO Port D	170
0x4000.8000	0x4000.8FFF	SSI0	316
0x4000.9000	0x4000.9FFF	SSI1	316
0x4000.A000	0x4000.BFFF	Reserved	-
0x4000.C000	0x4000.CFFF	UART0	271
0x4000.D000	0x4000.DFFF	UART1	271
0x4000.E000	0x4001.FFFF	Reserved	-
Peripherals			
0x4002.0000	0x4002.07FF	I2C Master 0	355
0x4002.0800	0x4002.0FFF	I2C Slave 0	368
0x4002.1000	0x4002.3FFF	Reserved	-
0x4002.4000	0x4002.4FFF	GPIO Port E	170
0x4002.5000	0x4002.5FFF	GPIO Port F	170
0x4002.6000	0x4002.6FFF	GPIO Port G	170
0x4002.7000	0x4002.7FFF	GPIO Port H	170
0x4002.8000	0x4002.8FFF	PWM	397
0x4002.9000	0x4002.BFFF	Reserved	-
0x4002.C000	0x4002.CFFF	QEI0	430
0x4002.D000	0x4002.FFFF	Reserved	-
0x4003.0000	0x4003.0FFF	Timer0	216

July 26, 2008

Start	End	Description	For details on registers, see page
0x4003.1000	0x4003.1FFF	Timer1	216
0x4003.2000	0x4003.2FFF	Timer2	216
0x4003.3000	0x4003.BFFF	Reserved	-
0x4003.C000	0x4003.CFFF	Analog Comparators	377
0x4003.D000	0x400F.BFFF	Reserved	-
0x400F.C000	0x400F.CFFF	Hibernation Module	127
0x400F.D000	0x400F.DFFF	Flash control	144
0x400F.E000	0x400F.EFFF	System control	68
0x400F.F000	0x41FF.FFFF	Reserved	-
0x4200.0000	0x43FF.FFFF	Bit-banded alias of 0x4000.0000 through 0x400F.FFFF	-
0x4400.0000	0xDFFF.FFFF	Reserved	-
Private Peripheral Bus	1	L	
0xE000.0000	0xE000.0FFF	Instrumentation Trace Macrocell (ITM)	ARM® Cortex™-M3 Technical Reference Manual
0xE000.1000	0xE000.1FFF	Data Watchpoint and Trace (DWT)	ARM® Cortex™-M3 Technical Reference Manual
0xE000.2000	0xE000.2FFF	Flash Patch and Breakpoint (FPB)	ARM® Cortex™-M3 Technical Reference Manual
0xE000.3000	0xE000.DFFF	Reserved	-
0xE000.E000	0xE000.EFFF	Nested Vectored Interrupt Controller (NVIC)	ARM® Cortex™-M3 Technical Reference Manual
0xE000.F000	0xE003.FFFF	Reserved	-
0xE004.0000	0xE004.0FFF	Trace Port Interface Unit (TPIU)	ARM® Cortex™-M3 Technical Reference Manual
0xE004.1000	0xFFFF.FFFF	Reserved	-

a. All reserved space returns a bus fault when read or written.

b. The unavailable flash will bus fault throughout this range.

c. The unavailable SRAM will bus fault throughout this range.

4 Interrupts

The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration.

Table 4-1 on page 45 lists all exception types. Software can set eight priority levels on seven of these exceptions (system handlers) as well as on 31 interrupts (listed in Table 4-2 on page 46).

Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt Priority registers. You also can group priorities by splitting priority levels into pre-emption priorities and subpriorities. All of the interrupt registers are described in Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*™-*M3 Technical Reference Manual*.

Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and a Hard Fault. Note that 0 is the default priority for all the settable priorities.

If you assign the same priority level to two or more interrupts, their hardware priority (the lower position number) determines the order in which the processor activates them. For example, if both GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.

Important: It may take several processor cycles after a write to clear an interrupt source in order for NVIC to see the interrupt source de-assert. This means if the interrupt clear is done as the last action in an interrupt handler, it is possible for the interrupt handler to complete while NVIC sees the interrupt as still asserted, causing the interrupt handler to be re-entered errantly. This can be avoided by either clearing the interrupt source at the beginning of the interrupt handler or by performing a read or write after the write to clear the interrupt source (and flush the write buffer).

See Chapter 5, "Exceptions" and Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual* for more information on exceptions and interrupts.

Exception Type	Vector Number	Priority ^a	Description
-	0	-	Stack top is loaded from first entry of vector table on reset.
Reset	1	-3 (highest)	Invoked on power up and warm reset. On first instruction, drops to lowest priority (and then is called the base level of activation). This is asynchronous.
Non-Maskable Interrupt (NMI)	2	-2	Cannot be stopped or preempted by any exception but reset. This is asynchronous.
			An NMI is only producible by software, using the NVIC Interrupt Control State register.
Hard Fault	3	-1	All classes of Fault, when the fault cannot activate due to priority or the configurable fault handler has been disabled. This is synchronous.
Memory Management	4	settable	MPU mismatch, including access violation and no match. This is synchronous.
			The priority of this exception can be changed.

Table 4-1. Exception Types

Exception Type	Vector Number	Priority ^a	Description
Bus Fault	5	settable	Pre-fetch fault, memory access fault, and other address/memory related faults. This is synchronous when precise and asynchronous when imprecise.
			You can enable or disable this fault.
Usage Fault	6	settable	Usage fault, such as undefined instruction executed or illegal state transition attempt. This is synchronous.
-	7-10	-	Reserved.
SVCall	11	settable	System service call with SVC instruction. This is synchronous.
Debug Monitor	12	settable	Debug monitor (when not halting). This is synchronous, but only active when enabled. It does not activate if lower priority than the current activation.
-	13	-	Reserved.
PendSV	14	settable	Pendable request for system service. This is asynchronous and only pended by software.
SysTick	15	settable	System tick timer has fired. This is asynchronous.
Interrupts	16 and above	settable	Asserted from outside the ARM Cortex-M3 core and fed through the NVIC (prioritized). These are all asynchronous. Table 4-2 on page 46 lists the interrupts on the LM3S1620 controller.

a. 0 is the default priority for all the settable priorities.

Table 4-2. Interrupts

Vector Number	Interrupt Number (Bit in Interrupt Registers)	Description
0-15	-	Processor exceptions
16	0	GPIO Port A
17	1	GPIO Port B
18	2	GPIO Port C
19	3	GPIO Port D
20	4	GPIO Port E
21	5	UART0
22	6	UART1
23	7	SSI0
24	8	I2C0
25	9	PWM Fault
26	10	PWM Generator 0
27	11	PWM Generator 1
28	12	PWM Generator 2
29	13	QEI0
30-33	14-17	Reserved
34	18	Watchdog timer
35	19	Timer0 A
36	20	Timer0 B
37	21	Timer1 A
38	22	Timer1 B
39	23	Timer2 A

Preliminary

Vector Number	Interrupt Number (Bit in Interrupt Registers)	Description
40	24	Timer2 B
41	25	Analog Comparator 0
42	26	Analog Comparator 1
43	27	Analog Comparator 2
44	28	System Control
45	29	Flash Control
46	30	GPIO Port F
47	31	GPIO Port G
48	32	GPIO Port H
49	33	Reserved
50	34	SSI1
51-58	35-42	Reserved
59	43	Hibernation Module
60-63	44-47	Reserved

5 JTAG Interface

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.

The JTAG module has the following features:

- IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
- Four-bit Instruction Register (IR) chain for storing JTAG instructions
- IEEE standard instructions:
 - BYPASS instruction
 - IDCODE instruction
 - SAMPLE/PRELOAD instruction
 - EXTEST instruction
 - INTEST instruction
- ARM additional instructions:
 - APACC instruction
 - DPACC instruction
 - ABORT instruction
- Integrated ARM Serial Wire Debug (SWD)

See the *ARM*® *Cortex*™-*M3 Technical Reference Manual* for more information on the ARM JTAG controller.

5.1 Block Diagram

5.2 Functional Description

A high-level conceptual drawing of the JTAG module is shown in Figure 5-1 on page 49. The JTAG module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and TMS inputs. The current state of the TAP controller depends on the current value of TRST and the sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel load registers. The current state of the TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load register determines which DR chain is captured, shifted, or updated during the sequencing of the TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not capture, shift, or update any of the chains. Instructions that are not implemented decode to the BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see Table 5-2 on page 55 for a list of implemented instructions).

See "JTAG and Boundary Scan" on page 481 for JTAG timing diagrams.

5.2.1 JTAG Interface Pins

The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and their associated reset state are given in Table 5-1 on page 50. Detailed information on each pin follows.

Pin Name	Data Direction	Internal Pull-Up	Internal Pull-Down	Drive Strength	Drive Value
TRST	Input	Enabled	Disabled	N/A	N/A
TCK	Input	Enabled	Disabled	N/A	N/A
TMS	Input	Enabled	Disabled	N/A	N/A
TDI	Input	Enabled	Disabled	N/A	N/A
TDO	Output	Enabled	Disabled	2-mA driver	High-Z

Table 5-1. JTAG Port Pins Reset State

5.2.1.1 Test Reset Input (TRST)

The $\overline{\text{TRST}}$ pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP controller and associated JTAG circuitry. When $\overline{\text{TRST}}$ is asserted, the TAP controller resets to the Test-Logic-Reset state and remains there while $\overline{\text{TRST}}$ is asserted. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE.

By default, the internal pull-up resistor on the $\overline{\text{TRST}}$ pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled on PB7/TRST; otherwise JTAG communication could be lost.

5.2.1.2 Test Clock Input (TCK)

The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers that are daisy-chained together can synchronously communicate serial test data between components. During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors can be turned off to save internal power as long as the TCK pin is constantly being driven by an external source.

5.2.1.3 Test Mode Select (TMS)

The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered. Because the TMS pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TMS to change on the falling edge of TCK.

Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine can be seen in its entirety in Figure 5-2 on page 52.

By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC1/TMS; otherwise JTAG communication could be lost.

5.2.1.4 Test Data Input (TDI)

The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TDI to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC2/TDI; otherwise JTAG communication could be lost.

5.2.1.5 Test Data Output (TDO)

The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the *IEEE Standard 1149.1* expects the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable during certain TAP controller states.

5.2.2 JTAG TAP Controller

The JTAG TAP controller state machine is shown in Figure 5-2 on page 52. The TAP controller state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR) or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed information on the function of the TAP controller and the operations that occur in each state, please refer to *IEEE Standard 1149.1*.

Figure 5-2. Test Access Port State Machine

5.2.3 Shift Registers

The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift register chain samples specific information during the TAP controller's CAPTURE states and allows this information to be shifted out of TDO during the TAP controller's SHIFT states. While the sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register on TDI. This new data is stored in the parallel load register during the TAP controller's UPDATE states. Each of the shift registers is discussed in detail in "Register Descriptions" on page 55.

5.2.4 Operational Considerations

There are certain operational considerations when using the JTAG module. Because the JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these pins must be considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the method for switching between these two operational modes is described below.

5.2.4.1 GPIO Functionality

When the controller is reset with either a POR or \overline{RST} , the JTAG/SWD port pins default to their JTAG/SWD configurations. The default configuration includes enabling digital functionality (setting **GPIODEN** to 1), enabling the pull-up resistors (setting **GPIOPUR** to 1), and enabling the alternate hardware function (setting **GPIOAFSEL** to 1) for the PB7 and PC[3:0] JTAG/SWD pins.

It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and PC[3:0] in the **GPIOAFSEL** register. If the user does not require the JTAG/SWD port for debugging or board-level testing, this provides five more GPIOs for use in the design.

Caution – It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris[®] microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 180) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 190) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 191) have been set to 1.

Recovering a "Locked" Device

Note: Performing the below sequence will cause the nonvolatile registers discussed in "Nonvolatile Register Programming" on page 143 to be restored to their factory default values. The mass erase of the flash memory caused by the below sequence occurs prior to the nonvolatile registers being restored.

If software configures any of the JTAG/SWD pins as GPIO and loses the ability to communicate with the debugger, there is a debug sequence that can be used to recover the device. Performing a total of ten JTAG-to-SWD and SWD-to-JTAG switch sequences while holding the device in reset mass erases the flash memory. The sequence to recover the device is:

- **1.** Assert and hold the \overline{RST} signal.
- 2. Perform the JTAG-to-SWD switch sequence.
- 3. Perform the SWD-to-JTAG switch sequence.
- 4. Perform the JTAG-to-SWD switch sequence.
- 5. Perform the SWD-to-JTAG switch sequence.
- 6. Perform the JTAG-to-SWD switch sequence.
- 7. Perform the SWD-to-JTAG switch sequence.
- 8. Perform the JTAG-to-SWD switch sequence.
- 9. Perform the SWD-to-JTAG switch sequence.
- 10. Perform the JTAG-to-SWD switch sequence.
- **11.** Perform the SWD-to-JTAG switch sequence.

- **12.** Release the \overline{RST} signal.
- 13. Wait 400 ms.
- **14.** Power-cycle the device.

The JTAG-to-SWD and SWD-to-JTAG switch sequences are described in "ARM Serial Wire Debug (SWD)" on page 54. When performing switch sequences for the purpose of recovering the debug capabilities of the device, only steps 1 and 2 of the switch sequence need to be performed.

5.2.4.2 ARM Serial Wire Debug (SWD)

In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire debugger must be able to connect to the Cortex-M3 core without having to perform, or have any knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the SWD session begins.

The preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the following states: Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, and Test Logic Reset states.

Stepping through this sequences of the TAP state machine enables the SWD interface and disables the JTAG interface. For more information on this operation and the SWD interface, see the ARM® *Cortex*^m-*M3* Technical Reference Manual and the ARM® CoreSight Technical Reference Manual.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG TAP controller is not fully compliant to the *IEEE Standard 1149.1*. This is the only instance where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low probability of this sequence occurring during normal operation of the TAP controller, it should not affect normal performance of the JTAG interface.

JTAG-to-SWD Switching

To switch the operating mode of the Debug Access Port (DAP) from JTAG to SWD mode, the external debug hardware must send a switch sequence to the device. The 16-bit switch sequence for switching to SWD mode is defined as b1110011110011110, transmitted LSB first. This can also be represented as 16'hE79E when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

- 1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.
- 2. Send the 16-bit JTAG-to-SWD switch sequence, 16'hE79E.
- Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in SWD mode, before sending the switch sequence, the SWD goes into the line reset state.

SWD-to-JTAG Switching

To switch the operating mode of the Debug Access Port (DAP) from SWD to JTAG mode, the external debug hardware must send a switch sequence to the device. The 16-bit switch sequence for switching to JTAG mode is defined as b1110011100111100, transmitted LSB first. This can also be represented as 16'hE73C when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

- 1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.
- 2. Send the 16-bit SWD-to-JTAG switch sequence, 16'hE73C.
- 3. Send at least 5 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in JTAG mode, before sending the switch sequence, the JTAG goes into the Test Logic Reset state.

5.3 Initialization and Configuration

After a Power-On-Reset or an external reset (\mathbb{RST}), the JTAG pins are automatically configured for JTAG communication. No user-defined initialization or configuration is needed. However, if the user application changes these pins to their GPIO function, they must be configured back to their JTAG functionality before JTAG communication can be restored. This is done by enabling the five JTAG pins ($\mathbb{PB7}$ and $\mathbb{PC}[3:0]$) for their alternate function using the **GPIOAFSEL** register.

5.4 Register Descriptions

There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The registers within the JTAG controller are all accessed serially through the TAP Controller. The registers can be broken down into two main categories: Instruction Registers and Data Registers.

5.4.1 Instruction Register (IR)

The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain with a parallel load register connected between the JTAG TDI and TDO pins. When the TAP Controller is placed in the correct states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the chain and updated, they are interpreted as the current instruction. The decode of the Instruction Register bits is shown in Table 5-2 on page 55. A detailed explanation of each instruction, along with its associated Data Register, follows.

IR[3:0]	Instruction	Description
0000	EXTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction onto the pads.
0001	INTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction into the controller.
0010	SAMPLE / PRELOAD	Captures the current I/O values and shifts the sampled values out of the Boundary Scan Chain while new preload data is shifted in.
1000	ABORT	Shifts data into the ARM Debug Port Abort Register.
1010	DPACC	Shifts data into and out of the ARM DP Access Register.
1011	APACC	Shifts data into and out of the ARM AC Access Register.
1110	IDCODE	Loads manufacturing information defined by the <i>IEEE Standard 1149.1</i> into the IDCODE chain and shifts it out.
1111	BYPASS	Connects TDI to TDO through a single Shift Register chain.
All Others	Reserved	Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.

Table 5-2. JTAG Instruction Register Commands

5.4.1.1 EXTEST Instruction

The EXTEST instruction does not have an associated Data Register chain. The EXTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register,

the preloaded data in the Boundary Scan Data Register associated with the outputs and output enables are used to drive the GPIO pads rather than the signals coming from the core. This allows tests to be developed that drive known values out of the controller, which can be used to verify connectivity.

5.4.1.2 INTEST Instruction

The INTEST instruction does not have an associated Data Register chain. The INTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive the signals going into the core rather than the signals coming from the GPIO pads. This allows tests to be developed that drive known values into the controller, which can be used for testing. It is important to note that although the RST input pin is on the Boundary Scan Data Register chain, it is only observable.

5.4.1.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads new test data. Each GPIO pad has an associated input, output, and output enable signal. When the TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while the TAP controller is in the Shift DR state and can be used for observation or comparison in various tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the parallel load registers when the TAP controller enters the Update DR state. This update of the parallel load register preloads data into the Boundary Scan Data Register that is associated with each input, output, and output enable. This preloaded data can be used with the EXTEST and INTEST instructions to drive data into or out of the controller. Please see "Boundary Scan Data Register" on page 58 for more information.

5.4.1.4 ABORT Instruction

The ABORT instruction connects the associated ABORT Data Register chain between TDI and TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates a DAP abort of a previous request. Please see the "ABORT Data Register" on page 58 for more information.

5.4.1.5 DPACC Instruction

The DPACC instruction connects the associated DPACC Data Register chain between TDI and TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to the ARM debug and status registers. Please see "DPACC Data Register" on page 58 for more information.

5.4.1.6 APACC Instruction

The APACC instruction connects the associated APACC Data Register chain between TDI and TDO. This instruction provides read and write access to the APACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this

register allows read and write access to internal components and buses through the Debug Port. Please see "APACC Data Register" on page 58 for more information.

5.4.1.7 IDCODE Instruction

The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and TDO. This instruction provides information on the manufacturer, part number, and version of the ARM core. This information can be used by testing equipment and debuggers to automatically configure their input and output data streams. IDCODE is the default instruction that is loaded into the JTAG Instruction Register when a power-on-reset (POR) is asserted, TRST is asserted, or the Test-Logic-Reset state is entered. Please see "IDCODE Data Register" on page 57 for more information.

5.4.1.8 BYPASS Instruction

The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain by loading them with the BYPASS instruction. Please see "BYPASS Data Register" on page 57 for more information.

5.4.2 Data Registers

The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan, APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed in the following sections.

5.4.2.1 IDCODE Data Register

The format for the 32-bit IDCODE Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-3 on page 57. The standard requires that every JTAG-compliant device implement either the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB of 0. This allows auto configuration test tools to determine which instruction is the default instruction.

The major uses of the JTAG port are for manufacturer testing of component assembly, and program development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction outputs a value of 0x3BA00477. This value indicates an ARM Cortex-M3, Version 1 processor. This allows the debuggers to automatically configure themselves to work correctly with the Cortex-M3 during debug.

Figure 5-3. IDCODE Register Format

5.4.2.2 BYPASS Data Register

The format for the 1-bit BYPASS Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-4 on page 58. The standard requires that every JTAG-compliant device implement either the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS

Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB of 1. This allows auto configuration test tools to determine which instruction is the default instruction.

Figure 5-4. BYPASS Register Format

5.4.2.3 Boundary Scan Data Register

The format of the Boundary Scan Data Register is shown in Figure 5-5 on page 58. Each GPIO pin, in a counter-clockwise direction from the JTAG port pins, is included in the Boundary Scan Data Register. Each GPIO pin has three associated digital signals that are included in the chain. These signals are input, output, and output enable, and are arranged in that order as can be seen in the figure. In addition to the GPIO pins, the controller reset pin, \overline{RST} , is included in the chain. Because the reset pin is always an input, only the input signal is included in the Data Register chain.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the input, output, and output enable from each digital pad are sampled and then shifted out of the chain to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with the EXTEST and INTEST instructions. These instructions either force data out of the controller, with the EXTEST instruction, or into the controller, with the INTEST instruction.

Figure 5-5. Boundary Scan Register Format

For detailed information on the order of the input, output, and output enable bits for each of the GPIO ports, please refer to the Stellaris[®] Family Boundary Scan Description Language (BSDL) files, downloadable from www.luminarymicro.com.

5.4.2.4 APACC Data Register

The format for the 35-bit APACC Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

5.4.2.5 DPACC Data Register

The format for the 35-bit DPACC Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual.*

5.4.2.6 ABORT Data Register

The format for the 35-bit ABORT Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual.*

6 System Control

System control determines the overall operation of the device. It provides information about the device, controls the clocking to the core and individual peripherals, and handles reset detection and reporting.

6.1 Functional Description

The System Control module provides the following capabilities:

- Device identification, see "Device Identification" on page 59
- Local control, such as reset (see "Reset Control" on page 59), power (see "Power Control" on page 62) and clock control (see "Clock Control" on page 62)
- System control (Run, Sleep, and Deep-Sleep modes), see "System Control" on page 65

6.1.1 Device Identification

Seven read-only registers provide software with information on the microcontroller, such as version, part number, SRAM size, flash size, and other features. See the **DID0**, **DID1**, and **DC0-DC4** registers.

6.1.2 Reset Control

This section discusses aspects of hardware functions during reset as well as system software requirements following the reset sequence.

6.1.2.1 CMOD0 and CMOD1 Test-Mode Control Pins

Two pins, CMOD0 and CMOD1, are defined for use by Luminary Micro for testing the devices during manufacture. They have no end-user function and should not be used. The CMOD pins should be connected to ground.

6.1.2.2 Reset Sources

The controller has five sources of reset:

- **1.** External reset input pin (\overline{RST}) assertion, see " \overline{RST} Pin Assertion" on page 59.
- 2. Power-on reset (POR), see "Power-On Reset (POR)" on page 60.
- 3. Internal brown-out (BOR) detector, see "Brown-Out Reset (BOR)" on page 60.
- 4. Software-initiated reset (with the software reset registers), see "Software Reset" on page 61.
- 5. A watchdog timer reset condition violation, see "Watchdog Timer Reset" on page 61.

After a reset, the **Reset Cause (RESC)** register is set with the reset cause. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an internal POR is the cause, and then all the other bits in the **RESC** register are cleared except for the POR indicator.

6.1.2.3 **RST** Pin Assertion

The external reset pin (\mathbb{RST}) resets the controller. This resets the core and all the peripherals except the JTAG TAP controller (see "JTAG Interface" on page 48). The external reset sequence is as follows:

- **1.** The external reset pin (\overline{RST}) is asserted and then de-asserted.
- The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution. A few clocks cycles from RST de-assertion to the start of the reset sequence is necessary for synchronization.

The external reset timing is shown in Figure 21-10 on page 483.

6.1.2.4 Power-On Reset (POR)

The Power-On Reset (POR) circuit monitors the power supply voltage (V_{DD}). The POR circuit generates a reset signal to the internal logic when the power supply ramp reaches a threshold value (V_{TH}). If the application only uses the POR circuit, the \overline{RST} input needs to be connected to the power supply (V_{DD}) through a pull-up resistor (1K to 10K Ω).

The device must be operating within the specified operating parameters at the point when the on-chip power-on reset pulse is complete. The 3.3-V power supply to the device must reach 3.0 V within 10 msec of it crossing 2.0 V to guarantee proper operation. For applications that require the use of an external reset to hold the device in reset longer than the internal POR, the \overline{RST} input may be used with the circuit as shown in Figure 6-1 on page 60.

Figure 6-1. External Circuitry to Extend Reset

The R_1 and C_1 components define the power-on delay. The R_2 resistor mitigates any leakage from the \overline{RST} input. The diode (D₁) discharges C₁ rapidly when the power supply is turned off.

The Power-On Reset sequence is as follows:

- **1.** The controller waits for the later of external reset (\overline{RST}) or internal POR to go inactive.
- 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The internal POR is only active on the initial power-up of the controller. The Power-On Reset timing is shown in Figure 21-11 on page 484.

Note: The power-on reset also resets the JTAG controller. An external reset does not.

6.1.2.5 Brown-Out Reset (BOR)

A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used to reset the controller. This is initially disabled and may be enabled by software.

The system provides a brown-out detection circuit that triggers if the power supply (V_{DD}) drops below a brown-out threshold voltage (V_{BTH}) . If a brown-out condition is detected, the system may generate a controller interrupt or a system reset.

Brown-out resets are controlled with the **Power-On and Brown-Out Reset Control (PBORCTL)** register. The BORIOR bit in the **PBORCTL** register must be set for a brown-out condition to trigger a reset.

The brown-out reset is equivelent to an assertion of the external \overline{RST} input and the reset is held active until the proper V_{DD} level is restored. The **RESC** register can be examined in the reset interrupt handler to determine if a Brown-Out condition was the cause of the reset, thus allowing software to determine what actions are required to recover.

The internal Brown-Out Reset timing is shown in Figure 21-12 on page 484.

6.1.2.6 Software Reset

Software can reset a specific peripheral or generate a reset to the entire system .

Peripherals can be individually reset by software via three registers that control reset signals to each peripheral (see the **SRCRn** registers). If the bit position corresponding to a peripheral is set and subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see "System Control" on page 65). Note that all reset signals for all clocks of the specified unit are asserted as a result of a software-initiated reset.

The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3 Application Interrupt and Reset Control register resets the entire system including the core. The software-initiated system reset sequence is as follows:

- 1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control register.
- 2. An internal reset is asserted.
- 3. The internal reset is deasserted and the controller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The software-initiated system reset timing is shown in Figure 21-13 on page 484.

6.1.2.7 Watchdog Timer Reset

The watchdog timer module's function is to prevent system hangs. The watchdog timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out.

After the first time-out event, the 32-bit counter is reloaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset sequence is as follows:

- 1. The watchdog timer times out for the second time without being serviced.
- 2. An internal reset is asserted.
- 3. The internal reset is released and the controller loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The watchdog reset timing is shown in Figure 21-14 on page 484.

6.1.3 Power Control

The Stellaris[®] microcontroller provides an integrated LDO regulator that may be used to provide power to the majority of the controller's internal logic. The LDO regulator provides software a mechanism to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V to 2.75 V (inclusive)—or 2.5 V \pm 10%. The adjustment is made by changing the value of the VADJ field in the **LDO Power Control (LDOPCTL)** register. Figure 6-2 on page 62 shows the power architecture.

Note: On the printed circuit board, use the LDO output as the source of VDD25 input. In addition, the LDO requires decoupling capacitors. See "On-Chip Low Drop-Out (LDO) Regulator Characteristics" on page 474.

6.1.4 Clock Control

System control determines the control of clocks in this part.

6.1.4.1 Fundamental Clock Sources

There are four clock sources for use in the device:

- Internal Oscillator (IOSC): The internal oscillator is an on-chip clock source. It does not require the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%. Applications that do not depend on accurate clock sources may use this clock source to reduce system cost. The internal oscillator is the clock source the device uses during and following POR. If the main oscillator is required, software must enable the main oscillator following reset and allow the main oscillator to stabilize before changing the clock reference.
- Main Oscillator (MOSC): The main oscillator provides a frequency-accurate clock source by one of two means: an external single-ended clock source is connected to the OSCO input pin, or an external crystal is connected across the OSCO input and OSC1 output pins. If the PLL is being used, the crystal value must be one of the supported frequencies between 3.579545 MHz through 8.192 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC through the specified speed of the device. The supported crystals are listed in the XTAL bit field in the RCC register (see page 77).
- Internal 30-kHz Oscillator: The internal 30-kHz oscillator is similar to the internal oscillator, except that it provides an operational frequency of 30 kHz ± 50%. It is intended for use during Deep-Sleep power-saving modes. This power-savings mode benefits from reduced internal switching and also allows the main oscillator to be powered down.
- External Real-Time Oscillator: The external real-time oscillator provides a low-frequency, accurate clock reference. It is intended to provide the system with a real-time clock source. The real-time oscillator is part of the Hibernation Module ("Hibernation Module" on page 120) and may also provide an accurate source of Deep-Sleep or Hibernate mode power savings.

The internal system clock (SysClk), is derived from any of the four sources plus two others: the output of the main internal PLL, and the internal oscillator divided by four (3 MHz \pm 30%). The frequency of the PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive).

The **Run-Mode Clock Configuration (RCC)** and **Run-Mode Clock Configuration 2 (RCC2)** registers provide control for the system clock. The **RCC2** register is provided to extend fields that offer additional encodings over the **RCC** register. When used, the **RCC2** register field values are used by the logic over the corresponding field in the **RCC** register. In particular, **RCC2** provides for a larger assortment of clock configuration options.

Figure 6-3 on page 64 shows the logic for the main clock tree. The peripheral blocks are driven by the system clock signal and can be programmatically enabled/disabled. The PWM clock signal is a synchronous divide by of the system clock to provide the PWM circuit with more range.

Figure 6-3. Main Clock Tree

a. Control provided by RCC register bit/field.

b. Control provided by RCC register bit/field or RCC2 register bit/field, if overridden with RCC2 register bit USERCC2.

c. Control provided by RCC2 register bit/field.

d. Also may be controlled by DSLPCLKCFG when in deep sleep mode.

Note: The figure above shows all features available on all Stellaris® Fury-class devices.

6.1.4.2 Crystal Configuration for the Main Oscillator (MOSC)

The main oscillator supports the use of a select number of crystals. If the main oscillator is used by the PLL as a reference clock, the supported range of crystals is 3.579545 to 8.192 MHz, otherwise, the range of supported crystals is 1 to 8.192 MHz.

The XTAL bit in the **RCC** register (see page 77) describes the available crystal choices and default programming values.

Software configures the **RCC** register XTAL field with the crystal number. If the PLL is used in the design, the XTAL field value is internally translated to the PLL settings.

6.1.4.3 Main PLL Frequency Configuration

The main PLL is disabled by default during power-on reset and is enabled later by software if required. Software specifies the output divisor to set the system clock frequency, and enables the main PLL to drive the output.

If the main oscillator provides the clock reference to the main PLL, the translation provided by hardware and used to program the PLL is available for software in the **XTAL to PLL Translation** (**PLLCFG**) register (see page 81). The internal translation provides a translation within \pm 1% of the targeted PLL VCO frequency.

The Crystal Value field (XTAL) on page 77 describes the available crystal choices and default programming of the **PLLCFG** register. The crystal number is written into the XTAL field of the **Run-Mode Clock Configuration (RCC)** register. Any time the XTAL field changes, the new settings are translated and the internal PLL settings are updated.

6.1.4.4 PLL Modes

The PLL has two modes of operation: Normal and Power-Down

- Normal: The PLL multiplies the input clock reference and drives the output.
- Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

The modes are programmed using the RCC/RCC2 register fields (see page 77 and page 82).

6.1.4.5 PLL Operation

If a PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks) to the new setting. The time between the configuration change and relock is T_{READY} (see Table 21-7 on page 476). During the relock time, the affected PLL is not usable as a clock reference.

The PLL is changed by one of the following:

- Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.
- Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure the T_{READY} requirement. The counter is clocked by the main oscillator. The range of the main oscillator has been taken into account and the down counter is set to 0x1200 (that is, ~600 µs at an 8.192 MHz external oscillator clock). Hardware is provided to keep the PLL from being used as a system clock until the T_{READY} condition is met after one of the two changes above. It is the user's responsibility to have a stable clock source (like the main oscillator) before the **RCC/RCC2** register is switched to use the PLL.

If the main PLL is enabled and the system clock is switched to use the PLL in one step, the system control hardware continues to clock the controller from the oscillator selected by the **RCC/RCC2** register until the main PLL is stable (T_{READY} time met), after which it changes to the PLL. Software can use many methods to ensure that the system is clocked from the main PLL, including periodically polling the PLLLRIS bit in the **Raw Interrupt Status (RIS)** register, and enabling the PLL Lock interrupt.

6.1.5 System Control

For power-savings purposes, the **RCGCn**, **SCGCn**, and **DCGCn** registers control the clock gating logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep mode, respectively.

In Run mode, the processor executes code. In Sleep mode, the clock frequency of the active peripherals is unchanged, but the processor is not clocked and therefore no longer executes code. In Deep-Sleep mode, the clock frequency of the active peripherals may change (depending on the Run mode clock configuration) in addition to the processor clock being stopped. An interrupt returns the device to Run mode from one of the sleep modes; the sleep modes are entered on request from the code. Each mode is described in more detail below.

There are four levels of operation for the device defined as:

- Run Mode. Run mode provides normal operation of the processor and all of the peripherals that are currently enabled by the RCGCn registers. The system clock can be any of the available clock sources including the PLL.
- Sleep Mode. Sleep mode is entered by the Cortex-M3 core executing a WFI (Wait for Interrupt) instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® CortexTM-M3 Technical Reference Manual for more details.

In Sleep mode, the Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **SCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when the auto-clock gating is disabled. The system clock has the same source and frequency as that during Run mode.

■ **Deep-Sleep Mode.** Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® CortexTM-M3 Technical Reference Manual for more details.

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **DCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when auto-clock gating is disabled. The system clock source is the main oscillator by default or the internal oscillator specified in the **DSLPCLKCFG** register if one is enabled. When the **DSLPCLKCFG** register is used, the internal oscillator is powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the time of the WFI instruction, hardware will power the PLL down and override the SYSDIV field of the active **RCC/RCC2** register to be /16 or /64, respectively. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep duration.

Hibernate Mode. In this mode, the power supplies are turned off to the main part of the device and only the Hibernation module's circuitry is active. An external wake event or RTC event is required to bring the device back to Run mode. The Cortex-M3 processor and peripherals outside of the Hibernation module see a normal "power on" sequence and the processor starts running code. It can determine that it has been restarted from Hibernate mode by inspecting the Hibernation module registers.

6.2 Initialization and Configuration

The PLL is configured using direct register writes to the **RCC/RCC2** register. If the **RCC2** register is being used, the USERCC2 bit must be set and the appropriate **RCC2** bit/field is used. The steps required to successfully change the PLL-based system clock are:

- Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS bit in the RCC register. This configures the system to run off a "raw" clock source (using the main oscillator or internal oscillator) and allows for the new PLL configuration to be validated before switching the system clock to the PLL.
- 2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN bit in RCC/RCC2. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN bit powers and enables the PLL and its output.
- 3. Select the desired system divider (SYSDIV) in RCC/RCC2 and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller.
- 4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.
- 5. Enable use of the PLL by clearing the BYPASS bit in RCC/RCC2.

6.3 Register Map

Table 6-1 on page 67 lists the System Control registers, grouped by function. The offset listed is a hexadecimal increment to the register's address, relative to the System Control base address of 0x400F.E000.

Note: Spaces in the System Control register space that are not used are reserved for future or internal use by Luminary Micro, Inc. Software should not modify any reserved memory address.

Offset	Name	Туре	Reset	Description	See page
0x000	DID0	RO	-	Device Identification 0	69
0x004	DID1	RO	-	Device Identification 1	85
0x008	DC0	RO	0x007F.003F	Device Capabilities 0	87
0x010	DC1	RO	0x0010.70DF	Device Capabilities 1	88
0x014	DC2	RO	0x0707.1133	Device Capabilities 2	90
0x018	DC3	RO	0x8F00.BFFF	Device Capabilities 3	92
0x01C	DC4	RO	0x0000.00FF	Device Capabilities 4	94
0x030	PBORCTL	R/W	0x0000.7FFD	Brown-Out Reset Control	71
0x034	LDOPCTL	R/W	0x0000.0000	LDO Power Control	72
0x040	SRCR0	R/W	0x0000000	Software Reset Control 0	116
0x044	SRCR1	R/W	0x0000000	Software Reset Control 1	117
0x048	SRCR2	R/W	0x0000000	Software Reset Control 2	119
0x050	RIS	RO	0x0000.0000	Raw Interrupt Status	73
0x054	IMC	R/W	0x0000.0000	Interrupt Mask Control	74
0x058	MISC	R/W1C	0x0000.0000	Masked Interrupt Status and Clear	75
0x05C	RESC	R/W	-	Reset Cause	76

Table 6-1. System Control Register Map

July 26, 2008

Offset	Name	Туре	Reset	Description	See page
0x060	RCC	R/W	0x078E.3AD1	Run-Mode Clock Configuration	77
0x064	PLLCFG	RO	-	XTAL to PLL Translation	81
0x070	RCC2	R/W	0x0780.2810	Run-Mode Clock Configuration 2	82
0x100	RCGC0	R/W	0x00000040	Run Mode Clock Gating Control Register 0	95
0x104	RCGC1	R/W	0x0000000	Run Mode Clock Gating Control Register 1	101
0x108	RCGC2	R/W	0x0000000	Run Mode Clock Gating Control Register 2	110
0x110	SCGC0	R/W	0x00000040	Sleep Mode Clock Gating Control Register 0	97
0x114	SCGC1	R/W	0x0000000	Sleep Mode Clock Gating Control Register 1	104
0x118	SCGC2	R/W	0x0000000	Sleep Mode Clock Gating Control Register 2	112
0x120	DCGC0	R/W	0x00000040	Deep Sleep Mode Clock Gating Control Register 0	99
0x124	DCGC1	R/W	0x0000000	Deep Sleep Mode Clock Gating Control Register 1	107
0x128	DCGC2	R/W	0x0000000	Deep Sleep Mode Clock Gating Control Register 2	114
0x144	DSLPCLKCFG	R/W	0x0780.0000	Deep Sleep Clock Configuration	84

6.4 Register Descriptions

All addresses given are relative to the System Control base address of 0x400F.E000.

Register 1: Device Identification 0 (DID0), offset 0x000

This register identifies the version of the device.

Dev	vice Ident	tificatio	on 0 (Dll	D0)															
Base Offse Type	e 0x400F.E0 et 0x000 RO, reset	-																	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	reserved		VER			res	erved				I	CLA	ASS		I				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
				MA.	JOR			MINOR											
Type Reset	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -			
Bit/Field			Nam	ne	Type Reset			Des	cription										
31 res				ved	R	0	0	Soft com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.										
30:28			VER		R	0	0x1	DID0 Version											
								This field defines the DID0 register format version. The version number is numeric. The value of the VER field is encoded as follows:											
								Val	ue Desc	ription									
									0x1 Second version of the DID0 register format.										
27:24 reserved				R	0	0x0	Soft com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.											
	23:16		CLAS	SS	R	0	0x1	Dev	Device Class										
								The CLASS field value identifies the internal design from which all sets are generated for all devices in a particular product line. The c field value is changed for new product lines, for changes in fab pr (for example, a remap or shrink), or any case where the MAJOR or M fields require differentiation from prior devices. The value of the c field is encoded as follows (all other encodings are reserved):								all mask e CLASS process or MINOR e CLASS			
								Val	ue Desc	ription									

0x1 Stellaris® Fury-class devices.

Bit/Field	Name	Туре	Reset	Description
15:8	MAJOR	RO	-	Major Revision
				This field specifies the major revision number of the device. The major revision reflects changes to base layers of the design. The major revision number is indicated in the part number as a letter (A for first revision, B for second, and so on). This field is encoded as follows:
				Value Description
				0x0 Revision A (initial device)
				0x1 Revision B (first base layer revision)
				0x2 Revision C (second base layer revision)
				and so on.
7:0	MINOR	RO	-	Minor Revision
				This field specifies the minor revision number of the device. The minor revision reflects changes to the metal layers of the design. The MINOR field value is reset when the MAJOR field is changed. This field is numeric and is encoded as follows:
				Value Description
				0x0 Initial device, or a major revision update.
				0x1 First metal layer change.
				0x2 Second metal layer change.
				and so on.

Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030

This register is responsible for controlling reset conditions after initial power-on reset.

Base Offse Type	0x400F.E t 0x030 R/W, rese	000 et 0x0000	0.7FFD	-														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	reserved												1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	I						reser	ved					1 1		BORIOR	reserved		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit/Field			Name		Туре		Reset	Description										
31:2			reserved RO			0x0	Soft com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.										
1			BORIOR		R/W		0	BOF	BOR Interrupt or Reset									
								This rese	This bit controls how a BOR event is signaled to the controller. If set, a reset is signaled. Otherwise, an interrupt is signaled.									
0			reserved		RO		0	Soft com pres	Software should not rely on the value of a reserved bit. To prov compatibility with future products, the value of a reserved bit sh preserved across a read-modify-write operation.						vide nould be			

Brown-Out Reset Control (PBORCTL)

Register 3: LDO Power Control (LDOPCTL), offset 0x034

The <code>VADJ</code> field in this register adjusts the on-chip output voltage (V $_{OUT}$).

LDC) Power	- Contro	I (LDO	PCTL)																	
Base Offse Type	0x400F.E et 0x034 R/W, rese	E000 et 0x0000	.0000																		
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16					
				1		1		rese	rved	1 1		1		1	1	1					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0					
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0					
				1	rese	erved				1		1	. VA	'DJ	'''						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0					
E	Bit/Field		Nan	ne	Ту	pe	Reset	Des	cription												
31:6 1			reser	ved	R	0	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.													
	5:0		VAD	DJ	R/W		0x0	LDC	Output	Voltage											
								This the	field se VADJ fie	ts the one	-chip ou ovided b	tput volta elow.	age. The	progran	nming va	alues for					
								Valu	ue	V _{OUT} (V)											
								0x0	0	2.50											
								0x0	1	2.45											
								0x0	2 2.40												
								0x0	3	2.35											
								0x0	4	2.30											
								0x0	5	2.25											
								0x0	6-0x3F	Reserve	d										
								0x1	В	2.75											
								0x1	С	2.70											
								0x1	D	2.65											
								0x1	E -	2.60											
									F	2.55											
Register 4: Raw Interrupt Status (RIS), offset 0x050

Central location for system control raw interrupts. These are set and cleared by hardware.

Rav	v Interru	upt Stati	us (RIS)												
Base Offse Type	0x400F.E et 0x050 RO, rese	Ξ000 et 0x0000.	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I	1				rese	rved	1 1		1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	•	•	reserved	l		PLLLRIS reserved BORRIS								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			N		т.		Deset	D								
Bit/Field Name Type Reset Description																
	31:7		reserved		RO		0	Soft	Software should not rely on the value of a reserved bit. To pro							
								com	patibility	with futu	ire prod	ucts, the	value of	a reser	ved bit sh	nould be
								pres	served a	cross a re	ead-mo	dify-write	operation	on.		
	6		PLLL	RIS	R	0	0	PLL	Lock R	aw Interru	upt Stati	us				
								This	This bit is set when the PLL TREADY Timer asserts.							
												READT				
	5:2		reser	ved	R	0	0	Soft	ware sh	ould not i	rely on t	he value	of a res	erved b	it. To prov	vide
								com	patibility	with futu	ire prod ead-moi	ucts, the dify-write	value of	a reser	ved bit sr	iould be
								proc					oporatio			
	1		BORI	RIS	R	0	0	Brov	wn-Out F	Reset Ra	w Interr	upt Statu	IS			
								This	bit is th	e raw inte	errupt st	tatus for	any brov	vn-out c	onditions	. If set,
								a br	own-out	condition	n is curre	ently acti	ve. This	is an ur	nregistere	d signal
								fron bit ir	the IMC	register	is set ar	of the BO	n interruj RTOR bit	in the P	BORCTI	register
								is cl	eared.							. egiotoi
	0			und		~	0	Сс 4	wara ch	مناطمط	alv ar t	ha value	of a re-	anuad b	it To prov	/ido
	U		reser	veu	R	0	U	com	ware sn patibilitv	with futu	ire prod	ucts, the	value of	a reser	ved bit sh	nue nould be
								pres	served a	cross a re	ead-mo	dify-write	operatio	on.		

Register 5: Interrupt Mask Control (IMC), offset 0x054

Central location for system control interrupt masks.

Interrupt Mask	Control	(IMC)
----------------	---------	-------

Base 0x400F.E000 Offset 0x054

0001.00	• •
Type R/W,	reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		1	1	1	, ,		т т	rese	rved						1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		'		•	reserved					PLLLIM		rese	rved		BORIM	reserved		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0		
E	Bit/Field		Nam	ne	Тур	be	Reset	Des	cription									
	31:7		reser	R	C	0	Soft com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
	6 PLLLIM R/W 0 F						PLL	Lock Inf	errupt M	ask								
	6 PLLLIM R/W 0					This cont is se	This bit specifies whether a current limit detection is promote controller interrupt. If set, an interrupt is generated if PLLLRI is set; otherwise, an interrupt is not generated.											
	5:2		reser	ved	R	C	0	Soft com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	1		BOR	IM	R/	N	0	Brov	Brown-Out Reset Interrupt Mask									
		-		This conf othe	bit spec troller int erwise, a	cifies whe errupt. If n interrup	ether a b set, an ot is not	rown-ou interrupt generate	t conditio is gener ed.	on is pro ated if B	moted to	o a s set;						
0 reserved RO 0				Soft com pres	ware sho patibility served ac	ould not i with futu cross a re	rely on t ire prodi ead-mod	he value ucts, the lify-write	of a reso value of operatio	erved bit a reserv n.	t. To prov ved bit sl	vide nould be						

Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058

On a read, this register gives the current masked status value of the corresponding interrupt. All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the **RIS** register (see page 73).

Masked Interrupt Status and Clear (MISC)

Base 0x400F.E000 Offset 0x058 Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1	1			1 1	rese	rved			1		1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	U	U	0	0	0	U	U	0	0	U	0	U	0	0	0	U	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
					reserved					PLLLMIS		rese	erved		BORMIS	reserved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	RO	RO	RO	RO	R/W1C	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nam	ne	Ту	be	Reset	Des	cription								
31:7			reserved			C	0	Soft com pres	ware sh patibilit erved a	ould not r y with futu across a re	ely on t re prod ead-mo	he value ucts, the dify-write	of a res value of operatio	erved bi a reser on.	t. To prov ved bit sh	vide nould be	
	6		PLLLI	MIS	R/W	/1C	0	PLL	Lock N	lasked Inte	errupt S	Status					
								This by w	This bit is set when the PLL T_{READY} timer asserts. The interrupt is cleared by writing a 1 to this bit.								
	5:2		reser	ved	R	С	0	Soft com pres	ware sh patibilit erved a	ould not r y with futu across a re	ely on t re prod ead-mo	he value ucts, the dify-write	of a res value of operatio	erved bi a reser on.	t. To prov ved bit sh	vide nould be	
	1		BOR	MIS	R/W	/1C	0	BOF	R Maske	ed Interrup	ot Statu	S					
								The	BORMI	s is simply	the BO	RRISAN	IDed with	n the ma	sk value,	BORIM.	
	0		reser	ved	R	C	0	Soft com pres	ware sh patibilit	ould not r y with futu	ely on t re prod ead-mo	he value ucts, the dify-write	of a res value of operatio	erved bi a reser on.	t. To prov ved bit sł	vide nould be	

Register 7: Reset Cause (RESC), offset 0x05C

This register is set with the reset cause after reset. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an external reset is the cause, and then all the other bits in the **RESC** register are cleared.

Base Offse Type	0x400F.E t 0x05C R/W, rese	:000 et -														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1 1				1 1	rese	rved	1		r	1	i	1	,
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ				rese	rved	· ·			1	LDO	SW	WDT	BOR	POR	EXT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:6		reserv	/ed	R	0	0	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on ti ure produ ead-mod	he value ucts, the lify-write	of a res value of operatio	erved bit a reserv on.	t. To prov ved bit sh	vide nould be
	5		LDC	D	R/	W	-	LDC) Reset							
								Whe gen	en set, in erated a	idicates t reset ev	he LDO ent.	circuit h	as lost re	egulatior	and ha	8
	4		SW	1	R/	W	-	Soft	ware Re	set						
								Whe	en set, in	idicates a	a softwa	re reset	is the ca	use of th	ie reset e	event.
	3		WD	т	R/	W	-	Wat	chdog Ti	imer Res	et					
								Whe	en set, in	idicates a	a watcho	log reset	t is the c	ause of t	the reset	event.
	2		BOF	२	R/	W	-	Brov	wn-Out F	Reset						
								Whe	en set, in	idicates a	a brown-	out rese	t is the c	ause of	the rese	t event.
	1		POF	२	R/	W	-	Pow	/er-On R	eset						
								Whe	en set, in	idicates a	a power-	on reset	is the ca	ause of t	he reset	event.
	0		EXT	г	R/	W	-	Exte	ernal Res	set						
								Whe the	en set, in reset eve	idicates a ent.	an exteri	nal reset	(RST as	sertion)	is the ca	use of

Register 8: Run-Mode Clock Configuration (RCC), offset 0x060

This register is defined to provide source control and frequency speed.

Run	-Mode	Clock (Configur	ation (F	RCC)											
Base Offse Type	0x400F.E t 0x060 R/W, rese	E000 et 0x078	E.3AD1													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	rese	erved	1	ACG		SYS	DIV		USESYSDIV	reserved	USEPWMDIV		PWMDIV	1	reserved
Туре	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	RO	R/W	R/W	R/W	R/W	RO
Reset	0	0	0	0	0	1	1	1	1	0	0	0	1	1	1	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	resei	rved	PWRDN	reserved	BYPASS	reserved		хт	AL	I	OSC	SRC	rese	erved	IOSCDIS	MOSCDIS
Туре	RO	RO	R/W	RO	R/W	RO	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Reset	⁰ Bit/Field	0	1 Nam	1 ne	1 Ty	o pe	1 Reset	0 Des	1 cription	1	0	1	0	0	0	1
	31:28		reserv	ved	R	0	0x0	Soft com pres	ware sh patibility served a	ould not / with futi cross a r	rely on tl ure produ ead-mod	he value ucts, the dify-write	of a res value o operati	erved bit f a reserv on.	To prov /ed bit sł	vide nould be
	27		AC	G	R/	W	0	Auto	Clock	Gating						
								This Gati Gati	bit spe ing Cor ing Cor	cifies who itrol (SC itrol (DC	ether the GCn) reg GCn) reg	system gisters ar gisters if	uses the nd Deep the con	e Sleep-l o-Sleep-l troller en	Mode Cl Mode Cl ters a Si	lock ock eep or

Gating Control (DCGCn) registers if the controller enters a Sleep or Deep-Sleep mode (respectively). If set, the SCGCn or DCGCn registers are used to control the clocks distributed to the peripherals when the controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating Control (RCGCn) registers are used when the controller enters a sleep mode.

The $\ensuremath{\textbf{RCGCn}}$ registers are always used to control the clocks in Run mode.

This allows peripherals to consume less power when the controller is in a sleep mode and the peripheral is unused.

Bit/Field	Name	Туре	Reset	Description	
26:23	SYSDIV	R/W	0xF	System Clock Diviso	r
				Specifies which divis PLL output.	or is used to generate the system clock from the
				The PLL VCO freque	ency is 400 MHz.
				Value Divisor (BYP)	ASS=1) Frequency (BYPASS=0)
				0x0 reserved	reserved
				0x1 /2	reserved
				0x2 /3	reserved
				0x3 /4	reserved
				0x4 /5	reserved
				0x5 /6	reserved
				0x6 /7	reserved
				0x7 /8	25 MHz
				0x8 /9	22.22 MHz
				0x9 /10	20 MHz
				0xA /11	18.18 MHz
				0xB /12	16.67 MHz
				0xC /13	15.38 MHz
				0xD /14	14.29 MHz
				0xE /15	13.33 MHz
				0xF /16	12.5 MHz (default)
				When reading the Ru page 77), the SYSDI requested and the Pl divide a non-PLL sou	In-Mode Clock Configuration (RCC) register (see V value is MINSYSDIV if a lower divider was LL is being used. This lower value is allowed to urce.
22	USESYSDIV	R/W	0	Enable System Clock	k Divider
				Use the system clock system clock divider the source.	k divider as the source for the system clock. The is forced to be used when the PLL is selected as
21	reserved	RO	0	Software should not compatibility with futu preserved across a r	rely on the value of a reserved bit. To provide ure products, the value of a reserved bit should be ead-modify-write operation.
20	USEPWMDIV	R/W	0	Enable PWM Clock [Divisor
				Use the PWM clock	divider as the source for the PWM clock.

Bit/Field	Name	Туре	Reset	Description
19:17	PWMDIV	R/W	0x7	PWM Unit Clock Divisor
				This field specifies the binary divisor used to predivide the system clock down for use as the timing reference for the PWM module. This clock is only power 2 divide and rising edge is synchronous without phase shift from the system clock.
				Value Divisor
				0x0 /2
				0x1 /4
				0x2 /8
				0x3 /16
				0x4 /32
				0x5 /64
				0x6 /64
				0x7 /64 (default)
16:14	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
13	PWRDN	R/W	1	PLL Power Down
				This bit connects to the PLL PWRDN input. The reset value of 1 powers down the PLL.
12	reserved	RO	1	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
11	BYPASS	R/W	1	PLL Bypass
				Chooses whether the system clock is derived from the PLL output or the OSC source. If set, the clock that drives the system is the OSC source. Otherwise, the clock that drives the system is the PLL output clock divided by the system divider.
10	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Descriptior	1					
9:6	XTAL	R/W	0xB	Crystal Val	ue					
				This field s encoding f	pecifies the crystal value atta or this field is provided below	ched to the main oscillator. The				
				Value	Crystal Frequency (MHz) Not Using the PLL	Crystal Frequency (MHz) Using the PLL				
				0x0	1.000	reserved				
				0x1	1.8432	reserved				
				0x2	2.000	reserved				
				0x3	2.4576	reserved				
				0x4	3.57	9545 MHz				
				0x5	3.6	864 MHz				
				0x6	2	4 MHz				
				0x7	4.0	96 MHz				
				0x8	4.9	152 MHz				
				0x9	Ę	5 MHz				
				0xA	5.	12 MHz				
				0xB	6 MHz	(reset value)				
				0xC	6.1	44 MHz				
				0xD	7.3	7.3728 MHz 8 MHz				
				0xE	3	3 MHZ				
				0xF	8.1	92 MHz				
5:4	OSCSRC	R/W	0x1	Oscillator S	Source					
				Picks amo	ng the four input sources for	the OSC. The values are:				
				Value Inp	ut Source					
				0x0 Ma	in oscillator					
				0x1 Inte	ernal oscillator (default)					
				0x2 Inte	ernal oscillator / 4 (this is nec	essary if used as input to PLL)				
				0x3 30	KHz internal oscillator					
3:2	reserved	RO	0x0	Software s compatibili preserved	hould not rely on the value of ty with future products, the va across a read-modify-write o	f a reserved bit. To provide alue of a reserved bit should be peration.				
1	IOSCDIS	R/W	0	Internal Os	cillator Disable					
				0: Internal	oscillator (IOSC) is enabled.					
				1: Internal	oscillator is disabled.					
0	MOSCDIS	R/W	1	Main Oscil	lator Disable					
				0: Main os	cillator is enabled .					
				1: Main os	cillator is disabled (default).					

Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064

This register provides a means of translating external crystal frequencies into the appropriate PLL settings. This register is initialized during the reset sequence and updated anytime that the XTAL field changes in the **Run-Mode Clock Configuration (RCC)** register (see page 77).

The PLL frequency is calculated using the PLLCFG field values, as follows:

PLLFreq = OSCFreq * F / (R + 1)

XTAL to PLL	Translation	(PLLCFG)
-------------	-------------	----------

Base 0x400F.E000

Offset 0x064 Type RO, reset -

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1		1 1	rese	erved		1	I	1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	rese	rved		I	1	1	F		r i		1		I 1	R	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:14		reserv	ved	R	0	0x0	Soft com pres	tware sho npatibility served ac	ould not with fut cross a r	rely on t ure produ ead-mod	he value ucts, the dify-write	of a rese value of operation	erved bit a reserv n.	. To prov red bit sh	/ide 10uld be
	13:5		F		R	0	-	PLL	. F Value							
								This	s field spo	ecifies th	ne value	supplied	to the P	LL's F in	put.	
	4:0		R		R	0	-	PLL	. R Value							

This field specifies the value supplied to the PLL's R input.

Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070

This register overrides the **RCC** equivalent register fields when the USERCC2 bit is set. This allows RCC2 to be used to extend the capabilities, while also providing a means to be backward-compatible to previous parts. The fields within the **RCC2** register occupy the same bit positions as they do within the **RCC** register as LSB-justified.

The SYSDIV2 field is wider so that additional larger divisors are possible. This allows a lower system clock frequency for improved Deep Sleep power consumption.

Base Offs Type	e 0x400F.E et 0x070 e R/W, rese	000 et 0x0780	0.2810													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	USERCC2	rese	erved			SYS	DIV2				1	ı.	reserved	1 1		
Type Reset	R/W	RO 0	RO 0	R/W	R/W	R/W 1	R/W 1	R/W 1	R/W	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reser	ved	PWRDN2	reserved	BYPASS2	10	rese	rved	1		OSCSRC2	1 2	<u> </u>	rese	rved	·
Туре	RO	RO	R/W	RO	R/W	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO
Reset	U	U	1	U	1	U	U	U	U	U	U	1	U	0	U	U
	Bit/Field		Nam	ne	Ту	ре	Reset	Des	scription							
	31		USER	CC2	R/	W	0	Use	e RCC2							
								Wh	en set, o	verrides	the RCC	register	fields.			
	30:29		reserv	ved	R	0	0x0	Sof	tware sho	ould not	rely on t	he value	of a res	erved bit	. To pro	vide
								compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.							hould be	
	28:23		SYSD	IV2	R/	W	0x0F System Clock Divisor									
								Spe PLL	ecifies wh . output.	nich divis	or is use	ed to gen	erate the	e system	clock fi	rom the
								The	PLL VC	O freque	ency is 4	00 MHz.				
								This add muo the regi	s field is v litional di ch lower f RCC reg ister SYS	vider tha visor val frequenc lister SY: DIV2 er	n the RC ues. This cies durin SDIV en acoding o	C registers s permits ng Deep coding o of 111111	er SYSDI the sys Sleep m f 1111 pr provide	tv field in tem clock ode. For rovides /1 s /64.	order to < to be exampl I6, the I	o provide run at e, where RCC2
	22:14		reserv	ved	R	0	0x0	 register SYSDIV2 encoding of 111111 provides /64. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 						vide hould be		
	13		PWR	DN2	R/	W	1	1 Power-Down PLL								
								When set, powers down the PLL.								
	12		reserv	ved	R	0	0	0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	11		BYPA	SS2	R/	W	1	Вур	ass PLL							
When set, bypasses the PLL for the clo							lock sou	irce.								

Run-Mode Clock Configuration 2 (RCC2)

Bit/Field	Name	Туре	Reset	Description
10:7	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6:4	OSCSRC2	R/W	0x1	Oscillator Source
				Picks among the input sources for the OSC. The values are:
				Value Description
				0x0 Main oscillator (MOSC)
				0x1 Internal oscillator (IOSC)
				0x2 Internal oscillator / 4
				0x3 30 kHz internal oscillator
				0x7 32 kHz external oscillator
3:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144

This register provides configuration information for the hardware control of Deep Sleep Mode.

Deep Sleep Clock Configuration (DSLPCLKCFG)

Base 0x400F.E000

Offset 0x144 Type R/W, reset 0x0780.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		reserved	1			DSDI	VORIDE						reserved			
Type Reset	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	•	'	reserved					[SOSCSR	I C	· ·	rese	rved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0
B	it/Field		Nan	ne	Ту	ре	Reset	Desc	cription							
	31:29		reser	ved	R	0	0x0	Softwork compres	ware sho patibility erved ac	ould not with futu cross a r	rely on ti ure produ ead-moo	he value ucts, the dify-write	of a rese value of operatio	erved bit a reserv n.	. To prov ved bit sh	'ide Iould be
	28:23		DSDIVC	RIDE	R/	W	0x0F	Divio	ler Field	Overrid	е					
								6-bit runn	system ing.	divider f	ield to ov	verride w	/hen Dee	p-Sleep	occurs v	vith PLL
	22:7		reser	ved	R	0	0x0	0x0 Software should not rely on the value of a reserved bit. To p compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.						. To prov ved bit sh	ide Iould be	
	6:4		DSOSC	SRC	R/	W	0x0	Cloc	k Sourc	е						
								Spec	cifies the	e clock s	ource du	Iring De	ep-Sleep	mode.		
								Valu	ie Desc	ription						
								0x0	NOO	RIDE						
									No o	verride t	o the oso	cillator c	lock sour	ce is do	ne.	
								0x1	IOSC	;						
								0.2	Use i	internal [•]	12 MHz (oscillato	r as sourc	e.		
								0.03		12 20 kH- ii	atornal o	collator				
								0x7	32kH	50 KHZ II Iz	ilemai u	Scillator				
									Use	32 kHz e	external	oscillato	r.			
	3:0		reser	ved	R	0	0x0	Soft	ware sho patibility	ould not with futu	rely on ti ure prodi	he value ucts, the	of a rese value of	erved bit a reserv	To prov ved bit sh	'ide Iould be

preserved across a read-modify-write operation.

Register 12: Device Identification 1 (DID1), offset 0x004

This register identifies the device family, part number, temperature range, pin count, and package type.

Dev Base Offse Type	rice Ide 0x400F. et 0x004 RO, rese	ntificatio E000 et -	n 1 (DI	D1)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		VE	R	1		E.	AM			1 1		PAF	RTNO	1 1		1
Type Reset	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		PINCOUNT				reserved				TEMP		P	кG	ROHS	QL	JAL
Type Reset	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO -	RO -	RO -	RO -	RO -	RO 1	RO -	RO -
E	Bit/Field		Nam	ne	Ту	/pe	Reset	Des	cription							
	31:28		VE	R	R	RO	0x1	DID	1 Versio	'n						
								This is nu enco Vali	field de umeric. odings a	fines the The value ire reserv	DID1 re e of the v ved):	gister fo VER field	rmat ver d is enco	sion. The ded as fo	version llows (a	number II other
								0x1	Seco	ond version	on of the	e DID1 ro	egister fo	ormat.		
	27:24		FAN	M	R	RO	0x0	Farr	ily							
								This Lum othe	field pr inary M r encod	ovides the icro prode ings are	e family uct portf reserved	identific olio. The d):	ation of e value is	the device s encoded	e within d as follo	the ows (all
								Valu	ue Des	cription						
								0x0	Stell exte	aris famil rnal part	y of mic numbers	rocontol s starting	lers, tha g with LN	t is, all de ⁄/3S.	vices w	ith
	23:16		PART	NO	R	RO	0xC0	Part	Numbe	r						
								This valu	field pr e is enc	ovides the	e part ni follows (umber o all other	f the dev encodir	vice within	the fan served)	nily. The :
								Valu	ue Des	cription						
								0xC	0 LM3	S1620						
	15:13		PINCO	UNT	R	RO	0x2	Pac	kage Pii	n Count						
								This is er	field sp	ecifies the as follows	e numbe s (all oth	er of pins er enco	on the d dings are	evice pac e reserve	kage. T d):	he value
								Valu	ue Des	cription						
								0x2	100-	pin or 10	8-ball pa	ackage				

Bit/Field	Name	Туре	Reset	Description
12:8	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:5	TEMP	RO	-	Temperature Range
				This field specifies the temperature rating of the device. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 Commercial temperature range (0°C to 70°C)
				0x1 Industrial temperature range (-40°C to 85°C)
				0x2 Extended temperature range (-40°C to 105°C)
4:3	PKG	RO	-	Package Type
				This field specifies the package type. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 SOIC package
				0x1 LQFP package
				0x2 BGA package
2	ROHS	RO	1	RoHS-Compliance
				This bit specifies whether the device is RoHS-compliant. A 1 indicates the part is RoHS-compliant.
1:0	QUAL	RO	-	Qualification Status
				This field specifies the qualification status of the device. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 Engineering Sample (unqualified)
				0x1 Pilot Production (unqualified)
				0x2 Fully Qualified

Register 13: Device Capabilities 0 (DC0), offset 0x008

This register is predefined by the part and can be used to verify features.

Dev	ice Cap	abilitie	s 0 (DC	0)													
Base Offse Type	0x400F.E t 0x008 RO, rese	E000 t 0x007F.	003F														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	1		I	r		1	1 1	SRA	MSZ	I	1	1	r	I	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1		Ì	1			1 1	FLAS	SHSZ	I	1	I		Ì	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	
В	Bit/Field		Name Typ		ре	Reset	Des	cription									
	Bit/Field Name 31:16 SRAMSZ			ISZ	R	0	0x007F	SRAM Size									
								Indi	cates the	e size of	the on-c	hip SRA	M memo	iry.			
								Val	ue De	scription							
								0x0	07F 32	KB of SI	RAM						
	15:0		FLASI	HSZ	R	0	0x003F	3F Flash Size									
	10.0							Indi	cates the	e size of	the on-c	hip flash	memory	<i>.</i>			
						Val	ue De	scription									
								0x0	03F 128	B KB of F	lash						

Device Capabilities 1 (DC1)

Register 14: Device Capabilities 1 (DC1), offset 0x010

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: CANs, PWM, ADC, Watchdog timer, Hibernation module, and debug capabilities. This register also indicates the maximum clock frequency and maximum ADC sample rate. The format of this register is consistent with the **RCGC0**, **SCGC0**, and **DCGC0** clock control registers and the **SRCR0** software reset control register.

Base Offse Type	e 0x400F.E0 et 0x010 RO, reset	000 0x0010. ⁻	70DF													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						reserved						PWM		rese	rved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
		MINSY	SDIV			res	erved		MPU	HIB	reserved	PLL	WDT	SWO	SWD	JTAG
Type Reset	RO 0	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:21 reserved 20 PWM			ved	R	0	0	Soft corr pres	tware sho npatibility served ac	ould not with fut cross a i	rely on th ure produ read-mod	ne value ucts, the lify-write	of a resovalue of operation	erved bit a reserv on.	. To prov ved bit sl	vide nould be
	20		PWI	М	R	0	1	PW	M Modul	e Prese	nt					
When set, indicates that the PWM module is present.																
19:16 reserved RO 0 Software should not rely on the value of a reserced compatibility with future products, the value of a preserved across a read-modify-write operation						erved bit a reserv on.	To prov ved bit sl	vide nould be								
	15:12		MINSY	SDIV	R	0	0x7	Sys	tem Cloc	k Divide	er					
								Min haro syst	imum 4-b dware-de tem clock	oit divide penden divisor	er value fo t. See the using the	or syster e RCC re e SYSDI	n clock. egister fo ∨ bit.	The rese or how to	et value change	is the
								Val	ue Desc	ription						
								0x7	Spec	ifies a 2	25-MHz cl	ock with	a PLL d	livider of	8.	
	11:8	11:8 reserved RO 0 Software should not rely on th compatibility with future produ preserved across a read-mod				on the value of a reserved bit. To provide roducts, the value of a reserved bit should be modify-write operation.										
	7		MP	U	R	0	1	MP	U Preser	ıt						
								Whe mod for d	en set, in dule is pre details or	dicates esent. Se the MF	that the C ee the AR PU.	Cortex-N M Corte	13 Memo x-M3 Tec	ry Protec hnical R	ction Un eference	it (MPU) Manual
	6		HIE	3	R	0	1	Hibe	ernation	Module	Present					
								Whe	en set, in	dicates	that the H	libernat	ion modu	ule is pre	esent.	

Bit/Field	Name	Туре	Reset	Description
5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	PLL	RO	1	PLL Present
				When set, indicates that the on-chip Phase Locked Loop (PLL) is present.
3	WDT	RO	1	Watchdog Timer Present
				When set, indicates that a watchdog timer is present.
2	SWO	RO	1	SWO Trace Port Present
				When set, indicates that the Serial Wire Output (SWO) trace port is present.
1	SWD	RO	1	SWD Present
				When set, indicates that the Serial Wire Debugger (SWD) is present.
0	JTAG	RO	1	JTAG Present
				When set, indicates that the JTAG debugger interface is present.

Device Capabilities 2 (DC2)

Register 15: Device Capabilities 2 (DC2), offset 0x014

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparators, General-Purpose Timers, I2Cs, QEIs, SSIs, and UARTs. The format of this register is consistent with the **RCGC1**, **SCGC1**, and **DCGC1** clock control registers and the **SRCR1** software reset control register.

Base Offse Type	0x400F.l t 0x014 RO, rese	E000 et 0x0707.	1133													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	reserved	1		COMP2	COMP1	COMP0		1	reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		12C0		reserved		QEI0	rese	erved	SSI1	SSI0	rese	l erved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 1	RO 1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:27		reserv	ved	R	0	0	Soft com pres	ware sh patibility erved a	ould not / with futu cross a r	rely on th ure produ ead-mod	ne value ucts, the lify-write	of a res value of operatio	erved bit f a reserv on.	t. To prov ved bit sl	vide nould be
	26		СОМ	P2	R	0	1	1 Analog Comparator 2 Present								
								When set, indicates that analog comparator 2 is present.								
	25		СОМ	P1	R	0	1 Analog Comparator 1 Present									
								Whe	en set, ir	ndicates	that anal	og comp	arator 1	is prese	ent.	
	24		СОМ	P0	R	0	1	Ana	log Corr	nparator (0 Presen	t				
								Whe	en set, ir	ndicates	that anal	og comp	arator C	is prese	ent.	
	23:19		reserv	ved	R	0	0	Soft com pres	ware sh patibility erved a	ould not / with futu cross a r	rely on th ure produ ead-mod	ne value ucts, the lify-write	of a res value of operation	erved bit f a reserv on.	t. To prov ved bit sl	vide nould be
	18		TIME	R2	R	0	1	Time	er 2 Pre	sent						
								Whe	en set, ir	ndicates	that Gen	eral-Purp	oose Tir	ner modı	ule 2 is p	resent.
	17		TIME	R1	R	0	1	Time	er 1 Pre	sent						
								Whe	en set, ir	ndicates f	that Gen	eral-Purp	pose Tir	ner modu	ule 1 is p	resent.
	16		TIME	R0	R	0	1	1 Timer 0 Present								
								When set, indicates that General-Purpose Timer module 0 is prese						resent.		
	15:13		reserv	ved	R	0	0	0 Software should not rely on the value of a reserved bit. To prov compatibility with future products, the value of a reserved bit sh preserved across a read-modify-write operation.					vide nould be			
	12		I2C0		R	0	1	I2C Module 0 Present								
			1200					Whe	en set, ir	ndicates	that I2C	module () is pres	ent.		

Bit/Field	Name	Туре	Reset	Description
11:9	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
8	QEI0	RO	1	QEI0 Present
				When set, indicates that QEI module 0 is present.
7:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	RO	1	SSI1 Present
				When set, indicates that SSI module 1 is present.
4	SSI0	RO	1	SSI0 Present
				When set, indicates that SSI module 0 is present.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	RO	1	UART1 Present
				When set, indicates that UART module 1 is present.
0	UART0	RO	1	UART0 Present
				When set, indicates that UART module 0 is present.

Device Capabilities 3 (DC3)

Register 16: Device Capabilities 3 (DC3), offset 0x018

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparator I/Os, CCP I/Os, ADC I/Os, and PWM I/Os.

Base Offse Type	e 0x400F.E et 0x018 RO, rese	E000 t 0x8F00	.BFFF														
,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	32KHZ		reserved	1	CCP3	CCP2	CCP1	CCP0		r 1		rese	erved	1			
Type Reset	RO 1	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	PWMFAULT	reserved	C2PLUS	C2MINUS	C10	C1PLUS	C1MINUS	C00	COPLUS	C0MINUS	PWM5	PWM4	PWM3	PWM2	PWM1	PWM0	
Type Reset	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	scription								
	31		32KI	ΗZ	R	0	1	32K	Hz Input	Clock A	vailable						
								Wh 32-1	en set, ir KHz inpu	dicates a t clock.	an even	CCP pin	ı is prese	ent and c	an be us	ed as a	
	30:28	0:28 reserved		ved	RO		0	Soff com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.							ride Iould be	
	27	7 CCP3		R	0	1	CCI	P3 Pin P	resent								
			CCP3					Whe	en set, ir	dicates t	hat Cap	ture/Cor	npare/P\	VM pin 3	is prese	ent.	
	26		CCF	2	R	0	1	CCI	P2 Pin P	resent							
								Whe	en set, ir	dicates t	that Capture/Compare/PWM pin 2 is present.						
	25		CCF	P1	R	0	1	CCI	P1 Pin P	resent							
								Whe	en set, ir	dicates t	hat Cap	ture/Cor	npare/P\	NM pin 1	is prese	ent.	
	24		CCF	P0	R	0	1	CCI	P0 Pin P	resent							
								Whe	en set, ir	dicates t	hat Cap	ture/Cor	npare/P\	NM pin C) is prese	ent.	
	23:16	wnen ser, indicates tr 5 reserved RO 0 Software should not r compatibility with futu preserved across a re				not rely on the value of a reserved bit. To provide future products, the value of a reserved bit should be a read-modify-write operation.											
	15		PWMFAULT RO 1 PWM Fault Pin Present														
								When set, indicates that the P				PWM Fa	ult pin is	present			
	14		reser	ved	R	0	0	Sofi com pres	oftware should not rely on the value of a reserved bit. To provide or protect bits are products, the value of a reserved bit should be reserved across a read-modify-write operation.								
	13		C2PL	US	R	0	1	C2+	Pin Pre	sent							
			02.200					Whe	en set, in	dicates th	hat the a	nalog co	mparator	r 2 (+) inp	out pin is	present.	

Bit/Field	Name	Туре	Reset	Description
12	C2MINUS	RO	1	C2- Pin Present When set, indicates that the analog comparator 2 (-) input pin is present.
11	C10	RO	1	C1o Pin Present When set, indicates that the analog comparator 1 output pin is present.
10	C1PLUS	RO	1	C1+ Pin Present When set, indicates that the analog comparator 1 (+) input pin is present.
9	C1MINUS	RO	1	C1- Pin Present When set, indicates that the analog comparator 1 (-) input pin is present.
8	C0O	RO	1	C0o Pin Present When set, indicates that the analog comparator 0 output pin is present.
7	COPLUS	RO	1	C0+ Pin Present When set, indicates that the analog comparator 0 (+) input pin is present.
6	COMINUS	RO	1	C0- Pin Present When set, indicates that the analog comparator 0 (-) input pin is present.
5	PWM5	RO	1	PWM5 Pin Present When set, indicates that the PWM pin 5 is present.
4	PWM4	RO	1	PWM4 Pin Present When set, indicates that the PWM pin 4 is present.
3	PWM3	RO	1	PWM3 Pin Present When set, indicates that the PWM pin 3 is present.
2	PWM2	RO	1	PWM2 Pin Present When set, indicates that the PWM pin 2 is present.
1	PWM1	RO	1	PWM1 Pin Present When set, indicates that the PWM pin 1 is present.
0	PWM0	RO	1	PWM0 Pin Present When set, indicates that the PWM pin 0 is present.

Register 17: Device Capabilities 4 (DC4), offset 0x01C

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Ethernet MAC and PHY, GPIOs, and CCP I/Os. The format of this register is consistent with the **RCGC2**, **SCGC2**, and **DCGC2** clock control registers and the **SRCR2** software reset control register.

Type	RO, rese	t 0x0000	.00FF													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1			1	rese	erved	•		•				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Î		I	l rese	rved	1	1 1		GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0	Soft com pres	ware sho patibility served a	ould not with futu cross a r	rely on t ure prode ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	. To prov ved bit sh	/ide 1ould be
	7		GPIC	ЭН	R	0	1	GPI Whe	O Port ⊢ en set, ir	l Present idicates f	t that GPI	O Port H	is prese	ent.		
	6		GPIC	DG	R	0	1	GPI Whe	O Port G en set, ir	B Presen	t that GPI	O Port G	is prese	ent.		
	5		GPIC	DF	R	0	1	GPI Whe	O Port F en set. ir	Present	t that GPI	O Port F	is prese	ent.		
	4		GPIC	DE	R	0	1	GPI Whe	O Port E en set, ir	Present	t that GPI	O Port E	is prese	ent.		
	3		GPIC	DD	R	0	1	GPI Whe	O Port D en set, ir) Presen	t that GPI	O Port D	is prese	ent.		
	2		GPIC	C	R	0	1	GPI Whe	O Port C en set, ir	Presen	t that GPI	O Port C	is prese	ent.		
	1		GPIC	DВ	R	0	1	GPI Whe	O Port B en set, ir	Present	t that GPI	O Port B	is prese	ent.		
	0		GPIC	AC	R	0	1	GPI Whe	O Port A en set, ir	Present	t that GPI	O Port A	is prese	ent.		

Device Capabilities 4 (DC4) Base 0x400F.E000 Offset 0x01C

94

Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse Type	e 0x400F. et 0x100 R/W, res	E000 set 0x000	000040													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	•		reserved						PWM		rese	erved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				•	reserved				1	HIB	rese	rved	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
E	Bit/Field		Nan	ne	Ту	be	Reset	Des	cription							
	31:21		reser	ved	R	C	0	Soft com pres	tware sho npatibility served ac	ould not i with futu cross a re	rely on t ire prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bi a reserv n.	t. To provi ved bit sh	ide ould be
	20		PW	М	R/	W	0	PW	M Clock	Gating C	Control					
								This rece disa a bu	s bit cont eives a cl abled. If t us fault.	rols the c lock and he unit is	clock ga function uncloci	ting for th s. Othen ked, a re	ne PWM wise, the ad or wri	module unit is t te to the	. If set, the unclocked e unit gene	e unit I and erates
	19:7		reser	ved	R	С	0	Soft corr pres	tware sho npatibility served ac	ould not i with futu cross a re	rely on t ire prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bi a reserv on.	t. To provi ved bit sh	ide ould be
	6		HIE	3	R/	w	0	HIB	Clock G	ating Co	ntrol					
								This unit disa	s bit cont receives abled.	rols the c a clock a	clock gat and func	ting for th tions. Ot	ne Hiberr herwise,	nation m the unit	iodule. If s is unclock	set, the (ed and
	5:4		reser	ved	R	С	0	Soft com pres	tware sho npatibility served ac	ould not with futu cross a re	rely on t ire prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bi a reserv n.	t. To provi ved bit sh	ide ould be
	3		WD	т	R/	W	0	WD	T Clock	Gating C	ontrol					
								This rece disa a bu	s bit cont eives a cl abled. If t us fault.	rols the c lock and he unit is	clock gat function uncloc	ting for th s. Othen ked, a re	ne WDT wise, the ad or wri	module. unit is u te to the	If set, the unclocked unit gen	e unit and erates

Run Mode Clock Gating Control Register 0 (RCGC0)

July 26, 2008

Bit/Field	Name	Туре	Reset	Description
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 19: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse Type	0x400F.E t 0x110 R/W, rese	E000 et 0x000	00040													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		ſ		r 1	reserved	i i		1			PWM		rese	erved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•				reserved	•			1	HIB	rese	erved	WDT		reserved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	R/W	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:21		reserv	ved	R	0	0	Soft com pres	ware sho patibility served ac	ould not i with futu cross a re	rely on t ure produ ead-mod	he value ucts, the dify-write	of a rese value of operatic	erved bi a reserv on.	t. To provi ved bit sho	de ould be
	20		PWI	М	R/	W	0	PW	M Clock	Gating C	Control					
								This rece disa a bu	bit contr eives a cl bled. If thus fault.	rols the c ock and he unit is	clock gat function unclock	ting for the s. Other ked, a re	ne PWM wise, the ad or wri	module unit is u te to the	. If set, the unclocked e unit gene	e unit and erates
	19:7		reserv	ved	R	0	0	Soft com pres	ware sho patibility served ac	ould not i with futu cross a re	rely on t ure produ ead-mod	he value ucts, the dify-write	of a rese value of operatio	erved bi a reserv n.	t. To provi ved bit sho	de ould be
	6		HIE	3	R/	W	0	HIB	Clock G	ating Co	ntrol					
								This unit disa	s bit contr receives ibled.	rols the o a clock a	clock gat and func	ting for th tions. Oth	ne Hiberr herwise,	nation m the unit	iodule. If s is unclock	set, the ed and
	5:4		reserv	/ed	R	0	0	Soft com pres	ware sho patibility served ac	ould not i with futu cross a re	rely on t ure produ ead-mod	he value ucts, the dify-write	of a rese value of operatio	erved bi a reserv n.	t. To provi ved bit sho	de ould be

Sleep Mode Clock Gating Control Register 0 (SCGC0)

Bit/Field	Name	Туре	Reset	Description
3	WDT	R/W	0	WDT Clock Gating Control
				This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault.
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 20: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse Type	0x400F.E t 0x120 R/W, rese	E000 et 0x0000	00040					,								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						reserved	· ·				•	PWM		rese	rved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					reserved					HIB	rese	erved	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:21		reser	ved	R	0	0	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a resolution of a resolutio	erved bit a reserv on.	. To prov ved bit sh	vide nould be
	20		PW	М	R/	W	0	PWI	M Clock	Gating C	Control					
								This rece disa a bu	bit cont eives a cl bled. If t is fault.	rols the o lock and he unit is	clock ga functior s uncloc	ting for th is. Other ked, a re	ne PWM wise, the ad or wri	module. e unit is u ite to the	If set, th inclocke unit ger	ne unit d and nerates
	19:7		reser	ved	R	0	0	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a resolution of a resolutio	erved bit a reserv on.	. To prov ed bit sh	vide nould be
	6		HIE	3	R	W	0	HIB	Clock G	ating Co	ontrol					
								This unit disa	bit cont receives bled.	rols the o a clock a	clock ga and func	ting for th tions. Ot	ne Hiberi herwise,	nation m the unit i	odule. If is uncloc	set, the ked and
	5:4		reser	ved	R	0	0	Soft com pres	ware sho patibility served a	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a resolution of a resolutio	erved bit a reserv	. To prov ed bit sh	vide nould be

Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)

Bit/Field	Name	Туре	Reset	Description
3	WDT	R/W	0	WDT Clock Gating Control
				This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault.
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse Type	0x400F.I t 0x104 R/W, res	E000 et 0x0000	00000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	reserved		1	COMP2	COMP1	COMP0			reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved	•	12C0		reserved		QEI0	rese	rved	SSI1	SSI0	rese	rved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:27		reserv	/ed	R	0	0	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on th ure produ ead-mod	ne value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To prov ed bit sh	ide ould be
	26		COM	P2	R/	W	0	Ana	log Com	parator 2	2 Clock (Gating				
								This rece disa a bu	bit contr lives a cl bled. If th is fault.	rols the c ock and ne unit is	lock gati function unclock	ng for ar s. Othen ed, reads	nalog cor wise, the s or write	nparator a unit is u s to the u	2. If set, inclockee init will g	the unit d and enerate
	25		COM	P1	R/	W	0	Ana	log Com	parator ?	1 Clock (Gating				
								This rece disa a bu	bit contr ives a cl bled. If th is fault.	rols the c ock and ne unit is	lock gati function unclock	ng for ar s. Othen ed, reads	nalog cor wise, the s or write	nparator unit is u s to the u	1. If set, inclockee init will g	the unit d and enerate
	24		COM	P0	R/	W	0	Ana	log Com	parator (Clock C	Gating				
								This rece disa a bu	bit contr eives a cl bled. If th is fault.	rols the c ock and ne unit is	lock gati function unclock	ng for ar s. Othen ed, reads	nalog cor wise, the s or write	nparator unit is u s to the u	0. If set, inclocked init will g	the unit d and enerate
	23:19		reserv	/ed	R	0	0	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on th ure produ ead-mod	ne value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To prov ed bit sh	ide ould be

Run Mode Clock Gating Control Register 1 (RCGC1)

July 26, 2008

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:9	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
8	QEI0	R/W	0	QEI0 Clock Gating Control
				This bit controls the clock gating for QEI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
7:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Clock Gating Control
				This bit controls the clock gating for SSI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate

a bus fault.

Base 0x400F.E000

Register 22: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse Type	et 0x114 R/W, res	set 0x0000	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	reserved			COMP2	COMP1	COMP0		'	reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		12C0		reserved		QEI0	rese	erved	SSI1	SSI0	rese	erved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:27		reserv	ved	R	0	0	Soft com pres	ware sh patibility erved a	ould not y with fut across a r	rely on ti ure produ read-mod	ne value ucts, the lify-write	of a res value of operatio	erved bit a reserv on.	. To prov ed bit sh	vide nould be
	26		COM	P2	R/	W	0	Ana	log Corr	nparator	2 Clock (Gating				
								This rece disa a bu	bit cont ives a c bled. If t s fault.	trols the c clock and the unit is	clock gati function unclock	ng for an s. Othen ed, reads	alog cor wise, the s or write	mparator e unit is u es to the u	2. If set, inclocke unit will g	the unit d and jenerate
	25		СОМ	P1	R/	W	0	Ana	log Corr	nparator	1 Clock (Gating				
								This rece disa a bu	bit cont ives a c bled. If t s fault.	trols the c clock and the unit is	clock gati function unclock	ng for ar s. Othen ed, reads	alog cor wise, the s or write	mparator e unit is u es to the u	1. If set, inclocke unit will g	the unit d and jenerate
	24		COM	P0	R/	W	0	Ana	log Corr	nparator	0 Clock (Gating				
								This rece disa a bu	bit cont ives a c bled. If t s fault.	trols the c clock and the unit is	clock gati function unclock	ng for ar s. Othen ed, reads	alog cor wise, the s or write	mparator e unit is ι es to the ι	0. If set, inclocke unit will g	the unit d and jenerate
	23:19		reserv	ved	R	0	0	Soft com pres	ware sh patibility erved a	ould not y with futi icross a r	rely on tl ure produ ead-mod	ne value ucts, the lify-write	of a res value of operation	erved bit a reserv	. To prov red bit sh	vide nould be

Sleep Mode Clock Gating Control Register 1 (SCGC1)

104

LM3S1620 Microcontroller

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:9	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
8	QEI0	R/W	0	QEI0 Clock Gating Control
				This bit controls the clock gating for QEI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
7:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Clock Gating Control
				This bit controls the clock gating for SSI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate

a bus fault.

Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse Type	t 0x124 R/W, res	et 0x0000	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			reserved			COMP2	COMP1	COMP0		1	reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		12C0		reserved		QEI0	rese	erved	SSI1	SSI0	rese	erved	UART1	UART0
Туре	RO	RO	RO	R/W	RO	RO	RO	R/W	RO	RO	R/W	R/W	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Field Name		Ту	ре	Reset	et Description											
	31:27 reserved		R	0	0	Software should not compatibility with futu preserved across a r			rely on the value of a reserved bit. To provide ure products, the value of a reserved bit should be ead-modify-write operation.							
26			COMP2		R/W		0	Analog Comparator 2 Clock Gating								
								This rece disa a bu	bit cont ives a c bled. If t s fault.	rols the o lock and he unit is	clock gati I function S unclock	ng for ar s. Other ed, reads	nalog cor wise, the s or write	mparator e unit is u es to the u	2. If set, Inclocke Unit will g	the unit d and enerate
25			COMP1			R/W		Analog Comparator 1 Clock Gating								
								This rece disa a bu	bit cont ives a c bled. If t s fault.	rols the o lock and he unit is	clock gati I function s unclock	ng for ar s. Othen ed, reads	nalog cor wise, the s or write	mparator e unit is u es to the u	1. If set, Inclocke Unit will g	the unit d and enerate
24			COMP0		R	/W 0		Analog Comparator 0 Clock Gating								
								This rece disa a bu	bit cont ives a c bled. If t s fault.	rols the c lock and he unit is	clock gati I function S unclock	ng for ar s. Othen ed, reads	nalog cor wise, the s or write	mparator e unit is u es to the u	0. If set, Inclocke Unit will g	the unit d and enerate
23:19 reserved		R	RO 0		Soft com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										

Deep Sleep Mode Clock Gating Control Register 1 (DCGC1) Base 0x400F.E000

July 26, 2008

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:9	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
8	QEI0	R/W	0	QEI0 Clock Gating Control
				This bit controls the clock gating for QEI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
7:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Clock Gating Control
				This bit controls the clock gating for SSI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
Bit/Field	Name	Туре	Reset	Description
-----------	-------	------	-------	--
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate

a bus fault.

Register 24: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse Type	0x400F.E et 0x108 R/W, rese	E000 et 0x0000	0000		-	·										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1		1 1	rese	erved	I	r	I		r	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved				GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0	Soft com pres	tware sho npatibility served ac	ould not with futu cross a r	rely on ti ure produ ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	t. To prov ved bit sh	ride Iould be
	7		GPIC	ЭН	R/	W	0	Por	t H Clock	Gating	Control					
								This cloc the	s bit cont k and fu unit is un	rols the o nctions. clocked,	clock gat Otherwis reads or	ting for P se, the u r writes to	ort H. If nit is und the unit	set, the locked a will gen	unit rece and disat erate a b	ives a bled. If us fault.
	6		GPIC	G	R/	W	0	Por	t G Clock	Gating	Control					
								This cloc the	s bit cont k and fu unit is un	rols the o nctions. clocked,	clock gat Otherwis reads or	ting for P se, the u r writes to	Port G. If hit is und the unit	set, the locked a will gen	unit rece and disat erate a b	ives a bled. If us fault.
	5		GPIC	DF	R/	W	0	Por	t F Clock	Gating	Control					
								This cloc the	s bit cont k and fu unit is un	rols the o nctions. clocked,	clock gat Otherwis reads or	ting for P se, the u r writes to	Port F. If s nit is und the unit	set, the u locked a t will gen	unit recei and disat erate a b	ves a bled. If us fault.
	4		GPIC	DE	R/	W	0	Por	t E Clock	Gating	Control					
								This cloc the	s bit cont k and fu unit is un	rols the onctions.	clock gat Otherwis reads oi	ting for P se, the u r writes to	ort E. If hit is und the unit	set, the i locked a will gen	unit rece and disat erate a b	ives a bled. If us fault.

Run Mode Clock Gating Control Register 2 (RCGC2)

Bit/Field	Name	Туре	Reset	Description
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 25: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse Type	0x400F.E t 0x118 R/W, rese	:000 et 0x0000	00000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1 1		, i i i i i i i i i i i i i i i i i i i		1 1	rese	erved			1	r	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ			rese	rved				GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	e	Ту	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0	Soff com pres	tware sho npatibility served ac	ould not with futu cross a r	rely on ti ure produ ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	To prov ved bit sh	ride Iould be
	7		GPIC	ЭН	R/	N	0	Por	t H Clock	Gating	Control					
								This cloc the	s bit cont k and fui unit is un	rols the onctions. O	clock gat Otherwis reads or	ing for P se, the up writes to	Port H. If nit is und the unit	set, the i clocked a t will gene	unit rece and disat erate a b	ives a bled. If us fault.
	6		GPIC	G	R/	N	0	Por	t G Clock	Gating	Control					
								This cloc the	s bit cont k and fui unit is un	rols the onctions. O	clock gat Otherwis reads or	ing for P se, the up writes to	Port G. If nit is und the unit	set, the clocked a t will gene	unit rece and disat erate a b	ives a led. If us fault.
	5		GPIC)F	R/	N	0	Por	t F Clock	Gating	Control					
								This cloc the	s bit cont k and fui unit is un	rols the onctions. O	clock gat Otherwis reads or	ing for F se, the u writes to	Port F. If s nit is und the unit	set, the u clocked a t will gene	unit recei and disat erate a b	ves a led. If us fault.
	4		GPIC	ЭE	R/	N	0	Por	t E Clock	Gating	Control					
								This cloc the	s bit cont k and fui unit is un	rols the onctions. O	clock gat Otherwis reads or	ing for F se, the u	Port E. If nit is und the unit	set, the u clocked a t will gene	unit rece and disat erate a b	ives a bled. If us fault.

Sleep Mode Clock Gating Control Register 2 (SCGC2)

Bit/Field	Name	Туре	Reset	Description
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 26: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse Type	0x400F.I t 0x128 R/W, res	±000 et 0x0000	00000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	· · · ·		, ,	rese	rved	1			r 1		1	
Type Reset	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO
Reset	45	14	10	10	0	10	0	0	-	0	5	0	0	0	4	0
1	15	14	13	12		10	<u>у</u>	8		CRIOC						
_				Tese					GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIUA
Type Reset	0 0	0 0	0 0	0 0	0	0 0	0	0 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту	pe	Reset	Des	cription							
	31:8		reser	ved	R	0	0	Soff com pres	tware sho patibility served ac	ould not with futu cross a r	rely on ti ure produ ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	To prov ved bit sh	ide Iould be
	7		GPI	ЭН	R/	W	0	Por	t H Clock	Gating	Control					
								This cloc the	s bit cont k and fu unit is un	rols the onctions. clocked,	clock gat Otherwis reads or	ing for P se, the un writes to	Port H. If nit is und the unit	set, the i clocked a t will gene	unit rece and disat erate a b	ives a bled. If us fault.
	6		GPIC	DG	R/	W	0	Por	t G Clock	Gating	Control					
								This cloc the	s bit cont k and fu unit is un	rols the onctions. clocked,	clock gat Otherwis reads or	ing for P se, the u writes to	Port G. If nit is und the unit	set, the clocked a t will gene	unit rece and disat erate a b	ives a bled. If us fault.
	5		GPI	ЭF	R/	W	0	Por	t F Clock	Gating	Control					
								This cloc the	s bit cont k and fu unit is un	rols the o nctions. clocked,	clock gat Otherwis reads or	ting for P se, the un writes to	Port F. If s nit is und the unit	set, the u clocked a t will gene	unit recei and disat erate a b	ves a bled. If us fault.
	4		GPI	DE	R/	W	0	Por	t E Clock	Gating	Control					
								This cloc the	s bit cont k and fui unit is un	rols the onctions.	clock gat Otherwis reads or	ing for P se, the u	Port E. If nit is und the unit	set, the u clocked a t will gene	unit rece and disat	ives a bled. If us fault.

Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)

Bit/Field	Name	Туре	Reset	Description
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 27: Software Reset Control 0 (SRCR0), offset 0x040

Writes to this register are masked by the bits in the **Device Capabilities 1 (DC1)** register.

Base Offse Type	e 0x400F.E et 0x040 R/W, rese	000 t 0x0000	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	, I				і і І	reserved			, , , , , , , , , , , , , , , , , , ,	r r		PWM		res	erved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•				reserved				, ,	HIB	rese	rved	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
ricoci	Ū	Ū	0	Ū	Ū	0	0	Ū	Ū	0	Ū	0	0	Ū	Ũ	0
E	Bit/Field		Nam	e	Тур	e	Reset	Des	cription							
	31:21		reserv	ved	R)	0	Soft com pres	ware sho patibility served ac	ould not r with futu cross a re	rely on tl ire produ ead-mod	ne value ucts, the lify-write	of a reso value of operatio	erved bi a reser on.	t. To prov ved bit sh	ide ould be
	20		PW	M	R/\	N	0	PWI	M Reset	Control						
								Res	et contro	l for PW	M modu	le.				
	19:7		reserv	ved	R)	0	Soft com pres	ware sho patibility served ac	ould not r with futu cross a re	rely on tl ire prodi ead-mod	ne value ucts, the lify-write	of a reso value of operatio	erved bi a reser on.	t. To prov ved bit sh	ide ould be
	6		HIB	3	R/\	N	0	HIB	Reset C	ontrol						
								Res	et contro	l for the	Hiberna	tion mod	ule.			
	5:4		reserv	ved	R)	0	Soft com pres	ware sho patibility served ac	ould not r with futu cross a re	rely on tl ire produ ead-mod	ne value ucts, the lify-write	of a reso value of operatio	erved bi a reser on.	t. To prov ved bit sh	ide ould be
	3		WD.	т	RΛ	N	0	WD.	T Reset	Control						
								Res	et contro	l for Wat	chdog u	nit.				
	2:0		reserv	ved	R)	0	Soft com	ware sho	ould not r with futu	rely on tl ire prodi	ne value ucts, the	of a reso value of	erved bi a reser	t. To prov ved bit sh	ide ould be

Software Reset Control 0 (SRCR0)

preserved across a read-modify-write operation.

Register 28: Software Reset Control 1 (SRCR1), offset 0x044

Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.

Offse Type	t 0x044 R/W, res	et 0x0000	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			reserved			COMP2	COMP1	COMP0			reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		12C0		reserved		QE10	rese	rved	SSI1	SSI0	rese	erved	UART1	UART0
Type Reset	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:27		reserv	ved	R	0	0	Soft com pres	ware sho patibility erved ac	ould not with fut cross a r	rely on th ure produ read-mod	ne value ucts, the lify-write	of a res value of operatio	erved bit a reserv on.	. To prov ed bit sh	ride Iould be
	26		COM	P2	R/	W	0	Ana	log Com	p 2 Res	et Contro	l .				
								Res	et contro	ol for ana	alog comp	parator 2	2.			
	25		COM	P1	R	/W	0	Ana	log Com	p 1 Res	et Contro	ol.				
								Res	et contro	ol for ana	alog com	parator 1	1.			
	24		COM	P0	R	/W	0	Ana	log Com	p 0 Res	et Contro	d				
								Res	et contro	ol for ana	alog com	parator ().			
	23:19		reserv	ved	R	0	0	Soft com pres	ware sho patibility erved ac	ould not with fut cross a r	rely on th ure produ read-mod	ne value ucts, the lify-write	of a res value of operatio	erved bit a reserv on.	. To prov ed bit sh	ide Iould be
	18		TIME	R2	R/	Ŵ	0	Time	er 2 Res	et Contr	ol					
								Res	et contro	l for Ge	neral-Pur	pose Tir	mer moc	lule 2.		
	17		TIME	R1	R/	Ŵ	0	Time	er 1 Res	et Contr	ol					
								Res	et contro	l for Ge	neral-Pur	pose Tir	mer moc	lule 1.		
	16		TIME	R0	R/	Ŵ	0	Time	er 0 Res	et Contr	ol					
								Res	et contro	ol for Ge	neral-Pur	pose Tir	mer moo	lule 0.		
	15:13		reserv	ved	R	0	0	Soft com pres	ware sho patibility erved ac	ould not with fut cross a r	rely on th ure produ ead-mod	ne value ucts, the lify-write	of a res value of operatio	erved bit a reserv on.	. To prov ed bit sh	ride Iould be
	12		12C	D	R	Ŵ	0	12C0	Reset (Control						
								Res	et contro	ol for I2C	unit 0.					
	11:9		reserv	ved	R	0	0	Soft com pres	ware sho patibility erved ac	ould not with fut	rely on th ure produ read-mod	ne value icts, the lify-write	of a res value of operatio	erved bit a reserv	. To prov ed bit sh	ride Iould be

Software Reset Control 1 (SRCR1) Base 0x400F.E000

Bit/Field	Name	Туре	Reset	Description
8	QEI0	R/W	0	QEI0 Reset Control
				Reset control for QEI unit 0.
7:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Reset Control
				Reset control for SSI unit 1.
4	SSI0	R/W	0	SSI0 Reset Control
				Reset control for SSI unit 0.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Reset Control
				Reset control for UART unit 1.
0	UART0	R/W	0	UART0 Reset Control
				Reset control for UART unit 0.

Register 29: Software Reset Control 2 (SRCR2), offset 0x048

Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.

Base Offse Type	0x400F.E t 0x048 R/W, rese	E000 et 0x0000	00000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1			r I	ï		т т	rese	rved	1		1	1		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				reser	ved				GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	e	Ту	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prode ead-mod	he value ucts, the dify-write	of a resolution of a resolutio	erved bit a reserv on.	. To prov ved bit sh	vide nould be
	7		GPIC	ЭН	R/	W	0	Port	HRese	t Control						
								Res	et contro	ol for GP	IO Port I	Η.				
	6		GPIC	G	R/	W	0	Port	G Rese	t Contro	l					
								Res	et contro	ol for GP	IO Port (G.				
	5		GPIC)F	R/	W	0	Port	F Rese	t Control						
								Res	et contro	ol for GP	IO Port F	₹.				
	4		GPIC	ЭЕ	R/	W	0	Port	E Rese	t Control						
								Res	et contro	ol for GP	IO Port E	Ξ.				
	3		GPIC	D	R/	W	0	Port	D Rese	t Control		_				
								Res	et contro	ol for GP	IO Port I	J.				
	2		GPIC)C	R/	W	0	Port	C Rese	t Control		~				
			0.510	-		••		Res	et contro	of for GP		٠.				
	1		GPIC	В	R/	vv	U	Port	E Rese	t Control	IO Port F	3				
	0		CDIC		م		0	Der		t Control		<i>.</i>				
	U		GPIC		rt/	vv	U	Res	et contro	ol for GP	IO Port /	۹.				

Software Reset Control 2 (SRCR2)

7 Hibernation Module

The Hibernation Module manages removal and restoration of power to the rest of the microcontroller to provide a means for reducing power consumption. When the processor and peripherals are idle, power can be completely removed with only the Hibernation Module remaining powered. Power can be restored based on an external signal, or at a certain time using the built-in real-time clock (RTC). The Hibernation module can be independently supplied from a battery or an auxiliary power supply.

The Hibernation module has the following features:

- Power-switching logic to discrete external regulator
- Dedicated pin for waking from an external signal
- Low-battery detection, signaling, and interrupt generation
- 32-bit real-time counter (RTC)
- Two 32-bit RTC match registers for timed wake-up and interrupt generation
- Clock source from a 32.768-kHz external oscillator or a 4.194304-MHz crystal
- RTC predivider trim for making fine adjustments to the clock rate
- 64 32-bit words of non-volatile memory
- Programmable interrupts for RTC match, external wake, and low battery events

7.1 Block Diagram

Figure 7-1. Hibernation Module Block Diagram

7.2 Functional Description

The Hibernation module controls the power to the processor with an enable signal (HIB) that signals an external voltage regulator to turn off. The Hibernation module power is determined dynamically. The supply voltage of the Hibernation module is the larger of the main voltage source (VDD) or the battery/auxilliary voltage source (VBAT). A voting circuit indicates the larger and an internal power switch selects the appropriate voltage source. The Hibernation module also has a separate clock source to maintain a real-time clock (RTC). Once in hibernation, the module signals an external voltage regulator to turn back on the power when an external pin (WAKE) is asserted, or when the internal RTC reaches a certain value. The Hibernation module can also detect when the battery voltage is low, and optionally prevent hibernation when this occurs.

Power-up from a power cut to code execution is defined as the regulator turn-on time (specified at t_{HIB} TO VDD maximum) plus the normal chip POR (see "Hibernation Module" on page 478).

7.2.1 Register Access Timing

Because the Hibernation module has an independent clocking domain, certain registers must be written only with a timing gap between accesses. The delay time is $t_{HIB_REG_WRITE}$, therefore software must guarantee that a delay of $t_{HIB_REG_WRITE}$ is inserted between back-to-back writes to certain

Hibernation registers, or between a write followed by a read to those same registers. There is no restriction on timing for back-to-back reads from the Hibernation module.

7.2.2 Clock Source

The Hibernation module must be clocked by an external source, even if the RTC feature will not be used. An external oscillator or crystal can be used for this purpose. To use a crystal, a 4.194304-MHz crystal is connected to the xosco and xoscl pins. This clock signal is divided by 128 internally to produce the 32.768-kHz clock reference. To use a more precise clock source, a 32.768-kHz oscillator can be connected to the xosco pin. See Figure 7-2 on page 122 and Figure 7-3 on page 123. Note that these diagrams only show the connection to the Hibernation pins and not to the full system. See "Hibernation Module" on page 478 for specific values.

The clock source is enabled by setting the CLK32EN bit of the **HIBCTL** register. The type of clock source is selected by setting the CLKSEL bit to 0 for a 4.194304-MHz clock source, and to 1 for a 32.768-kHz clock source. If the bit is set to 0, the input clock is divided by 128, resulting in a 32.768-kHz clock source. If a crystal is used for the clock source, the software must leave a delay of t_{XOSC_SETTLE} after setting the CLK32EN bit and before any other accesses to the Hibernation module registers. The delay allows the crystal to power up and stabilize. If an oscillator is used for the clock source, no delay is needed.

Figure 7-2. Clock Source Using Crystal

Note: R_{TERM} = Optional series termination resistor.

 R_{PU} = Pull-up resistor (1 M¹/₂).

See "Hibernation Module" on page 478 for specific parameter values.

Figure 7-3. Clock Source Using Dedicated Oscillator

Note: X_1 = Crystal frequency is f_{XOSC_XTAL} .

 R_L = Load resistor is R_{XOSC_LOAD} .

 $C_{1,2}$ = Capacitor value derived from crystal vendor load capacitance specifications.

 R_{PU} = Pull-up resistor (1 M¹/₂).

See "Hibernation Module" on page 478 for specific parameter values.

7.2.3 Battery Management

The Hibernation module can be independently powered by a battery or an auxiliary power source. The module can monitor the voltage level of the battery and detect when the voltage drops below 2.35 V. When this happens, an interrupt can be generated. The module also can be configured so that it will not go into Hibernate mode if the battery voltage drops below this threshold. Battery voltage is not measured while in Hibernate mode.

Important: System level factors may affect the accuracy of the low battery detect circuit. The designer should consider battery type, discharge characteristics, and a test load during battery voltage measurements.

Note that the Hibernation module draws power from whichever source (VBAT or VDD) has the higher voltage. Therefore, it is important to design the circuit to ensure that VDD is higher that VBAT under nominal conditions or else the Hibernation module draws power from the battery even when VDD is available.

The Hibernation module can be configured to detect a low battery condition by setting the LOWBATEN bit of the **HIBCTL** register. In this configuration, the LOWBAT bit of the **HIBRIS** register will be set when the battery level is low. If the VABORT bit is also set, then the module is prevented from entering Hibernation mode when a low battery is detected. The module can also be configured to generate an interrupt for the low-battery condition (see "Interrupts and Status" on page 125).

7.2.4 Real-Time Clock

The Hibernation module includes a 32-bit counter that increments once per second with a proper clock source and configuration (see "Clock Source" on page 122). The 32.768-kHz clock signal is fed into a predivider register which counts down the 32.768-kHz clock ticks to achieve a once per second clock rate for the RTC. The rate can be adjusted to compensate for inaccuracies in the clock source by using the predivider trim register, **HIBRTCT**. This register has a nominal value of 0x7FFF, and is used for one second out of every 64 seconds to divide the input clock. This allows the software to make fine corrections to the clock rate by adjusting the predivider trim register up or down from 0x7FFF. The predivider trim should be adjusted up from 0x7FFF in order to slow down the RTC rate, and down from 0x7FFF in order to speed up the RTC rate.

The Hibernation module includes two 32-bit match registers that are compared to the value of the RTC counter. The match registers can be used to wake the processor from hibernation mode, or to generate an interrupt to the processor if it is not in hibernation.

The RTC must be enabled with the RTCEN bit of the **HIBCTL** register. The value of the RTC can be set at any time by writing to the **HIBRTCLD** register. The predivider trim can be adjusted by reading and writing the **HIBRTCT** register. The predivider uses this register once every 64 seconds to adjust the clock rate. The two match registers can be set by writing to the **HIBRTCM0** and **HIBRTCM1** registers. The RTC can be configured to generate interrupts by using the interrupt registers (see "Interrupts and Status" on page 125).

7.2.5 Non-Volatile Memory

The Hibernation module contains 64 32-bit words of memory which are retained during hibernation. This memory is powered from the battery or auxiliary power supply during hibernation. The processor software can save state information in this memory prior to hibernation, and can then recover the state upon waking. The non-volatile memory can be accessed through the **HIBDATA** registers.

7.2.6 Power Control

Important: The Hibernation Module requires special system implementation considerations since it is intended to power-down all other sections of its host device. The system power-supply distribution and interfaces of the system must be driven to 0 V_{DC} or powered down with the same regulator controlled by HIB. See "Hibernation Module" on page 478 for more details.

The Hibernation module controls power to the processor through the use of the HIB pin, which is intended to be connected to the enable signal of the external regulator(s) providing 3.3 V and/or 2.5 V to the microcontroller. When the HIB signal is asserted by the Hibernation module, the external regulator is turned off and no longer powers the microcontroller. The Hibernation module remains powered from the VBAT supply, which could be a battery or an auxiliary power source. Hibernation mode is initiated by the microcontroller setting the HIBREQ bit of the **HIBCTL** register. Prior to doing this, a wake-up condition must be configured, either from the external WAKE pin, or by using an RTC match.

The Hibernation module is configured to wake from the external \overline{WAKE} pin by setting the PINWEN bit of the **HIBCTL** register. It is configured to wake from RTC match by setting the RTCWEN bit. Either one or both of these bits can be set prior to going into hibernation. The \overline{WAKE} pin includes a weak internal pull-up. Note that both the \overline{HIB} and \overline{WAKE} pins use the Hibernation module's internal power supply as the logic 1 reference.

When the Hibernation module wakes, the microcontroller will see a normal power-on reset. It can detect that the power-on was due to a wake from hibernation by examining the raw interrupt status

register (see "Interrupts and Status" on page 125) and by looking for state data in the non-volatile memory (see "Non-Volatile Memory" on page 124).

When the $\overline{\text{HIB}}$ signal deasserts, enabling the external regulator, the external regulator must reach the operating voltage within t_{HIB TO VDD}.

7.2.7 Interrupts and Status

The Hibernation module can generate interrupts when the following conditions occur:

- Assertion of WAKE pin
- RTC match
- Low battery detected

All of the interrupts are ORed together before being sent to the interrupt controller, so the Hibernate module can only generate a single interrupt request to the controller at any given time. The software interrupt handler can service multiple interrupt events by reading the **HIBMIS** register. Software can also read the status of the Hibernation module at any time by reading the **HIBRIS** register which shows all of the pending events. This register can be used at power-on to see if a wake condition is pending, which indicates to the software that a hibernation wake occurred.

The events that can trigger an interrupt are configured by setting the appropriate bits in the **HIBIM** register. Pending interrupts can be cleared by writing the corresponding bit in the **HIBIC** register.

7.3 Initialization and Configuration

The Hibernation module can be set in several different configurations. The following sections show the recommended programming sequence for various scenarios. The examples below assume that a 32.768-kHz oscillator is used, and thus always show bit 2 (CLKSEL) of the **HIBCTL** register set to 1. If a 4.194304-MHz crystal is used instead, then the CLKSEL bit remains cleared. Because the Hibernation module runs at 32 kHz and is asynchronous to the rest of the system, software must allow a delay of $t_{\text{HIB}_\text{REG}_\text{WRITE}}$ after writes to certain registers (see "Register Access Timing" on page 121). The registers that require a delay are listed in a note in "Register Map" on page 126 as well as in each register description.

7.3.1 Initialization

The clock source must be enabled first, even if the RTC will not be used. If a 4.194304-MHz crystal is used, perform the following steps:

- 1. Write 0x40 to the **HIBCTL** register at offset 0x10 to enable the crystal and select the divide-by-128 input path.
- 2. Wait for a time of t_{XOSC_SETTLE} for the crystal to power up and stabilize before performing any other operations with the Hibernation module.
- If a 32.678-kHz oscillator is used, then perform the following steps:
- 1. Write 0x44 to the **HIBCTL** register at offset 0x10 to enable the oscillator input.
- 2. No delay is necessary.

The above is only necessary when the entire system is initialized for the first time. If the processor is powered due to a wake from hibernation, then the Hibernation module has already been powered

up and the above steps are not necessary. The software can detect that the Hibernation module and clock are already powered by examining the CLK32EN bit of the **HIBCTL** register.

7.3.2 RTC Match Functionality (No Hibernation)

Use the following steps to implement the RTC match functionality of the Hibernation module:

- 1. Write the required RTC match value to one of the HIBRTCMn registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Set the required RTC match interrupt mask in the RTCALT0 and RTCALT1 bits (bits 1:0) in the HIBIM register at offset 0x014.
- 4. Write 0x0000.0041 to the **HIBCTL** register at offset 0x010 to enable the RTC to begin counting.

7.3.3 RTC Match/Wake-Up from Hibernation

Use the following steps to implement the RTC match and wake-up functionality of the Hibernation module:

- 1. Write the required RTC match value to the **HIBRTCMn** registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Write any data to be retained during power cut to the **HIBDATA** register at offsets 0x030-0x12C.
- 4. Set the RTC Match Wake-Up and start the hibernation sequence by writing 0x0000.004F to the **HIBCTL** register at offset 0x010.

7.3.4 External Wake-Up from Hibernation

Use the following steps to implement the Hibernation module with the external \overline{WAKE} pin as the wake-up source for the microcontroller:

- 1. Write any data to be retained during power cut to the HIBDATA register at offsets 0x030-0x12C.
- 2. Enable the external wake and start the hibernation sequence by writing 0x0000.0056 to the **HIBCTL** register at offset 0x010.

7.3.5 RTC/External Wake-Up from Hibernation

- 1. Write the required RTC match value to the **HIBRTCMn** registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Write any data to be retained during power cut to the HIBDATA register at offsets 0x030-0x12C.
- 4. Set the RTC Match/External Wake-Up and start the hibernation sequence by writing 0x0000.005F to the **HIBCTL** register at offset 0x010.

7.4 Register Map

Table 7-1 on page 127 lists the Hibernation registers. All addresses given are relative to the Hibernation Module base address at 0x400F.C000.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of $t_{HIB_REG_WRITE}$ between write accesses. See "Register Access Timing" on page 121.

Table 7-1. Hibernation Module Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	HIBRTCC	RO	0x0000.0000	Hibernation RTC Counter	128
0x004	HIBRTCM0	R/W	0xFFFF.FFFF	Hibernation RTC Match 0	129
0x008	HIBRTCM1	R/W	0xFFFF.FFFF	Hibernation RTC Match 1	130
0x00C	HIBRTCLD	R/W	0xFFFF.FFFF	Hibernation RTC Load	131
0x010	HIBCTL	R/W	0x0000.0000	Hibernation Control	132
0x014	HIBIM	R/W	0x0000.0000	Hibernation Interrupt Mask	134
0x018	HIBRIS	RO	0x0000.0000	Hibernation Raw Interrupt Status	135
0x01C	HIBMIS	RO	0x0000.0000	Hibernation Masked Interrupt Status	136
0x020	HIBIC	R/W1C	0x0000.0000	Hibernation Interrupt Clear	137
0x024	HIBRTCT	R/W	0x0000.7FFF	Hibernation RTC Trim	138
0x030- 0x12C	HIBDATA	R/W	0x0000.0000	Hibernation Data	139

7.5 Register Descriptions

The remainder of this section lists and describes the Hibernation module registers, in numerical order by address offset.

Register 1: Hibernation RTC Counter (HIBRTCC), offset 0x000

This register is the current 32-bit value of the RTC counter.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 121.

Hibernation RTC Counter (HIBRTCC)

Base Offse Type	0x400F.0 t 0x000 RO, rese	C000 t 0x0000.	.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Î		I		,		1 1	RT	CC		1	I	1	I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		, , ,		1 1	RT				1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	Type RO <															
								A ro	ad raturn	a tha 31) hit cou	ntor valu	o This r	odictor id	road or	nhy To

A read returns the 32-bit counter value. This register is read-only. To change the value, use the **HIBRTCLD** register.

16

R/W

1

0

R/W

1

Register 2: Hibernation RTC Match 0 (HIBRTCM0), offset 0x004

This register is the 32-bit match 0 register for the RTC counter.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 121.

Hibernation RTC Match 0 (HIBRTCM0) Base 0x400F.C000 Offset 0x004 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 RTCM0 R/W Туре R/W R/W Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 13 9 8 7 6 3 2 15 14 12 11 10 5 4 1 RTCM0 R/W Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Bit/Field Description Name Туре Reset RTCM0 0xFFFF.FFFF RTC Match 0 31:0 R/W A write loads the value into the RTC match register.

A read returns the current match value.

Register 3: Hibernation RTC Match 1 (HIBRTCM1), offset 0x008

This register is the 32-bit match 1 register for the RTC counter.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 121.

Hibernation RTC Match 1 (HIBRTCM1)

A read returns the current match value.

Register 4: Hibernation RTC Load (HIBRTCLD), offset 0x00C

This register is the 32-bit value loaded into the RTC counter.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 121.

A read returns the 32-bit load value.

Register 5: Hibernation Control (HIBCTL), offset 0x010

This register is the control register for the Hibernation module.

Hibe	ernation	Contr	ol (HIBC	TL)												
Base Offse Type	0x400F.0 t 0x010 R/W, rese	C000 et 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	erved						1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved				VABORT	CLK32EN	LOWBATEN	PINWEN	RTCWEN	CLKSEL	HIBREQ	RTCEN
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ie	Тур	e	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	Soff com pres	tware sho patibility served a	ould not i with futu cross a re	rely on th ire produ ead-mod	ne value ucts, the lify-write	of a resolution of a resolutio	erved bil a reserv on.	t. To prov ved bit sh	ride Iould be
	7		VABO	RT	R/\	N	0	Pov	ver Cut A	bort Ena	ıble					
								Val	ue Desc	ription						
								C) Powe	er cut oco	curs duri	ng a lov	v-battery	alert.		
								1	Powe	er cut is a	aborted.					
	6		CLK32	2EN	R/\	N	0	32-1	kHz Osci	llator Ena	able					
								Val	ue Desc	ription						
								C) Disa	bled						
								1	Enat	led						
								This use crys	s bit mus d, then s stal to po	t be enat oftware s wer up a	oled to u should w nd stabil	se the H ait 20 m ize.	libernations after se	on modu etting thi	le. If a cr is bit to a	ystal is llow the
	5		LOWBA	TEN	R/\	N	0	Low	/ Battery	Monitorii	ng Enab	le				
								Val	ue Desc	ription						
								C) Disa	bled						
								1	Enat	oled						
								Whe	en set, lo	w batter	y voltage	e detecti	on is ena	abled (VI	BAT < 2.3	35 V).
	4		PINW	EN	R/\	N	0	Exte	ernal WAR	रे≣ Pin Er	nable					
								Val	ue Desc	ription						
								C) Disa	bled						
								1	Enat	oled						

When set, an external event on the \overline{WAKE} pin will re-power the device.

Bit/Field	Name	Туре	Reset	Description
3	RTCWEN	R/W	0	RTC Wake-up Enable
				Value Description 0 Disabled
				1 Enabled
				When set, an RTC match event (RTCM0 or RTCM1) will re-power the device based on the RTC counter value matching the corresponding match register 0 or 1.
2	CLKSEL	R/W	0	Hibernation Module Clock Select
				Value Description
				0 Use Divide by 128 output. Use this value for a 4-MHz crystal.
				1 Use raw output. Use this value for a 32-kHz oscillator.
1	HIBREQ	R/W	0	Hibernation Request
				Value Description
				0 Disabled
				1 Hibernation initiated
				After a wake-up event, this bit is cleared by hardware.
0	RTCEN	R/W	0	RTC Timer Enable
				Value Description
				0 Disabled
				1 Enabled

Register 6: Hibernation Interrupt Mask (HIBIM), offset 0x014

This register is the interrupt mask register for the Hibernation module interrupt sources.

Base Offse Type	0x400F. t 0x014 R/W, res	C000 set 0x00	00.0	0000														
	31	30		29	28	2	27	26	25	24	23	22	21	20	19	18	17	16
		1			1		1			rese	erved	1	1	1	1	1	1	
Туре	RO	RO		RO	RO	R	20	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0		0	0	(0	0	0	0	0	0	0	0	0	0	0	0
	15	14	_	13	12	1	11	10	9	8	7	6	5	4	3	2	1	0
						i.		re	served		1				EXTW	LOWBAT	RTCALT1	RTCALT0
Type Reset	RO 0	RO 0		RO 0	RO 0	R	80 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
	-	-		-	-		-	-	-	-		-	-	-	-	-	-	-
E	Bit/Field			Nam	ne		Тур	е	Reset	Des	cription							
	21.4				(ad				0,000,0000	Coff	huara ah	ould not	roly on	the velue	of a raa	onucd bi	t Ta ara	vido
	31.4			reserv	veu		ĸu		0x000.0000	com	npatibility served a	with fut cross a r	ure pro read-mo	ducts, the odify-write	value of operation	f a reserved bi on.	ved bit s	hould be
	3			EXT	W		R/W	/	0	Exte	ernal Wa	ke-Up Ir	nterrupt	Mask				
										Val	ue Des	cription						
										C) Mas	ked						
										1	Unm	asked						
	2			LOWE	BAT		R/W	/	0	Low	/ Battery	Voltage	Interru	pt Mask				
										Val	ue Des	cription						
										C) Mas	ked						
										1	Unm	asked						
	1			RTCA	LT1		R/W	/	0	RT	C Alert1	Interrupt	Mask					
										Val	ue Des	cription						
										C) Mas	ked						
										1	Unm	asked						
	0			RTCA	LT0		R/W	/	0	RT	C Alert0	Interrupt	Mask					
										Val	ue Des	cription						
										C) Mas	ked						
										1	Unm	asked						

Hibernation Interrupt Mask (HIBIM)

Register 7: Hibernation Raw Interrupt Status (HIBRIS), offset 0x018

This register is the raw interrupt status for the Hibernation module interrupt sources.

Hibernation Raw	Interrupt Status (HIBRIS)
-----------------	---------------------------

Base 0x400F.C000 Offset 0x018 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved					1	1	,
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I			re	eserved					I	EXTW	LOWBAT	RTCALT1	RTCALT0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	31:4		Nam reserv	ne ved	Typ RC	e)	Reset 0x000.0000	Des Soft com pres	cription ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	t. To prov ved bit sł	vide nould be
	3		EXT	W	RC)	0	Exte	ernal Wal	ke-Up Ra	aw Inter	rupt State	us			
	2		LOWE	BAT	RC)	0	Low	Battery	Voltage	Raw Inte	errupt Sta	atus			
	1		RTCA	LT1	RC)	0	RTC	CAlert1 F	Raw Inte	rrupt Sta	atus				
	0		RTCA	LT0	RC)	0	RTC	CAlert0 F	Raw Inte	rrupt Sta	atus				

Register 8: Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C

This register is the masked interrupt status for the Hibernation module interrupt sources.

Hibernation Masked Interrupt Status (HIBMIS)

Base 0x400F.C000

Offset 0x01C Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	г <u>г</u>			rese	erved			1		1	1	,
Туре .	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1		re	served		ı			I	EXTW	LOWBAT	RTCALT1	RTCALT0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	31:4		Nan reser	ne ved	Typ))	Reset 0x000.0000	Des Soft com pres	cription tware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bil [:] a reserv on.	t. To prov ved bit sł	vide nould be
	3		EXT	W	RC)	0	Exte	ernal Wal	ke-Up M	asked Ir	nterrupt S	Status			
	2		LOWE	BAT	RC)	0	Low	Battery	Voltage	Masked	Interrup	t Status			
	1		RTCA	LT1	RC)	0	RTC	C Alert1 N	lasked	nterrupt	Status				
	0		RTCA	LT0	RC)	0	RTC	C Alert0 N	/lasked	Interrupt	Status				

Register 9: Hibernation Interrupt Clear (HIBIC), offset 0x020

This register is the interrupt write-one-to-clear register for the Hibernation module interrupt sources.

Base Offse Type	0x400F.0 t 0x020 R/W1C, i	COOO reset 0x0	000.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1			1 1	rese	erved	I	1	I	1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1		re	eserved		т 1	I	1	1	EXTW	LOWBAT	RTCALT1	RTCALT0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	scription							
	31:4		reser	ved	R	0	0x000.0000	Sof con pres	tware sho npatibility served ac	ould not with fut cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	e of a res value of e operatio	erved bit f a reserv on.	t. To prov ved bit sl	vide nould be
	3		EXT	W	R/W	/1C	0	Exte Rea	ernal Wa ads returr	ke-Up M n an inde	lasked Ir etermina	nterrupt te value	Clear			
	2		LOWE	BAT	R/W	/1C	0	Low Rea	v Battery ads return	Voltage n an inde	Masked etermina	Interrup te value	ot Clear			
	1		RTCA	LT1	R/W	/1C	0	RT(Rea	C Alert1 I	Masked n an inde	Interrupt	Clear te value				
	0		RTCA	LT0	R/W	/1C	0	RT(Rea	C Alert0 I	Masked	Interrupt	Clear te value				

Hibernation Interrupt Clear (HIBIC)

Register 10: Hibernation RTC Trim (HIBRTCT), offset 0x024

This register contains the value that is used to trim the RTC clock predivider. It represents the computed underflow value that is used during the trim cycle. It is represented as 0x7FFF ± N clock cycles.

Note: HIBRTCC, HIBRTCM0, HIBRTCM1, HIBRTCLD, HIBRTCT, and HIBDATA are on the Hibernation module clock domain and require a delay of $t_{HIB\ REG\ WRITE}$ between write accesses. See "Register Access Timing" on page 121.

Hibe	ernatior	IRICI	rim (HII	BRICI)											
Base Offse Type	0x400F.0 t 0x024 R/W, res	C000 et 0x0000).7FFF													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	I	1	1		î î	rese	erved	I	1	î.	1	ì	J	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	1 1		г	TR	1 RIM	1	1	1	1	1	r	
					I				L				ı			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
E	Bit/Field		Nam	ne	Ту	be	Reset	Des	cription							
	31:16		reserv	ved	R	C	0x0000	Soft com pres	ware shapatibility served a	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	. To prov ed bit sh	vide hould be
	15:0		TRI	Μ	R/	W	0x7FFF	RTC	C Trim Va	alue						
								This to a sour	s value is djust the rce. The	loaded in RTC rat	nto the F te to acc sation is	RTC pred ount for made by	ivider ev drift and / softwar	ery 64 se inaccura e by adju	conds. I cy in the sting the	lt is used e clock e default

value of 0x7FFF up or down.

DTC Tri 11:6

138

Register 11: Hibernation Data (HIBDATA), offset 0x030-0x12C

This address space is implemented as a 64x32-bit memory (256 bytes). It can be loaded by the system processor in order to store any non-volatile state data and will not lose power during a power cut operation.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 121.

Hibe	ernation	Data (HIBDA	ΓA)												
Base Offse Type	0x400F.C t 0x030-0 R/W, rese	C000 x12C et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1	1	1		1 1	R	TD	1	r	1				'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1	1	1		1 1	R	TD	1	I	1				'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:0		RT	D	R/	W 0:	×0000.00	00 Hibe	ernation	Module	NV Regi	sters[63:	0]			

July 26, 2008

8 Internal Memory

The LM3S1620 microcontroller comes with 32 KB of bit-banded SRAM and 128 KB of flash memory. The flash controller provides a user-friendly interface, making flash programming a simple task. Flash protection can be applied to the flash memory on a 2-KB block basis.

8.1 Block Diagram

Figure 8-1 on page 140 illustrates the Flash functions. The dashed boxes in the figure indicate registers residing in the System Control module rather than the Flash Control module.

Figure 8-1. Flash Block Diagram

8.2 Functional Description

This section describes the functionality of the SRAM and Flash memories.

8.2.1 SRAM Memory

The internal SRAM of the Stellaris[®] devices is located at address 0x2000.0000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)

For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:

0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C

With the alias address calculated, an instruction performing a read/write to address 0x2202.000C allows direct access to only bit 3 of the byte at address 0x2000.1000.

For details about bit-banding, please refer to Chapter 4, "Memory Map" in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual.*

8.2.2 Flash Memory

The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB blocks that can be individually protected. The protection allows blocks to be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

See also "Serial Flash Loader" on page 489 for a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface.

8.2.2.1 Flash Memory Timing

The timing for the flash is automatically handled by the flash controller. However, in order to do so, it must know the clock rate of the system in order to time its internal signals properly. The number of clock cycles per microsecond must be provided to the flash controller for it to accomplish this timing. It is software's responsibility to keep the flash controller updated with this information via the **USec Reload (USECRL)** register.

On reset, the **USECRL** register is loaded with a value that configures the flash timing so that it works with the maximum clock rate of the part. If software changes the system operating frequency, the new operating frequency minus 1 (in MHz) must be loaded into **USECRL** before any flash modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value of 0x13 (20-1) must be written to the **USECRL** register.

8.2.2.2 Flash Memory Protection

The user is provided two forms of flash protection per 2-KB flash blocks in two pairs of 32-bit wide registers. The protection policy for each form is controlled by individual bits (per policy per block) in the **FMPPEn** and **FMPREn** registers.

- Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed (written) or erased. If cleared, the block may not be changed.
- Flash Memory Protection Read Enable (FMPREn): If set, the block may be executed or read by software or debuggers. If cleared, the block may only be executed and contents of the memory block are prohibited from being accessed as data.

The policies may be combined as shown in Table 8-1 on page 141.

Table 8-1. Flash Protection Policy Combinations

FMPPEn	FMPREn	Protection
0	0	Execute-only protection. The block may only be executed and may not be written or erased. This mode
		is used to protect code.

FMPPEn	FMPREn	Protection
1	0	The block may be written, erased or executed, but not read. This combination is unlikely to be used.
0	1	Read-only protection. The block may be read or executed but may not be written or erased. This mode is used to lock the block from further modification while allowing any read or execute access.
1	1	No protection. The block may be written, erased, executed or read.

An access that attempts to program or erase a PE-protected block is prohibited. A controller interrupt may be optionally generated (by setting the AMASK bit in the **FIM** register) to alert software developers of poorly behaving software during the development and debug phases.

An access that attempts to read an RE-protected block is prohibited. Such accesses return data filled with all 0s. A controller interrupt may be optionally generated to alert software developers of poorly behaving software during the development and debug phases.

The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. Details on programming these bits are discussed in "Nonvolatile Register Programming" on page 143.

8.3 Flash Memory Initialization and Configuration

8.3.1 Flash Programming

The Stellaris[®] devices provide a user-friendly interface for flash programming. All erase/program operations are handled via three registers: **FMA**, **FMD**, and **FMC**.

8.3.1.1 To program a 32-bit word

- 1. Write source data to the **FMD** register.
- 2. Write the target address to the FMA register.
- 3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the **FMC** register.
- 4. Poll the **FMC** register until the WRITE bit is cleared.

8.3.1.2 To perform an erase of a 1-KB page

- 1. Write the page address to the **FMA** register.
- 2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the **FMC** register.
- 3. Poll the **FMC** register until the ERASE bit is cleared.

8.3.1.3 To perform a mass erase of the flash

- 1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the **FMC** register.
- 2. Poll the **FMC** register until the MERASE bit is cleared.

8.3.2 Nonvolatile Register Programming

This section discusses how to update registers that are resident within the flash memory itself. These registers exist in a separate space from the main flash array and are not affected by an ERASE or MASS ERASE operation. These nonvolatile registers are updated by using the COMT bit in the **FMC** register to activate a write operation. For the **USER_DBG** register, the data to be written must be loaded into the **FMD** register before it is "committed". All other registers are R/W and can have their operation tried before committing them to nonvolatile memory.

Important: These registers can only have bits changed from 1 to 0 by user programming, but can be restored to their factory default values by performing the sequence described in the section called "Recovering a "Locked" Device" on page 53. The mass erase of the main flash array caused by the sequence is performed prior to restoring these registers.

In addition, the **USER_REG0**, **USER_REG1**, and **USER_DBG** use bit 31 (NW) of their respective registers to indicate that they are available for user write. These three registers can only be written once whereas the flash protection registers may be written multiple times. Table 8-2 on page 143 provides the FMA address required for commitment of each of the registers and the source of the data to be written when the COMT bit of the **FMC** register is written with a value of 0xA442.0008. After writing the COMT bit, the user may poll the **FMC** register to wait for the commit operation to complete.

Register to be Committed	FMA Value	Data Source
FMPRE0	0x0000.0000	FMPRE0
FMPRE1	0x0000.0002	FMPRE1
FMPRE2	0x0000.0004	FMPRE2
FMPRE3	0x0000.0008	FMPRE3
FMPPE0	0x0000.0001	FMPPE0
FMPPE1	0x0000.0003	FMPPE1
FMPPE2	0x0000.0005	FMPPE2
FMPPE3	0x0000.0007	FMPPE3
USER_REG0	0x8000.0000	USER_REG0
USER_REG1	0x8000.0001	USER_REG1
USER_DBG	0x7510.0000	FMD

Table 8-2. Flash Resident Registers^a

a. Which FMPREn and FMPPEn registers are available depend on the flash size of your particular Stellaris[®] device.

8.4 Register Map

Table 8-3 on page 144 lists the Flash memory and control registers. The offset listed is a hexadecimal increment to the register's address. The **FMA**, **FMD**, **FMC**, **FCRIS**, **FCIM**, and **FCMISC** registers are relative to the Flash control base address of 0x400F.D000. The **FMPREn**, **FMPPEn**, **USER_DBG**, and **USER_REGn** registers are relative to the System Control base address of 0x400F.E000.

Table 8-3. Flash Register Map

Offset	Name	Туре	Reset	Description	See page	
Flash Registers (Flash Control Offset)						
0x000	FMA	R/W	0x0000.0000	Flash Memory Address	145	
0x004	FMD	R/W	0x0000.0000	Flash Memory Data	146	
0x008	FMC	R/W	0x0000.0000	Flash Memory Control	147	
0x00C	FCRIS	RO	0x0000.0000	Flash Controller Raw Interrupt Status	149	
0x010	FCIM	R/W	0x0000.0000	Flash Controller Interrupt Mask	150	
0x014	FCMISC	R/W1C	0x0000.0000	Flash Controller Masked Interrupt Status and Clear	151	
Flash Registers (System Control Offset)						
0x130	FMPRE0	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 0	153	
0x200	FMPRE0	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 0	153	
0x134	FMPPE0	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 0	154	
0x400	FMPPE0	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 0	154	
0x140	USECRL	R/W	0x18	USec Reload	152	
0x1D0	USER_DBG	R/W	0xFFFF.FFFE	User Debug	155	
0x1E0	USER_REG0	R/W	0xFFFF.FFFF	User Register 0	156	
0x1E4	USER_REG1	R/W	0xFFFF.FFFF	User Register 1	157	
0x204	FMPRE1	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 1	158	
0x208	FMPRE2	R/W	0x0000.0000	Flash Memory Protection Read Enable 2	159	
0x20C	FMPRE3	R/W	0x0000.0000	Flash Memory Protection Read Enable 3	160	
0x404	FMPPE1	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 1	161	
0x408	FMPPE2	R/W	0x0000.0000	Flash Memory Protection Program Enable 2	162	
0x40C	FMPPE3	R/W	0x0000.0000	Flash Memory Protection Program Enable 3	163	

8.5 Flash Register Descriptions (Flash Control Offset)

This section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the Flash control base address of 0x400F.D000.
Register 1: Flash Memory Address (FMA), offset 0x000

During a write operation, this register contains a 4-byte-aligned address and specifies where the data is written. During erase operations, this register contains a 1 KB-aligned address and specifies which page is erased. Note that the alignment requirements must be met by software or the results of the operation are unpredictable.

Туре	R/W, res	et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	ſ	1			1	reserved				1	1	1		OFFSET
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	I	1	1	ſ	1 1	OFF	SET	ſ	ſ	1	1	Γ	Γ	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:17		reser	ved	R	0	0x0	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prodi ead-mod	he value ucts, the dify-write	of a resolution of a resolutio	erved bit a reserv on.	. To pro ed bit s	vide hould be
	16:0		OFFS	BET	R/	W	0x0	Add	ress Offs	set						
										et in flas egisters	h where (see "No	operatio	on is perf Registe	formed, e r Prograi	except for mming"	or on page

143 for details on values for this field).

Flash Memory Address (FMA)

Base 0x400F.D000 Offset 0x000

July 26, 2008

Register 2: Flash Memory Data (FMD), offset 0x004

This register contains the data to be written during the programming cycle or read during the read cycle. Note that the contents of this register are undefined for a read access of an execute-only block. This register is not used during the erase cycles.

Data value for write operation.

Register 3: Flash Memory Control (FMC), offset 0x008

When this register is written, the flash controller initiates the appropriate access cycle for the location specified by the **Flash Memory Address (FMA)** register (see page 145). If the access is a write access, the data contained in the **Flash Memory Data (FMD)** register (see page 146) is written.

This is the final register written and initiates the memory operation. There are four control bits in the lower byte of this register that, when set, initiate the memory operation. The most used of these register bits are the ERASE and WRITE bits.

It is a programming error to write multiple control bits and the results of such an operation are unpredictable.

Flas	h Mem	ory Cor	ntrol (FN	ЛC)												
Base Offse Type	0x400F.E t 0x008 R/W, rese	0000 et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I	1			1 1	WR	KEY	I	I	I	1	1 1		
Туре	wo	wo	WO	WO	wo	wo	wo	WO	wo	wo	WO	WO	wo	WO	wo	wo
Reset	U	0	U	0	0	U	0	0	U	U	0	0	0	U	U	U
1	15	14	13	12	11 I	10	9	8	7	6	5	4	3	2	1	0
					1	res	erved		I				COMT	MERASE	ERASE	WRITE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16		WRK	ΕY	W	0	0x0	Flas	h Write I	Key						
This field contains a write key, which is used to minimize the incide of accidental flash writes. The value 0xA442 must be written into field for a write to occur. Writes to the FMC register without this we value are ignored. A read of this field returns the value 0. 15:4 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation.												cidence to this WRKEY ride hould be				
	3		CON	ΛT	R/	W	0	Con	nmit Reg	ister Val	ue					
								Con no e	nmit (writ effect on	te) of reg the state	jister val e of this t	ue to no bit.	nvolatile	storage.	A write	of 0 has
								If re prev com	ad, the s vious cor mit acce	tate of th nmit acc ess is not	ne previc ess is co t comple	ous com omplete, te, a 1 is	mit acce a 0 is re returne	ss is prov turned; o d.	vided. If otherwise	the e, if the
								This	can tak	e up to 5	50 µs.					
	2		MERA	ASE	R/	W	0	Mas	s Erase	Flash M	emory					
								lf thi write	is bit is s e of 0 ha	et, the fl s no effe	ash mair ect on the	n memor e state o	y of the f this bit.	device is	all eras	ed. A
								If represented by the presented by the p	ad, the s vious ma previous	tate of th ss erase mass er	ne previc access rase acc	ous mass is comp ess is no	s erase a lete, a 0 ot comple	access is is returne ete, a 1 is	provide ed; othe s returne	d. If the rwise, if ed.
								This	can tak	e up to 2	250 ms.					

Bit/Field	Name	Туре	Reset	Description
1	ERASE	R/W	0	Erase a Page of Flash Memory
				If this bit is set, the page of flash main memory as specified by the contents of FMA is erased. A write of 0 has no effect on the state of this bit.
				If read, the state of the previous erase access is provided. If the previous erase access is complete, a 0 is returned; otherwise, if the previous erase access is not complete, a 1 is returned.
				This can take up to 25 ms.
0	WRITE	R/W	0	Write a Word into Flash Memory
				If this bit is set, the data stored in FMD is written into the location as specified by the contents of FMA . A write of 0 has no effect on the state of this bit.
				If read, the state of the previous write update is provided. If the previous write access is complete, a 0 is returned; otherwise, if the write access is not complete, a 1 is returned.

This can take up to 50 µs.

Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C

This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled if the corresponding **FCIM** register bit is set.

Flash Controller Raw Interrupt Status (FCRIS)

Base 0x400F.D000 Offset 0x00C Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	ľ		1	1	· ·		1 1	rese	rved	1		1			1	1		
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Resei	0	0	0	U	0	0	0	U	0	U	0	U	U	0	U	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1			
							reser	rved	1				1		PRIS	ARIS		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
E	Bit/Field		Nan	e Type Reset Description														
31:2 reserved RO 0x0 So co pre									ware sho patibility served ac	ould not with futu cross a r	rely on t ire prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	To prov ved bit sh	vide nould be		
	1		PRI	S	R	С	0	Prog	grammin	g Raw Ir	terrupt	Status						
								This prog not gene page	bit indic gramming complete erated th e 147).	ates the g cycle c ed. Progr rough th	current omplete amming e Flash	state of t d; if clea cycles a Memory	the progr red, the are either Contro	ramming program r write or I (FMC)	cycle. If ming cyc erase a register I	set, the cle has actions bits (see		
0 ARIS RO 0 Access Raw I											t Status							
								This bit indicates if the flash was improperly accessed. If set, the prog tried to access the flash counter to the policy as set in the Flash Mem Protection Read Enable (FMPREn) and Flash Memory Protectio Program Enable (FMPPEn) registers. Otherwise, no access has t to improperly access the flash.										

Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010

This register controls whether the flash controller generates interrupts to the controller.

Base Offse Type	0x400F.E t 0x010 R/W, rese	0000 et 0x0000	0.0000	-												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Î		1	1	1	1	r r	rese	erved	1	1	1	1		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r i		Ì	Î	1	Î	reser	ved	1	ſ	Î	Ì	1	i i	PMASK	AMASK
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:2		reser	ved	R	0	0x0	Soft com pres	ware sho patibility served a	ould not with fut cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a resolution of a resolutio	erved bi a reservon.	t. To prov ved bit sł	vide nould be
	1		PMA	SK	R	W	0	Pro	grammin	g Interru	ipt Mask					
1 PMASK R/W 0 Programmi This bit cor to the contr to the contr the controll									s bit cont ne contro ne contro controlle	rols the Iler. If se Iler. Othe r.	reporting et, a prog erwise, ir	of the p ramming terrupts	orogramn g-genera are recor	ning raw ted inter ded but	r interrup rrupt is p suppress	t status romoted sed from
0 AMASK R/W 0 Access In											sk					
This bit controls the reporting controller. If set, an access-g controller. Otherwise, interrup controller.											of the a enerated ots are re	access ra d interrup ecorded	w interro ot is pror but supp	upt statu: noted to pressed f	s to the the rom the	

Flash Controller Interrupt Mask (FCIM)

Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014

This register provides two functions. First, it reports the cause of an interrupt by indicating which interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the interrupt reporting.

Base Offse Type	0x400F.E t 0x014 R/W1C, r	0000 reset 0x0	000.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1 1	Î	1 I	rese	erved	1	1	1	1 1	I	ſ	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	1	1	reser	ved	1	1	1	1	1		PMISC	AMISC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0
Bit/Field Name Type Reset Description																
31:2 reserved RO 0x0 Software should compatibility with preserved across										ould not with fut cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	e of a rese value of e operatio	erved bi a reser on.	t. To prov ved bit sh	vide nould be
	1		PMI	SC	R/V	V1C	0	Pro	grammin	g Maske	ed Interru	upt Statu	is and Cl	ear		
This bit indicat programming by writing a 1. cleared when									ates wh g cycle c I. The PF n the PM	ether an complete RIS bit in IISC bit i	interrup d and want the FCF s cleare	t was sig as not ma RIS regist d.	naled b asked. ∃ ter (see	ecause a This bit is page 149	cleared)) is also	
0 AMISC R/W1C 0 Access Masked Int											rrupt Sta	itus and	Clear			
This bit indicates whether an interrupt was access was attempted and was not maske a 1. The ARIS bit in the FCRIS register is bit is cleared.											was signa asked. Th er is also	aled bec his bit is cleared	ause an i cleared b when the	mproper y writing e AMISC		

Flash Controller Masked Interrupt Status and Clear (FCMISC)

8.6 Flash Register Descriptions (System Control Offset)

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the System Control base address of 0x400F.E000.

Register 7: USec Reload (USECRL), offset 0x140

Note: Offset is relative to System Control base address of 0x400F.E000

This register is provided as a means of creating a 1-µs tick divider reload value for the flash controller. The internal flash has specific minimum and maximum requirements on the length of time the high voltage write pulse can be applied. It is required that this register contain the operating frequency (in MHz -1) whenever the flash is being erased or programmed. The user is required to change this value if the clocking conditions are changed for a flash erase/program operation.

USe	c Reloa	ad (USE	ECRL)													
Base Offsei Type	0x400F.E t 0x140 R/W, res	E000 et 0x18														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							т т	rese	rved	1		1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type RO																
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
В	it/Field		Nam	е	Ту	be	Reset	Des	cription							
31:8 reserved RO 0x0 Software compatib preserved											rely on t ure prod ead-moo	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	. To proved bit sh	vide nould be
	7:0		USE	С	R/	W	0x18	Micr	rosecono	l Reload	Value					
								MH2 prog	z -1 of th grammed	e control 1.	ller clock	k when th	ne flash i	s being e	erased o	r
If the maximum system frequency is being used TISEC should be												ency is b	eing use	d, USEC	should b	be set to

0x18 (24 MHz) whenever the flash is being erased or programmed.

Register 8: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200

Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Read Enable 0 (FMPRE0)

Base 0x400F.E000 Offset 0x130 and 0x200 Type R/W, reset 0xFFF.FFFF

31:0 READ_ENABLE R/W 0xFFFFFFF Flash Read Enable

Enables 2-KB flash blocks to be executed or read. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

Value Description

0xFFFFFFF Enables 128 KB of flash.

Register 9: Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400

Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 0 (FMPPE0)

Base 0x400F.E000 Offset 0x134 and 0x400 Type R/W, reset 0xFFFF.FFFF

31:0 PROG_ENABLE R/W 0xFFFFFFF Flash Programming Enable

Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

Value Description

0xFFFFFFF Enables 128 KB of flash.

Register 10: User Debug (USER_DBG), offset 0x1D0

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides a write-once mechanism to disable external debugger access to the device in addition to 27 additional bits of user-defined data. The DBG0 bit (bit 0) is set to 0 from the factory and the DBG1 bit (bit 1) is set to 1, which enables external debuggers. Changing the DBG1 bit to 0 disables any external debugger access to the device permanently, starting with the next power-up cycle of the device. The NOTWRITTEN bit (bit 31) indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once.

Use Base Offse Type	er Debug 0x400F.E et 0x1D0 R/W, res	g (USEI E000 et 0xFFFI	R_DBG)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	NW		I	I	· ·		1 1		DATA			I	1		I	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1			DATA	4				1	1	1	DBG1	DBG0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	U
	Rit/Fiold		Non	20	Tur	20	Posot	Dog	cription							
	Sil/Field		INdii	le	ı yl)e	Resel	Des	cription							
	31		NM	v	R/\	N	1	Use	r Debug	Not Writ	ten					
								Spe	cifies the	at this 32	-bit dwo	rd has n	ot been v	written		
								opo			bit une					
	30:2		DAT	A	R/\	N 02	x1FFFFFF	F Use	er Data							
								Con	tains the	user da	ta value	. This fie	ld is initi	alized to	all 1s ar	nd can
								only	be writte	en once.						
	1			21	D٨	۸/	1	Dob	ua Conti	rol 1						
	I		DBC			/ V	I	Dec	uy cont							
								The	DBG1 bi	t must be	e 1 and 1	DBG0 mu	ist be 0 f	or debug	g to be av	vailable.
	0		DBG	90	R/\	N	0	Deb	oug Conti	rol 0						
								The	DBG1 bi	t must be	e 1 and 1	DBG0 mu	ist be 0 f	or debu	to be av	vailable.

Register 11: User Register 0 (USER_REG0), offset 0x1E0

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device.

Use	r Regist	ter 0 (U	ISER_R	EG0)												
Base Offse Type	0x400F.E t 0x1E0 R/W, rese	:000 et 0xFFF	F.FFFF													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[NW		1		· · ·		1 T		DATA		î	ì	1		1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		1		 		1 I	D	ATA		r	1	1 1	r	1	·]
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	¹ Bit/Field	1	1 Nam	1 Ie	1 Tyj	1 De	Reset	1 Des	1 scription	1	1	1	1	1	1	1
	31		NM	1	R/	W	1	Not	Written							
								Spe	ecifies that	at this 32	e-bit dwo	rd has n	ot been v	written.		
	30:0		DAT	A	R/	W 0	x7FFFFF	F Use	er Data							
								Cor only	ntains the	user da en once.	ita value	. This fie	ld is initi	alized to	all 1s ai	nd can

Register 12: User Register 1 (USER_REG1), offset 0x1E4

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device.

Use	r Regist	ter 1 (L	JSER_R	EG1)												
Base Offse Type	0x400F.E t 0x1E4 R/W, rese	000 et 0xFFF	F.FFFF													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[NW		1 1		1		1 1		DATA		Ì	1	1	i	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	i		1 1		1		1 1	D.	ATA		1	1	1	1	Î	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	¹ Bit/Field	1	Nam	ı Ie	Ту	pe	Reset	Des	scription	1	1	1	1	1	1	1
	31		NW	/	R/	W	1	Not	t Written							
								Spe	ecifies tha	it this 32	2-bit dwo	ord has n	ot been v	written.		
	30:0		DAT	A	R/	w	x7FFFFF	F Use	er Data							
								Cor only	ntains the y be writte	user da en once	ata value	e. This fie	eld is initi	alized to	all 1s a	nd can

Register 13: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

0xFFFFFFF Enables 128 KB of flash.

Flash Memory Protection Read Enable 1 (FMPRE1)

Register 14: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Offse Type	t 0x208 R/W, rese	et 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I				, i			READ_	ENABLE	I						1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ		1		г т 1		1 1	READ_	ENABLE							1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-):t/[:		Nam		т		Deast	Dee	- vin tie ve							
E	sit/Field		Nafr	ie	Iy	be	Reset	Des	cription							
	31:0	F	READ_EI	NABLE	R/	N (0x0000000) Flas	sh Read E	Enable						
								Ena corr	bles 2-KE bined as	3 flash b shown i	locks to n the tab	be execi le "Flash	uted or re Protecti	ead. The on Policy	policies / Combir	may be nations".

Value

Description 0x00000000 Enables 128 KB of flash.

Flash Memory Protection Read Enable 2 (FMPRE2)

Base 0x400F.E000

Base 0x400F.E000

Register 15: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Offse Type	t 0x20C R/W, rese	et 0x000	0.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1 1				T T	READ_I	ENABLE						ſ	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	it/Field		Nam	e	Тур	е	Reset	Des	cription							
	31:0	F	READ_E	NABLE	R/V	V (x0000000	0 Flas	sh Read E	Enable						
								Ena com	bles 2-KE Ibined as	3 flash b shown i	locks to n the tab	be execı le "Flash	uted or re Protecti	ead. The on Policy	policies / Combir	may be nations".

Value

Description 0x00000000 Enables 128 KB of flash.

Flash Memory Protection Read Enable 3 (FMPRE3)

Register 16: Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Offset 0x404 Type R/W, reset 0xFFF.FFFF 31 25 30 29 28 27 26 24 23 22 21 20 19 18 17 16 PROG ENABLE R/W Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 14 13 12 11 10 9 8 7 6 5 3 2 0 1 PROG ENABLE R/W R/W R/W R/W R/W R/W R/W R/W R/W R/M R/W R/W R/W R/W R/W R/W Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 **Bit/Field** Name Туре Reset Description PROG_ENABLE 0xFFFFFFFF Flash Programming Enable 31:0 R/W Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations". Value Description 0xFFFFFFF Enables 128 KB of flash.

Flash Memory Protection Program Enable 1 (FMPPE1) Base 0x400F.E000 Offset 0x404

Register 17: Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Base 0x400F.E000 Offset 0x408 Type R/W, reset 0x0000.0000 31 25 30 29 28 27 26 24 23 22 21 PROG ENABLE R/W Туре 0 Reset 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 PROG ENABLE

R/W R/W R/W R/W R/W R/W R/W R/W R/M R/W R/W R/W R/M R/W R/W R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Reset Description Type

PROG_ENABLE 31:0 R/W

Flash Memory Protection Program Enable 2 (FMPPE2)

0x00000000 Flash Programming Enable

> Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

20

0

19

R/W

0

3

18

R/W

0

2

17

R/W

0

1

16

R/W

0

0

Value Description

0x00000000 Enables 128 KB of flash.

Register 18: Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Offset 0x40C Type R/W, reset 0x0000.0000 31 25 30 29 28 27 26 24 23 22 21 20 19 18 17 16 PROG ENABLE R/W Туре 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 3 2 0 1 PROG ENABLE R/W R/W R/W R/W R/W R/W R/W R/W R/M R/W R/W R/W R/M R/W R/W R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description PROG_ENABLE 0x00000000 Flash Programming Enable 31:0 R/W Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations". Value Description 0x00000000 Enables 128 KB of flash.

Flash Memory Protection Program Enable 3 (FMPPE3) Base 0x400F.E000 Offset 0x40C

9 General-Purpose Input/Outputs (GPIOs)

The GPIO module is composed of eight physical GPIO blocks, each corresponding to an individual GPIO port (Port A, Port B, Port C, Port D, Port E, Port F, Port G, and Port H). The GPIO module supports 11-52 programmable input/output pins, depending on the peripherals being used.

The GPIO module has the following features:

- Programmable control for GPIO interrupts
 - Interrupt generation masking
 - Edge-triggered on rising, falling, or both
 - Level-sensitive on High or Low values
- 5-V-tolerant input/outputs
- Bit masking in both read and write operations through address lines
- Pins configured as digital inputs are Schmitt-triggered.
- Programmable control for GPIO pad configuration:
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be configured with an 18-mA pad drive for high-current applications
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables

9.1 Functional Description

Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1, GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

Each GPIO port is a separate hardware instantiation of the same physical block (see Figure 9-1 on page 165). The LM3S1620 microcontroller contains eight ports and thus eight of these physical GPIO blocks.

9.1.1 Data Control

The data control registers allow software to configure the operational modes of the GPIOs. The data direction register configures the GPIO as an input or an output while the data register either captures incoming data or drives it out to the pads.

9.1.1.1 Data Direction Operation

The **GPIO Direction (GPIODIR)** register (see page 172) is used to configure each individual pin as an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and the corresponding data register bit will capture and store the value on the GPIO port. When the data direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit will be driven out on the GPIO port.

9.1.1.2 Data Register Operation

To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the **GPIO Data (GPIODATA)** register (see page 171) by using bits [9:2] of the address bus as a mask. This allows software drivers to modify individual GPIO pins in a single instruction, without affecting the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write operation to set or clear an individual GPIO pin. To accommodate this feature, the **GPIODATA** register covers 256 locations in the memory map.

During a write, if the address bit associated with that data bit is set to 1, the value of the **GPIODATA** register is altered. If it is cleared to 0, it is left unchanged.

For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in Figure 9-2 on page 166, where u is data unchanged by the write.

Figure 9-2. GPIODATA Write Example

During a read, if the address bit associated with the data bit is set to 1, the value is read. If the address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 9-3 on page 166.

Figure 9-3. GPIODATA Read Example

9.1.2 Interrupt Control

The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these registers, it is possible to select the source of the interrupt, its polarity, and the edge properties. When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source holds the level constant for the interrupt to be recognized by the controller.

Three registers are required to define the edge or sense that causes interrupts:

- GPIO Interrupt Sense (GPIOIS) register (see page 173)
- **GPIO Interrupt Both Edges (GPIOIBE)** register (see page 174)
- **GPIO Interrupt Event (GPIOIEV)** register (see page 175)

Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 176).

When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations: the **GPIO Raw Interrupt Status (GPIORIS)** and **GPIO Masked Interrupt Status (GPIOMIS)** registers (see page 177 and page 178). As the name implies, the **GPIOMIS** register only shows interrupt conditions that are allowed to be passed to the controller. The **GPIORIS** register indicates that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.

Interrupts are cleared by writing a 1 to the appropriate bit of the **GPIO Interrupt Clear (GPIOICR)** register (see page 179).

When programming the following interrupt control registers, the interrupts should be masked (**GPIOIM** set to 0). Writing any value to an interrupt control register (**GPIOIS**, **GPIOIBE**, or **GPIOIEV**) can generate a spurious interrupt if the corresponding bits are enabled.

9.1.3 Mode Control

The GPIO pins can be controlled by either hardware or software. When hardware control is enabled via the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 180), the pin state is controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO mode, where the **GPIODATA** register is used to read/write the corresponding pins.

9.1.4 Commit Control

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 180) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 190) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 191) have been set to 1.

9.1.5 Pad Control

The pad control registers allow for GPIO pad configuration by software based on the application requirements. The pad control registers include the GPIODR2R, GPIODR4R, GPIODR8R, GPIOODR, GPIOPUR, GPIOPDR, GPIOSLR, and GPIODEN registers. These registers control drive strength, open-drain configuration, pull-up and pull-down resistors, slew-rate control and digital input enable.

For special high-current applications, the GPIO output buffers may be used with the following restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the V_{OL} value is specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only a maximum of two per side of the physical package or BGA pin group with the total number of high-current GPIO outputs not exceeding four for the entire package.

9.1.6 Identification

The identification registers configured at reset allow software to detect and identify the module as a GPIO block. The identification registers include the **GPIOPeriphID0-GPIOPeriphID7** registers as well as the **GPIOPCeIIID0-GPIOPCeIIID3** registers.

9.2 Initialization and Configuration

To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit field (GPIOn) in the **RCGC2** register.

On reset, all GPIO pins (except for the five JTAG pins) are configured out of reset to be undriven (tristate): **GPIOAFSEL**=0, **GPIODEN**=0, **GPIOPDR**=0, and **GPIOPUR**=0. Table 9-1 on page 168 shows all possible configurations of the GPIO pads and the control register settings required to achieve them. Table 9-2 on page 168 shows how a rising edge interrupt would be configured for pin 2 of a GPIO port.

July 26, 2008

Configuration	GPIO Register Bit Value ^a													
	AFSEL	DIR	ODR	DEN	PUR	PDR	DR2R	DR4R	DR8R	SLR				
Digital Input (GPIO)	0	0	0	1	?	?	Х	Х	Х	Х				
Digital Output (GPIO)	0	1	0	1	?	?	?	?	?	?				
Open Drain Input (GPIO)	0	0	1	1	X	X	X	X	X	X				
Open Drain Output (GPIO)	0	1	1	1	X	X	?	?	?	?				
Open Drain Input/Output (I ² C)	1	X	1	1	X	X	?	?	?	?				
Digital Input (Timer CCP)	1	X	0	1	?	?	X	X	X	X				
Digital Input (QEI)	1	Х	0	1	?	?	Х	Х	Х	Х				
Digital Output (PWM)	1	Х	0	1	?	?	?	?	?	?				
Digital Output (Timer PWM)	1	X	0	1	?	?	?	?	?	?				
Digital Input/Output (SSI)	1	X	0	1	?	?	?	?	?	?				
Digital Input/Output (UART)	1	X	0	1	?	?	?	?	?	?				
Analog Input (Comparator)	0	0	0	0	0	0	X	X	X	X				
Digital Output (Comparator)	1	X	0	1	?	?	?	?	?	?				

Table 9-1. GPIO Pad Configuration Examples

a. X=Ignored (don't care bit)

?=Can be either 0 or 1, depending on the configuration

Table 9-2. GPIO Interrupt Configuration Example

Register	Desired	Pin 2 Bit Val	ue ^a						
	Interrupt Event Trigger	7	6	5	4	3	2	1	0
GPIOIS	0=edge 1=level	х	Х	X	х	Х	0	х	х
GPIOIBE	0=single edge 1=both edges	Х	Х	X	Х	Х	0	Х	x
GPIOIEV	0=Low level, or negative edge 1=High level, or positive edge	X	X	X	X	X	1	X	X
GPIOIM	0=masked 1=not masked	0	0	0	0	0	1	0	0

a. X=Ignored (don't care bit)

9.3 Register Map

Table 9-3 on page 169 lists the GPIO registers. The offset listed is a hexadecimal increment to the register's address, relative to that GPIO port's base address:

- GPIO Port A: 0x4000.4000
- GPIO Port B: 0x4000.5000
- GPIO Port C: 0x4000.6000
- GPIO Port D: 0x4000.7000
- GPIO Port E: 0x4002.4000
- GPIO Port F: 0x4002.5000
- GPIO Port G: 0x4002.6000
- GPIO Port H: 0x4002.7000
- Important: The GPIO registers in this chapter are duplicated in each GPIO block, however, depending on the block, all eight bits may not be connected to a GPIO pad. In those cases, writing to those unconnected bits has no effect and reading those unconnected bits returns no meaningful data.
- Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

The default register type for the **GPIOCR** register is RO for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins are currently the only GPIOs that are protected by the **GPIOCR** register. Because of this, the register type for GPIO Port B7 and GPIO Port C[3:0] is R/W.

The default reset value for the **GPIOCR** register is 0x0000.00FF for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port is not accidentally programmed as a GPIO, these five pins default to non-committable. Because of this, the default reset value of **GPIOCR** for GPIO Port B is 0x0000.007F while the default reset value of GPIOCR for Port C is 0x0000.00F0.

Offset	Name	Туре	Reset	Description	See page
0x000	GPIODATA	R/W	0x0000.0000	GPIO Data	171
0x400	GPIODIR	R/W	0x0000.0000	GPIO Direction	172
0x404	GPIOIS	R/W	0x0000.0000	GPIO Interrupt Sense	173
0x408	GPIOIBE	R/W	0x0000.0000	GPIO Interrupt Both Edges	174
0x40C	GPIOIEV	R/W	0x0000.0000	GPIO Interrupt Event	175

Table 9-3. GPIO Register Map

Offset	Name	Туре	Reset	Description	See page
0x410	GPIOIM	R/W	0x0000.0000	GPIO Interrupt Mask	176
0x414	GPIORIS	RO	0x0000.0000	GPIO Raw Interrupt Status	177
0x418	GPIOMIS	RO	0x0000.0000	GPIO Masked Interrupt Status	178
0x41C	GPIOICR	W1C	0x0000.0000	GPIO Interrupt Clear	179
0x420	GPIOAFSEL	R/W	-	GPIO Alternate Function Select	180
0x500	GPIODR2R	R/W	0x0000.00FF	GPIO 2-mA Drive Select	182
0x504	GPIODR4R	R/W	0x0000.0000	GPIO 4-mA Drive Select	183
0x508	GPIODR8R	R/W	0x0000.0000	GPIO 8-mA Drive Select	184
0x50C	GPIOODR	R/W	0x0000.0000	GPIO Open Drain Select	185
0x510	GPIOPUR	R/W	-	GPIO Pull-Up Select	186
0x514	GPIOPDR	R/W	0x0000.0000	GPIO Pull-Down Select	187
0x518	GPIOSLR	R/W	0x0000.0000	GPIO Slew Rate Control Select	188
0x51C	GPIODEN	R/W	-	GPIO Digital Enable	189
0x520	GPIOLOCK	R/W	0x0000.0001	GPIO Lock	190
0x524	GPIOCR	-	-	GPIO Commit	191
0xFD0	GPIOPeriphID4	RO	0x0000.0000	GPIO Peripheral Identification 4	193
0xFD4	GPIOPeriphID5	RO	0x0000.0000	GPIO Peripheral Identification 5	194
0xFD8	GPIOPeriphID6	RO	0x0000.0000	GPIO Peripheral Identification 6	195
0xFDC	GPIOPeriphID7	RO	0x0000.0000	GPIO Peripheral Identification 7	196
0xFE0	GPIOPeriphID0	RO	0x0000.0061	GPIO Peripheral Identification 0	197
0xFE4	GPIOPeriphID1	RO	0x0000.0000	GPIO Peripheral Identification 1	198
0xFE8	GPIOPeriphID2	RO	0x0000.0018	GPIO Peripheral Identification 2	199
0xFEC	GPIOPeriphID3	RO	0x0000.0001	GPIO Peripheral Identification 3	200
0xFF0	GPIOPCellID0	RO	0x0000.000D	GPIO PrimeCell Identification 0	201
0xFF4	GPIOPCellID1	RO	0x0000.00F0	GPIO PrimeCell Identification 1	202
0xFF8	GPIOPCellID2	RO	0x0000.0005	GPIO PrimeCell Identification 2	203
0xFFC	GPIOPCellID3	RO	0x0000.00B1	GPIO PrimeCell Identification 3	204

9.4 Register Descriptions

The remainder of this section lists and describes the GPIO registers, in numerical order by address offset.

Register 1: GPIO Data (GPIODATA), offset 0x000

The **GPIODATA** register is the data register. In software control mode, values written in the **GPIODATA** register are transferred onto the GPIO port pins if the respective pins have been configured as outputs through the **GPIO Direction (GPIODIR)** register (see page 172).

In order to write to **GPIODATA**, the corresponding bits in the mask, resulting from the address bus bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause the corresponding bits in **GPIODATA** to be read, and bits that are 0 in the address mask cause the corresponding bits in **GPIODATA** to be read as 0, regardless of their value.

A read from **GPIODATA** returns the last bit value written if the respective pins are configured as outputs, or it returns the value on the corresponding input pin when these are configured as inputs. All bits are cleared by a reset.

GPIO Data (GPIODATA)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x000

Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved			•		1		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ			rese	rved						ſ	DA	TΑ	1	[1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8	3 reserved RO 0x00 Software should no compatibility with fu preserved across a			ould not with futu cross a r	rely on t ure prodi ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	. To pro ed bit s	vide hould be					
	7:0		DAT	A	R/	W	0x00	GPI	O Data							

This register is virtually mapped to 256 locations in the address space. To facilitate the reading and writing of data to these registers by independent drivers, the data read from and the data written to the registers are masked by the eight address lines ipaddr[9:2]. Reads from this register return its current state. Writes to this register only affect bits that are not masked by ipaddr[9:2] and are configured as outputs. See "Data Register Operation" on page 165 for examples of reads and writes.

Register 2: GPIO Direction (GPIODIR), offset 0x400

The **GPIODIR** register is the data direction register. Bits set to 1 in the **GPIODIR** register configure the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

GPIO Direction (GPIODIR)

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1				rese	rved							•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved I							D	R			1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	DIR	R/W	0x00	GPIO Data Direction

The DIR values are defined as follows:

- 0 Pins are inputs.
- 1 Pins are outputs.

Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404

The **GPIOIS** register is the interrupt sense register. Bits set to 1 in **GPIOIS** configure the corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits are cleared by a reset.

GPIO Interrupt Sense (GPIOIS) GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000

IS

R/W

0x00

GPIC GPIC GPIC GPIC GPIC Offse Type) Port C b) Port D b) Port E b) Port F b) Port G b) Port H b et 0x404 R/W, res	pase: 0x4 pase: 0x4 pase: 0x4 pase: 0x4 pase: 0x4 pase: 0x4 pase: 0x4 et 0x000	000.6000 000.7000 002.4000 002.5000 002.6000 .002.7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1					rese	rved					1		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		, ,					I :	I S I	1		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	Soft	ware sho	ould not	rely on t	he value	of a res	erved bit	. To pro	vide

compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

GPIO Interrupt Sense

The IS values are defined as follows:

Value Description

0 Edge on corresponding pin is detected (edge-sensitive).

1 Level on corresponding pin is detected (level-sensitive).

7:0

Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408

The **GPIOIBE** register is the interrupt both-edges register. When the corresponding bit in the **GPIO Interrupt Sense (GPIOIS)** register (see page 173) is set to detect edges, bits set to High in **GPIOIBE** configure the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the **GPIO Interrupt Event (GPIOIEV)** register (see page 175). Clearing a bit configures the pin to be controlled by **GPIOIEV**. All bits are cleared by a reset.

GPIO Interrupt Both Edges (GPIOIBE)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x408 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved			•			•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved I						ſ	I IB	E	ſ	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
E	it/Field	0	Nam	e	Тур	be	Reset	Des	cription	0	0	0	0	0	0	0
31:8 reserved RO 0x00			0x00	Soft com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
7:0 IBE R/W 0x00 GPIO Inter				O Interru	pt Both	Edges										

The IBE values are defined as follows:

- 0 Interrupt generation is controlled by the **GPIO Interrupt Event** (**GPIOIEV**) register (see page 175).
- 1 Both edges on the corresponding pin trigger an interrupt.
 - Note: Single edge is determined by the corresponding bit in **GPIOIEV**.

Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C

The **GPIOIEV** register is the interrupt event register. Bits set to High in **GPIOIEV** configure the corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in the **GPIO Interrupt Sense (GPIOIS)** register (see page 173). Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in **GPIOIS**. All bits are cleared by a reset.

GPIO Interrupt Event (GPIOIEV)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x40C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved						1	,
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ			rese	rved		r i					IE	V		Ì	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
31:8 reserved RO			0	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.							vide nould be				
	7:0		IEV	/	R/	W	0x00	GPI	O Interru	ipt Even	t					
								The	IEV val	ues are o	defined a	as follows	s:			

- 0 Falling edge or Low levels on corresponding pins trigger interrupts.
- 1 Rising edge or High levels on corresponding pins trigger interrupts.

Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410

The **GPIOIM** register is the interrupt mask register. Bits set to High in **GPIOIM** allow the corresponding pins to trigger their individual interrupts and the combined **GPIOINTR** line. Clearing a bit disables interrupt triggering on that pin. All bits are cleared by a reset.

GPIO Interrupt Mask (GPIOIM)

GPIC GPIC GPIC GPIC GPIC GPIC GPIC Offse Type	 Port A b Port B b Port C b Port D b Port E b Port F b Port G b Port H b Port H b R/W, resent the second second	ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ſ	I	1			i i	rese	erved		Î	Ì) I	1	ſ	r
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		т т				I	I IN	I /IE I	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ty	pe	Reset	Des	cription		roly on t		of a rea	on and h	it To pro	vido
	J1.0		reserv	veu		0	0,000	301	ward Sill	Julu HOL	ICIY UII L	ne value	UI d les	อธา งฮน ม	π . 10 pro	VIUC

				con
				pres
7:0	IME	R/W	0x00	GP

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

GPIO Interrupt Mask Enable

The IME values are defined as follows:

- 0 Corresponding pin interrupt is masked.
- 1 Corresponding pin interrupt is not masked.

Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414

The **GPIORIS** register is the raw interrupt status register. Bits read High in **GPIORIS** reflect the status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the requirements have been met, before they are finally allowed to trigger by the **GPIO Interrupt Mask** (**GPIOIM**) register (see page 176). Bits read as zero indicate that corresponding input pins have not initiated an interrupt. All bits are cleared by a reset.

GPIO Raw Interrupt Status (GPIORIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4002.4000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.7000 GPIO Port H base: 0x4002.7000 Offset 0x414 Type RO, reset 0x0000.0000

31 30 29 28 27 25 24 22 21 20 19 17 16 26 23 18 reserved RO RO RO RO RO RO RO Туре RO RO RO RO RO RO RO RO RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 RİS reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be

preserved across a read-modify-write operation. GPIO Interrupt Raw Status

Reflects the status of interrupt trigger condition detection on pins (raw, prior to masking).

The RIS values are defined as follows:

Value Description

- 0 Corresponding pin interrupt requirements not met.
- 1 Corresponding pin interrupt has met requirements.

7:0

RIS

RO

0x00

Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418

The **GPIOMIS** register is the masked interrupt status register. Bits read High in **GPIOMIS** reflect the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has been generated, or the interrupt is masked.

GPIOMIS is the state of the interrupt after masking.

GPIO Masked Interrupt Status (GPIOMIS)

GPIC GPIC GPIC GPIC GPIC GPIC GPIC Offse Type	 Port A b Port B b Port C b Port D b Port E b Port E b Port F ba Port G b Port H b Port H b Port H b RO, rese 	ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 t 0x0000	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	1		1	1	1		г г	rese	rved	1			ı 1		1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved								MIS									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
E	Bit/Field 31:8		Name			Type RO		Des Soft	Description Software should not rely on the value of a reserved bit. To provide									
				_				com pres	compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
7:0			MIS			RO		GPI	O Maske	ed Interru	upt Statu	S						
								Mas	ked valu	ie of inte	rrupt due	e to corre	espondir	ng pin.				
								The	The MIS values are defined as follows:									
								Valu	Value Description									

- 0 Corresponding GPIO line interrupt not active.
- 1 Corresponding GPIO line asserting interrupt.

Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C

The GPIOICR register is the interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt edge detection logic register. Writing a 0 has no effect.

GPIO Interrupt Clear (GPIOICR) GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x41C Type W1C, reset 0x0000.0000 31 30 29 28 27 26 25 24 23

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	reserved															
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved															1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	W1C							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	it/Field Name		Ту	ре	Reset	Description										
31:8			reserved RO		0x00	Soft com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									

GPIO Interrupt Clear

The IC values are defined as follows:

Value Description

- 0 Corresponding interrupt is unaffected.
- Corresponding interrupt is cleared. 1

7:0

IC

W1C

0x00

Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420

The **GPIOAFSEL** register is the mode control select register. Writing a 1 to any bit in this register selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore no GPIO line is set to hardware control by default.

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 180) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 190) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 191) have been set to 1.

Important: All GPIO pins are tri-stated by default (**GPIOAFSEL=**0, **GPIODEN=**0, **GPIOPDR=**0, and **GPIOPUR=**0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (**GPIOAFSEL=**1, **GPIODEN=1** and **GPIOPUR=**1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

Caution – It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris[®] microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

GPIO Alternate Function Select (GPIOAFSEL)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x420 Type R/W, reset -

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1 1	rese	rved					1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved								AFSEL							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-
Bit/Field		d Name		Тур	Туре		Des	Description								
31:8			reserved		RO		0x00	Soft	oftware should not rely on the value of a reserved bit. To provide							

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
Bit/Field	Name	Туре	Reset	Description
7:0	AFSEL	R/W	-	GPIO Alternate Function Select
				The AFSEL values are defined as follows:
				Value Description
				0 Software control of corresponding GPIO line (GPIO mode).
				 Hardware control of corresponding GPIO line (alternate hardware function).
				Note: The default reset value for the GPIOAFSEL , GPIOPUR , and GPIODEN registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value

for Port C is 0x0000.000F.

Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500

The **GPIODR2R** register is the 2-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO signal, the corresponding DRV4 bit in the **GPIODR4R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 2-mA Drive Select (GPIODR2R)

GPIO Port A base: 0x4000.4000

GPIO GPIO GPIO GPIO GPIO GPIO Offse Type	Port B ba Port C ba Port D ba Port E ba Port E ba Port F ba Port G b Port H ba t 0x500 R/W, rese	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	00.5000 00.6000 00.7000 02.4000 02.5000 02.6000 02.7000 .00FF													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ŗ			1	, , ,		, ,	rese	rved			1	1			•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r			rese	i i erved		1 1					I DR	1 RV2		ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0 Decet	0	1	1	1	1	1	1	1	1
E	sit/Field		Narr	le	Iy	be	Reset	Des	cription							
	Bit/Field Name 31:8 reserved		ved	R	C	0x00	Soft com pres	ware sho patibility erved ao	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a resolution of a resolutio	erved bit a reserv on.	. To prov red bit sh	vide nould be	
	7:0		DR\	/2	R/	N	0xFF	Out	out Pad	2-mA Dri	ive Enat	ole				
								A wi	rite of 1 f espondir	o either ng 2-mA	GPIODF enable l	R4[n] or obit. The c	GPIODR change is	8[n] clea effectiv	ars the e on the	second

clock cycle after the write.

Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504

The **GPIODR4R** register is the 4-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 4-mA Drive Select (GPIODR4R)

GPIO Port A base: 0x4000.4000

GPIO GPIO GPIO GPIO GPIO GPIO Offse Type	Port B ba Port C ba Port D ba Port E ba Port F ba Port G b Port H ba t 0x504 R/W, rese	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	00.5000 00.6000 00.7000 02.4000 02.5000 02.6000 02.7000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ			1	· · ·			rese	rved			1		1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[T			rese	rved		т т			ſ	r	DR	V4	1 1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0 it/Field	0	0 Nam	0 1e	о Тур	0 De	0 Reset	0 Des	0 cription	0	0	0	0	0	0	0
	Bit/Field Name 31:8 reserved			ved	R	C	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prode ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	. To prov ed bit sł	vide nould be
	7:0		DR\	/4	R/\	N	0x00	Outp	put Pad 4	4-mA Dr	ive Enat	ole				
								A wi	rite of 1 t espondir	o either ng 4-mA	GPIODF enable l	R2[n] or (bit. The c	GPIODR hange is	88[n] clea s effectiv	ars the e on the	esecond

clock cycle after the write.

Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508

The **GPIODR8R** register is the 8-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV4 bit in the **GPIODR4R** register are automatically cleared by hardware.

GPIO 8-mA Drive Select (GPIODR8R)

GPIO Port A base: 0x4000.4000

GPIC GPIC GPIC GPIC GPIC GPIC GPIC Offse Type	Port B b Port C b Port D b Port E b Port F b Port G b Port H b t 0x508 R/W, rese	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	00.5000 00.6000 00.7000 02.4000 02.5000 02.6000 02.7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1					, ,	rese	rved]						· · · · · · · · · · · · · · · · · · ·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	rved					1		DR	V8			<u> </u>
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a re	rely on tl ire produ ead-moc	ne value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To prov ed bit sh	ride 10uld be
	7:0		DRV	/8	R/	W	0x00	Outp	out Pad 8	3-mA Dri	ve Enab	le				
								A wr	rite of 1 t espondir	o either ng 8-mA	GPIODF enable b	82[n] or 0 bit. The c	GPIODR hange is	4[n] clea	ars the e on the	second

clock cycle after the write.

Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C

The **GPIOODR** register is the open drain control register. Setting a bit in this register enables the open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the corresponding bit should also be set in the **GPIO Digital Input Enable (GPIODEN)** register (see page 189). Corresponding bits in the drive strength registers (**GPIODR2R**, **GPIODR4R**, **GPIODR8R**, and **GPIOSLR**) can be set to achieve the desired rise and fall times. The GPIO acts as an open drain input if the corresponding bit in the **GPIODIR** register is set to 0; and as an open drain output when set to 1.

When using the l²C module, in addition to configuring the pin to open drain, the **GPIO Alternate Function Select (GPIOAFSEL)** register bit for the l²C clock and data pins should be set to 1 (see examples in "Initialization and Configuration" on page 167).

GPIO Open Drain Select (GPIOODR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x50C Type R/W, reset 0x0000.0000 31 28 25 19 18 30 29 27 26 24 23 22 21 20 17 16 reserved RO Туре RO RO RO RO RO RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 3 2 0 4 1 ODE reserved RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Туре 0 0 0 0 0 0 0 0 0 Reset 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 0x00 31:8 reserved RO Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 ODE R/W 0x00 Output Pad Open Drain Enable The ODE values are defined as follows:

Value Description

- 0 Open drain configuration is disabled.
- 1 Open drain configuration is enabled.

Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510

The **GPIOPUR** register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up resistor on the corresponding GPIO signal. Setting a bit in **GPIOPUR** automatically clears the corresponding bit in the **GPIO Pull-Down Select (GPIOPDR)** register (see page 187).

GPIO Pull-Up Select (GPIOPUR)

GPIO GPIO GPIO GPIO GPIO GPIO Offsei Type	Port A b Port B b Port C b Port D b Port E b Port E b Port F b Port G b Port H b t 0x510 R/W, rese	ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ĩ		1	1		1	1 1	rese	rved	I	1		1	ſ	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ			1	rese	rved	1	1 1				1	Pl	I UE I	Γ	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-
В	it/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-mod	ne value ucts, the lify-write	of a resolution of a resolutio	erved bil a reserv on.	t. To prov ved bit sh	vide nould be
	7:0		PUI	E	R	W	-	Pad	Weak P	ull-Up E	nable					
								A wi enal write	rite of 1 t bles. The e.	o GPIOI e change	PDR[n] o e is effec	clears the tive on th	e corresp he secor	oonding Id clock	GPIOPU cycle aft	I R[n] er the

Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514

The **GPIOPDR** register is the pull-down control register. When a bit is set to 1, it enables a weak pull-down resistor on the corresponding GPIO signal. Setting a bit in **GPIOPDR** automatically clears the corresponding bit in the **GPIO Pull-Up Select (GPIOPUR)** register (see page 186).

GPIO Pull-Down Select (GPIOPDR)

GPIO Port A base: 0x4000.4000

GPIO GPIO GPIO GPIO GPIO GPIO Offse Type	Port B b Port C b Port D b Port E b Port F b Port G b Port G b Port H b t 0x514 R/W, res	ase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40	000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[Ì		1			î î	rese	rved			1	i i			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	rese	rved						1	I P[I DE I			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	⁰ Bit/Field	0	0 Nam	o ne	0 Ty	o pe	0 Reset	0 Des	0 cription	0	0	0	0	0	0	0
	31:8		reser	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futi cross a r	rely on t ure prod ead-moo	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv n.	. To prov ed bit sh	vide nould be
	7:0		PD	E	R/	W	0x00	Pad	Weak P	ull-Dowr	n Enable	:				
								A w ena	rite of 1 t bles. The	o GPIOI e change	PUR[n] of the set of t	clears the tive on th	e corresp ne secon	onding (d clock d	GPIOPD cycle afte	R[n] er the

write.

Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518

The **GPIOSLR** register is the slew rate control register. Slew rate control is only available when using the 8-mA drive strength option via the **GPIO 8-mA Drive Select (GPIODR8R)** register (see page 184).

GPIO Slew Rate Control Select (GPIOSLR)

SRL

R/W

0x00

GPIO Port A base: 0x4000.4000

7:0

GPIC GPIC GPIC GPIC GPIC GPIC Offse Type) Port B b) Port C b) Port D b) Port E b) Port F b) Port G b) Port H b t 0x518 R/W, res	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		1	r	1 1	rese	rved	I	1	1	1			,
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	rese	rved	Ì	1 1			1	1	I SI	RL I		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com	ware sh patibility	ould not with fut	rely on t ure prod	he value ucts, the	of a resolution of a resolutio	erved bit a reserv	. To pro ved bit s	vide hould be

preserved across a read-modify-write operation.

Slew Rate Limit Enable (8-mA drive only)

The SRL values are defined as follows:

Value Description

- 0 Slew rate control disabled.
- 1 Slew rate control enabled.

Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C

Note: Pins configured as digital inputs are Schmitt-triggered.

The **GPIODEN** register is the digital enable register. By default, with the exception of the GPIO signals used for JTAG/SWD function, all other GPIO signals are configured out of reset to be undriven (tristate). Their digital function is disabled; they do not drive a logic value on the pin and they do not allow the pin voltage into the GPIO receiver. To use the pin in a digital function (either GPIO or alternate function), the corresponding GPIODEN bit must be set.

GPIO Digital Enable (GPIODEN)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x51C Type R/W, reset -

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	DEN	R/W	-	Digital Enable

The DEN values are defined as follows:

Value Description

- 0 Digital functions disabled.
- 1 Digital functions enabled.
 - Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Register 19: GPIO Lock (GPIOLOCK), offset 0x520

The **GPIOLOCK** register enables write access to the **GPIOCR** register (see page 191). Writing 0x1ACC.E551 to the **GPIOLOCK** register will unlock the **GPIOCR** register. Writing any other value to the **GPIOLOCK** register re-enables the locked state. Reading the **GPIOLOCK** register returns the lock status rather than the 32-bit value that was previously written. Therefore, when write accesses are disabled, or locked, reading the **GPIOLOCK** register returns 0x00000001. When write accesses are enabled, or unlocked, reading the **GPIOLOCK** register returns 0x00000000.

GPIC GPIC GPIC GPIC GPIC GPIC GPIC Offse Type	O Lock D Port A b D Port B b D Port C b D Port C b D Port E b D Port F b: D Port F b: D Port H b D Port H b et 0x520 R/W, rese	(GPIO ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	LOCK) 000.4000 000.5000 000.7000 002.4000 002.5000 002.6000 002.7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	ı	1		1 1	LC) CK	1	1	1	1 1		1	·]
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Ì	r	1	r	1 1	LC	I DCK		Ĩ	r	1	r	1	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	scription							
	31:0		LOC	к	R/	W	0x0000.000	1 GPI	O Lock							
								A w regi	rite of the ster for v	value 0x rite acc	k1ACC.E ess.	551 unio	ocks the (GPIO Co	ommit (G	PIOCR)

A write of any other value or a write to the **GPIOCR** register reapplies the lock, preventing any register updates. A read of this register returns the following values:

Value Description

0x0000.0001 locked

0x0000.0000 unlocked

Register 20: GPIO Commit (GPIOCR), offset 0x524

The **GPIOCR** register is the commit register. The value of the **GPIOCR** register determines which bits of the **GPIOAFSEL** register are committed when a write to the **GPIOAFSEL** register is performed. If a bit in the **GPIOCR** register is a zero, the data being written to the corresponding bit in the **GPIOAFSEL** register will not be committed and will retain its previous value. If a bit in the **GPIOCR** register is a one, the data being written to the corresponding bit of the **GPIOAFSEL** register will be committed to the register and will reflect the new value.

The contents of the **GPIOCR** register can only be modified if the **GPIOLOCK** register is unlocked. Writes to the **GPIOCR** register are ignored if the **GPIOLOCK** register is locked.

Important: This register is designed to prevent accidental programming of the registers that control connectivity to the JTAG/SWD debug hardware. By initializing the bits of the **GPIOCR** register to 0 for PB7 and PC[3:0], the JTAG/SWD debug port can only be converted to GPIOs through a deliberate set of writes to the **GPIOLOCK**, **GPIOCR**, and the corresponding registers.

Because this protection is currently only implemented on the JTAG/SWD pins on PB7 and PC[3:0], all of the other bits in the **GPIOCR** registers cannot be written with 0x0. These bits are hardwired to 0x1, ensuring that it is always possible to commit new values to the **GPIOAFSEL** register bits of these other pins.

GPIO Commit (GPIOCR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x524 Type -, reset -

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description	
7:0	CR	-	-	GPIO Commit	
				On a bit-wise basis, any bit set allows the corresponding GPIOAFS bit to be set to its alternate function.	SEL
				Note: The default register type for the GPIOCR register is RO all GPIO pins, with the exception of the five JTAG/SWD (PB7 and PC[3:0]). These five pins are currently the o GPIOs that are protected by the GPIOCR register. Beca of this, the register type for GPIO Port B7 and GPIO Por C[3:0] is R/W.	for pins nly ause rt
				The default reset value for the GPIOCR register is $0x0000.00FF$ for all GPIO pins, with the exception of the JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port is not accidentally programmed as a GPIO, the five pins default to non-committable. Because of this, the default reset value of GPIOCR for GPIO Port B is $0x0000.007F$ while the default reset value of GPIOCR for C is $0x0000.00F0$.	e five e hese ie `Port

Register 21: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)

Register 22: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 5 (GPIOPeriphID5)

Register 23: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6)

Register 24: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 7 (GPIOPeriphID7)

GPIC GPIC GPIC GPIC GPIC GPIC GPIC Offse Type	Port A ba Port B ba Port C ba Port D ba Port E ba Port E ba Port F ba Port G ba Port H ba t 0xFDC RO, resel	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	00.4000 00.5000 00.6000 00.7000 002.4000 002.5000 002.6000 002.7000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1					rese	rved				1		1	
Type -	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Resei	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'			rese	rved							PI	D7		1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility erved ao	ould not with futu cross a r	rely on tl ure produ ead-moc	he value ucts, the lify-write	of a resolution of a resolutio	erved bil a reserv on.	t. To prov ved bit sh	/ide 10uld be
7:0 PID7					R	0	0x00	GPI	O Periph	eral ID F	Register[[31:24]				

Register 25: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0)

Register 26: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 1 (GPIOPeriphID1)

GPIC GPIC GPIC GPIC GPIC GPIC GPIC Offse Type) Port A b:) Port B b:) Port C b) Port D b) Port E b:) Port E b:) Port F b:) Port G b) Port H b) Port H b t 0xFE4 RO, rese	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 t 0x0000.	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000 0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1		rese	rved	I	1	1			1	'
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Resei	U	0	U	0	0	U	U	0	0	U	U	0	0	U	U	U
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved					1	1	PII	D1		1	·
Type Reset	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	Ū	0	0	0	0	U	Ū	0	Ū	Ū	Ū	Ū	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on ti ure produ read-mod	he value ucts, the dify-write	of a reso value of operatio	erved bil a reserv on.	t. To prov ved bit sh	vide hould be
	7:0		PID	1	R	0	0x00	GPI	O Periph	neral ID I	Register[[15:8]				

Register 27: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 2 (GPIOPeriphID2)

Register 28: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)

Register 29: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 0 (GPIOPCelIID0)

GPIC GPIC GPIC GPIC GPIC GPIC GPIC Offse Type	 Port A b: Port B b: Port C b Port D b: Port E b: Port E b: Port F b: Port G b: Port H b: Port H b: Port H b: CxFF0 RO, rese 	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 t 0x0000.	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	- T		1					rese	rved				· · · ·			•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	rese	rved	I	1 1					CI	D0			1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	U	U	U	0	U	U	0	U	0	U	0	U	1	1	U	1
E	Bit/Field		Name Type		Reset	Des	cription									
31:8			reserved		R	0	0x00	Soft com pres	oftware should not rely on the value of a reserved bit. To provide ompatibility with future products, the value of a reserved bit should be reserved across a read-modify-write operation.							
	7:0		CID	0	R	0	0x0D	GPI	O Prime	Cell ID F	Register[7	7:0]				
								Prov	/ides sof	tware a	standard	cross-p	eripheral	identific	ation sy	stem.

Register 30: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 1 (GPIOPCellID1)

GPIC GPIC GPIC GPIC GPIC GPIC Offse Type) Port A ba) Port B ba) Port C b) Port D b) Port E ba) Port E ba) Port F ba) Port G b) Port H b) Port H b to 0xFF4 RO, rese	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 t 0x0000.	00.4000 00.5000 00.6000 00.7000 002.4000 002.5000 002.6000 002.7000 0050													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1			I	1 1	rese	rved							1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	1	1 1					CI	D1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
31:8			reserved RO		0	0x00	Soft com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0		CID	1	R	0	0xF0	GPI	O Prime	Cell ID F	Register[15:8]				
								Pro	/ides sof	tware a	standard	cross-p	eripheral	18 17 RO RO 0 0 2 1 RO RO RO 0 0 erved bit. To prova a reserved bit. To prova a reserved bit sh n. identification sy	stem.	

Register 31: GPIO PrimeCell Identification 2 (GPIOPCelIID2), offset 0xFF8

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 2 (GPIOPCelIID2)

GPIC GPIC GPIC GPIC GPIC GPIC GPIC Offse Type	 Port A bit Port B bit Port C b Port D b Port E bit Port F bit Port G b Port H b Port H b t 0xFF8 RO, rese 	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	00.4000 00.5000 00.6000 00.7000 002.4000 002.5000 002.6000 002.7000 0005														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	- T		1					rese	rved								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
				rese	rved		1 1					CI	D2				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	U	U	U	U	0	U	U	U	U	0	U	U	U	1	U	1	
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription								
31:8			reserved		R	0	0x00	Soft com pres	ware sho patibility erved ac	are should not rely on the value of a reserved bit. To provide atibility with future products, the value of a reserved bit should be rved across a read-modify-write operation.							
	7:0		CID	2	R	0	0x05	GPI	O Prime	Cell ID F	Register[2	23:16]					
								Pro	ides sof	tware a	standard	cross-p	eripheral	l identific	ation sy	stem.	

Register 32: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 3 (GPIOPCellID3)

10 General-Purpose Timers

Programmable timers can be used to count or time external events that drive the Timer input pins. The Stellaris[®] General-Purpose Timer Module (GPTM) contains three GPTM blocks (Timer0, Timer1, and Timer 2). Each GPTM block provides two 16-bit timers/counters (referred to as TimerA and TimerB) that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).

The General-Purpose Timer Module is one timing resource available on the Stellaris[®] microcontrollers. Other timer resources include the System Timer (SysTick) (see "System Timer (SysTick)" on page 40) and the PWM timer in the PWM module (see "PWM Timer" on page 391).

The following modes are supported:

- 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock using 32.768-KHz input clock
 - Software-controlled event stalling (excluding RTC mode)
- 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
 - Programmable one-shot timer
 - Programmable periodic timer
 - Software-controlled event stalling
- 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal

10.1 Block Diagram

Note: In Figure 10-1 on page 206, the specific CCP pins available depend on the Stellaris[®] device. See Table 10-1 on page 206 for the available CCPs.

Figure 10-1. GPTM Module Block Diagram

Table 10-1. Available CCP Pins

Timer	16-Bit Up/Down Counter	Even CCP Pin	Odd CCP Pin
Timer 0	TimerA	CCP0	-
	TimerB	-	CCP1
Timer 1	TimerA	CCP2	-
	TimerB	-	CCP3
Timer 2	TimerA	-	-
	TimerB	-	-

10.2 Functional Description

The main components of each GPTM block are two free-running 16-bit up/down counters (referred to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit load/initialization registers and their associated control functions. The exact functionality of each GPTM is controlled by software and configured through the register interface.

Software configures the GPTM using the **GPTM Configuration (GPTMCFG)** register (see page 217), the **GPTM TimerA Mode (GPTMTAMR)** register (see page 218), and the **GPTM TimerB Mode (GPTMTBMR)** register (see page 220). When in one of the 32-bit modes, the timer can only act as a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers configured in any combination of the 16-bit modes.

10.2.1 GPTM Reset Conditions

After reset has been applied to the GPTM module, the module is in an inactive state, and all control registers are cleared and in their default states. Counters TimerA and TimerB are initialized to 0xFFFF, along with their corresponding load registers: the **GPTM TimerA Interval Load**

(GPTMTAILR) register (see page 231) and the GPTM TimerB Interval Load (GPTMTBILR) register (see page 232). The prescale counters are initialized to 0x00: the GPTM TimerA Prescale (GPTMTAPR) register (see page 235) and the GPTM TimerB Prescale (GPTMTBPR) register (see page 236).

10.2.2 32-Bit Timer Operating Modes

This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1 (RTC mode) to the **GPTM Configuration (GPTMCFG)** register. In both configurations, certain GPTM registers are concatenated to form pseudo 32-bit registers. These registers include:

- GPTM TimerA Interval Load (GPTMTAILR) register [15:0], see page 231
- **GPTM TimerB Interval Load (GPTMTBILR)** register [15:0], see page 232
- GPTM TimerA (GPTMTAR) register [15:0], see page 239
- **GPTM TimerB (GPTMTBR)** register [15:0], see page 240

In the 32-bit modes, the GPTM translates a 32-bit write access to **GPTMTAILR** into a write access to both **GPTMTAILR** and **GPTMTBILR**. The resulting word ordering for such a write operation is:

GPTMTBILR[15:0]:GPTMTAILR[15:0]

Likewise, a read access to **GPTMTAR** returns the value:

GPTMTBR[15:0]:GPTMTAR[15:0]

10.2.2.1 32-Bit One-Shot/Periodic Timer Mode

In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is determined by the value written to the TAMR field of the **GPTM TimerA Mode (GPTMTAMR)** register (see page 218), and there is no need to write to the **GPTM TimerB Mode (GPTMTBMR)** register.

When software writes the TAEN bit in the **GPTM Control (GPTMCTL)** register (see page 222), the timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the timer reloads its start value from the concatenated **GPTMTAILR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TAEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the GPTM generates interrupts and triggers when it reaches the 0x000.0000 state. The GPTM sets the TATORIS bit in the GPTM Raw Interrupt Status (GPTMRIS) register (see page 227), and holds it until it is cleared by writing the GPTM Interrupt Clear (GPTMICR) register (see page 229). If the time-out interrupt is enabled in the GPTM Interrupt Mask (GPTIMR) register (see page 225), the GPTM also sets the TATOMIS bit in the GPTM Masked Interrupt Status (GPTMMIS) register (see page 228). The trigger is enabled by setting the TAOTE bit in GPTMCTL, and can trigger SoC-level events.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the **GPTMCTL** register is asserted, the timer freezes counting until the signal is deasserted.

10.2.2.2 32-Bit Real-Time Clock Timer Mode

In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is loaded with a value of 0x0000.0001. All subsequent load values must be written to the **GPTM TimerA Match (GPTMTAMATCHR)** register (see page 233) by the controller.

The input clock on the CCP0, CCP2, or CCP4 pins is required to be 32.768 KHz in RTC mode. The clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit in the **GPTMCTL** register, the counter starts counting up from its preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the **GPTMTAMATCHR** register, it rolls over to a value of 0x0000.0000 and continues counting until either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs, the GPTM asserts the RTCRIS bit in **GPTMRIS**. If the RTC interrupt is enabled in **GPTIMR**, the GPTM also sets the RTCMIS bit in **GPTMISR** and generates a controller interrupt. The status flags are cleared by writing the RTCCINT bit in **GPTMICR**.

If the TASTALL and/or TBSTALL bits in the **GPTMCTL** register are set, the timer does not freeze if the RTCEN bit is set in **GPTMCTL**.

10.2.3 16-Bit Timer Operating Modes

The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the **GPTM Configuration** (**GPTMCFG**) register (see page 217). This section describes each of the GPTM 16-bit modes of operation. TimerA and TimerB have identical modes, so a single description is given using an *n* to reference both.

10.2.3.1 16-Bit One-Shot/Periodic Timer Mode

In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The selection of one-shot or periodic mode is determined by the value written to the TnMR field of the **GPTMTnMR** register. The optional prescaler is loaded into the **GPTM Timern Prescale (GPTMTnPR)** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer begins counting down from its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from **GPTMTNILR** and **GPTMTNPR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TnEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the timer generates interrupts and triggers when it reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the **GPTMRIS** register, and holds it until it is cleared by writing the **GPTMICR** register. If the time-out interrupt is enabled in **GPTIMR**, the GPTM also sets the TnTOMIS bit in **GPTMISR** and generates a controller interrupt. The trigger is enabled by setting the TnOTE bit in the **GPTMCTL** register, and can trigger SoC-level events.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TnSTALL bit in the **GPTMCTL** register is enabled, the timer freezes counting until the signal is deasserted.

The following example shows a variety of configurations for a 16-bit free running timer while using the prescaler. All values assume a 25-MHz clock with Tc=20 ns (clock period).

Prescale	#Clock (T c) ^a	Max Time	Units
00000000	1	2.6214	mS
00000001	2	5.2428	mS
00000010	3	7.8642	mS
11111100	254	665.8458	mS
11111110	255	668.4672	mS
11111111	256	671.0886	mS

Table 10-2. 16-Bit Timer With Prescaler Configurations

a. Tc is the clock period.

10.2.3.2 16-Bit Input Edge Count Mode

Note: For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling-edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.

Note: The prescaler is not available in 16-Bit Input Edge Count mode.

In Edge Count mode, the timer is configured as a down-counter capable of capturing three types of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit of the **GPTMTnMR** register must be set to 0. The type of edge that the timer counts is determined by the TnEVENT fields of the **GPTMCTL** register. During initialization, the **GPTM Timern Match** (**GPTMTnMATCHR**) register is configured so that the difference between the value in the **GPTMTnILR** register and the **GPTMTnMATCHR** register equals the number of edge events that must be counted.

When software writes the TnEN bit in the **GPTM Control (GPTMCTL)** register, the timer is enabled for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count matches **GPTMTnMATCHR**. When the counts match, the GPTM asserts the CnMRIS bit in the **GPTMRIS** register (and the CnMMIS bit, if the interrupt is not masked). The counter is then reloaded using the value in **GPTMTnILR**, and stopped since the GPTM automatically clears the TnEN bit in the **GPTMCTL** register. Once the event count has been reached, all further events are ignored until TnEN is re-enabled by software.

Figure 10-2 on page 210 shows how input edge count mode works. In this case, the timer start value is set to **GPTMnILR** =0x000A and the match value is set to **GPTMnMATCHR** =0x0006 so that four edge events are counted. The counter is configured to detect both edges of the input signal.

Note that the last two edges are not counted since the timer automatically clears the TnEN bit after the current count matches the value in the **GPTMnMR** register.

Figure 10-2. 16-Bit Input Edge Count Mode Example

10.2.3.3 16-Bit Input Edge Time Mode

- **Note:** For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.
- **Note:** The prescaler is not available in 16-Bit Input Edge Time mode.

In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value loaded in the **GPTMTnILR** register (or 0xFFFF at reset). This mode allows for event capture of either rising or falling edges, but not both. The timer is placed into Edge Time mode by setting the TnCMR bit in the **GPTMTnMR** register, and the type of event that the timer captures is determined by the TnEVENT fields of the **GPTMCnTL** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer is enabled for event capture. When the selected input event is detected, the current **Tn** counter value is captured in the **GPTMTnR** register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and the CnEMIS bit, if the interrupt is not masked).

After an event has been captured, the timer does not stop counting. It continues to count until the TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the **GPTMnILR** register.

Figure 10-3 on page 211 shows how input edge timing mode works. In the diagram, it is assumed that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture rising edge events.

Each time a rising edge event is detected, the current count value is loaded into the **GPTMTnR** register, and is held there until another rising edge is detected (at which point the new count value is loaded into **GPTMTnR**).

Figure 10-3. 16-Bit Input Edge Time Mode Example

10.2.3.4 16-Bit PWM Mode

Note: The prescaler is not available in 16-Bit PWM mode.

The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a down-counter with a start value (and thus period) defined by **GPTMTnILR**. PWM mode is enabled with the **GPTMTnMR** register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.

When software writes the TnEN bit in the **GPTMCTL** register, the counter begins counting down until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from **GPTMTNILR** and continues counting until disabled by software clearing the TnEN bit in the **GPTMCTL** register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the **GPTMTnILR** register (its start state), and is deasserted when the counter value equals the value in the **GPTM Timern Match Register (GPTMnMATCHR)**. Software has the capability of inverting the output PWM signal by setting the TnPWML bit in the **GPTMCTL** register.

Figure 10-4 on page 212 shows how to generate an output PWM with a 1-ms period and a 66% duty cycle assuming a 50-MHz input clock and **TnPWML** =0 (duty cycle would be 33% for the **TnPWML** =1 configuration). For this example, the start value is **GPTMnIRL**=0xC350 and the match value is **GPTMnMR**=0x411A.

Figure 10-4. 16-Bit PWM Mode Example

10.3 Initialization and Configuration

To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMERO, TIMER1, and TIMER2 bits in the **RCGC1** register.

This section shows module initialization and configuration examples for each of the supported timer modes.

10.3.1 32-Bit One-Shot/Periodic Timer Mode

The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TAEN bit in the **GPTMCTL** register is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.
- 3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):
 - a. Write a value of 0x1 for One-Shot mode.
 - b. Write a value of 0x2 for Periodic mode.
- 4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).
- 5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 7 on page 213. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

10.3.2 32-Bit Real-Time Clock (RTC) Mode

To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2, or CCP4 pins. To enable the RTC feature, follow these steps:

- 1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.
- 3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).
- 4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.
- 5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

When the timer count equals the value in the **GPTMTAMATCHR** register, the counter is re-loaded with 0x0000.0000 and begins counting. If an interrupt is enabled, it does not have to be cleared.

10.3.3 16-Bit One-Shot/Periodic Timer Mode

A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.
- 3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:
 - a. Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register (GPTMTnPR).
- 5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).
- 6. If interrupts are required, set the **TNTOIM** bit in the **GPTM** Interrupt Mask Register (GPTMIMR).
- 7. Set the TREN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start counting.
- 8. Poll the ThTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the ThTOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 8 on page 213. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

10.3.4 16-Bit Input Edge Count Mode

A timer is configured to Input Edge Count mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR field to 0x3.
- 4. Configure the type of event(s) that the timer captures by writing the **TREVENT** field of the **GPTM Control (GPTMCTL)** register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.
- 7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 8. Set the TREN bit in the **GPTMCTL** register to enable the timer and begin waiting for edge events.
- 9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM Interrupt Clear (GPTMICR) register.

In Input Edge Count Mode, the timer stops after the desired number of edge events has been detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 214 through step 9 on page 214.

10.3.5 16-Bit Input Edge Timing Mode

A timer is configured to Input Edge Timing mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the **GPTM Configuration (GPTMCFG)** register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR field to 0x3.
- 4. Configure the type of event that the timer captures by writing the TREVENT field of the **GPTM Control (GPTMCTL)** register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 7. Set the TNEN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.
- 8. Poll the CnERIS bit in the **GPTMRIS** register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the **GPTM**

Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained by reading the **GPTM Timern (GPTMTnR)** register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected, but the timer interval can be changed at any time by writing the **GPTMTnILR** register. The change takes effect at the next cycle after the write.

10.3.6 16-Bit PWM Mode

A timer is configured to PWM mode using the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.
- 4. Configure the output state of the PWM signal (whether or not it is inverted) in the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.
- 7. Set the TREN bit in the **GPTM Control (GPTMCTL)** register to enable the timer and begin generation of the output PWM signal.

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The PWM period can be adjusted at any time by writing the **GPTMTnILR** register, and the change takes effect at the next cycle after the write.

10.4 Register Map

Table 10-3 on page 215 lists the GPTM registers. The offset listed is a hexadecimal increment to the register's address, relative to that timer's base address:

- Timer0: 0x4003.0000
- Timer1: 0x4003.1000
- Timer2: 0x4003.2000

Table 10-3. Timers Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	GPTMCFG	R/W	0x0000.0000	GPTM Configuration	217
0x004	GPTMTAMR	R/W	0x0000.0000	GPTM TimerA Mode	218
0x008	GPTMTBMR	R/W	0x0000.0000	GPTM TimerB Mode	220
0x00C	GPTMCTL	R/W	0x0000.0000	GPTM Control	222
0x018	GPTMIMR	R/W	0x0000.0000	GPTM Interrupt Mask	225

July 26, 2008

Offset	Name	Туре	Reset	Description	See page
0x01C	GPTMRIS	RO	0x0000.0000	GPTM Raw Interrupt Status	227
0x020	GPTMMIS	RO	0x0000.0000	GPTM Masked Interrupt Status	228
0x024	GPTMICR	W1C	0x0000.0000	GPTM Interrupt Clear	229
0x028	GPTMTAILR	R/W	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA Interval Load	231
0x02C	GPTMTBILR	R/W	0x0000.FFFF	GPTM TimerB Interval Load	232
0x030	GPTMTAMATCHR	R/W	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA Match	233
0x034	GPTMTBMATCHR	R/W	0x0000.FFFF	GPTM TimerB Match	234
0x038	GPTMTAPR	R/W	0x0000.0000	GPTM TimerA Prescale	235
0x03C	GPTMTBPR	R/W	0x0000.0000	GPTM TimerB Prescale	236
0x040	GPTMTAPMR	R/W	0x0000.0000	GPTM TimerA Prescale Match	237
0x044	GPTMTBPMR	R/W	0x0000.0000	GPTM TimerB Prescale Match	238
0x048	GPTMTAR	RO	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA	239
0x04C	GPTMTBR	RO	0x0000.FFFF	GPTM TimerB	240

10.5 Register Descriptions

The remainder of this section lists and describes the GPTM registers, in numerical order by address offset.
Register 1: GPTM Configuration (GPTMCFG), offset 0x000

This register configures the global operation of the GPTM module. The value written to this register determines whether the GPTM is in 32- or 16-bit mode.

GPTM Configuration (GPTMCFG)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x000 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1				reserved	1			1	1 1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved											1	1		GPTMCF	G
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	3it/Field 31:3		Na rese	me rved	Ty R	pe O	Reset 0x00	Descrip Softwa compa	otion re sho ibility y	uld not i with futu	rely on ure proc	the value ducts, the	e of a res	served b of a reser	it. To pro ∿ed bit s	ovide should be
	2:0 GPTMCFG			1CFG	R/	W	0x0	GPTM The GP	Config TMCF(juration 3 values	are de	efined as	follows:			
								Value	Des	scription	1					
								0x0	32-	bit timer	config	uration.				
								01	22	hit roal i	lima ala) aquinta	roopfice	ration	

- 0x1 32-bit real-time clock (RTC) counter configuration.
- 0x2 Reserved
- 0x3 Reserved
- 0x4-0x7 16-bit timer configuration, function is controlled by bits 1:0 of **GPTMTAMR** and **GPTMTBMR**.

Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to 0x2.

GPTM TimerA Mode (GPTMTAMR)

Time Time Time Offse Type	r0 base: 0 r1 base: 0 r2 base: 0 t 0x004 R/W, rese	x4003.00 x4003.10 x4003.20 et 0x0000	000 000 000 000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	T		ſ	1	1	r	1 1	rese	rved			1	1 I	r r			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	ľ			1		res	erved					1	TAAMS	TACMR	TA	MR	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	
Bit/Field Name Type Reset Description																	
	31:4		reser	ved	R	0	0x00	Soft com pres	ware sho patibility erved ac	ould not with futu cross a re	rely on t ure prod ead-mod	he value ucts, the dify-write	of a resolution of a resolutio	erved bit. a reservon.	To proved bit sh	vide nould be	
	3		TAAI	ИS	R/	W	0	GP1	M Time	A Altern	ate Mod	le Select	t				
								The	TAAMS	LAMS values are defined as follows:							
								Valu	ue Desc	ription							
								0	Capt	ure mode	e is enal	bled.					
								1	PWN	I mode is	s enable	ed.					
Note:										To e	enable F and set	WM moo the TAM	de, you m R field to	nust also o 0x2.	clear the	TACMR	
2 TACMR R/W 0 GPTM TimerA Capture M										re Mode	;						
								The	TACMR	alues ar	e define	ed as foll	ows:				
								Valu	ue Desc	ription							
								0	Edge	-Count r	node						
								1	Edge	-Time m	ode						

Bit/Field	Name	Туре	Reset	Description
1:0	TAMR	R/W	0x0	GPTM TimerA Mode
				The TAMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The Timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register (16-or 32-bit).
				In 16-bit timer configuration, ${\tt TAMR}$ controls the 16-bit timer modes for TimerA.
				In 32-bit timer configuration, this register controls the mode and the contents of GPTMTBMR are ignored.

Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to 0x2.

GPTM TimerB Mode (GPTMTBMR)

Time Time Time Offse Type	r0 base: 0: r1 base: 0: r2 base: 0: t 0x008 R/W, rese	x4003.00 x4003.10 x4003.20 t 0x0000	000 000 000 000																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	1		1	1	і і			rese	rved		1	1	1	r r		•			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
				1		res	erved				1	1	TBAMS	TBCMR	TB	MR			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0			
E	Bit/Field		Nan	ne	Тур	be	Reset	Des	cription										
	31:4		reser	ved	R	C	0x00	Soft com pres	ware sho patibility erved a	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	e of a res value of e operatio	erved bit. a reserv on.	. To prov ed bit sł	vide nould be			
	3		TBA	MS	R/	W	0	GP1	M Time	rB Altern	ate Moc	le Selec	t						
								The	TBAMS	alues a	re define	ed as foll	lows:						
								Valu	ue Desc	ription									
								0	Capt	ure mod	e is ena	bled.							
								1	PWN	1 mode i	s enable	d.							
										Note: To enable PWM mode, you must also clear the TBCMR bit and set the TBMR field to 0x2.									
	2		TBCI	MR	R/	W	0	GPT	M Time	rB Captu	ire Mode	è							
								The	TBCMR	alues a	re define	ed as foll	lows:						
								Valu	ue Desc	ription									
								0	Edge	-Count r	node								
								1	Edge	-Time m	ode								

Bit/Field	Name	Туре	Reset	Description
1:0	TBMR	R/W	0x0	GPTM TimerB Mode
				The TBMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register.
				In 16-bit timer configuration, these bits control the 16-bit timer modes for TimerB.
				In 32-bit timer configuration, this register's contents are ignored and GPTMTAMR is used.

Register 4: GPTM Control (GPTMCTL), offset 0x00C

This register is used alongside the **GPTMCFG** and **GMTMTnMR** registers to fine-tune the timer configuration, and to enable other features such as timer stall.

GP1	TM Con	trol (GF	тмсті	L)												
Time Time Time Offse Type	r0 base: 0 r1 base: 0 r2 base: 0 t 0x00C R/W, rese)x4003.00)x4003.10)x4003.20)x4003.20	000 000 000 .0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1	ſ		1	rese	erved	1					1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	TBPWML	TBOTE	reserved	TBEV	'ENT	TBSTALL	TBEN	reserved	TAPWML	TAOTE	RTCEN	TAE\	/ENT	TASTALL	TAEN
Type Reset	RO 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Тур	be	Reset	Des	cription							
	31:15		reser	ved	R	C	0x00	Soff com pres	tware sho patibility served a	ould not with futu cross a r	rely on ti ure produ ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bi a reser n.	t. To prov ved bit sh	ide Iould be
	14		TBPW	ML	R/\	N	0	GP	TM Time	rB PWM	Output I	_evel				
	The TBPWML values are defined as follows:															
								Val	ue Desc	ription						
								C) Outp	ut is una	ffected.					
								1	Outp	ut is inve	erted.					
	13		ТВО	TE	R/\	N	0	GP	TM Time	rB Outpu	ıt Trigge	r Enable				
								The	TBOTE	values ar	re define	d as follo	ows:			
								Val	ue Desc	ription						
								C) The	output Ti	merB trig	gger is d	isabled.			
								1	The	output Ti	merB tri	gger is e	nabled.			
	12		reser	ved	R	C	0	Sofi com pres	tware sho patibility served a	ould not with futu cross a r	rely on ti ure prodi ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bi a reser n.	t. To prov ved bit sh	ide Iould be
	11:10 TBEVENT R/W 0x0 GPTM TimerB Event Mode															
The TBEVENT values are defined as follows:																
								Val	ue Desc	ription						
								0×	0 Posi	ive edge	9					
								0×	1 Nega	ative edg	е					
								0×	2 Rese	erved						
								0x	3 Both	edges						

Bit/Field	Name	Туре	Reset	Description
9	TBSTALL	R/W	0	GPTM TimerB Stall Enable
				The TBSTALL values are defined as follows:
				Value Description
				0 TimerB stalling is disabled.
				1 TimerB stalling is enabled.
8	TBEN	R/W	0	GPTM TimerB Enable
				The TBEN values are defined as follows:
				Value Description
				0 TimerB is disabled.
				1 TimerB is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	TAPWML	R/W	0	GPTM TimerA PWM Output Level
				The TAPWML values are defined as follows:
				Value Description
				0 Output is unaffected.
				1 Output is inverted.
5	TAOTE	R/W	0	GPTM TimerA Output Trigger Enable
				The TAOTE values are defined as follows:
				Value Description
				0 The output TimerA trigger is disabled.
				1 The output TimerA trigger is enabled.
4	RTCEN	R/W	0	GPTM RTC Enable
				The RTCEN values are defined as follows:
				Value Description
				0 RTC counting is disabled.
				1 RTC counting is enabled.

Bit/Field	Name	Туре	Reset	Description
3:2	TAEVENT	R/W	0x0	GPTM TimerA Event Mode
				The TAEVENT values are defined as follows:
				Value Description
				0x0 Positive edge
				0x1 Negative edge
				0x2 Reserved
				0x3 Both edges
1	TASTALL	R/W	0	GPTM TimerA Stall Enable
				The TASTALL values are defined as follows:
				Value Description
				0 TimerA stalling is disabled.
				1 TimerA stalling is enabled.
0	TAEN	R/W	0	GPTM TimerA Enable
				The TAEN values are defined as follows:
				Value Description
				0 TimerA is disabled.
				1 TimerA is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.

Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018

This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables the interrupt, while writing a 0 disables it.

GPTM Interrupt Mask (GPTMIMR) Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x018 Type R/W, reset 0x0000.0000 31 30 29 28 27 25 24 23 22 16 26 21 20 19 18 17 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RTCIM reserved CBEIM CBMIM твтоім reserved CAEIM CAMIM TATOIM R/W R/W R/W RO RO RO RO RO R/W R/M RO RO RO RO R/W R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Reset Description Type RO 0x00 Software should not rely on the value of a reserved bit. To provide 31:11 reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. CBEIM R/W GPTM CaptureB Event Interrupt Mask 10 0 The CBEIM values are defined as follows: Value Description 0 Interrupt is disabled. Interrupt is enabled. 1 CBMIM R/W 9 0 GPTM CaptureB Match Interrupt Mask The CBMIM values are defined as follows: Value Description Interrupt is disabled. 0 1 Interrupt is enabled. 8 TBTOIM R/W 0 GPTM TimerB Time-Out Interrupt Mask The TBTOIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled. 7:4 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
3	RTCIM	R/W	0	GPTM RTC Interrupt Mask
				The RTCIM values are defined as follows:
				Value Description
				0 Interrupt is disabled.
				1 Interrupt is enabled.
2	CAEIM	R/W	0	GPTM CaptureA Event Interrupt Mask
				The CAEIM values are defined as follows:
				Value Description
				0 Interrupt is disabled.
				1 Interrupt is enabled.
1	CAMIM	R/W	0	GPTM CaptureA Match Interrupt Mask
				The CAMIM values are defined as follows:
				Value Description
				0 Interrupt is disabled.
				1 Interrupt is enabled.
0	TATOIM	R/W	0	GPTM TimerA Time-Out Interrupt Mask
				The TATOIM values are defined as follows:
				Value Description
				0 Interrupt is disabled.
				1 Interrupt is enabled.

Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C

This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or not the interrupt is masked in the **GPTMIMR** register. Each bit can be cleared by writing a 1 to its corresponding bit in **GPTMICR**.

GPTM Raw Interrupt Status (GPTMRIS)

Timer() base: 0x4003 0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x01C
Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	•		1 1					rese	rved	1					1				
Type Reset	RO	RO	RO	RO	RO	RO 0	RO 0	RO	RO 0	RO	RO	RO	RO	RO 0	RO	RO			
Reset	15	14	12	12	11	10	0	0	7	6	5	4	2	2	1	0			
	15	14	IS Teserved	12		CBERIS	CBMRIS		/	0 I		4	RTCRIS						
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
E	Bit/Field		Nam	е	Ту	pe	Reset	Des	cription										
	31:11		reserv	ed	R	0	0x00	Soft	Software should not rely on the value of a reserved bit. To provide										
								com pres	patibility erved a	v with futu cross a r	ure produ ead-moc	ucts, the lifv-write	value of operatio	a reserv	ed bit sr	nould be			
	10				-	0	0		GPTM CaptureB Event Raw Interrupt										
	10		UDER	15	ĸ	0	0	GF THI Captured Event Raw Interrupt							a kina				
								This	is the C	aptureB	Event in	terrupt s	status pri	or to ma	sking.				
	9		CBMR	0	GPT	M Capt	ureB Ma	tch Raw	Interrup	t									
								This	is the C	CaptureB	Match ir	nterrupt	status pr	ior to ma	asking.				
	8		TBTOF	RIS	R	0	0	GPT	M Time	rB Time-	Out Raw	Interrup	ot						
								This	is the T	ïmerB tir	ne-out in	terrupt s	status pri	or to ma	sking.				
	7:4		reserv	ed	R	0	0x0	Soft	ware sh	ould not	relv on th	ne value	of a res	erved bit	. To prov	vide			
								com	patibility	with futu	ure produ	ucts, the	value of	a reserv	ed bit sh	nould be			
								pres	erved a	cross a r	ead-mod	lity-write	operatio	on.					
	3		RTCR	IS	R	0	0	GPT	M RTC	Raw Inte	errupt								
								This	is the F	RTC Ever	nt interru	pt status	s prior to	masking].				
	2		CAER	IS	R	0	0	GPT	M Capt	ureA Eve	ent Raw	Interrupt							
								This is the CaptureA Event interrupt status priv							sking.				
	1		CAMF	RIS	R	0	0	GPT	M Capt	ureA Ma	tch Raw	Interrup	t						
								This is the CaptureA Match interrupt status prior to mas											
	0		TATOF	ิสเร	R	0	0	GPT	M Time	rA Time-	Out Raw	Interrur	ot						
	-			-			-	This	the Tim	erA time	-out inte	rrupt sta	tus prior	to mask	ina.				

Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020

This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in **GPTMIMR**, and there is an event that causes the interrupt to be asserted, the corresponding bit is set in this register. All bits are cleared by writing a 1 to the corresponding bit in **GPTMICR**.

Time Time Time Offse Type	r0 base: 0: r1 base: 0: r2 base: 0: et 0x020 RO, reset	x4003.0 x4003.1 x4003.2 0x0000	000 000 000 .0000													
1	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	·							rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved			CBEMIS	CBMMIS	TBTOMIS		rese	rved		RTCMIS	CAEMIS	CAMMIS	TATOMIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	е	Ту	ре	Reset	Des	cription							
	31:11 reserved 10 CBEMIS		ed	R	0	0x00	Soft com pres	Software should not rely on the value of a reserved bit. To pro compatibility with future products, the value of a reserved bit s preserved across a read-modify-write operation.								
	10		CBEM	IS	R	0	0	GPT	rM Captu	ureB Eve	ent Mask	ed Interi	rupt			
								This	is the C	aptureB	event in	terrupt s	tatus aft	er maski	ng.	
	9		CBMN	IIS	R	0	0	GP 1	rM Captu	ureB Mat	tch Mask	ed Inter	rupt			
								This	is the C	aptureB	match ir	iterrupt s	status af	ter mask	ing.	
	8		TBTON	/IS	R	0	0	GP1	rM Time	B Time-	Out Mas	ked Inte	rrupt			
								This	is the Ti	merB tin	ne-out in	terrupt s	status aft	er mask	ing.	
	7:4		reserv	ed	R	0	0x0	Soft com pres	Software should not rely on the value of a reserved bit. compatibility with future products, the value of a reserve preserved across a read-modify-write operation.						To prov ved bit sh	vide nould be
	3		RTCM	IS	R	0	0	GPT	IM RTC	Masked	Interrupt	:				
								This	is the R	TC even	it interrup	ot status	after ma	asking.		
	2		CAEM	IS	R	0	0	GPT	rM Captu	ireA Eve	ent Mask	ed Interi	rupt			
						This	s is the C	aptureA	event in	terrupt s	tatus aft	er maski	ng.			
	1 CAMMIS RO				0	GPT	rM Captu	ireA Mat	tch Mask	ed Inter	rupt					
				This	is the C	aptureA	match ir	nterrupt s	status af	ter mask	ing.					
0 TATOMIS			/IS	R	0	0	GPTM TimerA Time-Out Masked Interrupt									
						This	is the Ti	merA tin	ne-out in	terrupt s	status aft	er mask	ina.			

GPTM Masked Interrupt Status (GPTMMIS)

Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024

This register is used to clear the status bits in the **GPTMRIS** and **GPTMMIS** registers. Writing a 1 to a bit clears the corresponding bit in the **GPTMRIS** and **GPTMMIS** registers.

GP1	TM Inter	rupt Cl	ear (GP [.]	TMICR)											
Time Time Time Offse Type	r0 base: 0: r1 base: 0: r2 base: 0: et 0x024 W1C, rese	x4003.00 x4003.10 x4003.20 et 0x000	000 000 000 000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1		1	reser	ved					1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
			reserved			CBECINT	CBMCINT	TBTOCINT		rese	rved		RTCCINT	CAECINT	CAMCINT	TATOCINT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0
E	Bit/Field		Nam	е	Ту	ре	Reset	Desc	ription							
31:11 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should not rely on													vide nould be			
10 CBECINT W1C 0 GPTM CaptureB Event Interrupt Clear																
								The	CBECIN	T values	are defi	ined as	follows:			
								Valu		rintion						
								valu 0	The i	nterrunt	is unaffe	octed				
								1	The	nterrupt	is cleare	d.				
	9		CBMC	INT	W	1C	0	GPT	M Capti	ureB Ma	tch Interr	upt Cle	ar			
								The	CBMCIN	T values	are defi	ined as	follows:			
								Valu	e Desc	ription						
								0	The i	nterrupt	is unaffe	cted.				
								1	The i	nterrupt	is cleare	d.				
	8		TBTOC	INT	W	1C	0	GPT	M Time	rB Time-	Out Inter	rupt Cle	ear			
	-						-	The	TBTOCI	NT value	es are de	fined as	s follows:			
								Valu	e Desc	ription						
								0	The	nterrupt	is unaffe	cted.				
								1	The i	nterrupt	is cleare	d.				
	7:4		reserv	ed	R	0	0x0	Softv comp prese	vare sho patibility erved ac	ould not with futu cross a r	rely on th ure produ ead-mod	ne value ucts, the lify-write	e of a res value of e operatio	erved bit a reserv	t. To prov ved bit sł	vide nould be

Bit/Field	Name	Туре	Reset	Description
3	RTCCINT	W1C	0	GPTM RTC Interrupt Clear The RTCCINT values are defined as follows: Value Description 0 The interrupt is unaffected.
2	CAECINT	W1C	0	 The interrupt is cleared. GPTM CaptureA Event Interrupt Clear The CAECINT values are defined as follows: Value Description The interrupt is unaffected. The interrupt is cleared.
1	CAMCINT	W1C	0	GPTM CaptureA Match Raw Interrupt This is the CaptureA match interrupt status after masking.
0	TATOCINT	W1C	0	GPTM TimerA Time-Out Raw Interrupt The TATOCINT values are defined as follows: Value, Description
				0 The interrupt is unaffected.

1 The interrupt is cleared.

Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028

This register is used to load the starting count value into the timer. When GPTM is configured to one of the 32-bit modes, **GPTMTAILR** appears as a 32-bit register (the upper 16-bits correspond to the contents of the **GPTM TimerB Interval Load (GPTMTBILR)** register). In 16-bit mode, the upper 16 bits of this register read as 0s and have no effect on the state of **GPTMTBILR**.

Time Offse Type	r2 base: 0 r2 base: 0 et 0x028 R/W, rese)x4003.10)x4003.20 et 0x0000	.FFFF (16	6-bit mode	e) and 0xF	FFF.FF	FF (32-bit m	node)								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					r r		1 1	TAI	I LRH	1	I	I	1	1		
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	0	1	0	1	1	1	1	0	1	1	1	1	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ype R/W															
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Resei	I	I	I	I	I	I	I	I	·	1	1	I	1	I	I	I
E	Bit/Field		Nam	ie	Тур	be	Reset	Des	scription							
	31:16		TAILF	RH	R/\	N	0xFFFF	GP ⁻	TM Time	rA Interv	al Load	Register	High			
						(.	0x0000 16-bit mod	e) Whe e) Tim write	en config terB Inte e. A reac	ured for rval Loa I returns	32-bit m ad (GPT the curr	ode via tl MTBILR ent value	he GPTM) register e of GPT	ICFG reg loads th MTBILR	gister, th nis value 	e GPTM on a
								In 1 stat	6-bit mo e of GP1	de, this f MTBILF	ield read R .	ls as 0 ai	nd does	not have	an effe	ct on the
	15:0		TAILI	٦L	R/\	N	0xFFFF	GP	TM Time	rA Interv	al Load	Register	Low			
								For Tim	both 16- erA. A re	and 32- ad retur	bit mode	es, writing urrent va	g this fie lue of G l	ld loads f PTMTAIL	the cour _R .	nter for

GPTM TimerA Interval Load (GPTMTAILR)

Timer0 base: 0x4003.0000

Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C

This register is used to load the starting count value into TimerB. When the GPTM is configured to a 32-bit mode, **GPTMTBILR** returns the current value of TimerB and ignores writes.

GPTM TimerB Interval Load (GPTMTBILR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x02C Type R/W, reset 0x0000.FFFF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1				rese	erved		1	1		1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1				TBI	ILRL		1	•				'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:16		reser	ved	R	0	0x0000	Soft com pres	tware sho npatibility served ac	ould not with fut cross a r	rely on t ure produ ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	. To prov ed bit sh	/ide 10uld be
	15:0		TBIL	RL	R/	W	0xFFFF	GP	TM Timei	B Interv	al Load	Register				
								Whe	en the Gl	PTM is r	not config	gured as	a 32-bit	timer, a	write to	this field

When the GPTM is not configured as a 32-bit timer, a write to this field updates **GPTMTBILR**. In 32-bit mode, writes are ignored, and reads return the current value of **GPTMTBILR**.

Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030

GPTM TimerA Match (GPTMTAMATCHR)

Timer0 base: 0x4003.0000

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

Timer Offse Type	2 base: 0: t 0x030 R/W, rese	x4003.20 t 0x0000	00 .FFFF (16	6-bit mod	e) and 0xF	FFF.FF	FF (32-bit mo	ode)								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								TAN	/RH			I				1
Type Reset	R/W 0	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	T			r			1 1	TAN	/IRL		r	1				T
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16		TAM	RΗ	R/	W (: (*	0xFFFF 32-bit mode 0x0000 16-bit mode	GP1 ⁾ Whe) GP1) GP 1	TM Timer en config T MCFG r T MTAR , f	A Match ured for egister, to deterr	n Registe 32-bit R this valu nine ma	er High eal-Time e is com tch even	Clock (pared to ts.	RTC) mc the upp	ode via t er half o	he f
								In 10 state	6-bit moo e of GPT	le, this fi MTBMA	eld read TCHR.	ls as 0 ai	nd does	not have	an effe	ct on the
	15:0		TAM	RL	R/	W	0xFFFF	GP1	M Time	A Match	n Registe	er Low				
								Whe GP1 GP1	en config I MCFG r I MTAR , f	ured for egister, to deterr	32-bit R this valu nine ma	eal-Time le is com tch even	Clock (pared to ts.	RTC) mc the lowe	ode via t er half of	he f
								Whe dete	en config ermines t	ured for he duty	PWM m	ode, this	value a ut PWM	long with signal.	GPTM	TAILR,
								Whe GP1 num mini	en config I MTAILR Iber of eo us this va	ured for , determ dge ever alue.	Edge C lines how hts coun	ount moo w many e ted is eq	de, this v dge eve ual to the	alue aloi nts are co e value ii	ng with ounted. ⁻ n GPTM	The tota TAILR

Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034

This register is used in 16-bit PWM and Input Edge Count modes.

Time Time Time Offse Type	r0 base: 0 r1 base: 0 r2 base: 0 t 0x034 R/W, rese	0x4003.00 0x4003.10 0x4003.20 0x4003.20	000 000 000 0.FFFF			,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved	1		r	1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type R/W														R/W	R/W	
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Reset 1 1 1 1 1 1 1 1 Bit/Field Name Type Reset Description																
	31:16		reserv	ved	R	0	0x0000	Soft com pres	ware sho patibility served a	ould not with futu cross a r	rely on t ure prod ead-moo	he value ucts, the lify-write	of a resolution of a resolutio	erved bit a reserv on.	. To prov ed bit sł	vide nould be
	15:0		TBM	RL	R/	W	0xFFFF	GP1	rM Time	rB Match	Registe	er Low				
								Whe dete	en config ermines f	ured for	PWM m	ode, this the outp	s value a ut PWM	long with signal.	GPTM ⁻	fbilr,
determines the duty cycle of the output PWM signal. When configured for Edge Count mode, this value along with GPTMTBILR, determines how many edge events are counted. The tota number of edge events counted is equal to the value in GPTMTBILR minus this value													The total TBILR			

Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerA Prescale (GPTMTAPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x038 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	,		1	· · · · ·			, ,	rese	erved	1	r	1	r 1	1	r	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'		•	resei	rved					I	1	TAF	PSR	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ıe	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a res value of operation	erved bit f a reserv on.	:. To pro ved bit s	ovide should be
	7:0 TAPSR R/W							GPT	TM Time	rA Presc	ale					
								The of th	register ne registe	loads thi er.	s value o	on a write	e. A read	returns	the curr	ent value

Refer to Table 10-2 on page 209 for more details and an example.

Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerB Prescale (GPTMTBPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x03C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved		1			1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'			resei	rved						1	TBF	PSR			'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:8		reserv	red	R	C	0x00	Soft com pres	ware sho patibility served ac	ould not with futi cross a r	rely on ti ure produ ead-mod	ne value ucts, the lify-write	of a res value of operatio	erved bit a reserv on.	. To pro red bit s	vide hould be
	7:0		TBPS	ŝR	R/	W	0x00	GPT	TM Timer	B Presc	ale					
								The of th	register nis registe	loads thi er.	s value o	on a write	e. A read	returns t	he curre	ent value

Refer to Table 10-2 on page 209 for more details and an example.

Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040

This register effectively extends the range of **GPTMTAMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerA Prescale Match (GPTMTAPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x040 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved		1			1	1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ			rese	rved		г т 				I	TAP:	SMR	T	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Туј	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure produ ead-mod	he value ucts, the lify-write	of a res value of operation	erved bi f a reserv on.	t. To pro ved bit s	vide hould be
	7:0		TAPS	MR	R/	N	0x00	GP1	rM Time	A Presc	ale Mato	h				
								This	value is	used al	ongside	GPTMT		HR to de	tect time	er match

events while using a prescaler.

Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044

This register effectively extends the range of **GPTMTBMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerB Prescale Match (GPTMTBPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x044 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1		, , , , , , , , , , , , , , , , , , ,		1 I	rese	rved		T	T	1	T	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved						I	TBP	I SMR I	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F	Rit/Field		Nam	A	Tv	ne	Reset	Des	cription							
			Num		, y		Rebet	000	onption							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with fut cross a	rely on t ure prod read-mo	the value ucts, the dify-write	of a res value of operation	erved bit f a reserv on.	t. To pro ved bit s	ovide should be
	7:0		TBPS	MR	R/	W	0x00	GP1	TM Timer	B Preso	cale Mate	ch				
								This	value is	used a	lonaside	GPTMT	вматс	HR to de	tect tim	er match

This value is used alongside **GPTMTBMATCHR** to detect timer match events while using a prescaler.

Register 17: GPTM TimerA (GPTMTAR), offset 0x048

This register shows the current value of the TimerA counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

GPT	FM Time	rA (GP	TMTAR)												
Time Time Time Offse Type	r0 base: 0; r1 base: 0; r2 base: 0; et 0x048 RO, reset	x4003.00 x4003.10 x4003.20 0x0000.f	00 00 00 FFFF (16-	bit mode)	and 0xF	FFF.FFI	FF (32-bit m	node)								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	T	г				T	T	ARH			1	1	r	1	
Туре	ype RO RO															
Reset	0	1	1	0	1	0	1	1	1	1	0	1	1	1	1	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	Î	ľ	Î			I	T	ARL			1	1		1	1
Type Reset	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1
E	Bit/Field		Nam	e	Ту	ре	Reset	De	scription							
	31:16		TARI	4	R	0 (0xFFFF 32-bit mod 0x0000 16-bit mod	de) If ti de) GF	PTM Timer he GPTM PTMCFG is	A Regis C FG is ii s in a 16	ter High n a 32-b i-bit moo	it mode, le, this is	TimerB v s read as	/alue is zero.	read. If th	ne
	15:0		TAR	L	R	0	0xFFFF	GF	TM Timer	A Regis	ter Low					
								A r exe the	ead return cept in Inp last edge	is the cu ut Edge event.	rrent va Count r	lue of the node, wh	e GPTM ⁻ nen it reti	FimerA urns the	Count R timestan	egister , np from

Register 18: GPTM TimerB (GPTMTBR), offset 0x04C

This register shows the current value of the TimerB counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

GP1	rm Time	erB (GF	PTMTBF	र)												
Time Time Time Offse Type	r0 base: 0 r1 base: 0 r2 base: 0 t 0x04C RO, rese)x4003.00)x4003.10)x4003.20 t 0x0000.	000 000 000 FFFF													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				I	1		1 I	rese	rved		1	1	1	I	1	
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Resei	U	0	0	0	0	U	U	0	0	0	0	0	0	0	0	U
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								ТВ	RL		•	•		•		'
Type Reset	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16		reserv	ved	R	ould not with fut cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bi a reserv on.	t. To prov ved bit sł	/ide 1ould be				
	15:0		TBR	RL	R	0	0xFFFF	GPT	M Timer	B						
15:0 TBRL RO 0xFFF GPTM TimerB A read returns the current value of the GPTM TimerB (except in Input Edge Count mode, when it returns the the last edge event.													Count R timestar	egister , np from		

11 Watchdog Timer

A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or due to the failure of an external device to respond in the expected way.

The Stellaris[®] Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, a locking register, and user-enabled stalling.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

11.1 Block Diagram

11.2 Functional Description

The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt. After the first time-out event, the 32-bit counter is re-loaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. Once the

Watchdog Timer has been configured, the **Watchdog Timer Lock (WDTLOCK)** register is written, which prevents the timer configuration from being inadvertently altered by software.

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second time-out, the 32-bit counter is loaded with the value in the **WDTLOAD** register, and counting resumes from that value.

If **WDTLOAD** is written with a new value while the Watchdog Timer counter is counting, then the counter is loaded with the new value and continues counting.

Writing to **WDTLOAD** does not clear an active interrupt. An interrupt must be specifically cleared by writing to the **Watchdog Interrupt Clear (WDTICR)** register.

The Watchdog module interrupt and reset generation can be enabled or disabled as required. When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its last state.

11.3 Initialization and Configuration

To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the **RCGC0** register. The Watchdog Timer is configured using the following sequence:

- 1. Load the **WDTLOAD** register with the desired timer load value.
- 2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.
- 3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.

If software requires that all of the watchdog registers are locked, the Watchdog Timer module can be fully locked by writing any value to the **WDTLOCK** register. To unlock the Watchdog Timer, write a value of 0x1ACC.E551.

11.4 Register Map

Table 11-1 on page 242 lists the Watchdog registers. The offset listed is a hexadecimal increment to the register's address, relative to the Watchdog Timer base address of 0x4000.0000.

Offset	Name	Туре	Reset	Description	See page
0x000	WDTLOAD	R/W	0xFFFF.FFFF	Watchdog Load	244
0x004	WDTVALUE	RO	0xFFFF.FFFF	Watchdog Value	245
0x008	WDTCTL	R/W	0x0000.0000	Watchdog Control	246
0x00C	WDTICR	WO	-	Watchdog Interrupt Clear	247
0x010	WDTRIS	RO	0x0000.0000	Watchdog Raw Interrupt Status	248
0x014	WDTMIS	RO	0x0000.0000	Watchdog Masked Interrupt Status	249
0x418	WDTTEST	R/W	0x0000.0000	Watchdog Test	250
0xC00	WDTLOCK	R/W	0x0000.0000	Watchdog Lock	251

Table 11-1. Watchdog Timer Register Map

Offset	Name	Туре	Reset	Description	See page
0xFD0	WDTPeriphID4	RO	0x0000.0000	Watchdog Peripheral Identification 4	252
0xFD4	WDTPeriphID5	RO	0x0000.0000	Watchdog Peripheral Identification 5	253
0xFD8	WDTPeriphID6	RO	0x0000.0000	Watchdog Peripheral Identification 6	254
0xFDC	WDTPeriphID7	RO	0x0000.0000	Watchdog Peripheral Identification 7	255
0xFE0	WDTPeriphID0	RO	0x0000.0005	Watchdog Peripheral Identification 0	256
0xFE4	WDTPeriphID1	RO	0x0000.0018	Watchdog Peripheral Identification 1	257
0xFE8	WDTPeriphID2	RO	0x0000.0018	Watchdog Peripheral Identification 2	258
0xFEC	WDTPeriphID3	RO	0x0000.0001	Watchdog Peripheral Identification 3	259
0xFF0	WDTPCellID0	RO	0x0000.000D	Watchdog PrimeCell Identification 0	260
0xFF4	WDTPCellID1	RO	0x0000.00F0	Watchdog PrimeCell Identification 1	261
0xFF8	WDTPCellID2	RO	0x0000.0005	Watchdog PrimeCell Identification 2	262
0xFFC	WDTPCellID3	RO	0x0000.00B1	Watchdog PrimeCell Identification 3	263

11.5 Register Descriptions

The remainder of this section lists and describes the WDT registers, in numerical order by address offset.

Register 1: Watchdog Load (WDTLOAD), offset 0x000

This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the value is immediately loaded and the counter restarts counting down from the new value. If the **WDTLOAD** register is loaded with 0x0000.0000, an interrupt is immediately generated.

Register 2: Watchdog Value (WDTVALUE), offset 0x004

This register contains the current count value of the timer.

Register 3: Watchdog Control (WDTCTL), offset 0x008

This register is the watchdog control register. The watchdog timer can be configured to generate a reset signal (on second time-out) or an interrupt on time-out.

When the watchdog interrupt has been enabled, all subsequent writes to the control register are ignored. The only mechanism that can re-enable writes is a hardware reset.

Wat _{Base}	chdog C 0x4000.0	Control ((WDTC	TL)												
Offse Type	t 0x008 R/W. rese	et 0x0000	.0000													
71	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ	r		r		r	1 1	rese	rved	1		r		1	1 1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	T	T		r	1	r	reser	ved	·	1		r	1	r	RESEN	INTEN
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
31:2 res			reser	ved	R	0	0x00	Software should not rely on the value of a reserved bit. To provide								
¢ k						com pres	patibility erved a	with futu cross a r	ure produ ead-mod	ucts, the lify-write	value of operatic	a reser on.	ved bit sh	ould be		
	1		RES	EN	R/	W	0	Wate	chdog F	eset Ena	able					
								The	RESEN	values ar	re define	d as foll	ows:			
								Valu	ue Des	cription						
								0	Disa	bled.						
								1	Enal	ole the W	/atchdog	module	reset ou	tput.		
	0		INTE	EN	R/	W	0	Wate	chdog Ir	nterrupt E	Enable					
								The INTEN values are defined as follows:								
								Valu	ue Des	cription						
								0 Interrupt event disabled (once this bit is set, it can only l cleared by a hardware reset).							be	
								1	Inter	rupt ever	nt enable	ed. Once	e enabled	l, all writ	tes are ig	nored.

Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C

This register is the interrupt clear register. A write of any value to this register clears the Watchdog interrupt and reloads the 32-bit counter from the **WDTLOAD** register. Value for a read or reset is indeterminate.

Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010

This register is the raw interrupt status register. Watchdog interrupt events can be monitored via this register if the controller interrupt is masked.

Watchdog Raw Interrupt Status (WDTRIS)

Base Offse Type	0x4000.0 t 0x010 RO, reset	000 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	1	1	1	· ·	rese	rved		1	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	T	1	T	1 I	reserved			r	1	1 1	I	I	WDTRIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Na	me	Ту	/pe	Reset	Des	cription							
	31:1		reserved		F	RO		Soft com pres	Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit show preserved across a read-modify-write operation.						vide hould be	
	0		WD	FRIS	F	RO	0	Wat	chdog R	aw Inter	rupt Sta	atus				
								Give	es the rav	w interru	upt state	e (prior to	masking	g) of WD	TINTR.	

Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014

This register is the masked interrupt status register. The value of this register is the logical AND of the raw interrupt bit and the Watchdog interrupt enable bit.

Watchdog Masked Interrupt Status (WDTMIS)

Base 0x4000.0000 Offset 0x014 Type BO_reset 0x0000.0000

туре	RO, lesel		.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1	1			1 1	rese	erved		1	1	1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		I	I	1		1 1	reserved	, , , , , , , , , , , , , , , , , , ,		1	1	ı 1		1	WDTMIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	o Bit/Field	U	0 Nam	ne	ту	pe	Reset	Des	cription	U	0	0	0	U	U	U
	31:1		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with fut cross a r	rely on t ure prode ead-mod	he value ucts, the dify-write	of a resolution of a resolutio	erved bit a reserv on.	t. To pro ved bit s	vide hould be
	0		WDT	MIS	R	0	0	Wat	chdog M	asked li	nterrupt	Status				
								Give inter	es the ma rrupt.	asked in	terrupt s	tate (afte	er maskir	ng) of the	e WDTII	NTR

Register 7: Watchdog Test (WDTTEST), offset 0x418

This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag during debug.

Wat Base Offse Type	chdog T 0x4000.0 t 0x418 R/W, rese	est (W 000 t 0x0000	DTTES	ST)													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	ſ		1	· · ·			1	rese	rved			1	1		1	·	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			1	reserved			1	STALL				rese	rved		1		
Туре	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nar	ne	Ту	pe	Reset	Des	cription								
	31:9		reser	ved	R	0	0x00 Software should not rely on the value of a reser compatibility with future products, the value of a preserved across a read-modify-write operation						erved bit a reserv on.	. To prov ved bit sh	ride Iould be		
	8		STA	LL	R/	W	0	Wat	chdog S	tall Enab	le						
								When set to 1, if the Stellaris [®] microcontroller is debugger, the watchdog timer stops counting. C is restarted, the watchdog timer resumes count						is stopp Once the nting.	stopped with a ice the microcontroller		
	7:0		reser	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prode ead-mod	he value ucts, the dify-write	of a resolution of a resolutio	erved bit a reserv on.	. To prov ved bit sh	ide Iould be	

Register 8: Watchdog Lock (WDTLOCK), offset 0xC00

Writing 0x1ACC.E551 to the **WDTLOCK** register enables write access to all other registers. Writing any other value to the **WDTLOCK** register re-enables the locked state for register writes to all the other registers. Reading the **WDTLOCK** register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are disabled, reading the **WDTLOCK** register returns 0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).

Base Offse Type	0x4000.0 t 0xC00 R/W, rese	0000 et 0x000	0.0000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	1	1	1	I	ı – – – –		1 I	WDT	Lock	I		I	1	I	1		
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	-	1	r	ı – – – – – – – – – – – – – – – – – – –		, ,	WDT	Lock	I		1	1 1	1	1		
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription								
	31:0		WDTL	ock	R/	W	0x0000	Wat	chdog L	ock							
									A write of the value 0x1ACC.E551 unlocks the watchdog registers for write access. A write of any other value reapplies the lock, preventing any register updates.								
								A re	ad of thi	s registe	r returns	s the follo	owing val	lues:			

Value Description

0x0000.0001 Locked

0x0000.0000 Unlocked

Watchdog Lock (WDTLOCK)

Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 4 (WDTPeriphID4)

	•	•			•							
Base Offse Type	0x4000.0 t 0xFD0 RO, rese	0000 t 0x0000.	0000									
	31	31 30 29 28										

Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 5 (WDTPeriphID5)

Base 0x4000.0000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		r r		і і	rese	rved	1	1	1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	1	rese	rved					1	I	PI	D5	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	it/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	Soft com pres	ware sh patibility served a	ould not / with fut cross a r	rely on f ure prod ead-mo	the value lucts, the dify-write	of a res value of operatio	erved bi a reser on.	t. To pro ved bit s	ovide should be
	7:0		PID	5	R	С	0x00	WD ⁻	T Periph	neral ID F	Register	[15:8]				

Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 6 (WDTPeriphID6)

Base 0x4000.0000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	1	1	, , ,		г г	rese	rved					1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	1	rese	erved							PI	D6	I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	Reset 0 C Bit/Field		Nan	ne	Ту	be	Reset	Des	cription							
	31:8		reser	ved	R	C	0x00	Soft com pres	ware sho patibility served ac	ould not i with futu cross a re	rely on t ire prod ead-mo	he value ucts, the dify-write	of a res value of operatio	erved bi f a reser on.	it. To pro ved bit s	ovide should be
	7:0		PID	6	R	С	0x00	WD.	T Periph	eral ID R	egister[23:16]				

Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 7 (WDTPeriphID7)

Base 0x4000.0000 Offset 0xFDC Type RO, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 15 14 13 11 10 9 8 7 6 5 4 3 2 0 1 PID7 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Reset Name Туре 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 PID7 RO 0x00 WDT Peripheral ID Register[31:24]

Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 0 (WDTPeriphID0)

Base 0x4000.0000 Offset 0xFE0 Type RO, reset 0x0000.0005

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							т т	rese	rved							'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		г т				[PI	D0	r	1	']
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
F	it/Field		Nam		Tv	no	Pasat	Des	cription							
Ľ			Indii		тy	þe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on ti ure produ ead-moo	ne value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To pro red bit s	vide hould be
prese 7:0 PID0 RO 0x05 Watcl							chdog P	eripheral	ID Regi	ster[7:0]						

Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 1 (WDTPeriphID1)

Base 0x4000.0000 Offset 0xFE4 Type RO, reset 0x0000.0018

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 12 15 14 13 11 10 9 8 7 6 5 4 3 2 0 1 PID1 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Bit/Field Description Reset Name Туре 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 PID1 RO 0x18 Watchdog Peripheral ID Register[15:8]

Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 2 (WDTPeriphID2)

Base 0x4000.0000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							г т	rese	rved				1			'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							PI	52			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
	Dit/Field		Nom		τ.	20	Poset	Dee	orintian							
	ni/Fielu		Indii	le	тy	þe	Resel	Des	cription							
	31:8		reserv	/ed	R	0	0x00	Soft com pres	ware sho patibility served ac	with futu with futu	rely on ti ure produ ead-mod	he value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To prov ved bit sl	vide hould be
	7:0		PID	2	R	0	0x18	Wat	chdog Po	eripheral	ID Regi	ister[23:1	6]			

Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 3 (WDTPeriphID3)

Base 0x4000.0000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	r	, ,	rese	rved			1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	res	erved					1 1		l Pli	D3	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field	ł	Na	me	Ту	ре	Reset	Des	cription							
	31:8		rese	rved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not i with futu cross a re	rely on t ire prod ead-mo	he value ucts, the dify-write	of a res value o operati	erved bi f a reser on.	t. To pro ved bit s	ovide should be
7:0 PID3 RO							0x01	Wat	chdog P	eripheral	ID Reg	ister[31:2	24]			

Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 0 (WDTPCellID0)

Base Offse Type	0x4000.0 t 0xFF0 RO, reset	000 t 0x0000.	000D													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1 1				г т	rese	rved			1			1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1	rese	rved						ſ	CII	00		I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	Soft com pres	ware sho patibility erved ac	ould not with futu cross a r	rely on t ure prodi ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	To prov ved bit sh	vide nould be
7:0 CID0 RO 0x0D Watchdog PrimeCell ID Register											ster[7:0]					

Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 1 (WDTPCellID1)

Base 0x4000.0000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1					rese	rved	1				1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved					1		CI	D1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nam	ie	Туј	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	Soft com pres	ware sh patibility served a	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a res value of operatio	erved bi f a reser on.	it. To pro ved bit s	ovide should be
	7:0		CID	1	R	С	0xF0	Wat	chdog P	rimeCell	ID Regi	ster[15:8]			

Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 2 (WDTPCelIID2)

Base Offse Type	0x4000.0 t 0xFF8 RO, rese	0000 t 0x0000	.0005													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			T				r r	rese	rved		1	1	r 1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	rese	rved		т т				1	CI	1 D2	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	Bit/Field 31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	. To prov red bit sh	vide nould be
	7:0		CID	2	R	0	0x05	Wate	chdog Pı	rimeCell	ID Regi	ster[23:1	6]			

Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 3 (WDTPCelIID3)

Base 0x4000.0000 Offset 0xFFC Type RO, reset 0x0000.00B1

12 Universal Asynchronous Receivers/Transmitters (UARTs)

The Stellaris[®] Universal Asynchronous Receiver/Transmitter (UART) provides fully programmable, 16C550-type serial interface characteristics. The LM3S1620 controller is equipped with two UART modules.

Each UART has the following features:

- Separate transmit and receive FIFOs
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Programmable baud-rate generator allowing rates up to 1.5625 Mbps
- Standard asynchronous communication bits for start, stop, and parity
- False start bit detection
- Line-break generation and detection
- Fully programmable serial interface characteristics:
 - 5, 6, 7, or 8 data bits
 - Even, odd, stick, or no-parity bit generation/detection
 - 1 or 2 stop bit generation
- IrDA serial-IR (SIR) encoder/decoder providing:
 - Programmable use of IrDA Serial Infrared (SIR) or UART input/output
 - Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex
 - Support of normal 3/16 and low-power (1.41-2.23 µs) bit durations
 - Programmable internal clock generator enabling division of reference clock by 1 to 256 for low-power mode bit duration

12.1 Block Diagram

Figure 12-1. UART Module Block Diagram

12.2 Functional Description

Each Stellaris[®] UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is similar in functionality to a 16C550 UART, but is not register compatible.

The UART is configured for transmit and/or receive via the TXE and RXE bits of the **UART Control** (**UARTCTL**) register (see page 283). Transmit and receive are both enabled out of reset. Before any control registers are programmed, the UART must be disabled by clearing the UARTEN bit in **UARTCTL**. If the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

The UART peripheral also includes a serial IR (SIR) encoder/decoder block that can be connected to an infrared transceiver to implement an IrDA SIR physical layer. The SIR function is programmed using the UARTCTL register.

12.2.1 Transmit/Receive Logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. The control logic outputs the serial bit stream beginning with a start bit, and followed by the data bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control registers. See Figure 12-2 on page 266 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also performed, and their status accompanies the data that is written to the receive FIFO.

12.2.2 Baud-Rate Generation

The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The number formed by these two values is used by the baud-rate generator to determine the bit period. Having a fractional baud-rate divider allows the UART to generate all the standard baud rates.

The 16-bit integer is loaded through the **UART Integer Baud-Rate Divisor (UARTIBRD)** register (see page 279) and the 6-bit fractional part is loaded with the **UART Fractional Baud-Rate Divisor (UARTFBRD)** register (see page 280). The baud-rate divisor (BRD) has the following relationship to the system clock (where *BRDI* is the integer part of the BRD and *BRDF* is the fractional part, separated by a decimal place.)

BRD = BRDI + BRDF = UARTSysClk / (16 * Baud Rate)

where UARTSysClk is the system clock connected to the UART.

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the **UARTFBRD** register) can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and adding 0.5 to account for rounding errors:

UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)

The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error detection during receive operations.

Along with the **UART Line Control, High Byte (UARTLCRH)** register (see page 281), the **UARTIBRD** and **UARTFBRD** registers form an internal 30-bit register. This internal register is only updated when a write operation to **UARTLCRH** is performed, so any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

- UARTIBRD write, UARTFBRD write, and UARTLCRH write
- **UARTFBRD** write, **UARTIBRD** write, and **UARTLCRH** write
- UARTIBRD write and UARTLCRH write
- UARTFBRD write and UARTLCRH write

12.2.3 Data Transmission

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four bits per character for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated in the **UARTLCRH** register. Data continues to be transmitted until there is no data left in the transmit

FIFO. The BUSY bit in the **UART Flag (UARTFR)** register (see page 276) is asserted as soon as data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register, including the stop bits. The UART can indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has been received), the receive counter begins running and data is sampled on the eighth cycle of Baud16 (described in "Transmit/Receive Logic" on page 265).

The start bit is valid if UnRx is still low on the eighth cycle of Baud16, otherwise a false start bit is detected and it is ignored. Start bit errors can be viewed in the **UART Receive Status (UARTRSR)** register (see page 274). If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later) according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled. Data length and parity are defined in the **UARTLCRH** register.

Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When a full word is received, the data is stored in the receive FIFO, with any error bits associated with that word.

12.2.4 Serial IR (SIR)

The UART peripheral includes an IrDA serial-IR (SIR) encoder/decoder block. The IrDA SIR block provides functionality that converts between an asynchronous UART data stream, and half-duplex serial SIR interface. No analog processing is performed on-chip. The role of the SIR block is to provide a digital encoded output, and decoded input to the UART. The UART signal pins can be connected to an infrared transceiver to implement an IrDA SIR physical layer link. The SIR block has two modes of operation:

- In normal IrDA mode, a zero logic level is transmitted as high pulse of 3/16th duration of the selected baud rate bit period on the output pin, while logic one levels are transmitted as a static LOW signal. These levels control the driver of an infrared transmitter, sending a pulse of light for each zero. On the reception side, the incoming light pulses energize the photo transistor base of the receiver, pulling its output LOW. This drives the UART input pin LOW.
- In low-power IrDA mode, the width of the transmitted infrared pulse is set to three times the period of the internally generated IrLPBaud16 signal (1.63 µs, assuming a nominal 1.8432 MHz frequency) by changing the appropriate bit in the UARTCR register. See page 278 for more information on IrDA low-power pulse-duration configuration.

Figure 12-3 on page 268 shows the UART transmit and receive signals, with and without IrDA modulation.

Figure 12-3. IrDA Data Modulation

In both normal and low-power IrDA modes:

- During transmission, the UART data bit is used as the base for encoding
- During reception, the decoded bits are transferred to the UART receive logic

The IrDA SIR physical layer specifies a half-duplex communication link, with a minimum 10 ms delay between transmission and reception. This delay must be generated by software because it is not automatically supported by the UART. The delay is required because the infrared receiver electronics might become biased, or even saturated from the optical power coupled from the adjacent transmitter LED. This delay is known as latency, or receiver setup time.

12.2.5 FIFO Operation

The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed via the **UART Data (UARTDR)** register (see page 272). Read operations of the **UARTDR** register return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are enabled by setting the FEN bit in **UARTLCRH** (page 281).

FIFO status can be monitored via the **UART Flag (UARTFR)** register (see page 276) and the **UART Receive Status (UARTRSR)** register. Hardware monitors empty, full and overrun conditions. The **UARTFR** register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the **UARTRSR** register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the **UART Interrupt FIFO Level Select (UARTIFLS)** register (see page 285). Both FIFOs can be individually configured to trigger interrupts at different levels. Available configurations include 1/8, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, and 7/8. For example, if the $\frac{1}{4}$ option is selected for the receive FIFO, the UART generates a receive interrupt after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the $\frac{1}{2}$ mark.

12.2.6 Interrupts

The UART can generate interrupts when the following conditions are observed:

- Overrun Error
- Break Error

- Parity Error
- Framing Error
- Receive Timeout
- Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)
- Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the UART can only generate a single interrupt request to the controller at any given time. Software can service multiple interrupt events in a single interrupt service routine by reading the **UART Masked Interrupt Status (UARTMIS)** register (see page 290).

The interrupt events that can trigger a controller-level interrupt are defined in the **UART Interrupt Mask (UARTIM**) register (see page 287) by setting the corresponding IM bit to 1. If interrupts are not used, the raw interrupt status is always visible via the **UART Raw Interrupt Status (UARTRIS)** register (see page 289).

Interrupts are always cleared (for both the **UARTMIS** and **UARTRIS** registers) by setting the corresponding bit in the **UART Interrupt Clear (UARTICR)** register (see page 291).

The receive timeout interrupt is asserted when the receive FIFO is not empty, and no further data is received over a 32-bit period. The receive timeout interrupt is cleared either when the FIFO becomes empty through reading all the data (or by reading the holding register), or when a 1 is written to the corresponding bit in the **UARTICR** register.

12.2.7 Loopback Operation

The UART can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LBE bit in the **UARTCTL** register (see page 283). In loopback mode, data transmitted on UnTx is received on the UnRx input.

12.2.8 IrDA SIR block

The IrDA SIR block contains an IrDA serial IR (SIR) protocol encoder/decoder. When enabled, the SIR block uses the UnTx and UnRx pins for the SIR protocol, which should be connected to an IR transceiver.

The SIR block can receive and transmit, but it is only half-duplex so it cannot do both at the same time. Transmission must be stopped before data can be received. The IrDA SIR physical layer specifies a minimum 10-ms delay between transmission and reception.

12.3 Initialization and Configuration

To use the UARTs, the peripheral clock must be enabled by setting the UART0 or UART1 bits in the **RCGC1** register.

This section discusses the steps that are required to use a UART module. For this example, the UART clock is assumed to be 20 MHz and the desired UART configuration is:

- 115200 baud rate
- Data length of 8 bits
- One stop bit

- No parity
- FIFOs disabled
- No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the **UARTIBRD** and **UARTFBRD** registers must be written before the **UARTLCRH** register. Using the equation described in "Baud-Rate Generation" on page 266, the BRD can be calculated:

BRD = 20,000,000 / (16 * 115,200) = 10.8507

which means that the DIVINT field of the **UARTIBRD** register (see page 279) should be set to 10. The value to be loaded into the **UARTFBRD** register (see page 280) is calculated by the equation:

```
UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54
```

With the BRD values in hand, the UART configuration is written to the module in the following order:

- 1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.
- 2. Write the integer portion of the BRD to the UARTIBRD register.
- 3. Write the fractional portion of the BRD to the UARTFBRD register.
- 4. Write the desired serial parameters to the **UARTLCRH** register (in this case, a value of 0x0000.0060).
- 5. Enable the UART by setting the UARTEN bit in the **UARTCTL** register.

12.4 Register Map

Table 12-1 on page 270 lists the UART registers. The offset listed is a hexadecimal increment to the register's address, relative to that UART's base address:

- UART0: 0x4000.C000
- UART1: 0x4000.D000
- **Note:** The UART must be disabled (see the UARTEN bit in the **UARTCTL** register on page 283) before any of the control registers are reprogrammed. When the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

Table 12-1. UART Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	UARTDR	R/W	0x0000.0000	UART Data	272
0x004	UARTRSR/UARTECR	R/W	0x0000.0000	UART Receive Status/Error Clear	274
0x018	UARTFR	RO	0x0000.0090	UART Flag	276
0x020	UARTILPR	R/W	0x0000.0000	UART IrDA Low-Power Register	278
0x024	UARTIBRD	R/W	0x0000.0000	UART Integer Baud-Rate Divisor	279

Offset	Name	Туре	Reset	Description	See page
0x028	UARTFBRD	R/W	0x0000.0000	UART Fractional Baud-Rate Divisor	280
0x02C	UARTLCRH	R/W	0x0000.0000	UART Line Control	281
0x030	UARTCTL	R/W	0x0000.0300	UART Control	283
0x034	UARTIFLS	R/W	0x0000.0012	UART Interrupt FIFO Level Select	285
0x038	UARTIM	R/W	0x0000.0000	UART Interrupt Mask	287
0x03C	UARTRIS	RO	0x0000.000F	UART Raw Interrupt Status	289
0x040	UARTMIS	RO	0x0000.0000	UART Masked Interrupt Status	290
0x044	UARTICR	W1C	0x0000.0000	UART Interrupt Clear	291
0xFD0	UARTPeriphID4	RO	0x0000.0000	UART Peripheral Identification 4	293
0xFD4	UARTPeriphID5	RO	0x0000.0000	UART Peripheral Identification 5	294
0xFD8	UARTPeriphID6	RO	0x0000.0000x0	UART Peripheral Identification 6	295
0xFDC	UARTPeriphID7	RO	0x0000.0000	UART Peripheral Identification 7	296
0xFE0	UARTPeriphID0	RO	0x0000.0011	UART Peripheral Identification 0	297
0xFE4	UARTPeriphID1	RO	0x0000.0000	UART Peripheral Identification 1	298
0xFE8	UARTPeriphID2	RO	0x0000.0018	UART Peripheral Identification 2	299
0xFEC	UARTPeriphID3	RO	0x0000.0001	UART Peripheral Identification 3	300
0xFF0	UARTPCellID0	RO	0x0000.000D	UART PrimeCell Identification 0	301
0xFF4	UARTPCellID1	RO	0x0000.00F0	UART PrimeCell Identification 1	302
0xFF8	UARTPCellID2	RO	0x0000.0005	UART PrimeCell Identification 2	303
0xFFC	UARTPCellID3	RO	0x0000.00B1	UART PrimeCell Identification 3	304

12.5 Register Descriptions

The remainder of this section lists and describes the UART registers, in numerical order by address offset.

Register 1: UART Data (UARTDR), offset 0x000

This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO). A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity, and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and status are stored in the receiving holding register (the bottom word of the receive FIFO). The received data can be retrieved by reading this register.

UART Data (UARTDR) UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x000 Type R/W, reset 0x0000.0000 31 25 30 29 28 27 26 24 23 22 21 20 19 18 17 16 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 13 12 11 10 9 8 6 5 3 2 0 14 7 4 1 OE ΒE PE FE DATA reserved RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Type RO RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Type Reset 31:12 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. OE RO UART Overrun Error 11 0 The OE values are defined as follows: Value Description 0 There has been no data loss due to a FIFO overrun. 1 New data was received when the FIFO was full, resulting in data loss. RO UART Break Error 10 ΒE 0 This bit is set to 1 when a break condition is detected, indicating that the receive data input was held Low for longer than a full-word transmission time (defined as start, data, parity, and stop bits). In FIFO mode, this error is associated with the character at the top of the FIFO. When a break occurs, only one 0 character is loaded into the FIFO. The next character is only enabled after the received data input goes to a 1 (marking state) and the next valid start bit is received.

Bit/Field	Name	Туре	Reset	Description
9	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				In FIFO mode, this error is associated with the character at the top of the FIFO.
8	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
7:0	DATA	R/W	0	Data Transmitted or Received
				When written, the data that is to be transmitted via the UART. When read, the data that was received by the UART.

Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004

The UARTRSR/UARTECR register is the receive status register/error clear register.

In addition to the **UARTDR** register, receive status can also be read from the **UARTRSR** register. If the status is read from this register, then the status information corresponds to the entry read from **UARTDR** prior to reading **UARTRSR**. The status information for overrun is set immediately when an overrun condition occurs.

The **UARTRSR** register cannot be written.

A write of any value to the **UARTECR** register clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 on reset.

Read-Only Receive Status (UARTRSR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x004 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1		, , , , , , , , , , , , , , , , , , ,		1 1	rese	rved						1	'
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	U	0	U	U	U	U	0	U	0	U	U	0	U	U	U	U
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						rese	erved						OE	BE	PE	FE
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	U	0	U	0	U	0	0	U	0	0	U	0	0	0	0	U
В	lit/Field		Nam	ie	Тур	be	Reset	Des	cription							
	31:4		reserv	ved	R	C	0	Soft com pres	ware sho patibility served ac	ould not with futu cross a re	rely on t ure prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	t. To pro ved bit s	vide hould be
	3		OE		R	С	RT Overr	un Error								
							en this bi bit is cle	t is set to eared to	o 1, data 0 by a w	is receiv vrite to U	ved and t	the FIFC R .) is alrea	ady full.		
								The the The	FIFO co FIFO is f CPU mu	ntents re ull, only ust now r	emain va the cont read the	alid since ents of th data in c	no furth ne shift r order to e	er data i egister a empty the	is writter tre overv e FIFO.	n when vritten.
	2		BE		R	С	0	UAF	RT Break	Error						
								This the tran	bit is se received smission	t to 1 wh data inp time (de	ien a bre out was h efined as	eak cond neld Low s start, da	ition is d for longe ata, parit	etected, er than a y, and st	indicatii a full-woi top bits)	ng that rd
								This	s bit is cle	eared to	0 by a w	rite to U	ARTECF	R .		
								In F the FIF(goe	IFO mod FIFO. WI O. The no s to a 1 (e, this e hen a bre ext chara marking	rror is as eak occu acter is o state) a	ssociatec urs, only o only enat nd the ne	l with the one 0 ch bled after ext valid	e charac aracter i r the rec start bit	ter at the s loaded eive dat is receiv	e top of I into the a input ved.

Bit/Field	Name	Туре	Reset	Description
1	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				This bit is cleared to 0 by a write to UARTECR .
0	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
				This bit is cleared to 0 by a write to UARTECR .
				In FIFO mode, this error is associated with the character at the top of the FIFO.

Write-Only Error Clear (UARTECR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x004 Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	1	r	,		r r	rese	rved	I				1	Î	1
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	erved					1		DA	TA	1	1	'
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:8		reserved WO 0		0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.							ovide should be			
	7:0		DAT	A	W	0	0	Erro	r Clear							
								Δ \λ/	rita ta thi	e rogieto	r of any	calo etch	are tha fr	amina r	arity h	roak and

A write to this register of any data clears the framing, parity, break, and overrun flags.

Register 3: UART Flag (UARTFR), offset 0x018

The **UARTFR** register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and TXFE and RXFE bits are 1.

UAF	RT Flag	(UART	FR)														
UAR UAR Offse	T0 base: (T1 base: (et 0x018	0x4000.C 0x4000.D t 0x0000	000														
турс	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	Î			ı –	Ì	i		rese	l rved	l	1	Ì			1 1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	_			rese	rved I				TXFE	RXFF	TXFF	RXFE	BUSY		reserved		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription								
	31:8		reserv	ved	R	0	0	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on ti ure produ ead-mod	he value ucts, the lify-write	of a reso value of operatio	erved bi a reser on.	t. To prov ved bit sh	ide ould be	
7 TXFE RO 1 UART Transm						mit FIFC	Empty										
	7 IXFE							The UAF	meaning RTLCRH	g of this I register	bit deper	nds on th	ie state o	of the Fi	EN bit in tl	ne	
								lf the regi	e FIFO is ster is er	disableo npty.	d (fen is	0), this b	it is set v	vhen the	e transmit	holding	
								If the FIFO is enabled (FEN is 1), this bit is set when the transmit FI is empty.									
	6		RXF	F	R	0	0	UAF	RT Recei	ive FIFO	Full						
								The UAF	meaning RTLCRH	g of this I register	bit deper	nds on th	ie state o	of the Fi	EN bit in tl	ne	
								lf th is fu	e FIFO is III.	s disable	d, this b	it is set v	hen the	receive	holding r	egister	
If the FIFO is enable					IFO is enabled, this bit is set when the receive FIFO is full.												
5 TXFF RO 0 UART Transmit FI					Γ Transmit FIFO Full												
								The meaning of this UARTLCRH register			f this bit depends on the state of the ${\tt FEN}$ bit in the gister.						
								lf th is fu	e FIFO is III.	s disable	d, this bi	it is set v	/hen the	transmi	t holding	register	
								If th	e FIFO is	s enable	d, this bi	t is set w	hen the	transmi	t FIFO is	full.	

LM3S1620 Microcontroller

Bit/Field	Name	Туре	Reset	Description
4	RXFE	RO	1	UART Receive FIFO Empty
				The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register.
				If the FIFO is disabled, this bit is set when the receive holding register is empty.
				If the FIFO is enabled, this bit is set when the receive FIFO is empty.
3	BUSY	RO	0	UART Busy
				When this bit is 1, the UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register.
				This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled).
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020

The **UARTILPR** register is an 8-bit read/write register that stores the low-power counter divisor value used to derive the low-power SIR pulse width clock by dividing down the system clock (SysClk). All the bits are cleared to 0 when reset.

The internal IrLPBaud16 clock is generated by dividing down SysClk according to the low-power divisor value written to **UARTILPR**. The duration of SIR pulses generated when low-power mode is enabled is three times the period of the IrLPBaud16 clock. The low-power divisor value is calculated as follows:

ILPDVSR = SysClk / F_{IrLPBaud16}

where $F_{IrLPBaud16}$ is nominally 1.8432 MHz.

You must choose the divisor so that $1.42 \text{ MHz} < F_{IrLPBaud16} < 2.12 \text{ MHz}$, which results in a low-power pulse duration of $1.41-2.11 \mu s$ (three times the period of IrLPBaud16). The minimum frequency of IrLPBaud16 ensures that pulses less than one period of IrLPBaud16 are rejected, but that pulses greater than 1.4 μs are accepted as valid pulses.

Note: Zero is an illegal value. Programming a zero value results in no IrLPBaud16 pulses being generated.

UART IrDA Low-Power Register (UARTILPR)

0,			01101 1 1	giotoi	(0)											
UAR UAR Offse	T0 base: (T1 base: (et 0x020	0x4000.0 0x4000.0	2000 2000													
туре	R/W, res		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			T		, , ,		1 1	rese	rved	I			1	r	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1				ſ	ILPC	I VSR	r	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Тур	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0	Soft com pres	ware sho patibility served ac	ould not with futi cross a r	rely on ti ure produ ead-mod	ne value ucts, the lify-write	of a resolution of a resolutio	erved bit a reserv on.	t. To prov ved bit sh	vide nould be
	7:0		ILPD√	/SR	R/	N	0x00	IrDA	Low-Pc	wer Divi	sor					
								This	is an 8-	bit low-p	ower div	isor valu	le.			

Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024

The **UARTIBRD** register is the integer part of the baud-rate divisor value. All the bits are cleared on reset. The minimum possible divide ratio is 1 (when **UARTIBRD=**0), in which case the **UARTFBRD** register is ignored. When changing the **UARTIBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 266 for configuration details.

UART Integer Baud-Rate Divisor (UARTIBRD)

UART0 base: 0x4000.C000

UART1 base: 0x4000.D000 Offset 0x024 Type R/W, reset 0x0000.0000 31 30 29 28 25 23 22 27 26 24 21 20 19 18 17 16 reserved RO Туре RO RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 DIVINT Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:16 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:0 DIVINT R/W 0x0000 Integer Baud-Rate Divisor

Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028

The **UARTFBRD** register is the fractional part of the baud-rate divisor value. All the bits are cleared on reset. When changing the **UARTFBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 266 for configuration details.

UART Fractional Baud-Rate Divisor (UARTFBRD)

Offse Type	t 0x028 R/W, rese	et 0x000.L	0.000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1			і I	rese	erved			1	1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	J	rese	rved						1	DIVF	RAC		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	scription							
	31:6		reserv	ved	R	0	0x00	x00 Software should not rely o compatibility with future pr preserved across a read-n			rely on t ure prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	. To prov red bit sl	vide nould be
	5:0		DIVFF	RAC	R/	W	0x000	Frac	ctional Ba	aud-Rate	e Divisor					

UART Fractional Baud-F UART0 base: 0x4000.C000 UART1 base: 0x4000.D000

Register 7: UART Line Control (UARTLCRH), offset 0x02C

The **UARTLCRH** register is the line control register. Serial parameters such as data length, parity, and stop bit selection are implemented in this register.

When updating the baud-rate divisor (**UARTIBRD** and/or **UARTIFRD**), the **UARTLCRH** register must also be written. The write strobe for the baud-rate divisor registers is tied to the **UARTLCRH** register.

UART Line Control (UARTLCRH)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x02C Type R/W, reset 0x0000.0000

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,																		
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
						1	1 1	rese	rved		1	1	1 						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
[1		1	rese	rved	1	· · ·		SPS	WI	EN	FEN	STP2	EPS	PEN	BRK			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0			
В	it/Field		Nam	e	Ту	ре	Reset	Des	cription										
	31:8 reserved RO 7 SPS R/W			0	Soft com pres	ware sho patibility served ac	ould not with fut cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a rese value of operatio	erved bit a reserv on.	. To prov red bit sh	vide nould be						
	7		SPS	S	R/W 0 UART Stick Parity Select														
								When bits 1, 2, and 7 of UARTLCRH are set, the p and checked as a 0. When bits 1 and 7 are set a parity bit is transmitted and checked as a 1. When this bit is cleared, stick parity is disabled.							the parity bit is transmitted set and 2 is cleared, the led.				
	6.2			N	R	^	0	LIΔF	JART Word Length										
	0.0		VVLL			•••	U	The fram	bits indi ne as foll	cate the ows:	number	of data I	oits trans	mitted o	r receive	ed in a			
								Val	ue Desc	ription									
								0x	3 8 bits	5									
								0x	2 7 bits	6									
								0x1 6 bits											
								0x	0 5 bits	s (defaul	t)								
4 FEN R/W 0 UART Enable FIFOs					Os														
If this bit is mode).					s bit is se le).	et to 1, tr	ansmit a	nd receiv	ve FIFO b	ouffers ar	e enable	d (FIFO							
							When cleared to 0, FIFOs are disabled (Character mode). The FIFOs become 1-byte-deep holding registers.												

Bit/Field	Name	Туре	Reset	Description
3	STP2	R/W	0	UART Two Stop Bits Select
				If this bit is set to 1, two stop bits are transmitted at the end of a frame. The receive logic does not check for two stop bits being received.
2	EPS	R/W	0	UART Even Parity Select
				If this bit is set to 1, even parity generation and checking is performed during transmission and reception, which checks for an even number of 1s in data and parity bits.
				When cleared to 0, then odd parity is performed, which checks for an odd number of 1s.
				This bit has no effect when parity is disabled by the $\ensuremath{\mathtt{PEN}}$ bit.
1	PEN	R/W	0	UART Parity Enable
				If this bit is set to 1, parity checking and generation is enabled; otherwise, parity is disabled and no parity bit is added to the data frame.
0	BRK	R/W	0	UART Send Break
				If this bit is set to 1, a Low level is continually output on the UnTX output, after completing transmission of the current character. For the proper execution of the break command, the software must set this bit for at least two frames (character periods). For normal use, this bit must be cleared to 0.

Register 8: UART Control (UARTCTL), offset 0x030

The **UARTCTL** register is the control register. All the bits are cleared on reset except for the Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration change in the module, the UARTEN bit must be cleared before the configuration changes are written. If the UART is disabled during a transmit or receive operation, the current transaction is completed prior to the UART stopping.

- **Note:** The **UARTCTL** register should not be changed while the UART is enabled or else the results are unpredictable. The following sequence is recommended for making changes to the **UARTCTL** register.
 - 1. Disable the UART.
 - 2. Wait for the end of transmission or reception of the current character.
 - 3. Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register (UARTLCRH).
 - 4. Reprogram the control register.
 - 5. Enable the UART.

UART Control (UARTCTL)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x030 Type R/W, reset 0x0000.0300

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ſ		1 1		· ·		1	rese	rved	1	1	1		1		•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			rese	rved			RXE	TXE	LBE		rese	erved		SIRLP	SIREN	UARTEN
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
_					-			_	. ,.							
E	Bit/⊢ield		Nam	ie	Гур	be	Reset	Des	cription							
	31:10		reserv	ved	R	C	0	Soft com pres	ware sh patibility served a	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a resolution of a resolutio	erved bit a reserv on.	. To prov red bit sl	vide nould be
	9		RX	Ξ	R/\	N	1	UAF	RT Rece	ive Enab	le					
								If thi the t char	is bit is s UART is racter be	et to 1, t disabled fore stop	he recei I in the m oping.	ve section ve section	on of the a receive	UART is e, it comp	enable letes the	d. When e current
								Not	e: To	enable	receptio	n, the UA	ARTEN b i	t must al	so be se	et.
	8		TXE	Ξ	R۸	N	1	UAF	RT Trans	mit Enat	ole					
								If thi the curr	is bit is s UART is ent char	et to 1, tl disablec acter bef	he transi d in the r fore stop	mit section middle of pping.	on of the a transn	UART is nission, i	enable t comple	d. When etes the
								Note	e: To	enable	transmis	ssion, the	UARTEI	n bit mus	st also b	e set.

Bit/Field	Name	Туре	Reset	Description
7	LBE	R/W	0	UART Loop Back Enable
				If this bit is set to 1, the \mathtt{UnTX} path is fed through the \mathtt{UnRX} path.
6:3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	SIRLP	R/W	0	UART SIR Low Power Mode
				This bit selects the IrDA encoding mode. If this bit is cleared to 0, low-level bits are transmitted as an active High pulse with a width of 3/16th of the bit period. If this bit is set to 1, low-level bits are transmitted with a pulse width which is 3 times the period of the IrLPBaud16 input signal, regardless of the selected bit rate. Setting this bit uses less power, but might reduce transmission distances. See page 278 for more information.
1	SIREN	R/W	0	UART SIR Enable
				If this bit is set to 1, the IrDA SIR block is enabled, and the UART will transmit and receive data using SIR protocol.
0	UARTEN	R/W	0	UART Enable
				If this bit is set to 1, the UART is enabled. When the UART is disabled in the middle of transmission or reception, it completes the current

character before stopping.

Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034

The **UARTIFLS** register is the interrupt FIFO level select register. You can use this register to define the FIFO level at which the TXRIS and RXRIS bits in the **UARTRIS** register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the level. That is, the interrupts are generated when the fill level progresses through the trigger level. For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt at the half-way mark.

Offse Type	t 0x034 R/W, rese	et 0x000	0.0012													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1	1		1	1 1	rese	rved	1		1	1		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	ì	rese	rved	1 I			I		I RXIFLSEL	1		TXIFLSEL	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 1	R/W 0	R/W 0	R/W 1	R/W 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
31:6 reserved RO 0x00		Soft com pres	ware sh patibility erved a	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	To prov ved bit sh	vide nould be						
	5:3		RXIFL	SEL	R/	W	0x2	UAF	RT Rece	ive Interr	upt FIF0	D Level S	Select			
								The	trigger p	points for	the rec	eive inte	rrupt are	as follov	vs:	
								Va	lue De	escription	I					
								0	x0 R)	<pre>< FIFO ≥</pre>	1/8 full					
								0	x1 R)	<pre>< FIFO ≥</pre>	¼ full					
								0	x2 R)	< FIFO ≥	½ full (c	lefault)				
					0	x3 R)	< FIFO ≥	¾ full								
								0:	x4 R)	<pre>< FIFO ≥</pre>	7/8 full					
								0x5	-0x7 Re	eserved						

UART Interrupt FIFO Level Select (UARTIFLS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x034

July 26, 2008

Bit/Field	Name	Туре	Reset	Description
2:0	TXIFLSEL	R/W	0x2	UART Transmit Interrupt FIFO Level Select
				The trigger points for the transmit interrupt are as follows:
				Value Description
				0x0 TX FIFO ≤ 1/8 full
				0x1 TX FIFO ≤ ¼ full
				0x2 TX FIFO ≤ ½ full (default)
				0x3 TX FIFO ≤ ¾ full
				0x4 TX FIFO ≤ 7/8 full
				0x5-0x7 Reserved

Register 10: UART Interrupt Mask (UARTIM), offset 0x038

The **UARTIM** register is the interrupt mask set/clear register.

UART Interrupt Mask (UARTIM)

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a 0 prevents the raw interrupt signal from being sent to the interrupt controller.

UAR UAR Offse	T0 base: T1 base: et 0x038	0x4000.0 0x4000.1	C000 D000														
туре	R/w, res	20 et 0x000	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
					rese	rved			1		1	1					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved			OE		BEIM	PEIM	FEIM	RTIM	тхім	RXIM		rese	erved			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	
E	Bit/Field		Name			Туре		Description									
	31:11		reserv	R	0	0x00	Soft com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	10		OEIN	R/W		0	UART Overrun Error Interrupt Mask										
							On a read, the current mask for the OEIM interrupt is returned.										
								Setting this bit to 1 promotes the \texttt{OEIM} interrupt to the interrupt controller.									
9			BEIM			R/W		UART Break Error Interrupt Mask									
							On a read, the current mask for the ${\tt BEIM}$ interrupt is returned.										
							Setting this bit to 1 promotes the ${\tt BEIM}$ interrupt to the interrupt controller.										
8			PEIN	R/W		0	UART Parity Error Interrupt Mask										
							On a read, the current mask for the PEIM interrupt is returned.										
							Setting this bit to 1 promotes the ${\tt PEIM}$ interrupt to the interrupt controller.										
7			FEIM	R/	W	0	UART Framing Error Interrupt Mask										
							On a	On a read, the current mask for the FEIM interrupt is returned.									
							Setting this bit to 1 promotes the ${\tt FEIM}$ interrupt to the interrupt controller.										
6			RTIM			R/W		UART Receive Time-Out Interrupt Mask									
							On a read, the current mask for the RTIM interrupt is returned.										
								Setting this bit to 1 promotes the ${\tt RTIM}$ interrupt to the interrupt controller.									
5			TXIM			R/W		UART Transmit Interrupt Mask									
								On a	On a read, the current mask for the $\ensuremath{\mathtt{TXIM}}$ interrupt is returned.								
								Setting this bit to 1 promotes the TXIM interrupt to the interrupt controller.									

July 26, 2008

Bit/Field	Name	Туре	Reset	Description
4	RXIM	R/W	0	UART Receive Interrupt Mask
				On a read, the current mask for the RXIM interrupt is returned.
				Setting this bit to 1 promotes the $\ensuremath{\mathtt{RXIM}}$ interrupt to the interrupt controller.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C

The **UARTRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt. A write has no effect.

UART Raw Interrupt Status (UARTRIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x03C Type RO, reset 0x0000.000F

_	31	30	29	28	27	26	6 <u>25 24 23 22 21 20 19 18 17 16</u>											
			1 1					rese	rved				1					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
[1		reserved	1		OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS		rese	rved			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	U	0	U	U	U	U	U	U	U	U	0	U	1	1	1	1		
B	lit/Field		Nam	е	Ту	ре	Reset	Des	cription									
	31:11		reserv	ed	R	0	0x00	Soft	ware sho	ould not	rely on tl	he value	of a rese	erved bit	. To prov	ide		
								com pres	patibility served a	with futu cross a r	ure produ ead-mod	ucts, the dify-write	value of operatic	a reserv n.	ved bit sh	ould be		
	10		OERI	S	R	0	0	UAF	RT Overr	un Error	Raw Int	errupt St	atus					
		Gives the raw interrupt state (prior to masking) of this interrupt.																
	9	BERIS RO 0 UART Break Error Raw Interrupt Status																
								Give	es the ra	w interru	pt state	(prior to i	masking) of this	interrupt.			
	8		PERI	9	R	0	0	IΙΔF	P Parity		aw Interr	" runt Stati	19		•			
	0			0	IX.	0	0	Give	es the ra	w interru	nt state	(prior to)	naskina) of this	interrunt			
	-			•	_	~	•						,) 01 1110	interrupt.			
	1		FERI	S	R	0	0	UAF	<i td="" ⊢rami<=""><td></td><td>Raw Int</td><td>errupt St</td><td>atus</td><td></td><td></td><td></td></i>		Raw Int	errupt St	atus					
								GIVE	es the ra	w interru	pt state	(prior to i	nasking) of this	interrupt.			
	6		RTRI	S	R	0	0	UAF	RT Recei	ive Time	-Out Rav	w Interrup	ot Status	;				
								Give	es the ra	w interru	pt state	(prior to I	masking) of this	interrupt.			
	5		TXRI	S	R	0	0	UAF	RT Trans	mit Raw	Interrup	t Status						
								Give	es the ra	w interru	pt state	(prior to I	masking) of this	interrupt.			
	4		RXRI	S	R	0	0	UAF	RT Recei	ve Raw	Interrupt	t Status						
								Give	es the ra	w interru	pt state	(prior to I	masking) of this	interrupt.			
	3:0		reserv	ed	R	0	0xF	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-mod	he value ucts, the dify-write	of a rese value of operatic	erved bit a reserv n.	. To prov ved bit sh	ide ould be		

Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040

The **UARTMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

UART Masked Interrupt Status (UARTMIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x040 Type RO, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18													17	16		
	ľ					1		rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		reserved		r	OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS		rese	rved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	е	Ту	ре	Reset	Des	cription							
	31:11		reserv	red	R	0	0x00	Soft	ware sh	ould not	rely on tl	he value	of a rese	erved bit	. To prov	ride
								com pres	patibility served a	with futu cross a r	ure produ ead-mod	ucts, the dify-write	value of operation	a reserv on.	ved bit sh	ould be
	10		OEM	IS	R	0	0	UAF	RT Overr	un Error	Masked	Interrup	t Status			
		Gives the masked interrupt state of this interrupt.														
	9	BEMIS RO 0 UART Break Error Masked Interrupt Status														
	U		DEIM				Ũ	Give	es the m	asked in	terrupt s	tate of th	is interri	int		
	0			10	-	0	0				terrept e					
	8		PEIM	15	R	0	0	UAF			asked In					
								GIVE	es the m	asked in	terrupt s	tate of th	is interru	ipt.		
	7		FEMI	IS	R	0	0	UAF	RT Fram	ing Error	Masked	I Interrup	ot Status			
								Give	es the m	asked in	terrupt s	tate of th	iis interru	ıpt.		
	6		RTMI	IS	R	0	0	UAF	RT Rece	ive Time	-Out Ma	sked Inte	errupt Sta	atus		
								Give	es the m	asked in	terrupt s	tate of th	is interru	ıpt.		
	5		TXMI	IS	R	0	0	UAF	RT Trans	mit Masl	ked Inter	rupt Stat	tus			
								Give	es the m	asked in	terrupt s	tate of th	is interru	ıpt.		
	4		RXMI	IS	R	0	0	UAF	RT Rece	ive Mask	ed Interi	rupt Stat	us			
								Give	es the m	asked in	terrupt s	tate of th	iis interru	ıpt.		
	3:0		reserv	red	R	0	0	Soft com pres	ware sho patibility served a	ould not with futu	rely on tl ure produ ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv	. To prov ved bit sh	ride Iould be

Register 13: UART Interrupt Clear (UARTICR), offset 0x044

The **UARTICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

UAF	UART Interrupt Clear (UARTICR) UART0 base: 0x4000.C000 UART1 base: 0x4000 D000															
UAR UAR Offse	T0 base: (T1 base: (et 0x044	0x4000.0 0x4000.0	C000 C000													
Туре	W1C, res	set 0x000	00.000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved			OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC		rese	erved	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:11	reservedRO0x00Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.OEICW1C0Overrun Error Interrupt Clear														
	10	preserved across a read-modify-write operation. 10 OEIC W1C 0 Overrun Error Interrupt Clear														
		10 OEIC W1C 0 Overrun Error Interrupt Clear The OEIC values are defined as follows:														
								Val	ue Desc	ription						
								0	No e	ffect on t	the interi	upt.				
								1	Clea	rs interru	upt.					
	9		BEI	С	W	1C	0	Brea	ak Error	Interrupt	Clear					
								The	BEIC Vá	alues are	e defined	as follow	WS:			
								Val	ue Desc	ription						
								0	No e	ffect on t	the inter	upt.				
								1	Clea	rs interru	ıpt.					
	8		PEI	C	W	1C	0	Pari	ty Error	Interrupt	Clear					
								The	PEIC Va	alues are	e defined	as follow	ws:			
								Val	ue Desc	ription						
								0	No e	ffect on t	the inter	upt.				
								1	Clea	rs interru	upt.					

Bit/Field	Name	Туре	Reset	Description
7	FEIC	W1C	0	Framing Error Interrupt Clear
				The FEIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
6	RTIC	W1C	0	Receive Time-Out Interrupt Clear
				The RTIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
5	TXIC	W1C	0	Transmit Interrupt Clear
				The TXIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
4	RXIC	W1C	0	Receive Interrupt Clear
				The RXIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 14: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 4 (UARTPeriphID4)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							т т	rese	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		1 1					PI	D4			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-moo	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	. To pro ed bit s	vide hould be
	7:0		PID	4	R	0	0x0000	UAF	RT Peripl	neral ID	Register	[7:0]				
								Can	be used	l by soft	ware to i	dentify th	e presei	nce of th	is peripl	neral.

Register 15: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 5 (UARTPeriphID5)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1 1	rese	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ì			rese	rved		1 1					PI	D5			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	. To prov ed bit sl	/ide 1ould be
	7:0		PID	5	R	0	0x0000	UAF	RT Peripl	neral ID	Register	[15:8]				
								Can	be used	by soft	vare to i	dentify th	ie presei	nce of th	is peripł	ieral.

294

Register 16: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 6 (UARTPeriphID6)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1 1	rese	erved							1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved					[PI	D6	· · · · ·		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Ту	be	Reset	Des	cription							
	31:8		reserv	/ed	R	С	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-moc	he value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To pro ed bit s	vide hould be
	7:0		PID	6	R	С	0x0000	UAF	RT Periph	neral ID	Register	[23:16]		6 41-		haval
								Can	i ne useo	ι μу son	vale to lo	uentity tr	ie prese	nce of th	is perip	nerai.

Register 17: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 7 (UARTPeriphID7)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							т т	rese	erved						1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		т т					I PII	D7	1	r	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-moc	he value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To pro ved bit s	vide hould be
	7:0		PID	7	R	0	0x0000	UAF	RT Peripl	neral ID	Register	[31:24]				
								Can	be used	l by softv	vare to i	dentify th	ne prese	nce of th	is peripl	neral.

Register 18: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 0 (UARTPeriphID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE0 Type RO, reset 0x0000.0011

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved							1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1			rese	rved		г г					I PII	D0			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1
E	Bit/Field		Nam	ie	Ty	pe	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	. To pro red bit s	vide hould be
	7:0		PID	0	R	0	0x11	UAF	RT Periph	neral ID	Register	[7:0]				
								Can	be used	l by soft	vare to i	dentify th	ne presei	nce of th	is perip	heral.

Register 19: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4

The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 1 (UARTPeriphID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved						1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ			rese	rved		1 1					I Pli	D1	i	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bi a reserv on.	t. To pro /ed bit s	vide hould be
	7:0		PID	1	R	0	0x00	UAF	RT Periph	neral ID	Register	[15:8]				
								Can	be used	by soft	vare to i	dentify th	e prese	nce of th	is peripl	heral.

Register 20: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 2 (UARTPeriphID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		1 1					PI	52			1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ire produ ead-mod	ne value ucts, the lify-write	of a rese value of operatio	erved bit a reserv on.	. To pro ed bit s	vide hould be
	7:0		PID	2	R	0	0x18	UAF	RT Periph	neral ID	Register	[23:16]				
								Can	be used	by softw	vare to i	dentify th	e presei	nce of th	is perip	heral.

Register 21: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 3 (UARTPeriphID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		I I					PI	D3			1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a n	rely on tl ure produ ead-moo	ne value ucts, the lify-write	of a rese value of operatio	erved bit a reserv on.	. To pro red bit s	vide hould be
	7:0		PID	3	R	0	0x01	UAF	RT Periph	neral ID	Register	[31:24]				
								Can	be used	by softw	vare to i	dentify th	ne presei	nce of th	is perip	heral.

Register 22: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 0 (UARTPCelIID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved							1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		1 1					CII	D0			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1
E	Bit/Field		Nam	ie	Ту	be	Reset	Des	cription							
	31:8		reserv	ved	R	С	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a n	rely on tl ire produ ead-mod	ne value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To pro red bit s	vide hould be
	7:0		CID	0	R	С	0x0D	UAF	RT Prime	Cell ID F	Register[7:0]				
								Prov	vides sof	tware a	standard	cross-p	eriphera	l identific	ation s	ystem.

Register 23: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 1 (UARTPCellID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF4 Type RO, reset 0x0000.00F0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 6 4 2 0 7 5 3 1 CID1 reserved RO RO RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 Bit/Field Name Туре Reset Description RO 0x00 31:8 reserved Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 CID1 RO 0xF0 UART PrimeCell ID Register[15:8] Provides software a standard cross-peripheral identification system.

Register 24: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 2 (UARTPCelIID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							т т	rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	rese	rved		г г					CII	D2			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-moc	ne value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To prov red bit sl	vide hould be
	7:0		CID	2	R	0	0x05	UAF	RT Prime	Cell ID F	Register[23:16]				
								Prov	vides sof	tware a	standard	cross-p	eriphera	l identific	ation sy	/stem.

Register 25: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 3 (UARTPCelIID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1							rese	erved							1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1			rese	rved		г г					CI	D3			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-moc	he value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To pro red bit s	vide hould be
	7:0		CID	3	R	0	0xB1	UAF	RT Prime	Cell ID F	Register[[31:24]				
								Prov	vides sof	tware a	standard	l cross-p	eriphera	l identific	ation sy	ystem.

13 Synchronous Serial Interface (SSI)

The Stellaris[®] microcontroller includes two Synchronous Serial Interface (SSI) modules. Each SSI is a master or slave interface for synchronous serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces.

Each Stellaris[®] SSI module has the following features:

- Master or slave operation
- Programmable clock bit rate and prescale
- Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
- Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing

13.1 Block Diagram

Figure 13-1. SSI Module Block Diagram

13.2 Functional Description

The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses data, control, and status information. The transmit and receive paths are buffered with

internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit and receive modes.

13.2.1 Bit Rate Generation

The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output clock. Bit rates are supported to MHz and higher, although maximum bit rate is determined by peripheral devices.

The serial bit rate is derived by dividing down the input clock (FSysClk). The clock is first divided by an even prescale value CPSDVSR from 2 to 254, which is programmed in the **SSI Clock Prescale** (**SSICPSR**) register (see page 324). The clock is further divided by a value from 1 to 256, which is 1 + SCR, where SCR is the value programmed in the **SSI Control0** (SSICR0) register (see page 317).

The frequency of the output clock SSIClk is defined by:

```
SSIClk = FSysClk / (CPSDVSR * (1 + SCR))
```

Note: Although the SSIClk transmit clock can theoretically be 12.5 MHz, the module may not be able to operate at that speed. For master mode, the system clock must be at least two times faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster than the SSIClk.

See "Synchronous Serial Interface (SSI)" on page 479 to view SSI timing parameters.

13.2.2 FIFO Operation

13.2.2.1 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The CPU writes data to the FIFO by writing the **SSI Data (SSIDR)** register (see page 321), and data is stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

13.2.2.2 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. Received data from the serial interface is stored in the buffer until read out by the CPU, which accesses the read FIFO by reading the **SSIDR** register.

When configured as a master or slave, serial data received through the SSIRx pin is registered prior to parallel loading into the attached slave or master receive FIFO, respectively.

13.2.3 Interrupts

The SSI can generate interrupts when the following conditions are observed:

- Transmit FIFO service
- Receive FIFO service
- Receive FIFO time-out
- Receive FIFO overrun

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI can only generate a single interrupt request to the controller at any given time. You can mask each of the four individual maskable interrupts by setting the appropriate bits in the **SSI Interrupt Mask** (**SSIIM**) register (see page 325). Setting the appropriate mask bit to 1 enables the interrupt.

Provision of the individual outputs, as well as a combined interrupt output, allows use of either a global interrupt service routine, or modular device drivers to handle interrupts. The transmit and receive dynamic dataflow interrupts have been separated from the status interrupts so that data can be read or written in response to the FIFO trigger levels. The status of the individual interrupt sources can be read from the **SSI Raw Interrupt Status (SSIRIS)** and **SSI Masked Interrupt Status (SSIMIS)** registers (see page 327 and page 328, respectively).

13.2.4 Frame Formats

Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is transmitted starting with the MSB. There are three basic frame types that can be selected:

- Texas Instruments synchronous serial
- Freescale SPI
- MICROWIRE

For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk transitions at the programmed frequency only during active transmission or reception of data. The idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFSS) pin is active Low, and is asserted (pulled down) during the entire transmission of the frame.

For Texas Instruments synchronous serial frame format, the SSIFSS pin is pulsed for one serial clock period starting at its rising edge, prior to the transmission of each frame. For this frame format, both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a special master-slave messaging technique, which operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the requested data. The returned data can be 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

13.2.4.1 Texas Instruments Synchronous Serial Frame Format

Figure 13-2 on page 308 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.

Figure 13-2. TI Synchronous Serial Frame Format (Single Transfer)

In this mode, SSIClk and SSIFSS are forced Low, and the transmit data line SSITx is tristated whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFSS is pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each SSIC1k. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SSIC1k after the LSB has been latched.

Figure 13-3 on page 308 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

Figure 13-3. TI Synchronous Serial Frame Format (Continuous Transfer)

13.2.4.2 Freescale SPI Frame Format

The Freescale SPI interface is a four-wire interface where the SSIFSS signal behaves as a slave select. The main feature of the Freescale SPI format is that the inactive state and phase of the SSIClk signal are programmable through the SPO and SPH bits within the **SSISCR0** control register.

SPO Clock Polarity Bit

When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not being transferred.

SPH Phase Control Bit

The SPH phase control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the SPH phase control bit is Low, data is captured on the first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.

13.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and SPH=0 are shown in Figure 13-4 on page 309 and Figure 13-5 on page 309.

SSICIk SSIFss SSIFss SSIFx MSB SSIRx
Figure 13-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0

Note: Q is undefined.

In this configuration, during idle periods:

- SSICIK is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto the SSIRx input line of the master. The master SSITx output pad is enabled.

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the master and slave data have been set, the SSIClk master clock pin goes High after one further half SSIClk period.

The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFSS signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its

serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFSS pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFSS pin is returned to its idle state one SSICIk period after the last bit has been captured.

13.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure 13-6 on page 310, which covers both single and continuous transfers.

Figure 13-6. Freescale SPI Frame Format with SPO=0 and SPH=1

Note: Q is undefined.

In this configuration, during idle periods:

- SSICIK is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After a further one half SSIClk period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.

In the case of a single word transfer, after all bits have been transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

13.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and SPH=0 are shown in Figure 13-7 on page 311 and Figure 13-8 on page 311.

Figure 13-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0

Figure 13-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low, which causes slave data to be immediately transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.

One half period later, valid master data is transferred to the SSITx line. Now that both the master and slave data have been set, the SSIC1k master clock pin becomes Low after one further half SSIC1k period. This means that data is captured on the falling edges and propagated on the rising edges of the SSIC1k signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSIC1k period after the last bit has been captured.

13.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure 13-9 on page 312, which covers both single and continuous transfers.

SSICIk							
SSIFss							
SSIRx—	(Q) MSB)(■	X	X	4 to 16 bits	X) LSB) Q -
SSITx	MSB X	X	χ	X	χ) LSB	λ

Figure 13-9. Freescale SPI Frame Format with SPO=1 and SPH=1

Note: Q is undefined.

In this configuration, during idle periods:

- SSICIK is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSICIk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled. After a further one-half SSIClk period, both master and slave data are enabled onto their respective transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SSIClk signal.

After all bits have been transferred, in the case of a single word transmission, the SSIFss line is returned to its idle high state one SSIClk period after the last bit has been captured.

For continuous back-to-back transmissions, the SSIFSS pin remains in its active Low state, until the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

13.2.4.7 MICROWIRE Frame Format

Figure 13-10 on page 313 shows the MICROWIRE frame format, again for a single frame. Figure 13-11 on page 314 shows the same format when back-to-back frames are transmitted.

Figure 13-10. MICROWIRE Frame Format (Single Frame)

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:

- SSICIK is forced Low
- SSIFss is forced High
- The transmit data line **SSITx** is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFSS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SSITx pin. SSIFSS remains Low for the duration of the frame transmission. The SSIRx pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one clock period after the last bit has been latched in the receive serial shifter, which causes the data to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIClk after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the SSIFSS line is continuously asserted (held Low) and transmission of data occurs back-to-back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge of SSIC1k, after the LSB of the frame has been latched into the SSI.

Figure 13-11. MICROWIRE Frame Format (Continuous Transfer)

In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 13-12 on page 314 illustrates these setup and hold time requirements. With respect to the SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss must have a setup of at least two times the period of SSIClk on which the SSI operates. With respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one SSIClk period.

13.3 Initialization and Configuration

To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.

For each of the frame formats, the SSI is configured using the following steps:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled before making any configuration changes.
- 2. Select whether the SSI is a master or slave:
 - a. For master operations, set the **SSICR1** register to 0x0000.0000.
 - b. For slave mode (output enabled), set the **SSICR1** register to 0x0000.0004.
 - c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.
- 3. Configure the clock prescale divisor by writing the SSICPSR register.

- 4. Write the **SSICR0** register with the following configuration:
 - Serial clock rate (SCR)
 - Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)
 - The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)
 - The data size (DSS)
- 5. Enable the SSI by setting the SSE bit in the SSICR1 register.

As an example, assume the SSI must be configured to operate with the following parameters:

- Master operation
- Freescale SPI mode (SPO=1, SPH=1)
- 1 Mbps bit rate
- 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
1x106 = 20x106 / (CPSDVSR * (1 + SCR))
```

In this case, if CPSDVSR=2, SCR must be 9.

The configuration sequence would be as follows:

- 1. Ensure that the SSE bit in the SSICR1 register is disabled.
- 2. Write the **SSICR1** register with a value of 0x0000.0000.
- 3. Write the **SSICPSR** register with a value of 0x0000.0002.
- 4. Write the **SSICR0** register with a value of 0x0000.09C7.
- 5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.

13.4 Register Map

Table 13-1 on page 316 lists the SSI registers. The offset listed is a hexadecimal increment to the register's address, relative to that SSI module's base address:

- SSI0: 0x4000.8000
- SSI1: 0x4000.9000
- Note: The SSI must be disabled (see the SSE bit in the SSICR1 register) before any of the control registers are reprogrammed.

Table 13-1. SSI Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	SSICR0	R/W	0x0000.0000	SSI Control 0	317
0x004	SSICR1	R/W	0x0000.0000	SSI Control 1	319
0x008	SSIDR	R/W	0x0000.0000	SSI Data	321
0x00C	SSISR	RO	0x0000.0003	SSI Status	322
0x010	SSICPSR	R/W	0x0000.0000	SSI Clock Prescale	324
0x014	SSIIM	R/W	0x0000.0000	SSI Interrupt Mask	325
0x018	SSIRIS	RO	0x0000.0008	SSI Raw Interrupt Status	327
0x01C	SSIMIS	RO	0x0000.0000	SSI Masked Interrupt Status	328
0x020	SSIICR	W1C	0x0000.0000	SSI Interrupt Clear	329
0xFD0	SSIPeriphID4	RO	0x0000.0000	SSI Peripheral Identification 4	330
0xFD4	SSIPeriphID5	RO	0x0000.0000	SSI Peripheral Identification 5	331
0xFD8	SSIPeriphID6	RO	0x0000.0000	SSI Peripheral Identification 6	332
0xFDC	SSIPeriphID7	RO	0x0000.0000	SSI Peripheral Identification 7	333
0xFE0	SSIPeriphID0	RO	0x0000.0022	SSI Peripheral Identification 0	334
0xFE4	SSIPeriphID1	RO	0x0000.0000	SSI Peripheral Identification 1	335
0xFE8	SSIPeriphID2	RO	0x0000.0018	SSI Peripheral Identification 2	336
0xFEC	SSIPeriphID3	RO	0x0000.0001	SSI Peripheral Identification 3	337
0xFF0	SSIPCelIID0	RO	0x0000.000D	SSI PrimeCell Identification 0	338
0xFF4	SSIPCelIID1	RO	0x0000.00F0	SSI PrimeCell Identification 1	339
0xFF8	SSIPCelIID2	RO	0x0000.0005	SSI PrimeCell Identification 2	340
0xFFC	SSIPCelIID3	RO	0x0000.00B1	SSI PrimeCell Identification 3	341

13.5 Register Descriptions

The remainder of this section lists and describes the SSI registers, in numerical order by address offset.

Register 1: SSI Control 0 (SSICR0), offset 0x000

SSICR0 is control register 0 and contains bit fields that control various functions within the SSI module. Functionality such as protocol mode, clock rate, and data size are configured in this register.

SSI	Control	0 (SSI	CR0)													
SSI0 SSI1 Offse Type	base: 0x4 base: 0x4 et 0x000 e R/W, rese	4000.800 4000.900 et 0x0000	0 0 0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			ſ	r	1	1	1 1	rese	erved	1	r	1	1	1	1	ſ
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	U	0	U	0	U	U	0	U	0	U	U	U	0	U
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				S	CR				SPH	SPO	F	RF		D	SS	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	scription							
31:16 reserved RO 0x4								Soff com pres	tware sh npatibility served a	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	t. To prov ved bit sl	vide hould be
	15:8		SC	R	R/	W	0x0000	SSI	Serial C	lock Rat	е					
								The the	s value s SSI. The	CR is use bit rate	ed to ger is:	nerate th	e transm	iit and re	ceive bi	t rate of
								BR=	FSSICl	k/(CPS	DVSR *	(1 + \$	SCR))			
								whe SSI	ere CPSD CPSR re	vsr is a gister, a	n even v nd SCR	alue fror s a value	m 2-254 e from 0-	program 255.	med in t	he
	7		SP	Н	R/	W	0	SSI	Serial C	lock Pha	ise					
								This	s bit is or	nly applic	able to	he Free	scale SP	I Forma	t.	
								The it to eith cap	SPH cor change er allowi ture edg	itrol bit se state. It l ng or not e.	elects th has the t allowin	e clock e most imp g a clock	dge that bact on th transitic	captures ne first b on before	s data an it transm e the first	nd allows hitted by t data
								Whe If si	en the SI PH is 1, c	਼ਸ bit is 0 lata is ca), data is aptured o	captured on the se	d on the f cond clo	irst clock	k edge tr transitio	ansition. on.
	6		SP	0	R	W	0	SSI	Serial C	lock Pola	arity					
								This	s bit is or	nly applic	able to	he Frees	scale SP	I Forma	t.	
								Who SSI SSI	en the SI Clk pin Clk pin	PO bit is (If SPO is when da	0, it proc s 1, a ste ita is not	luces a s eady stat being tr	steady st e High v ansferre	ate Low alue is p d.	value or laced or	n the n the

Bit/Field	Name	Туре	Reset	Description							
5:4	FRF	R/W	0x0	SSI Frame Format Select							
				The FRF values are defined as follows:							
				Value Frame Format							
				0x0 Freescale SPI Frame Format							
				0x1 Texas Intruments Synchronous Serial Frame Format							
				0x2 MICROWIRE Frame Format							
				0x3 Reserved							
3:0	DSS	R/W	0x00	SSI Data Size Select							
				The DSS values are defined as follows:							
				Value Data Size							
				0x0-0x2 Reserved							
				0x3 4-bit data							
				0x4 5-bit data							
				0x5 6-bit data							
				0x6 7-bit data							
				0x7 8-bit data							
				0x8 9-bit data							
				0x9 10-bit data							
				0xA 11-bit data							
				0xB 12-bit data							
				0xC 13-bit data							
				0xD 14-bit data							
				0xE 15-bit data							
				0xF 16-bit data							

Register 2: SSI Control 1 (SSICR1), offset 0x004

SSICR1 is control register 1 and contains bit fields that control various functions within the SSI module. Master and slave mode functionality is controlled by this register.

SSI	Control	1 (SSI	CR1)													
SSI0 SSI1 Offse Type	base: 0x4 base: 0x4 et 0x004 R/W, rese	4000.800 4000.900 et 0x0000	0 0 0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1			1		rese	l erved		1	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	15	14	12	12	11	10	0	0	7	6	5	4	2	2	1	0
	15	14	13	12		res	erved	0	, ,	0	1	4	SOD	MS	SSE	LBM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:4		reserv	/ed	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure produ ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	t. To prov ved bit sh	vide nould be
3 SOD R/W 0 SSI Slave Mode Output Disable																
								This syst slav the coul cont	bit is re tems, it is res in the serial out ld be tiec figured s	levant or s possibl system put line. I togethe o that th ues are o	nly in the e for the while en In such s er. To ope e SSI sla defined a	e Slave n SSI mas suring th systems, erate in s ave does as follow	node (MS ster to br at only o the TXD such a sy not driv s:	=1). In n oadcast ne slave lines fror 'stem, th e the SS	nultiple-s a messa drives d m multipl e SOD bi ITx pin.	slave ge to all ata onto e slaves t can be
								Val	ue Desc	rintion						
								0	SSI o	an drive	SSITx	output ir	n Slave (Dutput m	ode.	
								1	SSI r	nust not	drive the	SSITx	output i	n Slave r	mode.	
	2		MS	;	R/	W	0	SSI	Master/S	Slave Se	elect					
								This SSI	s bit sele is disabl	cts Mast ed (SSE	er or Sla =0).	ve mode	e and ca	n be moo	dified onl	y when
								The	мs valu	es are de	efined as	s follows	:			
								Val	ue Desc	ription						
								0	Devi	ce config	gured as	a maste	er.			
								1	Devi	ce config	gured as	a slave.				

Bit/Field	Name	Туре	Reset	Description						
1	SSE	R/W	0	SSI Synchronous Serial Port Enable Setting this bit enables SSI operation. The SSE values are defined as follows:						
				Value Description						
				0 SSI operation disabled.						
				1 SSI operation enabled.						
				Note: This bit must be set to 0 before any control registers are reprogrammed.						
0	LBM	R/W	0	SSI Loopback Mode						
				Setting this bit enables Loopback Test mode.						
				The LBM values are defined as follows:						
				Value Description						
				0 Normal serial port operation enabled.						

1 Output of the transmit serial shift register is connected internally to the input of the receive serial shift register.

Register 3: SSI Data (SSIDR), offset 0x008

SSIDR is the data register and is 16-bits wide. When **SSIDR** is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When **SSIDR** is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer. The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the **SSICR1** register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

SSI Data (SSIDR)																
SSI0 SSI1 Offse	3SI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0x008 Type R/W, reset 0x0000.0000															
туре	31	30	20	28	27	26	25	24	23	22	21	20	10	19	17	16
1	1	30	29	20	27	20	1 1	24	23	22	21	20	19	10	17	
					1			rese	rved				1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1 1		I		1 1	DA	TΑ				r 1		I	·
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	Type R/W				0 Reset	0 Des	ocription	0	0	0	0	0	0	0		
	Bit/Field 31:16			ved	R	0	0x0000	Soft com pres	ware sho patibility served ac	ould not i with futu cross a re	rely on ti ire prodi ead-mod	ne value ucts, the lify-write	of a resolution of a resolutio	erved bit a reserv on.	. To prov ved bit sh	ride 10uld be
	15:0		DAT	A	R/	W	0x0000	SSI	Receive	/Transmi	it Data					
					A re tran	ad opera smit FIF	ation rea O.	ds the re	ceive FI	FO. A w	rite oper	ation wri	tes the			

Software must right-justify data when the SSI is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by the transmit logic. The receive logic automatically right-justifies the data.

Register 4: SSI Status (SSISR), offset 0x00C

SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

SSI	Status	(SSISR	2)													
SSI0 SSI1 Offse Type	base: 0x4 base: 0x4 et 0x00C RO, rese	1000.800 1000.900 t 0x0000.	0 0 0003													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I	1	1	1	1 I	rese	erved			1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					1	reserved			1			BSY	RFF	RNE	TNF	TFE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	R0 1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
31:5 reserved RO 0x00									tware sho patibility served a	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a res value of operation	erved bit f a reserv on.	t. To prov ved bit sl	vide nould be
	4		BS	Y	R	0	0	SSI	Busy Bi	:						
								The	BSY val	ues are o	defined a	as follow	s:			
								Val	ue Desc	ription						
								0) SSI i	s idle.						
								1	SSI i trans	s current mit FIFC	tly transı) is not e	mitting a empty.	nd/or red	ceiving a	frame, c	or the
	3		RF	F	R	0	0	SSI	Receive	FIFO Fi	الر					
								The	RFF val	ues are o	defined a	as follow	s:			
								Val	ue Desc	ription						
								0	Rece	ive FIFC) is not f	ull.				
								1	Rece	eive FIFC) is full.					
	2		RN	E	R	0	0	SSI	Receive	FIFO N	ot Empty	v				
								The	RNE val	ues are o	defined a	, as follow	s:			
								Val	ue Desc	ription						
								C	Rece	ive FIFC) is emp	ty.				
								1	Rece	ive FIFC) is not e	empty.				

Bit/Field	Name	Туре	Reset	Description
1	TNF	RO	1	SSI Transmit FIFO Not Full
				 Value Description 0 Transmit FIFO is full. 1 Transmit FIFO is not full.
0	TFE	R0	1	SSI Transmit FIFO Empty The TFE values are defined as follows: Value Description 0 Transmit FIFO is not empty.

1

Transmit FIFO is empty.

Register 5: SSI Clock Prescale (SSICPSR), offset 0x010

SSICPSR is the clock prescale register and specifies the division factor by which the system clock must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The least-significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least-significant bit as zero.

SSI0 SSI1 Offse Type	Clock F base: 0x4 base: 0x4 t 0x010 R/W, rese	Prescale 000.800 000.900	e (SSIC 0 0.0000	PSR)													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	ſ						1 1	rese	rved			1		Ì	Ì		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved								CPSDVSR								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bit/Field		U	Nam	Туре		Reset	Des	cription	ription						0		
31:8			reserv	RO		0x00	Soft com pres	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
7:0		CPSDVSR			R/W		0x00	SSI	SSI Clock Prescale Divisor								
								This freq	This value must be an even number from 2 to 254, depending on the frequency of SSIClk. The LSB always returns 0 on reads.								
Register 6: SSI Interrupt Mask (SSIIM), offset 0x014

The **SSIIM** register is the interrupt mask set or clear register. It is a read/write register and all bits are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

| SI Interrupt Mask (SSIIM)
SI0 base: 0x4000.8000 | | | | | | |
 |
 |
 | |
 | | |
 | | |
|--|--|--|---|---|---|---
--

--
---|---
--|--|--|--
--|
| base: 0x4
base: 0x4
et 0x014 | 4000.80
4000.90 | 00
00 | | | | |
 |
 |
 | |
 | | |
 | | |
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24
 | 23
 | 22
 | 21 | 20
 | 19 | 18 | 17
 | 16 | |
| | | 1 | 1 | 1 | 20 | 1 1 | rese
 | erved
 |
 | 21 | 1
 | 1 | 1 | · · · ·
 | | |
| RO | RO | RO | RO | RO | RO | RO | RO
 | RO
 | RO
 | RO | RO
 | RO | RO | RO
 | RO | |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
 | 0
 | 0
 | 0 | 0
 | 0 | 0 | 0
 | 0 | |
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8
 | 7
 | 6
 | 5 | 4
 | 3 | 2 | 1
 | 0 | |
| | | 1 | | | re | served |
 | · ·
 |
 | |
 | тхім | RXIM | RTIM
 | RORIM | |
| RO | RO | RO | RO | RO | RO | RO | RO
 | RO
0
 | RO
 | RO | RO
 | R/W | R/W | R/W
 | R/W | |
| 0 | 0 | Ū | 0 | 0 | 0 | Ū | 0
 | Ū
 | 0
 | Ū | 0
 | 0 | 0 | 0
 | 0 | |
| Bit/Field | | Nar | ne | Ту | ре | Reset | Des
 | cription
 |
 | |
 | | | | | | | |
 | | |
| 31:4 | | reservedRO0x00Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should b
preserved across a read-modify-write operation.TXIMR/W0SSI Transmit FIFO Interrupt Mask | | | | |
 |
 |
 | |
 | | | | | | | |
 | | |
| 3 | TXIM R/W 0 SSI Transmit FIFO Interrupt Mask | | | | | |
 |
 |
 | |
 | | | | | | | |
 | | |
| | TXIM R/W 0 SSI Transmit FIFO Interrupt Mask The TXIM values are defined as follows: | | | | | |
 |
 |
 | |
 | | |
 | | |
| | | | | | | | Val
 | ue Desc
 | ription
 | |
 | | |
 | | |
| | | | | | | | 0
 | TX F
 | IFO half-
 | full or le | ess cond
 | ition inte | rrupt is n | nasked.
 | | |
| | | | | | | | 1
 | TX F
 | IFO half-
 | full or le | ess cond
 | ition inte | rrupt is n | ot mask
 | ed. | |
| 2 | | RX | IM | R/ | W | 0 | SSI
 | Receive
 | FIFO In
 | terrupt N | /lask
 | | |
 | | |
| | | | | | | | The
 | RXIM Va
 | alues are
 | defined | l as follo
 | ws: | |
 | | |
| | | | | | | | Val
 | ue Desc
 | ription
 | |
 | | |
 | | |
| | | | | | | | 0
 | RX F
 | IFO half
 | -full or m | nore con
 | dition int | errupt is | masked
 | Ι. | |
| | | | | | | | 1
 | RX F
 | IFO half
 | -full or m | nore con
 | dition int | errupt is | not mas
 | sked. | |
| 1 | | RT | IM | R/ | W | 0 | SSI
 | Receive
 | Time-O
 | ut Interru | upt Mask
 | ζ | |
 | | |
| | | | | | | | The
 | RTIM Va
 | alues are
 | defined | l as follo
 | WS: | |
 | | |
| | | | | | | | Val
 | ue Desc
 | ription
 | |
 | | |
 | | |
| | | | | | | | 0
 | RX F
 | IFO time
 | e-out inte | errupt is
 | masked. | |
 | | |
| | | | | | | | 1
 | RX F
 | IFO time
 | e-out inte | errupt is
 | not masl | ked. | | | | | | | | | | | | | | | |
 | | |
| | Interrup
base: 0x:
base: 0x:
cox014
R/W, res
31
RO
0
15
RO
0
31:4
3
3
2
2 | Interrupt Mas base: 0x4000.80 base: 0x4000.90 ase: 0x4000.90 at an and a second | Interrupt Mask (SSIIN base: 0x4000.8000 base: 0x4000.9000 31 30 29 RO RO RO 0 0 0 15 14 13 RO RO RO 0 0 0 31:4 reset 3 TX 3 TX 2 RX | Interrupt Mask (SSIIM) base: 0x4000.8000 base: 0x4000.9000 31 30 29 28 RO RO RO RO 0 0 0 0 15 14 13 12 RO RO RO RO 0 0 0 0 15 14 13 12 RO RO RO RO 0 0 0 0 0 31:4 reserved 3 TXIM 2 RXIM RXIM 1 | Interrupt Mask (SSIIM) base: 0x4000.8000 base: 0x4000.9000 31 30 29 28 27 RO RO RO RO RO RO Sit/Field Name Ty 31:4 reserved R 3 TXIM R/ R/ 1 R/ 2 RXIM R/ R/ 1 R/ | Interrupt Mask (SSIIM) base: 0x4000.9000 29 28 27 26 #W, reset 0x0000.0000 31 30 29 28 27 26 RO RO RO RO RO RO RO RO 0 0 15 14 13 12 11 10 reset reset RO RO RO RO RO RO RO 0 0 31:/Field Name Type 31:4 reserved RO RO 3 TXIM R/W 1 R/W 1 1 R/W 2 RXIM R/W R/W 1 1 R/W 1 | Interrupt Mask (SSIIM) base: 0x4000.8000 10x014 RO RO RO RO RO RO SI// Field Name Type Reset 31:4 reserved RO 0 0 0 0 20 20 20 20 20 <th 2"20"20"20"20"20"20"20"20"20"20"20"20"2<="" colspa="6" td=""><td>Interrupt Mask (SSIIM) base: 0x4000.8000 base: 0x4000.9000 31 30 29 28 27 26 25 24 RO RO<td>Interrupt Mask (SSIIM) base: 0x4000.0000 31 30 29 28 27 26 25 24 23 Image: 1 Image: 1</td><td>Interrupt Mask (SSIIM) base: 0x4000 9000 31 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 10 0 0 0 0 0 0<!--</td--><td>Interrupt Mask (SSIIM) base: 0x4000.0000 300 28 27 26 25 24 23 22 21 It Wr, reset 0x0000.0000 30 20 20 28 27 26 25 24 23 22 21 It Wr, reset 0x0000.0000 30 20 R0 R1 R1 R1<td>Interrupt Mask (SSIIM) base: 0x4000.0000 31 30 29 28 27 26 25 24 23 22 21 20 RV reserved </td><td>Interrupt Mask (SSIIM) base: 0x4000.0000 base: 0x400.0000 base: 0x</td><td>Interrupt Mask (SSIIM) base: bx4000 8000 Base: bx4000 8000 1 30 29 28 27 26 25 24 23 22 21 20 19 18 RV, reset 0x4000 8000 RO RO</td><td>Interrupt Mask (SSIIM) The end of the e</td></td></td></td></th> | <td>Interrupt Mask (SSIIM) base: 0x4000.8000 base: 0x4000.9000 31 30 29 28 27 26 25 24 RO RO<td>Interrupt Mask (SSIIM) base: 0x4000.0000 31 30 29 28 27 26 25 24 23 Image: 1 Image: 1</td><td>Interrupt Mask (SSIIM) base: 0x4000 9000 31 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 10 0 0 0 0 0 0<!--</td--><td>Interrupt Mask (SSIIM) base: 0x4000.0000 300 28 27 26 25 24 23 22 21 It Wr, reset 0x0000.0000 30 20 20 28 27 26 25 24 23 22 21 It Wr, reset 0x0000.0000 30 20 R0 R1 R1 R1<td>Interrupt Mask (SSIIM) base: 0x4000.0000 31 30 29 28 27 26 25 24 23 22 21 20 RV reserved </td><td>Interrupt Mask (SSIIM) base: 0x4000.0000 base: 0x400.0000 base: 0x</td><td>Interrupt Mask (SSIIM) base: bx4000 8000 Base: bx4000 8000 1 30 29 28 27 26 25 24 23 22 21 20 19 18 RV, reset 0x4000 8000 RO RO</td><td>Interrupt Mask (SSIIM) The end of the e</td></td></td></td> | Interrupt Mask (SSIIM) base: 0x4000.8000 base: 0x4000.9000 31 30 29 28 27 26 25 24 RO RO <td>Interrupt Mask (SSIIM) base: 0x4000.0000 31 30 29 28 27 26 25 24 23 Image: 1 Image: 1</td> <td>Interrupt Mask (SSIIM) base: 0x4000 9000 31 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 10 0 0 0 0 0 0<!--</td--><td>Interrupt Mask (SSIIM) base: 0x4000.0000 300 28 27 26 25 24 23 22 21 It Wr, reset 0x0000.0000 30 20 20 28 27 26 25 24 23 22 21 It Wr, reset 0x0000.0000 30 20 R0 R1 R1 R1<td>Interrupt Mask (SSIIM) base: 0x4000.0000 31 30 29 28 27 26 25 24 23 22 21 20 RV reserved </td><td>Interrupt Mask (SSIIM) base: 0x4000.0000 base: 0x400.0000 base: 0x</td><td>Interrupt Mask (SSIIM) base: bx4000 8000 Base: bx4000 8000 1 30 29 28 27 26 25 24 23 22 21 20 19 18 RV, reset 0x4000 8000 RO RO</td><td>Interrupt Mask (SSIIM) The end of the e</td></td></td> | Interrupt Mask (SSIIM) base: 0x4000.0000 31 30 29 28 27 26 25 24 23 Image: 1 Image: 1 | Interrupt Mask (SSIIM) base: 0x4000 9000 31 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 30 29 28 27 26 25 24 23 22 1 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 11 10 9 8 7 6 15 14 13 12 10 0 0 0 0 0 0 </td <td>Interrupt Mask (SSIIM) base: 0x4000.0000 300 28 27 26 25 24 23 22 21 It Wr, reset 0x0000.0000 30 20 20 28 27 26 25 24 23 22 21 It Wr, reset 0x0000.0000 30 20 R0 R1 R1 R1<td>Interrupt Mask (SSIIM) base: 0x4000.0000 31 30 29 28 27 26 25 24 23 22 21 20 RV reserved </td><td>Interrupt Mask (SSIIM) base: 0x4000.0000 base: 0x400.0000 base: 0x</td><td>Interrupt Mask (SSIIM) base: bx4000 8000 Base: bx4000 8000 1 30 29 28 27 26 25 24 23 22 21 20 19 18 RV, reset 0x4000 8000 RO RO</td><td>Interrupt Mask (SSIIM) The end of the e</td></td> | Interrupt Mask (SSIIM) base: 0x4000.0000 300 28 27 26 25 24 23 22 21 It Wr, reset 0x0000.0000 30 20 20 28 27 26 25 24 23 22 21 It Wr, reset 0x0000.0000 30 20 R0 R1 R1 R1 <td>Interrupt Mask (SSIIM) base: 0x4000.0000 31 30 29 28 27 26 25 24 23 22 21 20 RV reserved </td> <td>Interrupt Mask (SSIIM) base: 0x4000.0000 base: 0x400.0000 base: 0x</td> <td>Interrupt Mask (SSIIM) base: bx4000 8000 Base: bx4000 8000 1 30 29 28 27 26 25 24 23 22 21 20 19 18 RV, reset 0x4000 8000 RO RO</td> <td>Interrupt Mask (SSIIM) The end of the e</td> | Interrupt Mask (SSIIM) base: 0x4000.0000 31 30 29 28 27 26 25 24 23 22 21 20 RV reserved | Interrupt Mask (SSIIM) base: 0x4000.0000 base: 0x400.0000 base: 0x | Interrupt Mask (SSIIM) base: bx4000 8000 Base: bx4000 8000 1 30 29 28 27 26 25 24 23 22 21 20 19 18 RV, reset 0x4000 8000 RO RO | Interrupt Mask (SSIIM) The end of the e |

Bit/Field	Name	Туре	Reset	Description
0	RORIM	R/W	0	SSI Receive Overrun Interrupt Mask
				Value Description

1 RX FIFO overrun interrupt is not masked.

Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018

The **SSIRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

SSI Raw Interrupt Status (SSIRIS)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0x018 Type RO, reset 0x0000.0008

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1				· · ·	rese	rved			1				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		· ·	res	erved					1	TXRIS	RXRIS	RTRIS	RORRIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31:4		reserv	ved	R	C	0x00	Soft com pres	ware sho patibility erved ac	ould not i with futu cross a re	rely on t ire prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	. To prov red bit sh	vide nould be
	3		TXR	IS	R	C	1	SSI India	Transmi cates that	t FIFO R at the trai	aw Inter nsmit FI	rupt Stat FO is hal	tus If full or le	ess, whe	en set.	
	2		RXR	IS	R	C	0	SSI	Receive	FIFO Ra	aw Inter	rupt Stat	us			
	1		ртр	10	P	٦	0	India	cates tha	at the rec	eive FIF	O is half	full or m	ore, whe	en set.	
	I			15)	0	India	cates that	at the rec	eive tim	e-out ha	s occurre	ed, when	set.	
	0		RORF	RIS	R	C	0	SSI	Receive	Overrur	Raw In	terrupt S	tatus			
								Indio	cates that	at the rec	eive FIF	O has o	verflowe	d, when	set.	

Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C

The **SSIMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

SSI Masked Interrupt Status (SSIMIS)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0x01C Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ſ		1	1				rese	rved	I	1	1				1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	1		res	erved			1	1	1	TXMIS	RXMIS	RTMIS	RORMIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nan	ne	Ту	pe	Reset	Des	cription							
	31:4		reser	ved	R	0	0	Soft com pres	ware she patibility erved ac	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	. To prov ed bit sl	vide nould be
3 TXMIS RO 0									Transmi cates tha	t FIFO M at the tra	lasked I nsmit FI	nterrupt : FO is ha	Status If full or le	ess, whe	en set.	
	2	RXMIS RO 0 SSI Receive FIFO M Indicates that the rec										nterrupt S	Status f full or m	iore, whe	en set.	
	1		RTM	lis	R	0	0	Receive cates that	Time-O at the rec	ut Masko ceive tim	ed Interro e-out ha	upt Statu s occurre	s ed, when	set.		
0 RORMIS RO 0 SSI Receive Overrun Maske Indicates that the receive FI											d Interru	pt Status verflowe	d, when	set.		

Register 9: SSI Interrupt Clear (SSIICR), offset 0x020

The **SSIICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

SSI	Interrup	t Clea	r (SSIIC	R)												
SSI0 SSI1 Offse	base: 0x4 base: 0x4 t 0x020	000.800 000.900	0													
Type	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[ľ		1	1	1	1	1 1	rese	rved	1	1	1	1	1	i i i i i i i i i i i i i i i i i i i	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Í			1	1		1	reser	ved		1	1	1	!	1	RTIC	RORIC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0
Bit/Field Name Type Reset Description																
31:2 reserved RO 0x00 Software should not rely on the value of a rese compatibility with future products, the value of a preserved across a read-modify-write operation												erved bil a reserv on.	To prov ved bit sl	vide nould be		
	1		RTI	С	W	1C	0	SSI	Receive	Time-O	ut Interru	upt Clea	r			
								The	RTIC V	alues are	e defined	as follo	ws:			
								Val	ue Desc	ription						
								0	No e	ffect on	interrupt.					
								1	Clea	rs interru	ıpt.					
	0		ROF	RIC	W	1C	0	SSI	Receive	Overru	n Interrup	ot Clear				
								The	RORIC	values a	re define	ed as foll	ows:			
								Val	ue Desc	ription						
								0	No e	ffect on	interrupt					
								1	Clea	rs interru	upt.					

Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 4 (SSIPeriphID4)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1							rese	erved						1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							PI	D4		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-mod	ne value ucts, the lify-write	of a rese value of operatio	erved bit a reserv on.	To pro ved bit s	vide hould be
	7:0		PID	4	R	0	0x00	SSI	Peripher	al ID Re	gister[7:	0]				
								Can	be used	by soft	vare to i	dentify th	ne presei	nce of th	is peripl	neral.

Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 5 (SSIPeriphID5)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1						1 1	rese	rved			1			1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							PI	D5		1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8 reserved						0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prodi ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	. To pro ed bit s	vide hould be
	7:0		PID	5	R	0	0x00	SSI	Peripher	al ID Re	gister[1	5:8]				
								Can	be used	by soft	ware to i	dentify th	ne presei	nce of th	is perip	heral.

Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 6 (SSIPeriphID6)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ							rese	rved			1			1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		, ,					I Pl	1 D6 1		I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name Type Reset						Reset	Des	cription							
	31:8 reserved RO 0x00							Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bi a reserv on.	t. To pro ved bit s	vide hould be
	7:0		PID	6	R	0	0x00	SSI	Periphe	al ID Re	gister[2	3:16]				
								Can	be used	l by softv	vare to i	dentify th	ne presei	nce of th	nis peripl	heral.

Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 7 (SSIPeriphID7)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ							rese	erved			1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ			rese	rved					1		l Pli	D7	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Field			Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served a	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a res value of operatio	erved bi a reserv on.	t. To pro ved bit s	vide hould be
	7:0		PID	7	R	0	0x00	SSI	Periphe	ral ID Re	gister[3	1:24]				
								Can	be used	by soft	vare to i	dentify th	ne prese	nce of th	is perip	heral.

Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 0 (SSIPeriphID0)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFE0 Type RO, reset 0x0000.0022

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1 1	rese	rved						1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved I						ſ	PI	D0		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on ti ure produ ead-mod	he value ucts, the lify-write	of a reso value of operatio	erved bit a reserv n.	t. To pro ved bit s	vide hould be
	7:0		PID	0	R	0	0x22	SSI	Peripher	al ID Re	gister[7:	0]				
								Can	be used	l by softv	vare to i	dentify th	ne presei	nce of th	is peripl	neral.

Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 1 (SSIPeriphID1)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved			1			1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							I Pli	D1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name Type						Reset	Des	cription							
	31:8 reserved RO 0x0						0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure produ ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bi a reserv on.	t. To pro /ed bit s	vide hould be
7:0 PID1 RO 0x00 SSI Peripheral										al ID Re	gister [1	5:8]				
								Can	be used	by soft	vare to i	dentify th	e prese	nce of th	is peripl	heral.

Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 2 (SSIPeriphID2)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved			1			1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		, ,					I Pl	D2		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	Bit/Field Name Type						Reset	Des	cription							
	31:8 reserved RO 0x00						0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	t. To pro /ed bit s	vide hould be
	7:0		PID	2	R	0	0x18	SSI	Periphe	al ID Re	gister [2	23:16]				
								Can	be used	l by softv	vare to i	dentify th	ne presei	nce of th	is perip	heral.

Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC

The **SSIPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 3 (SSIPeriphID3)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFEC Type RO, reset 0x0000.0001

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 6 4 2 0 7 5 3 1 PID3 reserved RO RO RO RO RO RO RO Туре RO RO RO RO RO RO RO RO RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Bit/Field Name Туре Reset Description RO 0x00 31:8 reserved Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 PID3 RO 0x01 SSI Peripheral ID Register [31:24] Can be used by software to identify the presence of this peripheral.

Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0

The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 0 (SSIPCellID0)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							CI	D0			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1
E	Bit/Field		Nam	ie	Ty	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-mod	ne value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To pro ed bit s	vide hould be
	7:0		CID	0	R	0	0x0D	SSI	PrimeCe	ell ID Reg	gister [7:	0]				
								Prov	vides sof	tware a	standard	cross-p	eriphera	l identific	ation sy	/stem.

Register 19: SSI PrimeCell Identification 1 (SSIPCelIID1), offset 0xFF4

The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 1 (SSIPCellID1)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ					l		rese	rved				l			•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	-	0
	1			rese	rved		r r	-				CII	D1		· · ·	<u> </u>
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-moc	ne value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To pro red bit s	vide hould be
	7:0		CID	1	R	0	0xF0	SSI Prov	PrimeCe vides sof	ell ID Re tware a	gister [18 standard	5:8] cross-pe	eriphera	l identific	cation sy	vstem.

Register 20: SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8

The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 2 (SSIPCelIID2)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFF8 Type RO, reset 0x0000.0005

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 6 4 2 0 7 5 3 1 CID2 reserved RO RO RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 Bit/Field Name Туре Reset Description RO 0x00 31:8 reserved Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 CID2 RO 0x05 SSI PrimeCell ID Register [23:16] Provides software a standard cross-peripheral identification system.

Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC

The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 3 (SSIPCellID3)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1						rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							CII	D3		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on tl ure produ ead-moc	ne value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To prov ved bit sl	vide nould be
	7:0		CID	3	R	0	0xB1	SSI	PrimeCe	ell ID Re	gister [3 ⁻	1:24]				
								Prov	vides sof	tware a	standard	cross-p	eriphera	l identific	ation sy	/stem.

14 Inter-Integrated Circuit (I²C) Interface

The Inter-Integrated Circuit (I^2C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL), and interfaces to external I^2C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I^2C bus may also be used for system testing and diagnostic purposes in product development and manufacture. The LM3S1620 microcontroller includes one I^2C module, providing the ability to interact (both send and receive) with other I^2C devices on the bus.

Devices on the I²C bus can be designated as either a master or a slave. The Stellaris[®] I²C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. There are a total of four I²C modes: Master Transmit, Master Receive, Slave Transmit, and Slave Receive. The Stellaris[®] I²C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I^2C master and slave can generate interrupts; the I^2C master generates interrupts when a transmit or receive operation completes (or aborts due to an error) and the I^2C slave generates interrupts when data has been sent or requested by a master.

14.1 Block Diagram

Figure 14-1. I²C Block Diagram

14.2 Functional Description

The I²C module is comprised of both master and slave functions which are implemented as separate peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional open-drain pads. A typical I²C bus configuration is shown in Figure 14-2 on page 343.

See "I²C" on page 478 for I²C timing diagrams.

14.2.1 I²C Bus Functional Overview

The I²C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris[®] microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock line. The bus is considered idle when both lines are high.

Every transaction on the I²C bus is nine bits long, consisting of eight data bits and a single acknowledge bit. The number of bytes per transfer (defined as the time between a valid START and STOP condition, described in "START and STOP Conditions" on page 343) is unrestricted, but each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.

14.2.1.1 START and STOP Conditions

The protocol of the I^2C bus defines two states to begin and end a transaction: START and STOP. A high-to-low transition on the SDA line while the SCL is high is defined as a START condition, and a low-to-high transition on the SDA line while SCL is high is defined as a STOP condition. The bus is considered busy after a START condition and free after a STOP condition. See Figure 14-3 on page 343.

14.2.1.2 Data Format with 7-Bit Address

Data transfers follow the format shown in Figure 14-4 on page 344. After the START condition, a slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction bit (\mathbb{R}/S bit in the **I2CMSA** register). A zero indicates a transmit operation (send), and a one indicates a request for data (receive). A data transfer is always terminated by a STOP condition generated by the master, however, a master can initiate communications with another device on the bus by generating a repeated START condition and addressing another slave without first generating a STOP condition. Various combinations of receive/send formats are then possible within a single transfer.

The first seven bits of the first byte make up the slave address (see Figure 14-5 on page 344). The eighth bit determines the direction of the message. A zero in the R/S position of the first byte means that the master will write (send) data to the selected slave, and a one in this position means that the master will receive data from the slave.

Figure 14-5. R/S Bit in First Byte

14.2.1.3 Data Validity

The data on the SDA line must be stable during the high period of the clock, and the data line can only change when SCL is low (see Figure 14-6 on page 344).

Figure 14-6. Data Validity During Bit Transfer on the I²C Bus

Figure 14-4. Complete Data Transfer with a 7-Bit Address

14.2.1.4 Acknowledge

All bus transactions have a required acknowledge clock cycle that is generated by the master. During the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line. To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data validity requirements described in "Data Validity" on page 344.

When a slave receiver does not acknowledge the slave address, SDA must be left high by the slave so that the master can generate a STOP condition and abort the current transfer. If the master device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer made by the slave. Since the master controls the number of bytes in the transfer, it signals the end of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave transmitter must then release SDA to allow the master to generate the STOP or a repeated START condition.

14.2.1.5 Arbitration

A master may start a transfer only if the bus is idle. It's possible for two or more masters to generate a START condition within minimum hold time of the START condition. In these situations, an arbitration scheme takes place on the SDA line, while SCL is high. During arbitration, the first of the competing master devices to place a '1' (high) on SDA while another master transmits a '0' (low) will switch off its data output stage and retire until the bus is idle again.

Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if both masters are trying to address the same device, arbitration continues on to the comparison of data bits.

14.2.2 Available Speed Modes

The I²C clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and SCL_HP.

where:

CLK_PRD is the system clock period

SCL_LP is the low phase of SCL (fixed at 6)

SCL_HP is the high phase of SCL (fixed at 4)

TIMER_PRD is the programmed value in the I²C Master Timer Period (I2CMTPR) register (see page 362).

The I²C clock period is calculated as follows:

SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD

For example:

```
CLK_PRD = 50 ns
TIMER_PRD = 2
SCL_LP=6
SCL_HP=4
```

yields a SCL frequency of:

1/T = 333 Khz

Table 14-1 on page 345 gives examples of timer period, system clock, and speed mode (Standard or Fast).

System Clock	Timer Period	Standard Mode	Timer Period	Fast Mode
4 Mhz	0x01	100 Kbps	-	-
6 Mhz	0x02	100 Kbps	-	-
12.5 Mhz	0x06	89 Kbps	0x01	312 Kbps
16.7 Mhz	0x08	93 Kbps	0x02	278 Kbps
20 Mhz	0x09	100 Kbps	0x02	333 Kbps
25 Mhz	0x0C	96.2 Kbps	0x03	312 Kbps

Table 14-1. Examples of I²C Master Timer Period versus Speed Mode

14.2.3 Interrupts

The I²C can generate interrupts when the following conditions are observed:

- Master transaction completed
- Master transaction error
- Slave transaction received
- Slave transaction requested

There is a separate interrupt signal for the I^2C master and I^2C slave modules. While both modules can generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt controller.

14.2.3.1 I²C Master Interrupts

The I²C master module generates an interrupt when a transaction completes (either transmit or receive), or when an error occurs during a transaction. To enable the I²C master interrupt, software must write a '1' to the I²C Master Interrupt Mask (I2CMIMR) register. When an interrupt condition is met, software must check the ERROR bit in the I²C Master Control/Status (I2CMCS) register to verify that an error didn't occur during the last transaction. An error condition is asserted if the last transaction wasn't acknowledge by the slave or if the master was forced to give up ownership of the bus due to a lost arbitration round with another master. If an error is not detected, the application can proceed with the transfer. The interrupt is cleared by writing a '1' to the I²C Master Interrupt Clear (I2CMICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the **I²C Master Raw Interrupt Status (I2CMRIS)** register.

14.2.3.2 I²C Slave Interrupts

The slave module generates interrupts as it receives requests from an I^2C master. To enable the I^2C slave interrupt, write a '1' to the I^2C Slave Interrupt Mask (I2CSIMR) register. Software determines whether the module should write (transmit) or read (receive) data from the I^2C Slave Data (I2CSDR) register, by checking the RREQ and TREQ bits of the I^2C Slave Control/Status (I2CSCSR) register. If the slave module is in receive mode and the first byte of a transfer is received, the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a '1' to the I^2C Slave Interrupt Clear (I2CSICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the I²C Slave Raw Interrupt Status (I2CSRIS) register.

14.2.4 Loopback Operation

The I²C modules can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LPBK bit in the I²C Master Configuration (I2CMCR) register. In loopback mode, the SDA and SCL signals from the master and slave modules are tied together.

14.2.5 Command Sequence Flow Charts

This section details the steps required to perform the various I²C transfer types in both master and slave mode.

14.2.5.1 I²C Master Command Sequences

The figures that follow show the command sequences available for the I^2C master.

Figure 14-7. Master Single SEND

Figure 14-8. Master Single RECEIVE

Figure 14-10. Master Burst RECEIVE

Figure 14-11. Master Burst RECEIVE after Burst SEND

Figure 14-12. Master Burst SEND after Burst RECEIVE

14.2.5.2 I²C Slave Command Sequences

Figure 14-13 on page 353 presents the command sequence available for the I^2C slave.

14.3 Initialization and Configuration

The following example shows how to configure the I^2C module to send a single byte as a master. This assumes the system clock is 20 MHz.

- 1. Enable the I²C clock by writing a value of 0x0000.1000 to the **RCGC1** register in the System Control module.
- 2. Enable the clock to the appropriate GPIO module via the **RCGC2** register in the System Control module.
- 3. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register. Also, be sure to enable the same pins for Open Drain operation.
- 4. Initialize the I²C Master by writing the I2CMCR register with a value of 0x0000.0020.
- 5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct value. The value written to the I2CMTPR register represents the number of system clock periods in one SCL clock period. The TPR value is determined by the following equation:

TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1; TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1; TPR = 9

Write the I2CMTPR register with the value of 0x0000.0009.

- 6. Specify the slave address of the master and that the next operation will be a Send by writing the **I2CMSA** register with a value of 0x0000.0076. This sets the slave address to 0x3B.
- 7. Place data (byte) to be sent in the data register by writing the **I2CMDR** register with the desired data.
- 8. Initiate a single byte send of the data from Master to Slave by writing the **I2CMCS** register with a value of 0x0000.0007 (STOP, START, RUN).
- 9. Wait until the transmission completes by polling the I2CMCS register's BUSBSY bit until it has been cleared.

14.4 Register Map

Table 14-2 on page 354 lists the I^2C registers. All addresses given are relative to the I^2C base addresses for the master and slave:

- I²C Master 0: 0x4002.0000
- I²C Slave 0: 0x4002.0800

Table 14-2. Inter-Integrated Circuit (I²C) Interface Register Map

Offset	Name	Туре	Reset	Description	See page
I ² C Maste	r				
0x000	I2CMSA	R/W	0x0000.0000	I2C Master Slave Address	356
0x004	I2CMCS	R/W	0x0000.0000	I2C Master Control/Status	357
0x008	I2CMDR	R/W	0x0000.0000	I2C Master Data	361
0x00C	I2CMTPR	R/W	0x0000.0001	I2C Master Timer Period	362
0x010	I2CMIMR	R/W	0x0000.0000	I2C Master Interrupt Mask	363
0x014	I2CMRIS	RO	0x0000.0000	I2C Master Raw Interrupt Status	364
0x018	I2CMMIS	RO	0x0000.0000	I2C Master Masked Interrupt Status	365
0x01C	I2CMICR	WO	0x0000.0000	I2C Master Interrupt Clear	366
0x020	I2CMCR	R/W	0x0000.0000	I2C Master Configuration	367
I ² C Slave					
0x000	I2CSOAR	R/W	0x0000.0000	I2C Slave Own Address	369
0x004	I2CSCSR	RO	0x0000.0000	I2C Slave Control/Status	370
0x008	I2CSDR	R/W	0x0000.0000	I2C Slave Data	372
0x00C	I2CSIMR	R/W	0x0000.0000	I2C Slave Interrupt Mask	373

Offset	Name	Туре	Reset	Description	See page
0x010	I2CSRIS	RO	0x0000.0000	I2C Slave Raw Interrupt Status	374
0x014	I2CSMIS	RO	0x0000.0000	I2C Slave Masked Interrupt Status	375
0x018	I2CSICR	WO	0x0000.0000	I2C Slave Interrupt Clear	376

14.5 Register Descriptions (I²C Master)

The remainder of this section lists and describes the I²C master registers, in numerical order by address offset. See also "Register Descriptions (I2C Slave)" on page 368.

Register 1: I²C Master Slave Address (I2CMSA), offset 0x000

This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which determines if the next operation is a Receive (High), or Send (Low).

I2C	Master	Slave A	Address	; (I2CM	SA)											
I2C M Offse Type	laster 0 b t 0x000 R/W, rese	ase: 0x4(et 0x0000	002.0000 0.0000													
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	erved			1		•		
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Resei	0	U	0	0	0	0	0	U	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		•			•	•	SA		•		R/S
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
B	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served a	ould not with futu cross a r	rely on t ure prode ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	. To prov red bit sh	vide nould be
	7:1		SA		R/	W	0	I ² C	Slave Ac	dress						
								This	s field sp	ecifies bi	its A6 th	rough A() of the s	lave add	lress.	
	0		R/S	8	R/	W	0	Rec	eive/Ser	nd						
								The (Lov	R∕Sbit w).	specifies	s if the ne	ext opera	ation is a	Receive	e (High)	or Send
								Val	ue Desc	ription						

- 0 Send.
- 1 Receive.

Register 2: I²C Master Control/Status (I2CMCS), offset 0x004

This register accesses four control bits when written, and accesses seven status bits when read.

The status register consists of seven bits, which when read determine the state of the I²C bus controller.

The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes the generation of the START, or REPEATED START condition.

The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst. To generate a single send cycle, the I^2C Master Slave Address (I2CMSA) register is written with the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1), STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed (or aborted due an error), the interrupt pin becomes active and the data may be read from the I2CMDR register. When the I^2C module operates in Master receiver mode, the ACK bit must be set normally to logic 1. This causes the I^2C bus controller to send an acknowledge automatically after each byte. This bit must be reset when the I^2C bus controller requires no further data to be sent from the slave transmitter.

Read-Only Status Register

I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000

Offset 0x004 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1		· ·			rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1		reserved		т т			BUSBSY	IDLE	ARBLST	DATACK	ADRACK	ERROR	BUSY
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Тур	е	Reset	Des	cription							
	31:7		reserv	ved	RC)	0x00	Soft com pres	ware sh patibility erved a	ould not r / with futu cross a re	ely on ti re prodi ead-mod	he value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To prov red bit sh	ide ould be
	6		BUSB	SY	RC)	0	Bus	Busy							
								This othe STC	bit spe rwise, t P cond	cifies the s he bus is itions.	state of idle. The	the I ² C t e bit cha	ous. If se nges bas	et, the bu sed on th	s is busy ne STAR ⁻	r; T and
	5		IDLI	E	RC)	0	I ² C	ldle							
								This othe	bit spe rwise th	cifies the ne controll	l ² C cont er is no	troller sta t idle.	ate. If set	t, the cor	ntroller is	idle;
	4		ARBL	ST.	RC)	0	Arbi	tration L	ost						
								This arbit	bit spe tration; o	cifies the otherwise,	result of the cor	^f bus arb htroller w	itration. on arbitr	If set, the ation.	e controll	er lost

Bit/Field	Name	Туре	Reset	Description
3	DATACK	RO	0	Acknowledge Data
				This bit specifies the result of the last data operation. If set, the transmitted data was not acknowledged; otherwise, the data was acknowledged.
2	ADRACK	RO	0	Acknowledge Address
				This bit specifies the result of the last address operation. If set, the transmitted address was not acknowledged; otherwise, the address was acknowledged.
1	ERROR	RO	0	Error
				This bit specifies the result of the last bus operation. If set, an error occurred on the last operation; otherwise, no error was detected. The error can be from the slave address not being acknowledged, the transmit data not being acknowledged, or because the controller lost arbitration.
0	BUSY	RO	0	I ² C Busy
				This bit specifies the state of the controller. If set, the controller is busy; otherwise, the controller is idle. When the BUSY bit is set, the other status bits are not valid.

Write-Only Control Register

I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000 Offset 0x004 Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1	1	т т 1		1 1	rese	rved	I	r	1	1	1	1	
Туре	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1	1	г г 1	res	erved			I	1	I	ACK	STOP	START	RUN
Туре	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field 31:4		Nar reser	me rved	Tyr We	be D	Reset 0x00	Des Soft com	cription ware sho patibility	ould not with futi	rely on t ure prod	he value ucts, the	of a res value of	erved bit	t. To prov ved bit sh	ride Iould be
								pres	erved ad	cross a r	ead-mo	aity-write	operation	on.		
	3		AC	к	W	0	0	Data	a Acknov	vledge E	nable					
								Whe by th	en set, ca ne maste	auses rec er. See fi	ceived da eld deco	ata byte t oding in T	o be ack Fable 14-	nowledg 3 on paç	ed auton ge 359.	natically
	2		STO	OP	W	0	0	Gen	erate ST	ΓOP						
								Whe	en set, ca oding in ⁻	auses th Table 14	e genera -3 on pa	ation of tl 1ge 359.	he STOF	P condition	on. See f	ield

Bit/Field	Name	Туре	Reset	Description
1	START	WO	0	Generate START
				When set, causes the generation of a START or repeated START condition. See field decoding in Table 14-3 on page 359.
0	RUN	WO	0	I ² C Master Enable
				When set, allows the master to send or receive data. See field decoding in Table 14-3 on page 359.

Table 14-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)

Current	I2CMSA[0]		I2CMC	S[3:0]		Description
State	R/S	ACK	STOP	START	RUN	
Idle	0	X ^a	0	1	1	START condition followed by SEND (master goes to the Master Transmit state).
	0	х	1	1	1	START condition followed by a SEND and STOP condition (master remains in Idle state).
	1	0	0	1	1	START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state).
	1	0	1	1	1	START condition followed by RECEIVE and STOP condition (master remains in Idle state).
	1	1	0	1	1	START condition followed by RECEIVE (master goes to the Master Receive state).
	1	1	1	1	1	Illegal.
	All other co	mbinations	s not listed	are non-op	perations.	NOP.
Master Transmit	Х	х	0	0	1	SEND operation (master remains in Master Transmit state).
	Х	Х	1	0	0	STOP condition (master goes to Idle state).
	Х	х	1	0	1	SEND followed by STOP condition (master goes to Idle state).
	0	х	0	1	1	Repeated START condition followed by a SEND (master remains in Master Transmit state).
	0	х	1	1	1	Repeated START condition followed by SEND and STOP condition (master goes to Idle state).
	1	0	0	1	1	Repeated START condition followed by a RECEIVE operation with a negative ACK (master goes to Master Receive state).
	1	0	1	1	1	Repeated START condition followed by a SEND and STOP condition (master goes to Idle state).
	1	1	0	1	1	Repeated START condition followed by RECEIVE (master goes to Master Receive state).
	1	1	1	1	1	Illegal.
	All other co	mbinations	s not listed	are non-op	perations.	NOP.

Current State	I2CMSA[0]	I2CMCS[3:0]				Description
	R/S	ACK	STOP	START	RUN	
Master Receive	Х	0	0	0	1	RECEIVE operation with negative ACK (master remains in Master Receive state).
	Х	Х	1	0	0	STOP condition (master goes to Idle state). ^b
	Х	0	1	0	1	RECEIVE followed by STOP condition (master goes to Idle state).
	Х	1	0	0	1	RECEIVE operation (master remains in Master Receive state).
	Х	1	1	0	1	Illegal.
	1	0	0	1	1	Repeated START condition followed by RECEIVE operation with a negative ACK (master remains in Master Receive state).
	1	0	1	1	1	Repeated START condition followed by RECEIVE and STOP condition (master goes to Idle state).
	1	1	0	1	1	Repeated START condition followed by RECEIVE (master remains in Master Receive state).
	0	х	0	1	1	Repeated START condition followed by SEND (master goes to Master Transmit state).
	0	х	1	1	1	Repeated START condition followed by SEND and STOP condition (master goes to Idle state).
	All other co	mbinations	s not listed	are non-op	erations.	NOP.

a. An X in a table cell indicates the bit can be 0 or 1.

b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by the master or an Address Negative Acknowledge executed by the slave.
Register 3: I²C Master Data (I2CMDR), offset 0x008

This register contains the data to be transmitted when in the Master Transmit state, and the data received when in the Master Receive state.

I2C	Master	Data (I	2CMDR	2)												
I2C M Offse Type	laster 0 b t 0x008 R/W, rese	oase: 0x40 et 0x0000	002.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							r r	rese	rved				ı —			•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1			rese	rved		г г			1		DA	ATA			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0 Rit/Field	0	0 Nam	0	0 Tvi	0	0 Reset	0 Des	0 cription	0	0	0	0	0	0	0
			Num		, y		Reber	000	onption							
	31:8		reserv	ved	R	С	0x00	Soft com pres	ware sho patibility erved ac	ould not i with futu cross a re	rely on tl ire produ ead-moc	ne value ucts, the lify-write	of a rese value of operatio	erved bit a reserv on.	. To prov red bit sh	vide nould be
	7:0		DAT	A	R/	W	0x00	Data	a Transfe	erred						
								Data	a transfe	rred duri	na trans	action.				

Register 4: I²C Master Timer Period (I2CMTPR), offset 0x00C

This register specifies the period of the SCL clock.

Offse Type	t 0x00C R/W, rese	et 0x0000	.0001													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ſ						, ,	rese	rved			1	1		1	'
Type .	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	U	0	0	0	U	0	U	0	0	U	0	U	0	0	U	U
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		· ·					TI	PR		1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset 0 1 Bit/Field Name Type Reset Description 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. 7:0 TPR R/W 0x1 SCL Clock Period Software should of the SCL clock Software should of the SCL clock														vide hould be		
								SCL	_PRD =	2*(1 -	+ TPR)	* (SCL_I	LP + SC	CL_HP)*	CLK_PF	RD
								SCL	_prd is	the SCL	line peri	od (I ² C o	clock).			
								TPR	is the Ti	mer Peri	iod regis	ter value	e (range	of 1 to 2	55).	
								SCL	_LP is th	ie SCL L	ow perio	od (fixed	at 6).			
								SCL	_HP is th	ne SCL H	ligh peri	od (fixed	l at 4).			

I2C Master Timer Period (I2CMTPR) I2C Master 0 base: 0x4002.0000

362

Register 5: I²C Master Interrupt Mask (I2CMIMR), offset 0x010

I2C Master Interrupt Mask (I2CMIMR)

This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C M Offse Type	laster 0 b t 0x010 R/W, rese	ase: 0x40 et 0x0000	002.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		I				1 1	rese	rved			I	r I	1	i i	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r				г <u>г</u> г 1		, , , ,	reserved				1	ı 1	1	1	ІМ
Type RO															R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Тур	be	Reset	Des	cription							
	31:1		reserv	ved	R	C	0x00	Soft com pres	ware sho patibility erved ac	ould not with futu cross a r	rely on t ire prod ead-moe	he value ucts, the dify-write	of a res value o operati	served bit f a reserv on.	t. To prov ved bit sh	ride Iould be
	0		IM		R/	Ν	0	Inter	rupt Mas	sk						
								This inter	bit contr rupt. If se	rols whe et, the inf	ther a ra	w interru not mas	ipt is pro ked and	omoted to I the inter	o a contro rupt is pro	oller omoted;

otherwise, the interrupt is masked.

July 26, 2008

Register 6: I²C Master Raw Interrupt Status (I2CMRIS), offset 0x014

This register specifies whether an interrupt is pending.

I2C Master Raw Interrupt Status	(I2CMRIS)
---------------------------------	-----------

I2C Master 0 base: 0x4002.0000 Offset 0x014 Type RO, reset 0x0000.0000

11	-,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1		1	г т 	rese	rved		1	1			1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1			•				reserved	, ,		1		, , , , , , , , , , , , , , , , , , ,		1	RIS
Type Reset	RO	RO	RO	RO	RO	RO	RO	RO 0	RO	RO	RO	RO	RO	RO	RO	RO
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:1		reser	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with fut cross a r	rely on t ure prode read-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	t. To prov ved bit sh	vide nould be
	0		RIS	5	R	0	0	Raw	/ Interrup	ot Status	;					
								This mas	bit spec	ifies the	raw inte an interr	rrupt sta upt is pe	te (prior nding; ot	to mask herwise	ing) of th , an inter	ie I ² C rupt is

not pending.

Register 7: I²C Master Masked Interrupt Status (I2CMMIS), offset 0x018

This register specifies whether an interrupt was signaled.

I2C N Offse Type	/laster 0 b t 0x018 RO, reset	ase: 0x40 t 0x0000.	002.0000 0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		· · ·		1		1 1	rese	rved			I	1		1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ		r 1		1		1 1	reserved				T	1	1	1	MIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	o Bit/Field	0	0 Nam	o e	0 Ty	o pe	0 Reset	0 Des	0 cription	0	0	0	0	0	0	0
	31:1		reserv	red	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bi a reserv on.	t. To prov ved bit sh	/ide 10uld be
	0		MIS	5	R	0	0	Mas This	ked Inte	rrupt Sta	tus aw inter	runt state	e (after m	askina)	of the I ² (Cmaster

bit specifies the raw interrupt state (after masking) of the I²C master block. If set, an interrupt was signaled; otherwise, an interrupt has not been generated since the bit was last cleared.

I2C Master Masked Interrupt Status (I2CMMIS)

I2C Master Interrupt Clear (I2CMICR)

Register 8: I²C Master Interrupt Clear (I2CMICR), offset 0x01C

This register clears the raw interrupt.

I2C N Offse Type	/aster 0 b t 0x01C WO, rese	ase: 0x40 t 0x0000	.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r						т т	rese	rved							·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I							reserved								IC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	e	Тур	be	Reset	Des	cription							
	31:1		reserv	ved	R	C	0x00	Soft com pres	ware sho patibility erved ac	ould not with futu cross a r	rely on t ure produ ead-mod	he value ucts, the lify-write	of a rese value of operatic	erved bit a reserv n.	. To prov ed bit sh	vide nould be
	0		IC		W	0	0	Inter	rupt Cle	ar						
								This	bit cont	ols the o	learing	of the ray	w interru	ot. A writ	e of 1 cl	ears the

This bit controls the clearing of the raw interrupt. A write of 1 clears the interrupt; otherwise, a write of 0 has no affect on the interrupt state. A read of this register returns no meaningful data.

Register 9: I²C Master Configuration (I2CMCR), offset 0x020

This register configures the mode (Master or Slave) and sets the interface for test mode loopback.

Offse Type	/laster 0 b et 0x020 R/W, rese	ase: 0x40 et 0x0000).0000).0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1	1				rese	rved	1		1				1
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	, 1	0	5		3	<u> </u>	1	
					rese	rved			L		SFE	MFE		reserved		LPBK
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	R/W 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	Bit/Field Name Type Reset Description 31:6 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.														vide nould be	
	5		SFI	E	R/	W	0	I ² C	Slave Fu	Inction E	nable					
								This set,	bit spec Slave m	ifies whe ode is er	ether the nabled; (e interfac otherwise	e may o e, Slave	perate in mode is o	Slave n disableo	node. If d.
	4		MF	E	R/	W	0	l ² C	Master F	unction	Enable					
								This set, the i	bit spec Master r interface	tifies whe mode is e clock is	ether the enabled disabled	e interface ; otherwis d.	e may o se, Mast	perate in l ter mode i	Master is disab	mode. If led and
	3:1		reser	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a res value of operation	erved bit. f a reserve on.	To proved bit sl	vide nould be
	0		LPB	к	R/	W	0	I ² C	Loopbac	k						
								This Loop conf	bit spec pback m figuratior	cifies whe ode. If se	ether the et, the de ise, the	e interfac evice is p device o	e is ope out in a t perates	rating nor est mode normally.	mally o loopba	r in ck

I2C Master Configuration (I2CMCR)

14.6 Register Descriptions (I2C Slave)

The remainder of this section lists and describes the I^2C slave registers, in numerical order by address offset. See also "Register Descriptions (I^2C Master)" on page 355.

Register 10: I²C Slave Own Address (I2CSOAR), offset 0x000

This register consists of seven address bits that identify the Stellaris[®] I^2C device on the I^2C bus.

I2C	Slave C	wn Ad	dress (12	2CSOA	AR)											
I2C S Offse	lave 0 bas t 0x000	se: 0x40	02.0800													
туре	R/W, Tese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1				1 1	rese	rved			1		1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•				reserved					I			OAR	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	e	Тур	е	Reset	Des	cription							
	31:7		reserv	ed	RC	1	0x00	Soft com pres	ware sho patibility erved ac	with futu ross a re	rely on t ire prod ead-mod	he value ucts, the dify-write	of a res value of operatio	erved b a reser on.	it. To pro ved bit s	vide hould be
	6:0		OAF	ર	R/W	/	0x00	I ² C \$	Slave Ov	vn Addre	ess					
								This	field spe	ecifies bi	ts A6 th	rough A0	of the s	lave ad	dress.	

Register 11: I²C Slave Control/Status (I2CSCSR), offset 0x004

This register accesses one control bit when written, and three status bits when read.

The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First Byte Received (FBR) bit is set only after the Stellaris[®] device detects its own slave address and receives the first data byte from the l²C master. The Receive Request (RREQ) bit indicates that the Stellaris[®] l²C device has received a data byte from an l²C master. Read one data byte from the l²C Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit indicates that the Stellaris[®] l²C device is addressed as a Slave Transmitter. Write one data byte into the l²C Slave Data (I2CSDR) register to clear the TREQ bit.

The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the Stellaris[®] I^2C slave operation.

Read-Only Status Register

I2C Slave Control/Status (I2CSCSR)

I2C Slave 0 base: 0x4002.0800 Offset 0x004 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
			1	1	· ·		1 1	rese	rved	1		1			1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
			1	1	, , ,		reserved					I		FBR	TREQ	RREQ				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
E	Bit/Field		Nan	ne	Тур	be	Reset	Reset Description												
	31:3		reser	ved	R	C	Reset Description 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.													
	2		FBI	R	R	C	0	First	Byte Re	eceived										
								Indio This whe	cates tha bit is onl n data h	t the first y valid w as been	byte foll hen the I read fro	owing th RREQ bit m the I2	e slave's is set, an CSDR re	own ado d is auto egister.	dress is re matically	eceived. cleared				
								Not	e: Th	nis bit is ı	not used	for slav	e transm	it operat	tions.					
	1		TRE	Q	R	C	0	Trar	ismit Re	quest										
								This tran: tran: beei	bit spec smit requ smitter a written	tifies the uests. If s and uses to the I2	state of set, the l clock str CSDR re	the I ² C s ² C unit I retching egister. C	slave with has been to delay Otherwise	h regard addrese the mas e. there i	s to outs sed as a ter until o s no outs	tanding slave lata has standing				

transmit request.

Bit/Field	Name	Туре	Reset	Description
0	RREQ	RO	0	Receive Request This bit specifies the status of the I ² C slave with regards to outstanding receive requests. If set, the I ² C unit has outstanding receive data from the I ² C master and uses clock stretching to delay the master until the data has been read from the I2CSDR register. Otherwise, no receive data is outstanding.

Write-Only Control Register

I2C	Slave C	Control/	Status (I2CSCS	SR)											
I2C S Offse	ilave 0 ba t 0x004	se: 0x40	02.0800													
Туре	WO, rese	et 0x0000	.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1		, , , , , , , , , , , , , , , , , , ,		г т	rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1		1 I 1		1 1	reserved	. I					J	•	DA
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	lit/Field		Nam	e	Тур	be	Reset	Des	cription							
	31:1		reserv	ved	R	C	0x00	Soft com pres	ware sho patibility erved ac	ould not i with futu cross a re	rely on t ire prodi ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	t. To prov ved bit sh	ride Iould be
	0		DA		W	0	0	Dev	ice Active	e						
								Valu	ue Desci	ription						

- 0 Disables the I²C slave operation.
- 1 Enables the I^2C slave operation.

Register 12: I²C Slave Data (I2CSDR), offset 0x008

This register contains the data to be transmitted when in the Slave Transmit state, and the data received when in the Slave Receive state.

Register 13: I²C Slave Interrupt Mask (I2CSIMR), offset 0x00C

This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C S Offse Type	Blave 0 ba t 0x00C R/W, rese	se: 0x400 et 0x0000	02.0800 0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1 1		i i		r r	rese	rved			1			I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1 1					reserved								DATAIM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	e	Тур	be	Reset	Des	cription							
	31:1		reserv	ved	R	C	0x00	Soft com pres	ware sho patibility erved ac	ould not i with futu cross a re	rely on t ire prodi ead-mod	he value ucts, the dify-write	of a rese value of operatio	erved bit a reserv on.	. To pro ved bit s	vide hould be
	0		DATA	IM	R/	N	0	Data	a Interrup	ot Mask						
								This	bit cont	rols whet	ther the	raw inter	rupt for a	data rece	eived ar	id data

This bit controls whether the raw interrupt for data received and data requested is promoted to a controller interrupt. If set, the interrupt is not masked and the interrupt is promoted; otherwise, the interrupt is masked.

I2C Slave Interrupt Mask (I2CSIMR)

Register 14: I²C Slave Raw Interrupt Status (I2CSRIS), offset 0x010

This register specifies whether an interrupt is pending.

Туре	RO, rese	t 0x0000.	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1	1		1 1	rese	rved	1	1	1	1		1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				1	1		1 1	reserved		I	1	1	1		1	DATARIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:1		reserved		R	0	0x00	Soft com pres	ware sho patibility erved a	ould not with fut cross a r	rely on t ure prod ead-mod	he value ucts, the dify-write	of a resolution of a resolutio	erved bit a reserv on.	. To pro ved bit s	vide hould be
	0		DATA	RIS	R	0	0	Data	a Raw In	terrupt S	Status					
								Thie	hit enor	vitiae tha	row into	rrunt eta	to tor da	ta racaiv	hne ha	eteb

This bit specifies the raw interrupt state for data received and data requested (prior to masking) of the I²C slave block. If set, an interrupt is pending; otherwise, an interrupt is not pending.

I2C Slave Raw Interrupt Status (I2CSRIS)

I2C Slave 0 base: 0x4002.0800 Offset 0x010

Register 15: I²C Slave Masked Interrupt Status (I2CSMIS), offset 0x014

This register specifies whether an interrupt was signaled.

I2C Slave Masked Interrupt Status (I2CSMIS)

I2C Slave 0 base: 0x4002.0800

Offse Type	t 0x014 RO, rese	t 0x0000.	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1	1 1	1	1 I	rese	rved		1	r	1			•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				1	1	I	т т	reserved	1		I	T	1			DATAMIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	pe	Reset	Des	cription							
31:1			reserved		RO 0x00		Soft com pres	ware sho patibility served a	ould not with fut cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a reso value of operatio	erved bit a reserv on.	. To pro ed bit s	vide hould be	
	0		DATA	MIS	R	0	0	Data	a Maske	d Interru	pt Status	S				
								This	bit spec	ifies the	interrupt	state for	data rec	eived and	d data re	equested

This bit specifies the interrupt state for data received and data requested (after masking) of the l^2C slave block. If set, an interrupt was signaled; otherwise, an interrupt has not been generated since the bit was last cleared.

I2C Slave Interrupt Clear (I2CSICR)

Register 16: I²C Slave Interrupt Clear (I2CSICR), offset 0x018

This register clears the raw interrupt. A read of this register returns no meaningful data.

This bit controls the clearing of the raw interrupt for data received and data requested. When set, it clears the DATARIS interrupt bit; otherwise, it has no effect on the DATARIS bit value.

15 Analog Comparators

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S1620 controller provides three independent integrated analog comparators that can be configured to drive an output or generate an interrupt.

Note: Not all comparators have the option to drive an output pin. See the Comparator Operating Mode tables in "Functional Description" on page 378 for more information.

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts to cause it to start capturing a sample sequence.

15.1 Block Diagram

Figure 15-1. Analog Comparator Module Block Diagram

15.2 Functional Description

Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module) for the analog input pin be disabled to prevent excessive current draw from the I/O pads.

The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.

VIN- < VIN+, VOUT = 1 VIN- > VIN+, VOUT = 0

As shown in Figure 15-2 on page 379, the input source for VIN- is an external input. In addition to an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.

Figure 15-2. Structure of Comparator Unit

A comparator is configured through two status/control registers (ACCTL and ACSTAT). The internal reference is configured through one control register (ACREFCTL). Interrupt status and control is configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the comparators are shown in the Comparator Operating Mode tables.

Typically, the comparator output is used internally to generate controller interrupts. It may also be used to drive an external pin.

Important: Certain register bit values must be set before using the analog comparators. The proper pad configuration for the comparator input and output pins are described in the Comparator Operating Mode tables.

Table 15-1. Comparator 0 Operating Modes

ACCNTL0	Com	Comparator 0								
ASRCP	VIN-	VIN+	Output	Interrupt						
00	C0+	C0o	yes	yes						
01	C0-	C0+	C0o	yes						
10	C0-	Vref	C0o	yes						
11	C0-	reserved	C0o	yes						

Table 15-2. Comparator 1 Operating Modes

ACCNTL1	Com	Comparator 1								
ASRCP	VIN-	VIN+	Output	Interrupt						
00	C1-	C1o/C1+	C1o/C1+	yes						
01	C1-	C0+	C1o/C1+	yes						
10	C1-	Vref	C1o/C1+	yes						
11	C1-	reserved	C1o/C1+	yes						

Table 15-3	. Comparator	2	Operating	Modes
------------	--------------	---	-----------	-------

ACCNTL2	Com	Comparator 2								
ASRCP	VIN-	VIN+	Output	Interrupt						
00	C2-	C2+	n/a	yes						
01	C2-	C0+	n/a	yes						
10	C2-	Vref	n/a	yes						
11	C2-	reserved	n/a	yes						

15.2.1 Internal Reference Programming

The structure of the internal reference is shown in Figure 15-3 on page 380. This is controlled by a single configuration register (**ACREFCTL**). Table 15-4 on page 380 shows the programming options to develop specific internal reference values, to compare an external voltage against a particular voltage generated internally.

Table 15-4. Internal Reference Voltage and ACREFCTL Field Values

ACREFCTL Register		Output Reference Voltage Based on VREF Field Value
EN Bit Value	RNG Bit Value	
EN=0	RNG=X	0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0 for the least noisy ground reference.

	legister	Output Reference Voltage Based on VREF Field Value						
EN Bit Value	RNG Bit Value							
EN=1	RNG=0	Total resistance in ladder is 31 R.						
		$V_{RBF} = AV_{DD} \times \frac{Rv_{RBF}}{Rr}$						
		$V_{REF} = AV_{DD} \times \frac{(VREF + 8)}{31}$						
		$V_{RBF} = 0.85 + 0.106 \times VREF$						
		The range of internal reference in this mode is 0.85-2.448 V.						
	RNG=1	Total resistance in ladder is 23 R.						
		$V_{REF} = AV_{DD} \times \frac{R_{VREF}}{R_{T}}$						
		$V_{REF} = AV_{DD} \times \frac{VREF}{23}$						
		$V_{RBF} = 0.143 \times VREF$						
		The range of internal reference for this mode is 0-2.152 V.						

15.3 Initialization and Configuration

The following example shows how to configure an analog comparator to read back its output value from an internal register.

- 1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the **RCGC1** register in the System Control module.
- 2. In the GPIO module, enable the GPIO port/pin associated with CO- as a GPIO input.
- **3.** Configure the internal voltage reference to 1.65 V by writing the **ACREFCTL** register with the value 0x0000.030C.
- 4. Configure comparator 0 to use the internal voltage reference and to *not* invert the output on the C0o pin by writing the **ACCTL0** register with the value of 0x0000.040C.
- 5. Delay for some time.
- 6. Read the comparator output value by reading the **ACSTAT0** register's OVAL value.

Change the level of the signal input on CO- to see the OVAL value change.

15.4 Register Map

Table 15-5 on page 382 lists the comparator registers. The offset listed is a hexadecimal increment to the register's address, relative to the Analog Comparator base address of 0x4003.C000.

Offset	Name	Туре	Reset	Description	See page
0x00	ACMIS	R/W1C	0x0000.0000	Analog Comparator Masked Interrupt Status	383
0x04	ACRIS	RO	0x0000.0000	Analog Comparator Raw Interrupt Status	384
0x08	ACINTEN	R/W	0x0000.0000	Analog Comparator Interrupt Enable	385
0x10	ACREFCTL	R/W	0x0000.0000	Analog Comparator Reference Voltage Control	386
0x20	ACSTAT0	RO	0x0000.0000	Analog Comparator Status 0	387
0x24	ACCTL0	R/W	0x0000.0000	Analog Comparator Control 0	388
0x40	ACSTAT1	RO	0x0000.0000	Analog Comparator Status 1	387
0x44	ACCTL1	R/W	0x0000.0000	Analog Comparator Control 1	388
0x60	ACSTAT2	RO	0x0000.0000	Analog Comparator Status 2	387
0x64	ACCTL2	R/W	0x0000.0000	Analog Comparator Control 2	388

Table 15-5.	. Analog	Comparators	Register	Мар
-------------	----------	-------------	----------	-----

15.5 Register Descriptions

The remainder of this section lists and describes the Analog Comparator registers, in numerical order by address offset.

Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00

This register provides a summary of the interrupt status (masked) of the comparator.

Analog	Comparator	Masked	Interrupt Status	(ACMIS)
				· · · /

Base 0x4003.C000

Offset 0x00 Type R/W1C, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		1			rese	rved	1			1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1				reserved			1				IN2	IN1	IN0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0
E	lit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
31:3			reserv	ved	RO 0x00			Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prode ead-mod	he value ucts, the lify-write	of a res value of operatio	erved bit a reserv on.	To prov ved bit sh	ride 1ould be
	2 IN2 R/W1C 0 Comp Gives clear t					nparator es the ma ir the per	2 Maske asked in nding int	ed Interru terrupt s errupt.	upt Statu tate of th	is nis interro	upt. Write	e 1 to thi	s bit to			
1			IN1		R/W1C		0	Comparator 1 Masked Interrupt Status Gives the masked interrupt state of this interrupt. Write 1 to the clear the pending interrupt.						e 1 to thi	s bit to	
0			INC)	R/V	/1C	0	Con Give clea	nparator es the ma ir the per	0 Maske asked in nding inte	ed Interru terrupt s errupt.	upt Statu tate of th	is nis interro	upt. Write	e 1 to thi	s bit to

Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04

This register provides a summary of the interrupt status (raw) of the comparator.

Analog Comparator Raw Interrupt Status (ACRIS)

Base 0x4003.C000 Offset 0x04 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved	1	1	1	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Ĩ	i i i i i i i i i i i i i i i i i i i	Î		i i		reserved			I	r	Ì	1	IN2	IN1	IN0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Ty	ре	Reset	Des	cription							
31:3			reserved RO				0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	t. To prov ved bit st	/ide nould be
	2		IN2	2	RO 0 Comparator 2 Interrupt Status When set, indicates that an interru 2.						s terrupt h	as been ;	generate	ed by con	nparator	
	1 IN1				R	0	0	Con Whe 1.	nparator en set, in	1 Interru dicates t	ıpt Statu hat an in	s terrupt h	as been ;	generate	ed by con	nparator
0 IN0 RO 0 Comparator 0 Inter When set, indicates 0.							0 Interru dicates t	ıpt Statu hat an in	s terrupt h	as been ;	generate	ed by con	nparator			

Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08

This register provides the interrupt enable for the comparator.

Analog Comparator	Interrupt Enable	(ACINTEN)
-------------------	------------------	-----------

Base 0x4003.C000

Offset 0x08 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	ľ		1		, , , , , , , , , , , , , , , , , , ,		1 I	rese	rved	1	1	1	1	1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			1		I		reserved			1	1	1	1	IN2	IN1	IN0		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Bit/Field 31:3			Name reserved		Ty R	pe O	Reset 0x00	Des Soft com	Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be									
	2		IN2	2	R/	W	0	pres Con	erved a	cross a r 2 Interru	read-moo upt Enab	dify-write le Iler inter	e operatio	on.	narator	2 output		
	1		IN1	I	R/	W	0	Com	nparator en set, er	1 Interru nables th	upt Enab lie contro	le ller interi	rupt from	the com	parator	1 output.		
	0		INC)	R/	W	0	Con Whe	nparator en set, er	0 Interru nables th	ipt Enab ie contro	le Iler interr	rupt from	the com	parator () output.		

Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10

This register specifies whether the resistor ladder is powered on as well as the range and tap.

Analog Comparator Reference Voltage Control (ACREFCTL)

Base 0x4003.C000 Offset 0x10 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	1		1					rese	rved	1 1					1	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	1		rese	rved			EN	RNG		rese	rved	•		VR	I REF			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0		
E	Bit/Field		Nam	ne Type Reset Description														
	31:10		reserv	ved	R	0	0x00	Software should not rely on the value of a reserved bit. To pr compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.							t. To prov ved bit sl	vide nould be		
	9		EN	I	R/	W	0	Res	istor Lac	lder Enal	ble							
The EN I resistor the anal							EN bit sj stor ladd analog V	oecifies v er is unp ′ _{DD} .	vhether owered.	the resist If 1, the	tor ladde resistor	er is pow ladder is	ered on. s connec	If 0, the ted to				
								This amo	bit is re ount of po	set to 0 s ower if no	so that th ot used a	ne interna and prog	al referer rammed	nce cons	sumes th	ie least		
	8		RN	G	R/	W	0	Res	Resistor Ladder Range									
								The ladd resis	RNG bit ler has a stance o	specifies total res f 23 R.	the rangistance of	ge of the of 31 R. I	resistor f 1, the r	ladder. esistor la	If 0, the adder ha	resistor is a total		
7:4 reserved RO 0x00 Software should not compatibility with fut preserved across a								ould not i with futu cross a re	rely on ti ire prodi ead-mod	he value ucts, the dify-write	of a rese value of operatio	erved bit a reserv n.	t. To prov ved bit sl	vide nould be				
	3:0		VRE	F	R/	W	0x00	Res	istor Lac	lder Volta	age Ref							
								The an a the i	VREF bil inalog m internal i	t field spe ultiplexe reference	cifies the r. The vo voltage	e resistor oltage co e availabl	⁻ ladder ta rresponc e for cor	ap that is ling to th nparisor	s passed ne tap po n. See Ta	through osition is able		

15-4 on page 380 for some output reference voltage examples.

Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x20 Register 6: Analog Comparator Status 1 (ACSTAT1), offset 0x40 Register 7: Analog Comparator Status 2 (ACSTAT2), offset 0x60

These registers specify the current output value of the comparator.

7 110		ipuluto		0,10	01/110)											
Base Offse Type	0x4003.C t 0x20 RO, reset	:000 :0x0000.	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	T			ſ	1		1 1	rese	rved		r	1	1		Î	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ			1	1		reser	ved	1		1	1	1		OVAL	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Bit/Field Name						ре	Reset	Des	cription							
	31:2		reser	ved	R	0	0x00	Soft com pres	tware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a reso value of operatio	erved bi a reserv on.	t. To pro /ed bit s	vide hould be
1 OVAL R							0	Con	nparator	Output \	/alue					
								The	OVAL bi	t specifie	es the cu	urrent out	tput valu	e of the	compara	ator.
	0		reser	ved	R	0	0	Soft com pres	tware sho npatibility served a	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a reso value of operatio	erved bi a reserv on.	t. To pro /ed bit s	vide hould be

Analog Comparator Status 0 (ACSTAT0)

Register 8: Analog Comparator Control 0 (ACCTL0), offset 0x24 Register 9: Analog Comparator Control 1 (ACCTL1), offset 0x44 Register 10: Analog Comparator Control 2 (ACCTL2), offset 0x64

These registers configure the comparator's input and output.

Ana	log Con	nparato	or Contr	ol 0 (AC	CCTL0)											
Base Offse Type	0x4003.0 t 0x24 R/W, rese	et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		I	1	1	1	1 1	rese	rved	I	1	I	1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		reserved	1		AS	RCP		rese	rved	1	ISLVAL	IS	EN	CINV	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:11		reserv	ved	R	0	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	10:9		ASR	СР	R	W	0x00	Ana	log Sour	ce Posit	ive					
								The of th	The ASRCP field specifies the source of input voltage to the VIN+ terminal of the comparator. The encodings for this field are as follows:							
								Valu	ue Func	tion						
								0x0	Pin v	alue						
								0x1	Pin v	alue of (C0+					
								0x2	Inter	nal volta	ge refere	ence				
								0x3	Rese	erved						
	8:5		reserv	ved	R	0	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.							vide hould be	
	4		ISLV	AL	R/	W	0	Inter	rupt Ser	nse Leve	el Value					
								The an ir com	ISLVAL nterrupt i parator	bit spec if in Leve output is	cifies the I Sense Low. Of	sense v mode. If herwise,	alue of t 0, an in an inter	he input terrupt is rupt is g	that ger generated	erates ted if the d if the

388

comparator output is High.

Bit/Field	Name	Туре	Reset	Description
3:2	ISEN	R/W	0x0	Interrupt Sense
				The ISEN field specifies the sense of the comparator output that generates an interrupt. The sense conditioning is as follows:
				Value Function
				0x0 Level sense, see ISLVAL
				0x1 Falling edge
				0x2 Rising edge
				0x3 Either edge
1	CINV	R/W	0	Comparator Output Invert
				The CINV bit conditionally inverts the output of the comparator. If 0, the output of the comparator is unchanged. If 1, the output of the comparator is inverted prior to being processed by hardware.
0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

16 Pulse Width Modulator (PWM)

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control.

The Stellaris[®] PWM module consists of three PWM generator blocks and a control block. Each PWM generator block contains one timer (16-bit down or up/down counter), two PWM comparators, a PWM signal generator, a dead-band generator, and an interrupt selector. The control block determines the polarity of the PWM signals, and which signals are passed through to the pins.

Each PWM generator block produces two PWM signals that can either be independent signals (other than being based on the same timer and therefore having the same frequency) or a single pair of complementary signals with dead-band delays inserted. The output of the PWM generation blocks are managed by the output control block before being passed to the device pins.

The Stellaris[®] PWM module provides a great deal of flexibility. It can generate simple PWM signals, such as those required by a simple charge pump. It can also generate paired PWM signals with dead-band delays, such as those required by a half-H bridge driver. Three generator blocks can also generate the full six channels of gate controls required by a 3-phase inverter bridge.

16.1 Block Diagram

Figure 16-1 on page 390 provides the Stellaris[®] PWM module unit diagram and Figure 16-2 on page 391 provides a more detailed diagram of a Stellaris[®] PWM generator. The LM3S1620 controller contains three generator blocks (PWM0, PWM1, and PWM2) and generates six independent PWM signals or three paired PWM signals with dead-band delays inserted.

Figure 16-1. PWM Unit Diagram

Figure 16-2. PWM Module Block Diagram

16.2 Functional Description

16.2.1 PWM Timer

The timer in each PWM generator runs in one of two modes: Count-Down mode or Count-Up/Down mode. In Count-Down mode, the timer counts from the load value to zero, goes back to the load value, and continues counting down. In Count-Up/Down mode, the timer counts from zero up to the load value, back down to zero, back up to the load value, and so on. Generally, Count-Down mode is used for generating left- or right-aligned PWM signals, while the Count-Up/Down mode is used for generating center-aligned PWM signals.

The timers output three signals that are used in the PWM generation process: the direction signal (this is always Low in Count-Down mode, but alternates between Low and High in Count-Up/Down mode), a single-clock-cycle-width High pulse when the counter is zero, and a single-clock-cycle-width High pulse when the counter is equal to the load value. Note that in Count-Down mode, the zero pulse is immediately followed by the load pulse.

16.2.2 PWM Comparators

There are two comparators in each PWM generator that monitor the value of the counter; when either match the counter, they output a single-clock-cycle-width High pulse. When in Count-Up/Down mode, these comparators match both when counting up and when counting down; they are therefore qualified by the counter direction signal. These qualified pulses are used in the PWM generation process. If either comparator match value is greater than the counter load value, then that comparator never outputs a High pulse.

Figure 16-3 on page 392 shows the behavior of the counter and the relationship of these pulses when the counter is in Count-Down mode. Figure 16-4 on page 392 shows the behavior of the counter and the relationship of these pulses when the counter is in Count-Up/Down mode.

Figure 16-4. PWM Count-Up/Down Mode

16.2.3 **PWM Signal Generator**

The PWM generator takes these pulses (qualified by the direction signal), and generates two PWM signals. In Count-Down mode, there are four events that can affect the PWM signal: zero, load, match A down, and match B down. In Count-Up/Down mode, there are six events that can affect the PWM signal: zero, load, match A down, match A up, match B down, and match B up. The match

Preliminary

A or match B events are ignored when they coincide with the zero or load events. If the match A and match B events coincide, the first signal, PWMA, is generated based only on the match A event, and the second signal, PWMB, is generated based only on the match B event.

For each event, the effect on each output PWM signal is programmable: it can be left alone (ignoring the event), it can be toggled, it can be driven Low, or it can be driven High. These actions can be used to generate a pair of PWM signals of various positions and duty cycles, which do or do not overlap. Figure 16-5 on page 393 shows the use of Count-Up/Down mode to generate a pair of center-aligned, overlapped PWM signals that have different duty cycles.

Figure 16-5. PWM Generation Example In Count-Up/Down Mode

In this example, the first generator is set to drive High on match A up, drive Low on match A down, and ignore the other four events. The second generator is set to drive High on match B up, drive Low on match B down, and ignore the other four events. Changing the value of comparator A changes the duty cycle of the PWMA signal, and changing the value of comparator B changes the duty cycle of the PWMB signal.

16.2.4 Dead-Band Generator

The two PWM signals produced by the PWM generator are passed to the dead-band generator. If disabled, the PWM signals simply pass through unmodified. If enabled, the second PWM signal is lost and two PWM signals are generated based on the first PWM signal. The first output PWM signal is the input signal with the rising edge delayed by a programmable amount. The second output PWM signal is the inversion of the input signal with a programmable delay added between the falling edge of the input signal and the rising edge of this new signal.

This is therefore a pair of active High signals where one is always High, except for a programmable amount of time at transitions where both are Low. These signals are therefore suitable for driving a half-H bridge, with the dead-band delays preventing shoot-through current from damaging the power electronics. Figure 16-6 on page 393 shows the effect of the dead-band generator on an input PWM signal.

Figure 16-6. PWM Dead-Band Generator

16.2.5 Interrupt Selector

The PWM generator also takes the same four (or six) counter events and uses them to generate an interrupt. Any of these events or a set of these events can be selected as a source for an interrupt; when any of the selected events occur, an interrupt is generated. The selection of events allows the interrupt to occur at a specific position within the PWM signal. Note that interrupts are based on the raw events; delays in the PWM signal edges caused by the dead-band generator are not taken into account.

16.2.6 Synchronization Methods

There is a global reset capability that can synchronously reset any or all of the counters in the PWM generators. If multiple PWM generators are configured with the same counter load value, this can be used to guarantee that they also have the same count value (this does imply that the PWM generators must be configured before they are synchronized). With this, more than two PWM signals can be produced with a known relationship between the edges of those signals since the counters always have the same values.

The counter load values and comparator match values of the PWM generator can be updated in two ways. The first is immediate update mode, where a new value is used as soon as the counter reaches zero. By waiting for the counter to reach zero, a guaranteed behavior is defined, and overly short or overly long output PWM pulses are prevented.

The other update method is synchronous, where the new value is not used until a global synchronized update signal is asserted, at which point the new value is used as soon as the counter reaches zero. This second mode allows multiple items in multiple PWM generators to be updated simultaneously without odd effects during the update; everything runs from the old values until a point at which they all run from the new values. The Update mode of the load and comparator match values can be individually configured in each PWM generator block. It typically makes sense to use the synchronous update mechanism across PWM generator blocks when the timers in those blocks are synchronized, though this is not required in order for this mechanism to function properly.

16.2.7 Fault Conditions

There are two external conditions that affect the PWM block; the signal input on the Fault pin and the stalling of the controller by a debugger. There are two mechanisms available to handle such conditions: the output signals can be forced into an inactive state and/or the PWM timers can be stopped.

Each output signal has a fault bit. If set, a fault input signal causes the corresponding output signal to go into the inactive state. If the inactive state is a safe condition for the signal to be in for an extended period of time, this keeps the output signal from driving the outside world in a dangerous manner during the fault condition. A fault condition can also generate a controller interrupt.

Each PWM generator can also be configured to stop counting during a stall condition. The user can select for the counters to run until they reach zero then stop, or to continue counting and reloading. A stall condition does not generate a controller interrupt.

16.2.8 Output Control Block

With each PWM generator block producing two raw PWM signals, the output control block takes care of the final conditioning of the PWM signals before they go to the pins. Via a single register, the set of PWM signals that are actually enabled to the pins can be modified; this can be used, for example, to perform commutation of a brushless DC motor with a single register write (and without modifying the individual PWM generators, which are modified by the feedback control loop). Similarly,

fault control can disable any of the PWM signals as well. A final inversion can be applied to any of the PWM signals, making them active Low instead of the default active High.

16.3 Initialization and Configuration

The following example shows how to initialize the PWM Generator 0 with a 25-KHz frequency, and with a 25% duty cycle on the PWM0 pin and a 75% duty cycle on the PWM1 pin. This example assumes the system clock is 20 MHz.

- 1. Enable the PWM clock by writing a value of 0x0010.0000 to the **RCGC0** register in the System Control module.
- 2. Enable the clock to the appropriate GPIO module via the **RCGC2** register in the System Control module.
- 3. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register.
- 4. Configure the **Run-Mode Clock Configuration (RCC)** register in the System Control module to use the PWM divide (USEPWMDIV) and set the divider (PWMDIV) to divide by 2 (000).
- 5. Configure the PWM generator for countdown mode with immediate updates to the parameters.
 - Write the **PWM0CTL** register with a value of 0x0000.0000.
 - Write the **PWM0GENA** register with a value of 0x0000.008C.
 - Write the **PWM0GENB** register with a value of 0x0000.080C.
- 6. Set the period. For a 25-KHz frequency, the period = 1/25,000, or 40 microseconds. The PWM clock source is 10 MHz; the system clock divided by 2. This translates to 400 clock ticks per period. Use this value to set the PWM0LOAD register. In Count-Down mode, set the Load field in the PWM0LOAD register to the requested period minus one.
 - Write the **PWM0LOAD** register with a value of 0x0000.018F.
- 7. Set the pulse width of the PWM0 pin for a 25% duty cycle.
 - Write the **PWM0CMPA** register with a value of 0x0000.012B.
- 8. Set the pulse width of the PWM1 pin for a 75% duty cycle.
 - Write the **PWM0CMPB** register with a value of 0x0000.0063.
- 9. Start the timers in PWM generator 0.
 - Write the **PWM0CTL** register with a value of 0x0000.0001.
- **10.** Enable PWM outputs.
 - Write the **PWMENABLE** register with a value of 0x0000.0003.

16.4 Register Map

Table 16-1 on page 396 lists the PWM registers. The offset listed is a hexadecimal increment to the register's address, relative to the PWM base address of 0x4002.8000.

Table 16-1. PWM Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	PWMCTL	R/W	0x0000.0000	PWM Master Control	398
0x004	PWMSYNC	R/W	0x0000.0000	PWM Time Base Sync	399
0x008	PWMENABLE	R/W	0x0000.0000	PWM Output Enable	400
0x00C	PWMINVERT	R/W	0x0000.0000	PWM Output Inversion	401
0x010	PWMFAULT	R/W	0x0000.0000	PWM Output Fault	402
0x014	PWMINTEN	R/W	0x0000.0000	PWM Interrupt Enable	403
0x018	PWMRIS	RO	0x0000.0000	PWM Raw Interrupt Status	404
0x01C	PWMISC	R/W1C	0x0000.0000	PWM Interrupt Status and Clear	405
0x020	PWMSTATUS	RO	0x0000.0000	PWM Status	406
0x040	PWM0CTL	R/W	0x0000.0000	PWM0 Control	407
0x044	PWM0INTEN	R/W	0x0000.0000	PWM0 Interrupt Enable	409
0x048	PWM0RIS	RO	0x0000.0000	PWM0 Raw Interrupt Status	411
0x04C	PWM0ISC	R/W1C	0x0000.0000	PWM0 Interrupt Status and Clear	412
0x050	PWM0LOAD	R/W	0x0000.0000	PWM0 Load	413
0x054	PWM0COUNT	RO	0x0000.0000	PWM0 Counter	414
0x058	PWM0CMPA	R/W	0x0000.0000	PWM0 Compare A	415
0x05C	PWM0CMPB	R/W	0x0000.0000	PWM0 Compare B	416
0x060	PWM0GENA	R/W	0x0000.0000	PWM0 Generator A Control	417
0x064	PWM0GENB	R/W	0x0000.0000	PWM0 Generator B Control	420
0x068	PWM0DBCTL	R/W	0x0000.0000	PWM0 Dead-Band Control	423
0x06C	PWM0DBRISE	R/W	0x0000.0000	PWM0 Dead-Band Rising-Edge Delay	424
0x070	PWM0DBFALL	R/W	0x0000.0000	PWM0 Dead-Band Falling-Edge-Delay	425
0x080	PWM1CTL	R/W	0x0000.0000	PWM1 Control	407
0x084	PWM1INTEN	R/W	0x0000.0000	PWM1 Interrupt Enable	409
0x088	PWM1RIS	RO	0x0000.0000	PWM1 Raw Interrupt Status	411
0x08C	PWM1ISC	R/W1C	0x0000.0000	PWM1 Interrupt Status and Clear	412
0x090	PWM1LOAD	R/W	0x0000.0000	PWM1 Load	413
0x094	PWM1COUNT	RO	0x0000.0000	PWM1 Counter	414
0x098	PWM1CMPA	R/W	0x0000.0000	PWM1 Compare A	415
0x09C	PWM1CMPB	R/W	0x0000.0000	PWM1 Compare B	416
0x0A0	PWM1GENA	R/W	0x0000.0000	PWM1 Generator A Control	417
0x0A4	PWM1GENB	R/W	0x0000.0000	PWM1 Generator B Control	420
Offset	Name	Туре	Reset	Description	See page
--------	------------	-------	-------------	-----------------------------------	-------------
0x0A8	PWM1DBCTL	R/W	0x0000.0000	PWM1 Dead-Band Control	423
0x0AC	PWM1DBRISE	R/W	0x0000.0000	PWM1 Dead-Band Rising-Edge Delay	424
0x0B0	PWM1DBFALL	R/W	0x0000.0000	PWM1 Dead-Band Falling-Edge-Delay	425
0x0C0	PWM2CTL	R/W	0x0000.0000	PWM2 Control	407
0x0C4	PWM2INTEN	R/W	0x0000.0000	PWM2 InterruptEnable	409
0x0C8	PWM2RIS	RO	0x0000.0000	PWM2 Raw Interrupt Status	411
0x0CC	PWM2ISC	R/W1C	0x0000.0000	PWM2 Interrupt Status and Clear	412
0x0D0	PWM2LOAD	R/W	0x0000.0000	PWM2 Load	413
0x0D4	PWM2COUNT	RO	0x0000.0000	PWM2 Counter	414
0x0D8	PWM2CMPA	R/W	0x0000.0000	PWM2 Compare A	415
0x0DC	PWM2CMPB	R/W	0x0000.0000	PWM2 Compare B	416
0x0E0	PWM2GENA	R/W	0x0000.0000	PWM2 Generator A Control	417
0x0E4	PWM2GENB	R/W	0x0000.0000	PWM2 Generator B Control	420
0x0E8	PWM2DBCTL	R/W	0x0000.0000	PWM2 Dead-Band Control	423
0x0EC	PWM2DBRISE	R/W	0x0000.0000	PWM2 Dead-Band Rising-Edge Delay	424
0x0F0	PWM2DBFALL	R/W	0x0000.0000	PWM2 Dead-Band Falling-Edge-Delay	425

16.5 Register Descriptions

The remainder of this section lists and describes the PWM registers, in numerical order by address offset.

Register 1: PWM Master Control (PWMCTL), offset 0x000

This register provides master control over the PWM generation blocks.

Base Offse Type	0x4002.8 t 0x000 R/W, rese	000 et 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1	1	1		· ·	rese	erved	ſ	1	1	1	I	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ		1	1	1		reserved		1	I	1	ſ	1 1	GlobalSync2	GlobalSync1	GlobalSync0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
E	Bit/Field Name Type Re							Des	cription							
	31:3		reser	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on ti ure produ read-mod	he value ucts, the lify-write	of a res value c operat	served bit of a reserv ion.	t. To prov ved bit sl	vide nould be
	2		GlobalS	Sync2	R/	W	0	Upd	late PWN	/ Generation	ator 2					
								San	n e as Gl	obalSy	nc0 but	for PWN	l genera	ator 2.		
	1		GlobalS	Sync1	R/	W	0	Upd	late PWN	/ Gener	ator 1					
								San	ne as Gl	obalSy	nc0 but	for PWN	l genera	ator 1.		
	0		GlobalS	Sync0	R/	W	0	Upd	late PWN	/ Generation	ator 0					
Setting this bit causes a register in PWM genera corresponding counter b											es any qu erator 0 er becom	ieued up to be ap ies zero.	odate to plied the This bit	a load or e next tim automati	compar the the cally clea	ator ars when

the updates have completed; it cannot be cleared by software.

PWM Master Control (PWMCTL)

Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004

This register provides a method to perform synchronization of the counters in the PWM generation blocks. Writing a bit in this register to 1 causes the specified counter to reset back to 0; writing multiple bits resets multiple counters simultaneously. The bits auto-clear after the reset has occurred; reading them back as zero indicates that the synchronization has completed.

PWM Time Base Sync (PWMSYNC)

Base 0x4002.8000

Offset 0x004 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ſ		1	1	ı – – – –		, ,	rese	rved	1	1	1	1	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	· ·		1	1	1		reserved			1	1	1	1	Sync2	Sync1	Sync0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field 31:3		Nam reserv	lame Type R served RO 0		Reset 0x00	Des Soft com pres	cription ware she patibility erved ac	ould not with futi cross a r	rely on ure proc read-mo	the value ducts, the odify-write	e of a res value of e operatio	erved bit f a reserv on.	t. To prov ved bit sl	vide nould be	
	2		Syno	c2	R/	W	0	Res Perf	et Gener orms a r	rator 2 C reset of t	ounter	V genera	tor 2 cou	inter.		
	1		Sync1 R/W				0	Res Perf	et Gene orms a r	rator 1 C reset of t	ounter	V genera	tor 1 cou	inter.		
	0		Syno	c0	R/	W	0	Res Perf	et Gener orms a r	rator 0 C eset of t	ounter	V genera	tor 0 cou	inter.		

Register 3: PWM Output Enable (PWMENABLE), offset 0x008

This register provides a master control of which generated PWM signals are output to device pins. By disabling a PWM output, the generation process can continue (for example, when the time bases are synchronized) without driving PWM signals to the pins. When bits in this register are set, the corresponding PWM signal is passed through to the output stage, which is controlled by the **PWMINVERT** register. When bits are not set, the PWM signal is replaced by a zero value which is also passed to the output stage.

PWM Output Enable (PWMENABLE)

Base 0x4002.8000 Offset 0x008 Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					rese	rved			<u> </u>		PWM5En	PWM4En	PWM3En	PWM2En	PWM1En	PWM0En
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:6		reserv	ved	R	0	0x00	Soft	ware sho	ould not	rely on t	he value	of a res	erved bit	. To prov	/ide
								com	patibility	with fut	ure produ	ucts, the	value of	a reserv	ed bit sh	nould be
								pree		1033 a		iny-write	operation			
	5		PWM	5En	R/	W	0	PWI	M5 Outp	ut Enab	le					
								en set, al	lows the	e generat	ed PWM5	signal to	be pass	sed to the	e device	
	4		PWM4	4En	R/	W	0	PWI	M4 Outp	ut Enab	le					
								Whe	en set, al	lows the	e generat	ed PWM4	signal to	be pass	sed to the	e device
								pin.								
	3		PWM3	3En	R/	W	0	PWI	M3 Outp	ut Enab	le					
								Whe	en set, al	lows the	e generat	ed PWM3	signal to	be pass	sed to the	e device
								pin.								
	2		PWM2	2En	R/	W	0	PWI	M2 Outp	ut Enab	le					
								Whe pin.	en set, al	lows the	e generat	ed PWM2	signal to	be pass	ed to the	e device
	1		PWM	1En	R/	W	0	PWI	M1 Outp	ut Enab	le					
								sed to the	e device							
								pin.								
	0		PWM	DEn	R/	W	0	PWI	M0 Outp	ut Enab	le					
							e generat	ed PWM0	signal to	be pass	sed to the	e device				

Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C

This register provides a master control of the polarity of the PWM signals on the device pins. The PWM signals generated by the PWM generator are active High; they can optionally be made active Low via this register. Disabled PWM channels are also passed through the output inverter (if so configured) so that inactive channels maintain the correct polarity.

Offset 0x00C Type R/W, reset 0x0000.0000 25 31 30 29 28 27 26 24 23 22 21 16 20 19 18 17 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 13 12 8 7 6 3 2 14 11 10 9 5 4 0 1 PWM5In PWM4In PWM3In PWM2In PWM1Inv PWM0Inv reserved Туре RO R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Reset Description Туре 31:6 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5 PWM5Inv R/W 0 Invert PWM5 Signal When set, the generated PWM5 signal is inverted. 4 PWM4Inv R/W 0 Invert PWM4 Signal When set, the generated PWM4 signal is inverted. 3 PWM3Inv R/W 0 Invert PWM3 Signal When set, the generated PWM3 signal is inverted. 2 PWM2Inv R/W 0 Invert PWM2 Signal When set, the generated PWM2 signal is inverted. PWM1Inv R/W 0 Invert PWM1 Signal 1 When set, the generated PWM1 signal is inverted. 0 PWM0Inv R/W 0 Invert PWM0 Signal When set, the generated PWM0 signal is inverted.

PWM Output Inversion (PWMINVERT)

Base 0x4002.8000

Register 5: PWM Output Fault (PWMFAULT), offset 0x010

This register controls the behavior of the PWM outputs in the presence of fault conditions. Both the fault inputs and debug events are considered fault conditions. On a fault condition, each PWM signal can be passed through unmodified or driven Low. For outputs that are configured for pass-through, the debug event handling on the corresponding PWM generator also determines if the PWM signal continues to be generated.

Fault condition control occurs before the output inverter, so PWM signals driven Low on fault are inverted if the channel is configured for inversion (therefore, the pin is driven High on a fault condition).

PW	M Outp	ut Fault	(PWM	FAULT)												
Base Offse Type	0x4002.8 t 0x010 R/W, rese	3000 et 0x0000	.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1	1		· ·	rese	erved		r	1	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				•	rese	rved					Fault5	Fault4	Fault3	Fault2	Fault1	Fault0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту											
31:6 reserved RO 0x00 Softw comp. prese										ould not with futi cross a r	rely on t ure prode ead-mod	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	t. To prov ved bit sh	vide nould be
	5		Faul	lt5	R/	W	0	PW Whe	M5 Fault en set, th	e PWM5	output s	ignal is c	lriven Lo	w on a f	ault cond	lition.
	4		Faul	lt4	R/	W	0	PW Whe	M4 Fault en set, th	e pwm4	output s	ignal is d	lriven Lo	w on a f	ault cond	lition.
	3		Faul	lt3	R/	W	0	PW Whe	M3 Fault en set, th	e PWM3	output s	ignal is d	lriven Lo	w on a f	ault cond	lition.
	2		Faul	lt2	R/	W	0	PW Whe	M2 Fault en set, th	e pwm2	output s	ignal is d	lriven Lo	w on a f	ault cond	lition.
	1		Faul	lt1	R/	W	0	PW Whe	M1 Fault en set, th	e pwm1	output s	ignal is c	Iriven Lo	w on a f	ault cond	lition.
	0		Faul	ltO	R/	W	0	PW Whe	M0 Fault en set, th	e pwm0	output s	ignal is d	lriven Lo	w on a f	ault cond	lition.

Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014

This register controls the global interrupt generation capabilities of the PWM module. The events that can cause an interrupt are the fault input and the individual interrupts from the PWM generators.

PWM Interrupt Enable (PWMINTEN)

Base 0x4002.8000 Offset 0x014 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1	1	· ·		1	reserved				I	1	1		IntFault
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•		1	1	· ·		reserved					1		IntPWM2	IntPWM1	IntPWM0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription							
	31:17		reser	rved	R	С	0x00	Soft	ware sho	ould not	relv on f	he value	of a res	served bit	. To prov	/ide
								com	patibility	with futu	ure prod	ucts, the	value o	f a reserv	ed bit sh	nould be
								pres	erved ad	cross a r	ead-mo	dify-write	operati	on.		
	16		IntFa	ault	R/	W	0	Faul	t Interru	ot Enable	е					
							-				-		fa 14			
								vvne	in set, ai	interru	pt occur	swhent	ne iauli	input is a	ssented.	
	15:3		reser	rved	R	С	0x00	Soft	ware sho	ould not	rely on t	he value	of a res	served bit	. To prov	/ide
								com	patibility	with futu	ure prod	ucts, the	value o	f a reserv	ed bit sh	nould be
								pres	erved ad	cross a r	ead-mo	aity-write	operati	on.		
	2		IntPV	VM2	R/	W	0	PW	M2 Interr	upt Enal	ble					
								Whe	en set, ar	n interrup	ot occurs	s when th	e PWM	generato	r 2 block	asserts
								an ir	nterrupt.					0		
	1		IntPV	VM1	R/	M	0	P\//	/1 Interr	unt Enal	hle					
	•		iiitti v	VIVII	I.V.	••	0		,							
								Whe an ir	en set, ar nterrupt.	n interrup	ot occurs	s when th	e PWM	generato	r 1 block	asserts
	0		IntPV	VM0	R/	W	0	PW	/10 Interr	upt Enal	ble					
								Whe an ir	en set, ar nterrupt.	n interrup	ot occurs	s when th	e PWM	generato	r 0 block	asserts

Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018

This register provides the current set of interrupt sources that are asserted, regardless of whether they cause an interrupt to be asserted to the controller. The fault interrupt is latched on detection; it must be cleared through the **PWM Interrupt Status and Clear (PWMISC)** register (see page 405). The PWM generator interrupts simply reflect the status of the PWM generators; they are cleared via the interrupt status register in the PWM generator blocks. Bits set to 1 indicate the events that are active; zero bits indicate that the event in question is not active.

PWM Raw Interrupt Status (PWMRIS)

Base 0x4002.8000 Offset 0x018

Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		1	1 1	reserved		1		1		1	1	IntFault
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1				reserved					1	1	IntPWM2	IntPWM1	IntPWM0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		N	ame		Туре	Reset	Des	cription							
	31:17		res	erved		RO	0x00	Soft com pres	ware sho patibility erved a	ould not i with futu cross a re	rely on ire proc ead-mo	the value ducts, the odify-write	e of a res value o e operati	served bit f a reserv on.	To prov ved bit sh	vide nould be
	16		Int	Fault		RO	0	Faul	t Interru	pt Asserf	ed					
								Indic	cates that	at the fau	lt input	is assert	ing.			
	15:3		res	erved		RO	0x00	Soft	ware sh	ould not	rely on	the value	e of a res	served bit	. To prov	/ide
								com pres	patibility erved a	with futu cross a re	ire proc ead-mo	ducts, the odify-write	e value o e operati	f a reserv on.	ved bit sh	nould be
	2		IntF	PWM2		RO	0	PW	M2 Inter	rupt Asse	erted					
								Indic	cates that	at the PW	/M gen	erator 2 t	olock is a	asserting	its interr	upt.
	1		IntF	PWM1		RO	0	PW	M1 Inter	rupt Asse	erted					
								Indic	cates that	at the PW	/M gen	erator 1 t	olock is a	asserting	its interr	upt.
	0		IntF	PWM0		RO	0	PW	M0 Inter	rupt Asse	erted					
								Indic	cates that	at the PW	/M gen	erator 0 k	olock is a	asserting	its interr	upt.

Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C

This register provides a summary of the interrupt status of the individual PWM generator blocks. A bit set to 1 indicates that the corresponding generator block is asserting an interrupt. The individual interrupt status registers in each block must be consulted to determine the reason for the interrupt, and used to clear the interrupt. For the fault interrupt, a write of 1 to that bit position clears the latched interrupt status.

PWM Interrupt Status and Clear (PWMISC)

Base 0x4002.8000

Offset 0x01C

Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1	•			1 1	reserved								IntFault
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C
Reset	0	U	0	U	U	U	0	0	0	U	0	U	0	U	U	0
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
					1		reserved						1	IntPWM2	IntPWM1	IntPWM0
Type Reset	RO	RO 0	RO	RO 0	RO	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO	RO 0	RO
10000	0	0	0	0	Ū	Ŭ	Ũ	Ū	Ŭ	Ū	0	0	0	Ũ	Ŭ	Ũ
-	Rit/Fiold		Non	20	TV	20	Posot	Doc	orintion							
L			Indi	lie	i y	þe	116361	Dest	Inpuon							
	31:17		reser	ved	R	0	0x00	Soft	ware sho	ould not	rely on t	he value	of a res	erved bit	. To prov	vide
								com	patibility	with futu	ure prod	ucts, the	value of	f a reserv	ed bit sr	nould be
								pies		1035 a 1	eau-mo	uny-write	operation	011.		
	16 IntFault				R/W	/1C	0	Faul	t Interrup	ot Asser	ted					
		IntFault						Indic	ates tha	t the fau	It input	is asserti	ng an in	terrupt.		
	45.0			d		~	000	0.4		المحمد المارين						ن ما م
	15:3		reser	vea	R	0	0x00	com	vare sno patibilitv	with futi	rely on i ure prod	ucts, the	value of	f a reserv	. To prov ed bit sh	nould be
								pres	erved ac	ross a r	ead-mo	dify-write	operatio	on.		
	2		IntP\A	/M2	P	0	0		12 Interr	unt Stat						
	2			VIVIZ		0	0				us					
								Indic	ates if th	ie PWM	genera	tor 2 bloc	ck is ass	erting an	Interrup	t.
	1	IntPWM1			R	0	0	PWN	/11 Interr	upt Stat	us					
			IntPWM1					Indic	ates if th	ne PWM	genera	tor 1 bloc	ck is ass	erting an	interrup	t.
					_	_					-			ũ		
	0		IntPW	/M0	R	0	0	PWN	/10 Interr	upt Stat	us					
							Indic	ates if th	ne PWM	genera	tor 0 bloc	ck is ass	erting an	interrup	t.	

Register 9: PWM Status (PWMSTATUS), offset 0x020

This register provides the status of the ${\tt FAULT}\;$ input signal.

PW	M Statu	s (PW	MSTATU	S)												
Base Offse Type	0x4002.8 t 0x020 RO, reset	8000 t 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1 1				1 1	rese	rved		1	T	ı		T	1
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Resei	0	U	0	0	0	U	0	0	0	0	0	0	0	0	U	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•				1 I			reserved	, , ,		_				I	Fault
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0 Bit/Field	U	0 Nam	e	0 Tyj	be	Reset	Des	cription	U	0	U	U	U	U	U
	31:1		reserv	ed	R	C	0x00	Soft com pres	ware sho patibility served ac	ould not with futi cross a r	rely on f ure prod ead-mo	the value ucts, the dify-write	of a rese value of operatic	erved b a reser on.	it. To prov ved bit sl	vide nould be
	0		Fau	lt	R	С	0	Fau	It Interru	pt Status	3					
								Whe	en set, in	dicates	the fault	input is a	asserted.	-		

406

Register 10: PWM0 Control (PWM0CTL), offset 0x040 Register 11: PWM1 Control (PWM1CTL), offset 0x080 Register 12: PWM2 Control (PWM2CTL), offset 0x0C0

These registers configure the PWM signal generation blocks (PWM0CTL controls the PWM generator 0 block, and so on). The Register Update mode, Debug mode, Counting mode, and Block Enable mode are all controlled via these registers. The blocks produce the PWM signals, which can be either two independent PWM signals (from the same counter), or a paired set of PWM signals with dead-band delays added.

The PWM0 block produces the PWM0 and PWM1 outputs, the PWM1 block produces the PWM2 and PWM3 outputs, and the PWM2 block produces the PWM4 and PWM5 outputs.

Base Offse Type	0x4002. t 0x040 R/W, res	8000 set 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1					rese	rved		1					1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					rese	rved	• •				CmpBUpd	CmpAUpd	LoadUpd	Debug	Mode	Enable
Type Reset	RO	RO 0	RO	RO	RO 0	RO	RO	RO	RO	RO 0	R/W	R/W	R/W	R/W	R/W	R/W
Resei	0	0	0	0	0	0	0	0	0	U	0	0	0	U	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:6		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with fut cross a i	rely on t ure prod read-mod	he value ucts, the dify-write	of a rese value of operatio	erved bit a reserv n.	. To prov ed bit sł	vide nould be
	5		CmpB	Upd	R/	W	0	Con	nparator	B Upda	te Mode					
								Sam	ne as Cm	pAUpd k	out for th	e compa	rator B re	egister.		
	4		CmpA	Upd	R/	W	0	Con	nparator	A Upda	te Mode					
								The to th is 0. the c the I	Update le registe When s counter is PWM Ma	mode fo er are re et, upda s 0 after aster Co	r the con flected to ates to th a synchr ontrol (P	the com e registe onous up	A registe parator t r are dela odate has) register	r. When the next ayed unt been re (see pa	not set, time the il the ne quested ge 398)	updates counter xt time through
	3		Loadl	Jpd	R/	W	0	Loa	d Regist	er Upda	te Mode					
								The regis set, is 0 Mas	Update ster are r updates after a s ster Con	mode for reflected to the re ynchron trol (PV	or the loa I to the co egister a ous upda /MCTL)	d registe ounter the re delaye ate has b register.	r. When e next tim ed until th een requ	not set, i ne the co ne next ti uested th	updates unter is (ime the irough th	to the 0. When counter ne PWM
	2		Deb	ug	R/	W	0	Deb	ug Mode	9						
								The stop no lo	behavio s running onger in	r of the o g when i Debug r	counter i t next rea mode. W	n Debug Iches 0, a hen set,	mode. W and contil the coun	/hen not nues run iter alwa	set, the ning aga ys runs.	counter ain when

PWM0 Control (PWM0CTL)

Bit/Field	Name	Туре	Reset	Description
1	Mode	R/W	0	Counter Mode
				The mode for the counter. When not set, the counter counts down from the load value to 0 and then wraps back to the load value (Count-Down mode). When set, the counter counts up from 0 to the load value, back down to 0, and then repeats (Count-Up/Down mode).
0	Enable	R/W	0	PWM Block Enable
				Master enable for the PWM generation block. When not set, the entire block is disabled and not clocked. When set, the block is enabled and

produces PWM signals.

Register 13: PWM0 Interrupt Enable (PWM0INTEN), offset 0x044 Register 14: PWM1 Interrupt Enable (PWM1INTEN), offset 0x084 Register 15: PWM2 InterruptEnable (PWM2INTEN), offset 0x0C4

These registers control the interrupt generation capabilities of the PWM generators (**PWM0INTEN** controls the PWM generator 0 block, and so on). The events that can cause an interrupt are:

- The counter being equal to the load register
- The counter being equal to zero
- The counter being equal to the comparator A register while counting up
- The counter being equal to the comparator A register while counting down
- The counter being equal to the comparator B register while counting up
- The counter being equal to the comparator B register while counting down

Any combination of these events can generate either an interrupt.

PWM0 Interrupt Enable (PWM0INTEN)

Base 0x4002.8000

Offse Type	t 0x044 R/W, rese	et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		i	i	1	i	1 1	rese	rved	i	1		· · · ·		i	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	r	rese	l erved	1 1			1	IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
Bit/Field Name Type Res 31:6 reserved RO 0x0								Soft com pres	ware sho patibility served ac	ould not with fut cross a r	rely on th ure produ read-mod	ne value ucts, the lify-write	of a rese value of operatio	erved bit a reserv n.	To prov ved bit sh	ride Iould be
	5		IntCm	ρBD	R/	W	0	Inter Whe valu	rrupt for en 1, an i e and th	Counter nterrupt e counte	=Compar occurs wl er is coun	rator B E nen the c iting dov	Down counter m vn.	atches t	he comp	arator B
	4		IntCm	pBU	R	W	0	Inter	rrupt for	Counter	=Compa	rator B L	Jp			
								Whe valu	en 1, an i e and th	nterrupt e counte	occurs wi er is coun	nen the c iting up.	counter m	atches t	he comp	arator B
	3		IntCm	pAD	R/	W	0	Inter	rrupt for	Counter	=Compa	rator A E	Down			
								Whe valu	en 1, an i e and th	nterrupt e counte	occurs wł er is coun	nen the o Iting dov	counter m vn.	atches t	he comp	arator A

Bit/Field	Name	Туре	Reset	Description
2	IntCmpAU	R/W	0	Interrupt for Counter=Comparator A Up
				When 1, an interrupt occurs when the counter matches the comparator A value and the counter is counting up.
1	IntCntLoad	R/W	0	Interrupt for Counter=Load
				When 1, an interrupt occurs when the counter matches the PWMnLOAD register.
0	IntCntZero	R/W	0	Interrupt for Counter=0
				When 1, an interrupt occurs when the counter is 0.

Register 16: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 Register 17: PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088 Register 18: PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8

These registers provide the current set of interrupt sources that are asserted, regardless of whether they cause an interrupt to be asserted to the controller (**PWMORIS** controls the PWM generator 0 block, and so on). Bits set to 1 indicate the latched events that have occurred; bits set to 0 indicate that the event in question has not occurred.

PWM0 Raw Interrupt Status (PWM0RIS)

Base 0x4002.8000

Offset 0x048	
Type RO, reset 0x000	0.000.0

	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1	•				rese	erved	l		l			I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ		1		rese	rved	ر آر		· · · ·		IntCmpBD	IntCmpBU	IntCmpAD	- IntCmpAU	IntCntLoad	IntCntZero
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:6		reser	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with fut cross a r	rely on th ure produ read-moo	ne value ucts, the lify-write	of a res value of operatio	erved bit a reserv on.	. To prov ed bit sh	vide nould be
	5		IntCm	pBD	R	0	0	Con	nparator	B Down	Interrup	t Status				
	Indic cour					cates tha nting dov	it the co vn.	unter has	s matche	ed the co	mparato	r B value	e while			
	4		IntCm	рBU	R	0	0	Con	nparator	B Up Int	terrupt St	tatus				
								Indi cou	cates tha nting up.	it the co	unter has	s matche	ed the co	mparato	r B value	e while
	3		IntCm	pAD	R	0	0	Con	nparator	A Down	Interrup	t Status				
								Indi cou	cates tha nting dov	it the co vn.	unter has	s matche	ed the co	mparato	r A value	e while
	2		IntCm	pAU	R	0	0	Con	nparator	A Up Int	terrupt St	tatus				
								Indi cou	cates tha nting up.	it the co	unter has	s matche	ed the co	mparato	r A value	e while
	1		IntCntl	oad	R	0	0	Cou	inter=Loa	ad Interr	upt Statu	IS				
								Indi	cates tha	it the co	unter has	s matche	ed the PI	WMnLO4	AD regis	ter.
	0		IntCnt	Zero	R	0	0	Cou	inter=0 Ir	nterrupt	Status					
								Indi	cates tha	t the co	unter has	s matche	ed 0.			

Register 19: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C Register 20: PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C Register 21: PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC

These registers provide the current set of interrupt sources that are asserted to the controller (**PWM0ISC** controls the PWM generator 0 block, and so on). Bits set to 1 indicate the latched events that have occurred; bits set to 0 indicate that the event in question has not occurred. These are R/W1C registers; writing a 1 to a bit position clears the corresponding interrupt reason.

PWM0 Interrupt Status and Clear (PWM0ISC)

Base 0x4002.8000

Offset 0x04C	
Type R/W1C,	reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						'		rese	erved			•				·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10001	15	14	13	12	11	10	0	8	7	6	5	4	3	2	1	0
]	10		1	1	rese	rved	, , ,		· · ·	Ŭ	IntCmpBD	IntCmpBU	IntCmpAD		IntCntLoad	IntCntZero
Turno	PO	PO	BO	PO		PO	PO	PO		PO	PAN/1C	BAN/1C	PAN/1C	DAN/1C	DAN/1C	BAN/1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:6		reser	ved	R	0	0x00	Sof	ware sho	ould not	rely on t	he value	of a res	erved bit	. To prov	/ide
								com	patibility	with fut	ure produ	ucts, the	value of	a reserv	ed bit sh	nould be
								pres	served ad	ross a r	ead-mod	any-write	operatio	on.		
	5		IntCm	pBD	R/V	V1C	0	Cor	nparator	B Down	Interrup	t				
								Indi	cates tha	t the co	unter has	s matche	ed the co	omparato	r B value	e while
			counting						nting dov	vn.						
	4		IntCm	pBU	R/V	V1C	0	Cor	nparator	B Up Int	terrupt					
								Indi	cates tha	t the co	unter has	s matche	ed the co	omparato	r B value	e while
								cou	nting up.							
	3		IntCm	pAD	R/V	V1C	0	Cor	nparator	A Down	Interrup	t				
								Indi	cates tha	t the co	unter has	s matche	ed the co	mparato	r A value	e while
								cou	nting dov	vn.						
	2		IntCm	pAU	R/V	V1C	0	Cor	nparator	A Up Inf	terrupt					
								Indi	cates tha	t the co	unter has	s matche	ed the co	mparato	r A value	e while
								cou	nting up.							
	1		IntCntl	Load	R/V	V1C	0	Cou	inter=Loa	ad Interr	upt					
								Indicates that the counter has matched the PWMnLOAD register.								
	0		IntCnt	Zero	R/W1C 0		Counter=0 Interrupt									
								Indi	cates tha	t the co	unter had	s matche	0 he			
								inui					.u.u.			

Register 22: PWM0 Load (PWM0LOAD), offset 0x050 Register 23: PWM1 Load (PWM1LOAD), offset 0x090 Register 24: PWM2 Load (PWM2LOAD), offset 0x0D0

These registers contain the load value for the PWM counter (**PWM0LOAD** controls the PWM generator 0 block, and so on). Based on the counter mode, either this value is loaded into the counter after it reaches zero, or it is the limit of up-counting after which the counter decrements back to zero.

If the Load Value Update mode is immediate, this value is used the next time the counter reaches zero; if the mode is synchronous, it is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 398). If this register is re-written before the actual update occurs, the previous value is never used and is lost.

PW	M0 Loa	d (PW	MOLOAD	D)												
Base Offse Type	e 0x4002. et 0x050 R/W, res	8000 et 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ı	1	r	1		1 1	rese	rved		r	T	1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	1	I	1		Ì	Lo	ad		I	1	1	Ì	Ĩ	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	⁰ Bit/Field	0	o Nan	0 ne	0 Ty	o pe	0 Reset	0 Des	0 cription	0	0	0	0	0	0	0
	31:16		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futi cross a r	rely on f ure prod ead-mo	he value ucts, the dify-write	e of a res value c e operat	served b of a resen ion.	bit. To pro	ovide should be
	15:0		Loa	d	R/	W	0	Cou	nter Loa	d Value						

Register 25: PWM0 Counter (PWM0COUNT), offset 0x054 Register 26: PWM1 Counter (PWM1COUNT), offset 0x094 Register 27: PWM2 Counter (PWM2COUNT), offset 0x0D4

These registers contain the current value of the PWM counter (**PWM0COUNT** is the value of the PWM generator 0 block, and so on). When this value matches the load register, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers, see page 417 and page 420) or drive an interrupt (via the **PWMnINTEN** register, see page 409). A pulse with the same capabilities is generated when this value is zero.

PWM0 Counter (PWM0COUNT)

Base Offse Type	0x4002.8 et 0x054 RO, rese	8000 t 0x0000.1	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Ĩ				г г	rese	erved		r	1	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	1	1				т т	Co	unt		I	I	1 1	ſ	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:16		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a resolution of a resolutio	erved bil a reserv on.	t. To prov ved bit sl	vide hould be
	15:0		Cou	nt	R	0	0x00	Cou	inter Valu	ie voluo of	the equi	ator				

Register 28: PWM0 Compare A (PWM0CMPA), offset 0x058 Register 29: PWM1 Compare A (PWM1CMPA), offset 0x098 Register 30: PWM2 Compare A (PWM2CMPA), offset 0x0D8

These registers contain a value to be compared against the counter (**PWM0CMPA** controls the PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers) or drive an interrupt (via the **PWMnINTEN** register). If the value of this register is greater than the **PWMnLOAD** register (see page 413), then no pulse is ever output.

If the comparator A update mode is immediate (based on the CmpAUpd bit in the **PWMnCTL** register), this 16-bit CompA value is used the next time the counter reaches zero. If the update mode is synchronous, it is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 398). If this register is rewritten before the actual update occurs, the previous value is never used and is lost.

Base Offse Type	0x4002.8 t 0x058 R/W, rese	8000 et 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1	1			r r	rese	erved	1	1	1	1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		1	1		r	т т	Cor	npA	1	1	1	1	1	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:16		reser	ved	R	0	0x00	Soft com pres	ware sho patibility served a	ould not with fut cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a res value of operatio	erved bit a reserv on.	: To prov ved bit sl	vide hould be
	15:0		Com	pА	R/	W	0x00	Con	nparator	A Value						
								The	value to	be com	pared ag	gainst the	e counte	r.		

PWM0 Compare A (PWM0CMPA)

Register 31: PWM0 Compare B (PWM0CMPB), offset 0x05C Register 32: PWM1 Compare B (PWM1CMPB), offset 0x09C Register 33: PWM2 Compare B (PWM2CMPB), offset 0x0DC

These registers contain a value to be compared against the counter (**PWM0CMPB** controls the PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this can drive the generation of a PWM signal (via the **PWMnGENA/PWMnGENB** registers) or drive an interrupt (via the **PWMnINTEN** register). If the value of this register is greater than the **PWMnLOAD** register, no pulse is ever output.

If the comparator B update mode is immediate (based on the CmpBUpd bit in the **PWMnCTL** register), this 16-bit CompB value is used the next time the counter reaches zero. If the update mode is synchronous, it is used the next time the counter reaches zero after a synchronous update has been requested through the **PWM Master Control (PWMCTL)** register (see page 398). If this register is rewritten before the actual update occurs, the previous value is never used and is lost.

Base Offse Type	0x4002.8 t 0x05C R/W, rese	000 et 0x000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1	1			т т	rese	erved	1	1	1	1	1		'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1	1		r	т г	Cor	n mpB	1	1	1	1 1	1	1	' _]
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:16		reser	ved	R	0	0x00	Soft com pres	tware sho patibility served ac	ould not with fut cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a res value of operation	erved bit a reserv on.	: To prov ved bit sl	vide hould be
	15:0		Com	рВ	R/	W	0x00	Con	nparator	B Value						
								The	value to	be com	pared ag	gainst the	e counte	r.		

PWM0 Compare B (PWM0CMPB)

Register 34: PWM0 Generator A Control (PWM0GENA), offset 0x060 Register 35: PWM1 Generator A Control (PWM1GENA), offset 0x0A0 Register 36: PWM2 Generator A Control (PWM2GENA), offset 0x0E0

These registers control the generation of the PWMnA signal based on the load and zero output pulses from the counter, as well as the compare A and compare B pulses from the comparators (**PWM0GENA** controls the PWM generator 0 block, and so on). When the counter is running in Count-Down mode, only four of these events occur; when running in Count-Up/Down mode, all six occur. These events provide great flexibility in the positioning and duty cycle of the PWM signal that is produced.

The **PWM0GENA** register controls generation of the PWM0A signal; **PWM1GENA**, the PWM1A signal; and **PWM2GENA**, the PWM2A signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is taken and the compare A or compare B action is ignored. If a compare A event coincides with a compare B event, the compare A action is taken and the compare B action is ignored.

Offse Type	t 0x060 R/W, rese	et 0x0000	.0000													
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1			1	1		rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[rese	rved		ActCr	I mpBD	ActCr	npBU	ActCr	npAD	ActCr	npAU	Actl	l ₋oad	Act	Zero
Type Reset	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:12		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not i with futu cross a re	rely on tl ire prodi ead-mod	he value ucts, the lify-write	of a resolution of a resolutio	erved bit a reserv on.	. To prov red bit sh	vide nould be
	11:10		ActCm	pBD	R/	W	0x0	Actio	on for Co	omparato	or B Dow	/n				
								The cour	action to	o be take vn.	n when	the cour	nter mato	hes com	parator	B while
								The	table be	low defir	nes the e	effect of t	the even	t on the	output si	gnal.
								Valu	ue Desc	ription						
								0x	0 Do n	othing.						
								0x	1 Inver	t the out	put signa	al.				
								0x	2 Set t	he outpu	t signal i	to 0.				
								0x	3 Set t	ne outpu	t signal i	to 1.				

PWM0 Generator A Control (PWM0GENA)

Base 0x4002.8000

9:8 ActCmpBU RW 0x0 Action for Comparator B Up The action to be taken when the counter matches comparator B while counting up. Occurs only when the Xode bit in the PWMnCTL register (see page 407) is set to 1. The action to be taken when the counter matches comparator B while counting up. Occurs only when the Xode bit in the PWMnCTL register (see page 407) is set to 1. 7:6 ActCmpAD RW 0x0 Action for Comparator A Down 7:6 ActCmpAD RW 0x0 Action for Comparator A Down 7:6 ActCmpAD RW 0x0 Action for Comparator A Down 7:6 ActCmpAD RW 0x0 Action for Comparator A Down 7:6 ActCmpAD RW 0x0 Action for Comparator A Down 7:6 ActCmpAD RW 0x0 Action for Comparator A Down 7:6 ActCmpAU RW 0x0 Action for Comparator A Down 7:6 ActCmpAU RW 0x0 Action for Comparator A Up 7:6 ActCmpAU RW 0x0 Action for Comparator A Up 7:4 ActCmpAU RW 0x0 Action for Counting up. Occurs only when the Xode bit in the PWMnCTL register is set to 1. 7:4	Bit/Field	Name	Туре	Reset	Description
5:4 ActCmpAU R/W 0x0 Action for Comparator A Up 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 0. 0x3 Set the output signal to 1. 0x0 Do nothing. 0x1 Invert the output signal. 0x1	9:8	ActCmpBU	R/W	0x0	Action for Comparator B Up
7.6 ActCmpAD R/W 0x0 Action for Comparator A Down 7.6 ActCmpAD R/W 0x0 Action for Comparator A Down 7.6 ActCmpAD R/W 0x0 Action for Comparator A Down The table below defines the effect of the event on the output signal to 0. 0x3 Set the output signal to 0. 7.6 ActCmpAD R/W 0x0 Action for Comparator A Down The table below defines the effect of the event on the output signal. 0x0 Do nothing. 0x1 Invert the output signal to 0. 0x3 Set the output signal to 0. 0x2 Set the output signal to 0. 0x3 Set the output signal to 0. 0x3 Set the output signal to 0. 0x3 Set the output signal to 0. 0x4 Invert the output signal to 0. 0x3 Set the output signal to 0. 0x5 Set the output signal to 1. Set the output signal to 1. Set the output signal to 1. 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up The able below defines the effect of the event on the output signal. 0x0 Do nothing. 0x1 Invert the output signal. 0x2 Set the output signal.					The action to be taken when the counter matches comparator B while counting up. Occurs only when the Mode bit in the PWMnCTL register (see page 407) is set to 1.
ValueDescription 0x0Do nothing. 0x1Invert the output signal to 0. 0x3Set the output signal to 0. 0x3Set the output signal to 1.7.6ActCmpADRW0x0Action for Comparator A Down The action to be taken when the counter matches comparator A while counting down. The table below defines the effect of the event on the output signal. 0x07.6ActCmpADRW0x0Action for Comparator A Down The action to be taken when the counter matches comparator A while counting down. The table below defines the effect of the event on the output signal. 0x05.4ActCmpAURW0x0Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the tode bit in the PWMNCTL register is set to 1.5.4ActCmpAURW0x0Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the tode bit in the PWMNCTL register is set to 1.5.4ActCmpAURW0x0Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the tode bit in the PWMNCTL register is set to 1.5.4ActCmpAURW0x0Action for Counter=Load The action to be taken when the counter matches the load value. DO nothing. DO					The table below defines the effect of the event on the output signal.
 bob Do nothing. Ox1 Invert the output signal. Ox2 Set the output signal to 0. Ox3 Set the output signal to 1. 7:6 ActCmpAD RW 0x0 Action for Comparator A Down The action to be taken when the counter matches comparator A while counting down. The table below defines the effect of the event on the output signal. Value Description Ox1 Invert the output signal to 0. Ox3 Set the output signal to 1. 5:4 ActCmpAU RW 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the stoce bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. Ox2 Set the output signal to 1. 5:4 ActCmpAU RW 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the stoce bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. Ox2 Do nothing. Ox1 Invert the output signal to 0. Ox3 Set the output signal to 0. Ox3 Set the output signal to 1. 3:2 ActLoad RW Ox0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. Value Description 					Value Description
 Nation of the output signal. Nation Set the output signal to 0. Nation Set the output signal to 1. ActCmpAD R/W Nation Set the output signal to 1. ActCmpAD R/W Nation Set the output signal to 1. The action to be taken when the counter matches comparator A while counting down. The table below defines the effect of the event on the output signal. Nation Set the output signal to 0. Nation Set the output signal to 1. ActCmpAU R/W ActCom for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. ActCmpAU R/W Nation Set the output signal to 0. Nation Set the output signal to 1. Station to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. Nation Set the output signal to 0. On onthing. Nation Set the output signal to 1. Station Set the output signal					0x0 Do nothing.
 b.2 Set the output signal to 0. b.3 Set the output signal to 1. 7.6 ActCmpAD R/W 0x0 Action for Comparator A Down The action to be taken when the counter matches comparator A while counting down. The table below defines the effect of the event on the output signal. Value Description 0x0 Do nothing. 0x1 Invert the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 1. 5.4 ActCmpAU R/W 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 1. 5.4 ActCmpAU R/W 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 0. 0x3 Set the output signal to 1. 3.2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 1. 					0x1 Invert the output signal.
 ActCmpAD RW 0x0 Action for Comparator A Down The action to be taken when the counter matches comparator A while counting down. The table below defines the effect of the event on the output signal. Value Description 0x0 Do nothing, 0x1 Invert the output signal to 0. 0x3 Set the output signal to 1. ActCmpAU RW 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 1. ActCmpAU RW 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal. 0x2 Set the output signal. 0x3 Set the output signal. 0x2 Set the output signal. 0x2 Set the output signal. 0x3 Set the output signal. 0x2 Set the output signal. 0x3 Set the output signal. 0x4 Set the output signal. 0x5 Set the output signal. 0x4 Set the output signal. 0x5 Set the o					0x2 Set the output signal to 0.
7.6 ActCmpAD R/W 0x0 Action for Comparator A Down The action to be taken when the counter matches comparator A while counting down. The table below defines the effect of the event on the output signal. Value Description 0x0 Do nothing. 0x1 invert the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 1. 0x3 Set the output signal to 1. 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 1. 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. 0x0 Do nothing. 0x1 Invert the output signal to 0. 0x2 Set the output signal to 0. 0x3 0x2 Set the output signal to 1. 0x2 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table					0x3 Set the output signal to 1.
5:4 ActCmpAU RW 0x0 Action for Comparator A Up 5:4 ActCmpAU RW 0x0 Action for Comparator A Up The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 1. The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWWINCTL register is set to 1. 5:4 ActCmpAU RW 0x0 Action for Comparator A Up The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 1. 5:4 ActCmpAU RW 0x0 Action for Comparator A Up The table below defines the effect of the event on the output signal. 0x0 Do nothing. 0x1 Invert the output signal. 0x0 Set the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal. 0x2 Set the output signal to 1. 0x3 Set the output signal to 0. 3:2 ActLoad RW 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The action to be taken when the counter matches the load value.	7:6	ActCmpAD	R/W	0x0	Action for Comparator A Down
5:4 ActCmpAU R/W 0x0 Action for Comparator A Up 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 1. 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. Value Description 0x0 Do nothing. 3:2 ActLoad R/W 0x0 Action for Counter=Load 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 1. 0. 0. 3:2 ActLoad R/W 0x0 Action for Counter=Load The table below defines the effect of the event on the output signal. The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. The action to be taken when the counter matches the load value					The action to be taken when the counter matches comparator A while counting down.
 Value Description 0x0 Do nothing. 0x1 Invert the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 1. 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. 0x0 Do nothing. 0x1 Invert the output signal. 0x2 Set the output signal to 0. 0x3 Do nothing. 0x1 Invert the output signal. 0x2 Set the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 0. 0x3 Set the output signal to 1. 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 1. 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. Value Description Value					The table below defines the effect of the event on the output signal.
 bx0 Do nothing. 0x1 Invert the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 1. 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. Value Description 0x0 Do nothing. 0x1 Invert the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 0. 0x3 Set the output signal to 1. 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 1. 					Value Description
 bx1 Invert the output signal. bx2 Set the output signal to 0. bx3 Set the output signal to 1. 5:4 ActCmpAU R/W 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. Value Description 0x0 Do nothing. 0x1 Invert the output signal to 0. 0x3 Set the output signal to 0. bx3 Set the output signal to 1. 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. 0x2 Set the output signal to 1. 					0x0 Do nothing.
 Set the output signal to 0. 3.2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. Value Description 0x1 Invert the output signal to 0. 0x3 Set the output signal to 0. 0x4 					0x1 Invert the output signal.
 5:4 ActCmpAU F:4 ActCmpAU R/W 0x0 Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. Value Description 0x0 Do nothing. 0x1 Invert the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 1. 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. 					0x2 Set the output signal to 0.
5:4ActCmpAUR/W0x0Action for Comparator A Up The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1. The table below defines the effect of the event on the output signal. Value Description 0x0Do nothing. 0x1 Invert the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 1.3:2ActLoadR/W0x0Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. 0x2 Value Description					0x3 Set the output signal to 1.
3:2 ActLoad R/W 0x0 Action for Counter=Load 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal.	5:4	ActCmpAU	R/W	0x0	Action for Comparator A Up
3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal.					The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1.
 Value Description 0x0 Do nothing. 0x1 Invert the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 1. 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. Value Description					The table below defines the effect of the event on the output signal.
 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. Value Description 					Value Description
0x1 Invert the output signal. 0x2 Set the output signal to 0. 0x3 Set the output signal to 1. 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. Value Description					0x0 Do nothing.
0x2 Set the output signal to 0. 0x3 Set the output signal to 1. 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. Value Description					0x1 Invert the output signal.
0x3 Set the output signal to 1. 3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. Value Description					0x2 Set the output signal to 0.
3:2 ActLoad R/W 0x0 Action for Counter=Load The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. Value Description					0x3 Set the output signal to 1.
The action to be taken when the counter matches the load value. The table below defines the effect of the event on the output signal. Value Description	3:2	ActLoad	R/W	0x0	Action for Counter=Load
The table below defines the effect of the event on the output signal. Value Description					The action to be taken when the counter matches the load value.
Value Description					The table below defines the effect of the event on the output signal.
					Value Description
0x0 Do nothing.					0x0 Do nothing.
0x1 Invert the output signal.					0x1 Invert the output signal.
0x2 Set the output signal to 0.					0x2 Set the output signal to 0.
0x3 Set the output signal to 1.					0x3 Set the output signal to 1.

Bit/Field	Name	Туре	Reset	Description
1:0	ActZero	R/W	0x0	Action for Counter=0 The action to be taken when the counter is zero.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.

Register 37: PWM0 Generator B Control (PWM0GENB), offset 0x064 Register 38: PWM1 Generator B Control (PWM1GENB), offset 0x0A4 Register 39: PWM2 Generator B Control (PWM2GENB), offset 0x0E4

These registers control the generation of the PWMnB signal based on the load and zero output pulses from the counter, as well as the compare A and compare B pulses from the comparators (**PWM0GENB** controls the PWM generator 0 block, and so on). When the counter is running in Down mode, only four of these events occur; when running in Up/Down mode, all six occur. These events provide great flexibility in the positioning and duty cycle of the PWM signal that is produced.

The **PWM0GENB** register controls generation of the **PWM0B** signal; **PWM1GENB**, the **PWM1B** signal; and **PWM2GENB**, the **PWM2B** signal.

If a zero or load event coincides with a compare A or compare B event, the zero or load action is taken and the compare A or compare B action is ignored. If a compare A event coincides with a compare B event, the compare B action is taken and the compare A action is ignored.

Offse Type	0x4002.d t 0x064 R/W, rese	et 0x0000	.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r					1		rese	erved							1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		rese	rved		ActCi	mpBD	ActCn	прBU	ActCr	npAD	ActCr	n mpAU	Actl	∟oad	Act	Zero
Type Reset	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:12 reserved			ved	R	RO 0x00 Software should not rely on the compatibility with future product preserved across a read-modify								erved bit a reserv on.	. To prov red bit sh	vide nould be
	11:10		ActCm	pBD	R/	W	0x0	Acti	on for Co	omparato	or B Dow	/n				
								The cou	action to	o be take vn.	en when	the cour	nter mato	hes com	parator	B while
								The	table be	low defir	nes the e	effect of t	the even	t on the	output si	gnal.
								Val	ue Desc	ription						
								0x	0 Do no	othing.						
								0x	1 Inver	t the out	put signa	al.				
								0x	2 Set th	ne outpu	t signal	to 0.				
								0x	3 Set th	ne outpu	t signal t	to 1.				

PWM0 Generator B Control (PWM0GENB)

Bit/Field	Name	Туре	Reset	Description
9:8	ActCmpBU	R/W	0x0	Action for Comparator B Up
				The action to be taken when the counter matches comparator B while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.
7:6	ActCmpAD	R/W	0x0	Action for Comparator A Down
				The action to be taken when the counter matches comparator A while counting down.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.
5:4	ActCmpAU	R/W	0x0	Action for Comparator A Up
				The action to be taken when the counter matches comparator A while counting up. Occurs only when the Mode bit in the PWMnCTL register is set to 1.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.
3:2	ActLoad	R/W	0x0	Action for Counter=Load
				The action to be taken when the counter matches the load value.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.

Bit/Field	Name	Туре	Reset	Description
1:0	ActZero	R/W	0x0	Action for Counter=0
				The action to be taken when the counter is 0.
				The table below defines the effect of the event on the output signal.
				Value Description
				0x0 Do nothing.
				0x1 Invert the output signal.
				0x2 Set the output signal to 0.
				0x3 Set the output signal to 1.

Register 40: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068 Register 41: PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8 Register 42: PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8

The **PWM0DBCTL** register controls the dead-band generator, which produces the PWM0 and PWM1 signals based on the PWM0A and PWM0B signals. When disabled, the PWM0A signal passes through to the PWM0 signal and the PWM0B signal passes through to the PWM1 signal. When enabled and inverting the resulting waveform, the PWM0B signal is ignored; the PWM0 signal is generated by delaying the rising edge(s) of the PWM0A signal by the value in the **PWM0DBRISE** register (see page 424), and the PWM1 signal is generated by delaying the falling edge(s) of the PWM0A signal by the value in the **PWM0DBFALL** register (see page 425). In a similar manner, PWM2 and PWM3 are produced from the PWM1A and PWM1B signals, and PWM4 and PWM5 are produced from the PWM2A and PWM2B signals.

Base Offse Type	0x4002.80 t 0x068 R/W, rese	000 t 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ						1 1	rese	rved	1		1	1 I		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ		1				, ,	reserved		I		1	1		1	Enable
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:1		reserv	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	ould not with futu cross a r	rely on t ure prod ead-mo	he value ucts, the dify-write	of a resolution of a resolutio	erved bil a reserv on.	t. To prov ved bit sl	vide nould be
	0		Enab	ole	R/	W	0	Dea	d-Band	Generate	or Enabl	е				
								Whe	en set, th	e dead-l	band ge	nerator ir	nserts de	ad band	ls into th	e output

signals; when clear, it simply passes the PWM signals through.

PWM0 Dead-Band Control (PWM0DBCTL)

July 26, 2008

Register 43: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C

Register 44: PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC

Register 45: PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset 0x0EC

The **PWM0DBRISE** register contains the number of clock ticks to delay the rising edge of the PWM0A signal when generating the PWM0 signal. If the dead-band generator is disabled through the **PWM0DBCTL** register, the **PWM0DBRISE** register is ignored. If the value of this register is larger than the width of a High pulse on the input PWM signal, the rising-edge delay consumes the entire High time of the signal, resulting in no High time on the output. Care must be taken to ensure that the input High time always exceeds the rising-edge delay. In a similar manner, PWM2 is generated from PWM1A with its rising edge delayed and PWM4 is produced from PWM2A with its rising edge delayed.

PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE)

Base 0x4002.8000 Offset 0x06C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1		1	,		1 1	rese	rved	1		1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		rese	rved	r			1 1		1	Risel	Delay	1	1 I			
Туре	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
									•							
	31:12		reser	ved	R	0	0x00	Soft com pres	ware shipatibility served a	ould not with futu cross a r	rely on t ure prodi ead-mod	he value ucts, the dify-write	of a resolution of a resolutio	erved bit a reserv on.	. To pro red bit s	ovide should be
	11:0		RiseD	elay	R/	W	0	Dea	d-Band	Rise Del	ay					
								The	number	of clock	ticks to	delay the	e rising e	dge.		

Register 46: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070

Register 47: PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0

Register 48: PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset 0x0F0

The **PWM0DBFALL** register contains the number of clock ticks to delay the falling edge of the PWM0A signal when generating the PWM1 signal. If the dead-band generator is disabled, this register is ignored. If the value of this register is larger than the width of a Low pulse on the input PWM signal, the falling-edge delay consumes the entire Low time of the signal, resulting in no Low time on the output. Care must be taken to ensure that the input Low time always exceeds the falling-edge delay. In a similar manner, PWM3 is generated from PWM1A with its falling edge delayed and PWM5 is produced from PWM2A with its falling edge delayed.

PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL)

Base Offse Type	0x4002.8 t 0x070 R/W, rese	8000 et 0x0000	.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r	T	ĩ		,		r 1	rese	rved							,
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ	reser	rved				г т		1	FallD	elay	I				
Туре	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	o Bit/Field	0	Nam	ie	0 Tyj	be	Reset	Des	cription	U	U	0	U	0	U	U
	31:12		reserv	ved	R	C	0x00	Soft com pres	ware sho patibility served ac	ould not i with futu cross a re	rely on ti ire prodi ead-mod	he value ucts, the lify-write	of a reso value of operatio	erved bit a reserv on.	. To prov ed bit sh	vide nould be
	11:0		FallDe	elay	R/	W	0x00	Dea	d-Band I	Fall Dela	у					
								The	number	of clock	ticks to	delay the	e falling e	edge.		

17 Quadrature Encoder Interface (QEI)

A quadrature encoder, also known as a 2-channel incremental encoder, converts linear displacement into a pulse signal. By monitoring both the number of pulses and the relative phase of the two signals, you can track the position, direction of rotation, and speed. In addition, a third channel, or index signal, can be used to reset the position counter.

The Stellaris[®] quadrature encoder interface (QEI) module interprets the code produced by a quadrature encoder wheel to integrate position over time and determine direction of rotation. In addition, it can capture a running estimate of the velocity of the encoder wheel.

The Stellaris[®] quadrature encoder has the following features:

- Position integrator that tracks the encoder position
- Velocity capture using built-in timer
- Interrupt generation on:
 - Index pulse
 - Velocity-timer expiration
 - Direction change
 - Quadrature error detection

17.1 Block Diagram

Figure 17-1 on page 426 provides a block diagram of a Stellaris[®] QEI module.

Figure 17-1. QEI Block Diagram

17.2 Functional Description

The QEI module interprets the two-bit gray code produced by a quadrature encoder wheel to integrate position over time and determine direction of rotation. In addition, it can capture a running estimate of the velocity of the encoder wheel.

The position integrator and velocity capture can be independently enabled, though the position integrator must be enabled before the velocity capture can be enabled. The two phase signals, PhA and PhB, can be swapped before being interpreted by the QEI module to change the meaning of forward and backward, and to correct for miswiring of the system. Alternatively, the phase signals can be interpreted as a clock and direction signal as output by some encoders.

The QEI module supports two modes of signal operation: quadrature phase mode and clock/direction mode. In quadrature phase mode, the encoder produces two clocks that are 90 degrees out of phase; the edge relationship is used to determine the direction of rotation. In clock/direction mode, the encoder produces a clock signal to indicate steps and a direction signal to indicate the direction of rotation. This mode is determined by the SigMode bit of the **QEI Control (QEICTL)** register (see page 431).

When the QEI module is set to use the quadrature phase mode (SigMode bit equals zero), the capture mode for the position integrator can be set to update the position counter on every edge of the PhA signal or to update on every edge of both PhA and PhB. Updating the position counter on every PhA and PhB provides more positional resolution at the cost of less range in the positional counter.

When edges on PhA lead edges on PhB, the position counter is incremented. When edges on PhB lead edges on PhA, the position counter is decremented. When a rising and falling edge pair is seen on one of the phases without any edges on the other, the direction of rotation has changed.

The positional counter is automatically reset on one of two conditions: sensing the index pulse or reaching the maximum position value. Which mode is determined by the ResMode bit of the **QEI Control (QEICTL)** register.

When ResMode is 0, the positional counter is reset when the index pulse is sensed. This limits the positional counter to the values [0:N-1], where N is the number of phase edges in a full revolution of the encoder wheel. The **QEIMAXPOS** register must be programmed with N-1 so that the reverse direction from position 0 can move the position counter to N-1. In this mode, the position register contains the absolute position of the encoder relative to the index (or home) position once an index pulse has been seen.

When ResMode is 1, the positional counter is constrained to the range [0:M], where M is the programmable maximum value. The index pulse is ignored by the positional counter in this mode.

The velocity capture has a configurable timer and a count register. It counts the number of phase edges (using the same configuration as for the position integrator) in a given time period. The edge count from the previous time period is available to the controller via the **QEISPEED** register, while the edge count for the current time period is being accumulated in the **QEICOUNT** register. As soon as the current time period is complete, the total number of edges counted in that time period is made available in the **QEISPEED** register (losing the previous value), the **QEICOUNT** is reset to 0, and counting commences on a new time period. The number of edges counted in a given time period is directly proportional to the velocity of the encoder.

Figure 17-2 on page 428 shows how the Stellaris[®] quadrature encoder converts the phase input signals into clock pulses, the direction signal, and how the velocity predivider operates (in Divide by 4 mode).

PhA			1					
PhB								
clk							uuu	
clkdiv				∏				Γ
dir								
pos	-1 -1 -1 -	1 -1 -1 -1	-1 -1	+1 $+1$ $+1$ $+1$ $+1$ $+1$ $+$	1 +1 +1	-1 -1 -1 -1 -1	-1 -1 -1 -1	-1 -1 -1 -1 -1 -1
rel	+1	+1	+1	+1	+1	+1	+1	+1

Figure 17-2. Quadrature Encoder and Velocity Predivider Operation

The period of the timer is configurable by specifying the load value for the timer in the **QEILOAD** register. When the timer reaches zero, an interrupt can be triggered, and the hardware reloads the timer with the **QEILOAD** value and continues to count down. At lower encoder speeds, a longer timer period is needed to be able to capture enough edges to have a meaningful result. At higher encoder speeds, both a shorter timer period and/or the velocity predivider can be used.

The following equation converts the velocity counter value into an rpm value:

rpm = (clock * (2 ^ VelDiv) * Speed * 60) ÷ (Load * ppr * edges)

where:

clock is the controller clock rate

ppr is the number of pulses per revolution of the physical encoder

edges is 2 or 4, based on the capture mode set in the **QEICTL** register (2 for CapMode set to 0 and 4 for CapMode set to 1)

For example, consider a motor running at 600 rpm. A 2048 pulse per revolution quadrature encoder is attached to the motor, producing 8192 phase edges per revolution. With a velocity predivider of ÷1 (VelDiv set to 0) and clocking on both PhA and PhB edges, this results in 81,920 pulses per second (the motor turns 10 times per second). If the timer were clocked at 10,000 Hz, and the load value was 2,500 (¼ of a second), it would count 20,480 pulses per update. Using the above equation:

rpm = (10000 * 1 * 20480 * 60) ÷ (2500 * 2048 * 4) = 600 rpm

Now, consider that the motor is sped up to 3000 rpm. This results in 409,600 pulses per second, or 102,400 every $\frac{1}{4}$ of a second. Again, the above equation gives:

rpm = (10000 * 1 * 102400 * 60) ÷ (2500 * 2048 * 4) = 3000 rpm

Care must be taken when evaluating this equation since intermediate values may exceed the capacity of a 32-bit integer. In the above examples, the clock is 10,000 and the divider is 2,500; both could be predivided by 100 (at compile time if they are constants) and therefore be 100 and 25. In fact, if they were compile-time constants, they could also be reduced to a simple multiply by 4, cancelled by the \div 4 for the edge-count factor.

Important: Reducing constant factors at compile time is the best way to control the intermediate values of this equation, as well as reducing the processing requirement of computing this equation.

The division can be avoided by selecting a timer load value such that the divisor is a power of 2; a simple shift can therefore be done in place of the division. For encoders with a power of 2 pulses per revolution, this is a simple matter of selecting a power of 2 load value. For other encoders, a load value must be selected such that the product is very close to a power of two. For example, a 100 pulse per revolution encoder could use a load value of 82, resulting in 32,800 as the divisor,

which is 0.09% above 2¹⁴; in this case a shift by 15 would be an adequate approximation of the divide in most cases. If absolute accuracy were required, the controller's divide instruction could be used.

The QEI module can produce a controller interrupt on several events: phase error, direction change, reception of the index pulse, and expiration of the velocity timer. Standard masking, raw interrupt status, interrupt status, and interrupt clear capabilities are provided.

17.3 Initialization and Configuration

The following example shows how to configure the Quadrature Encoder module to read back an absolute position:

- 1. Enable the QEI clock by writing a value of 0x0000.0100 to the **RCGC1** register in the System Control module.
- 2. Enable the clock to the appropriate GPIO module via the **RCGC2** register in the System Control module.
- 3. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register.
- 4. Configure the quadrature encoder to capture edges on both signals and maintain an absolute position by resetting on index pulses. Using a 1000-line encoder at four edges per line, there are 4000 pulses per revolution; therefore, set the maximum position to 3999 (0xF9F) since the count is zero-based.
 - Write the **QEICTL** register with the value of 0x0000.0018.
 - Write the **QEIMAXPOS** register with the value of 0x0000.0F9F.
- 5. Enable the quadrature encoder by setting bit 0 of the **QEICTL** register.
- 6. Delay for some time.
- 7. Read the encoder position by reading the **QEIPOS** register value.

17.4 Register Map

Table 17-1 on page 429 lists the QEI registers. The offset listed is a hexadecimal increment to the register's address, relative to the module's base address:

QEI0: 0x4002.C000

Table 17-	1. QEI	Register	Мар
-----------	--------	----------	-----

Offset	Name	Туре	Reset	Description	See page
0x000	QEICTL	R/W	0x0000.0000	QEI Control	431
0x004	QEISTAT	RO	0x0000.0000	QEI Status	433
0x008	QEIPOS	R/W	0x0000.0000	QEI Position	434
0x00C	QEIMAXPOS	R/W	0x0000.0000	QEI Maximum Position	435
0x010	QEILOAD	R/W	0x0000.0000	QEI Timer Load	436

Offset	Name	Туре	Reset	Description	See page
0x014	QEITIME	RO	0x0000.0000	QEI Timer	437
0x018	QEICOUNT	RO	0x0000.0000	QEI Velocity Counter	438
0x01C	QEISPEED	RO	0x0000.0000	QEI Velocity	439
0x020	QEIINTEN	R/W	0x0000.0000	QEI Interrupt Enable	440
0x024	QEIRIS	RO	0x0000.0000	QEI Raw Interrupt Status	441
0x028	QEIISC	R/W1C	0x0000.0000	QEI Interrupt Status and Clear	442

17.5 Register Descriptions

The remainder of this section lists and describes the QEI registers, in numerical order by address offset.

Register 1: QEI Control (QEICTL), offset 0x000

This register contains the configuration of the QEI module. Separate enables are provided for the quadrature encoder and the velocity capture blocks; the quadrature encoder must be enabled in order to capture the velocity, but the velocity does not need to be captured in applications that do not need it. The phase signal interpretation, phase swap, Position Update mode, Position Reset mode, and velocity predivider are all set via this register.

QEI	Contro	I (QEICI	۲L)																
QEI0 Offse Type	base: 0x et 0x000 R/W, res	4002.C000) 0000																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
		1 1					1 1	rese	rved	ľ		1		г т					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
		reserved		STALLEN	INVI	INVB	INVA		VelDiv		VelEn	ResMode	CapMode	SigMode	Swap	Enable			
Type Reset	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0			
E	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription										
	31:13		reser	ved	R	0	0x00	Soft com pres	ware sho patibility served ac	with futu ross a re	rely on t ire prod ead-mod	he value ucts, the dify-write	of a reso value of operatio	erved bit. a reserv on.	. To prov ed bit sł	vide nould be			
	12		STAL	LEN	R/	W	0	Stal	I QEI										
	12 STALLEN KV							Whe	en set, th	e QEI st	QEI stalls when the microcontroller asserts Halt.								
	11 INVI			R/	W	0	Inve	Invert Index Pulse											
								Whe	en set , th	ne input	Index P	ulse is in	verted.						
	10		INV	/B	R/	W	0	Inve	ert PhB										
								Whe	en set, th	e PhB in									
	9		IN\	/Α	R/	W	0	Inve	ert PhA										
								Whe	en set, th	e PhA in	put is in	verted.							
	8:6		Vel	Div	R/	W	0x0	Prec	divide Ve	locity									
								A pr QEI	edivider COUNT a	of the in accumul	put quad ator. Th	drature p is field ca	ulses be an be se	fore bein t to the fo	ig applie ollowing	d to the values:			
								Valu	ue Predi	vider									
								0x	0 ÷	1									
								0x	1 ÷:	2									
								0x	2 ÷	4									
								0x	3 ÷	8									
								0x	4 ÷1	6									
								0x	5 ÷3	32									
								0x	6 ÷6	64									
								0x	7 ÷1	28									

Preliminary

Bit/Field	Name	Туре	Reset	Description
5	VelEn	R/W	0	Capture Velocity
				When set, enables capture of the velocity of the quadrature encoder.
4	ResMode	R/W	0	Reset Mode
				The Reset mode for the position counter. When 0, the position counter is reset when it reaches the maximum; when 1, the position counter is reset when the index pulse is captured.
3	CapMode	R/W	0	Capture Mode
				The Capture mode defines the phase edges that are counted in the position. When 0, only the PhA edges are counted; when 1, the PhA and PhB edges are counted, providing twice the positional resolution but half the range.
2	SigMode	R/W	0	Signal Mode
				When 1, the PhA and PhB signals are clock and direction; when 0, they are quadrature phase signals.
1	Swap	R/W	0	Swap Signals
				Swaps the PhA and PhB signals.
0	Enable	R/W	0	Enable QEI
				Enables the quadrature encoder module.

432
Register 2: QEI Status (QEISTAT), offset 0x004

This register provides status about the operation of the QEI module.

QEI QEI0 Offse	ET STATUS (QEISTAT) E10 base: 0x4002.C000 fset 0x004															
Туре	RO, rese	t 0x0000.	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•			1		1		rese	rved		•	•	· ·			
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Resei	0	U	0	0	0	0	0	0	0	0	0	U	0	0	0	0
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					1		reser	ved	1				1		Direction	Error
Type Reset	RO	RO 0	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO 0	RO	RO	RO	RO
Reser	0	0	U	0	0	Ū	0	0	U	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
Bit/Field Name Type Reset Description 31:2 reserved RO 0x00 Software should r compatibility with preserved across									ould not with futi cross a r	rely on ti ure produ ead-mod	he value ucts, the lify-write	of a rese value of operatio	erved bit a reserv n.	t. To prov ved bit sh	ide ould be	
	1		Direct	tion	R	0	0	Dire	ction of I	Rotation						
								Indio	cates the	e directio	n the en	coder is	rotating.			
								The	Direct	ion val	ues are o	defined a	as follows	3:		
								Valu	ue Desc	ription						
								0	Forw	ard rotat	tion					
								1	Reve	erse rota	tion					
	0		Erro	or	R	0	0	Erro	r Detect	ed						
								India both	cates that signals	it an erro changin	or was de g at the	etected in same tin	n the gray ne).	/ code s	equence	(that is,

Register 3: QEI Position (QEIPOS), offset 0x008

This register contains the current value of the position integrator. Its value is updated by inputs on the QEI phase inputs, and can be set to a specific value by writing to it.

Register 4: QEI Maximum Position (QEIMAXPOS), offset 0x00C

This register contains the maximum value of the position integrator. When moving forward, the position register resets to zero when it increments past this value. When moving backward, the position register resets to this value when it decrements from zero.

QEI Maximum Position (QEIMAXPOS)

QEI0 Offse Type	base: 0x4 t 0x00C R/W, rese	4002.C00 et 0x0000)0).0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Î		1	I	1		1 1	Max	l (Pos	1	1	I	r 1	1		
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	I	1	ſ	1 1	Max	r Pos	I	ſ	I	1	1	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	8it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:0		MaxF	Pos	R/	W	0x00	Max	imum P	osition In	itegrator	Value				
								The	maximu	ım value	of the p	osition in	tegrator.			

July 26, 2008

QEI Timer Load (QEILOAD)

Register 5: QEI Timer Load (QEILOAD), offset 0x010

This register contains the load value for the velocity timer. Since this value is loaded into the timer the clock cycle after the timer is zero, this value should be one less than the number of clocks in the desired period. So, for example, to have 2000 clocks per timer period, this register should contain 1999.

QEI0 Offse Type	base: 0x t 0x010 R/W, res	4002.C00 et 0x0000	00 0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I	1	I	1	Ĩ	1 1	Lo	ad			I			1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	•	•		•		Lo	ad			•			•	'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:0		Loa	d	R	W	0x00	Velo	city Time	er Load V	Value					
								The	load val	ue for th	e velocit	y timer.				

436

Register 6: QEI Timer (QEITIME), offset 0x014

This register contains the current value of the velocity timer. This counter does not increment when VelEn in **QEICTL** is 0.

Register 7: QEI Velocity Counter (QEICOUNT), offset 0x018

This register contains the running count of velocity pulses for the current time period. Since this is a running total, the time period to which it applies cannot be known with precision (that is, a read of this register does not necessarily correspond to the time returned by the **QEITIME** register since there is a small window of time between the two reads, during which time either value may have changed). The **QEISPEED** register should be used to determine the actual encoder velocity; this register is provided for information purposes only. This counter does not increment when VelEn in QEICTL is 0.

QEI Velocity Counter (QEICOUNT)

QEI0 base: 0x4002.C000 Offset 0x018

Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1						і I	Co	unt	r					1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					I I		1 1	Co	unt	I	1				1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:0		Cou	nt	R	0	0x00	Velc	city Puls	e Count						

Velocity Pulse Count

The running total of encoder pulses during this velocity timer period.

Register 8: QEI Velocity (QEISPEED), offset 0x01C

This register contains the most recently measured velocity of the quadrature encoder. This corresponds to the number of velocity pulses counted in the previous velocity timer period. This register does not update when VelEn in **QEICTL** is 0.

QEI0 Offse Type	base: 0 t 0x01C RO, res)x4002.C ; set 0x000	000	_,												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	ſ		T	1 1	Sp	l eed	T	r	T	1 1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	1	1	1 1	Sp	l eed	1	I	1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field	Ł	Na	ame	Ту	/pe	Reset	Des	scription							
	31:0		Sp	beed	F	80	0x00	Velo	ocity							
								The	measu	ed spee	d of the	quadratu	re enco	der in pı	ulses per	period.

QEI Velocity (QEISPEED)

Register 9: QEI Interrupt Enable (QEIINTEN), offset 0x020

This register contains enables for each of the QEI module's interrupts. An interrupt is asserted to the controller if its corresponding bit in this register is set to 1.

QEI QEI0 Offse Type	Interrup base: 0x4 t 0x020 R/W, rese	ot Enab 1002.C00	le (QEI 0 .0000	INTEN)												
71	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ						1 1	rese	rved		1		í		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'					res	erved				1	•	IntError	IntDir	IntTimer	IntIndex
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	8it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:4		reserv	Name Type Reset Description served RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.									ride Iould be			
	3		IntEr	or	R/	W	0	Pha Whe	se Error l en 1, an i	Interrup nterrupt	t Enable occurs v	when a p	hase err	or is def	ected.	
	2		IntD	ir	R/	W	0	Dire	ction Cha	ange Int	errupt E	nable	directio	n chang	96	
When 1, an interrupt occurs when the direction changes. 1 IntTimer R/W 0 Timer Expires Interrupt Enable																
0 Intindex R/W 0 Index						en 1, an i ex Pulse I	nterrupt Detecte	occurs v d Interru	when the pt Enable	e velocity	timer ex	xpires.				
								Whe	en 1, an i	nterrupt	occurs	when the	e index p	ulse is d	etected.	

440

Register 10: QEI Raw Interrupt Status (QEIRIS), offset 0x024

This register provides the current set of interrupt sources that are asserted, regardless of whether they cause an interrupt to be asserted to the controller (this is set through the **QEIINTEN** register). Bits set to 1 indicate the latched events that have occurred; a zero bit indicates that the event in question has not occurred.

QEI Raw Interrupt Status (QEIRIS)

QEI0 base: 0x4002.C000

Offset 0x024 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1		1 1	rese	rved		r	1	· · · ·		1	
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	U	0	0	U	U	0	U	U	U	0	U	0	0	0	U	U
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						res	erved						IntError	IntDir	IntTimer	IntIndex
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nar	me	Ту	ре	Reset	Des	cription							
	31:4		reser	rved	R	0	0x00	Soft com pres	ware sho patibility erved ac	ould not with futu cross a r	rely on f ure prod ead-mo	the value ucts, the dify-write	of a rese value of operation	erved bi a reserv n.	t. To prov /ed bit sh	vide nould be
	3		IntE	rror	R	0	0	Pha: Indic	se Error cates tha	Detecte t a phas	d e error v	was dete	cted.			
	2		Int[Dir	R	0	0	Dire India	ction Cha	ange De It the dire	etected	as chang	ed.			
	1		IntTi	mer	R	0	0	Velo India	city Time	er Expire	ed locity tim	ner has e	xpired.			
	0		IntIn	dex	R	0	0	Inde	x Pulse	Asserted	d lex pulse	e has occ	curred			

Register 11: QEI Interrupt Status and Clear (QEIISC), offset 0x028

This register provides the current set of interrupt sources that are asserted to the controller. Bits set to 1 indicate the latched events that have occurred; a zero bit indicates that the event in question has not occurred. This is a R/W1C register; writing a 1 to a bit position clears the corresponding interrupt reason.

QEI Interrupt Status and Clear (QEIISC)

QEI0 base: 0x4002.C000

Offset 0x028 Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1		1		rese	rved			1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	•		res	erved						IntError	IntDir	IntTimer	IntIndex
Type Reset	RO 0	RO 0	RO	RO	RO	RO 0	RO	RO	RO	RO	RO 0	RO 0	R/W1C	R/W1C	R/W1C	R/W1C
Reser	0	0	0	0	0	0	Ū	0	0	0	0	0	Ū	0	0	0
E	Bit/Field		Nan	ne	Τv	pe	Reset	Des	cription							
					,				•							
	31:4		reser	ved	R	0	0x00	Soft	ware sho	ould not	rely on t	he value	of a res	erved bit	. To prov	ride
								com pres	erved a	cross a r	ead-mo	ucts, the dify-write	operatic	a reserv on.	'ed dit sr	iouia be
	3		IntEr	rror	R/V	V1C	0	Pha	se Error	Interrupt	t					
								Indio	cates tha	at a phas	e error v	was dete	cted.			
							_									
	2		IntL	Dir	R/V	V1C	0	Dire	ction Ch	ange Int	errupt					
								Indic	cates that	at the dire	ection ha	as chang	jed.			
	1		IntTir	mer	R/V	V1C	0	Velo	city Time	er Expire	ed Interro	upt				
								India	nates the	' ha val	ocity tim	' Ior has o	vnirod			
								mun			oony in		vhileu.			
	0		Intine	dex	R/V	V1C	0	Inde	x Pulse	Interrupt						
								Indio	cates that	at the ind	ex pulse	e has occ	curred.			

18 Pin Diagram

The LM3S1620 microcontroller pin diagrams are shown below.

Figure 18-1. 100-Pin LQFP Package Pin Diagram

LM3S1620

19 Signal Tables

The following tables list the signals available for each pin. Functionality is enabled by software with the **GPIOAFSEL** register.

Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7 and PC[3:0]) which default to the JTAG functionality.

Table 19-1 on page 445 shows the pin-to-signal-name mapping, including functional characteristics of the signals. Table 19-2 on page 449 lists the signals in alphabetical order by signal name.

Table 19-3 on page 454 groups the signals by functionality, except for GPIOs. Table 19-4 on page 456 lists the GPIO pins and their alternate functionality.

19.1 100-Pin LQFP Package Pin Tables

Pin Number	Pin Name	Pin Type	Buffer Type	Description
1	PE7	I/O	TTL	GPIO port E bit 7
	PWM5	0	TTL	PWM 5
2	PE6	I/O	TTL	GPIO port E bit 6
	PWM4	0	TTL	PWM 4
3	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
4	GNDA	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
5	PE5	I/O	TTL	GPIO port E bit 5
6	PE4	I/O	TTL	GPIO port E bit 4
7	LDO	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
8	VDD	-	Power	Positive supply for I/O and some logic.
9	GND	-	Power	Ground reference for logic and I/O pins.
10	PDO	I/O	TTL	GPIO port D bit 0
	PWMO	0	TTL	PWM 0
11	PD1	I/O	TTL	GPIO port D bit 1
	PWM1	0	TTL	PWM 1
12	PD2	I/O	TTL	GPIO port D bit 2
	UlRx	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.

Table 19-1. Signals by Pin Number

Pin Number	Pin Name	Pin Type	Buffer Type	Description
13	PD3	I/O	TTL	GPIO port D bit 3
	UlTx	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
14	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
15	GND	-	Power	Ground reference for logic and I/O pins.
16	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
17	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
18	PG1	I/O	TTL	GPIO port G bit 1
19	PG0	I/O	TTL	GPIO port G bit 0
20	VDD	-	Power	Positive supply for I/O and some logic.
21	GND	-	Power	Ground reference for logic and I/O pins.
22	PC7	I/O	TTL	GPIO port C bit 7
	C2-	I	Analog	Analog comparator 2 negative input
23	PC6	I/O	TTL	GPIO port C bit 6
	C2+	I	Analog	Analog comparator positive input
24	PC5	I/O	TTL	GPIO port C bit 5
	C1+	I	Analog	Analog comparator positive input
25	PC4	I/O	TTL	GPIO port C bit 4
	PhA0	I	TTL	QEI module 0 Phase A
26	PAO	I/O	TTL	GPIO port A bit 0
	UORx	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
27	PA1	I/O	TTL	GPIO port A bit 1
	UOTx	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
28	PA2	I/O	TTL	GPIO port A bit 2
	SSIOClk	I/O	TTL	SSI module 0 clock
29	PA3	I/O	TTL	GPIO port A bit 3
	SSIOFss	I/O	TTL	SSI module 0 frame
30	PA4	I/O	TTL	GPIO port A bit 4
	SSIORx	I	TTL	SSI module 0 receive
31	PA5	I/O	TTL	GPIO port A bit 5
	SSIOTx	0	TTL	SSI module 0 transmit
32	VDD	-	Power	Positive supply for I/O and some logic.
33	GND	-	Power	Ground reference for logic and I/O pins.
34	PA6	I/O	TTL	GPIO port A bit 6
	CCP1	I/O	TTL	Capture/Compare/PWM 1
35	PA7	I/O	TTL	GPIO port A bit 7
36	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
37	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
38	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
39	GND	-	Power	Ground reference for logic and I/O pins.
40	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
41	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
42	PF7	I/O	TTL	GPIO port F bit 7
43	PF6	I/O	TTL	GPIO port F bit 6
44	VDD	-	Power	Positive supply for I/O and some logic.
45	GND	-	Power	Ground reference for logic and I/O pins.
46	PF5	I/O	TTL	GPIO port F bit 5
	Clo	0	TTL	Analog comparator 1 output
47	PF0	I/O	TTL	GPIO port F bit 0
	PhB0	I	TTL	QEI module 1 Phase B
48	OSC0	I	Analog	Main oscillator crystal input or an external clock reference input.
49	OSC1	0	Analog	Main oscillator crystal output.
50	WAKE	I	-	An external input that brings the processor out of hibernate mode when asserted.
51	HIB	0	TTL	An output that indicates the processor is in hibernate mode.
52	XOSC0	I	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
53	XOSC1	0	Analog	Hibernation Module oscillator crystal output.
54	GND	-	Power	Ground reference for logic and I/O pins.
55	VBAT	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
56	VDD	-	Power	Positive supply for I/O and some logic.
57	GND	-	Power	Ground reference for logic and I/O pins.
58	PF4	I/O	TTL	GPIO port F bit 4
	COo	0	TTL	Analog comparator 0 output
59	PF3	I/O	TTL	GPIO port F bit 3
60	PF2	I/O	TTL	GPIO port F bit 2
61	PF1	I/O	TTL	GPIO port F bit 1
62	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
63	GND	-	Power	Ground reference for logic and I/O pins.
64	RST	I	TTL	System reset input.
65	CMOD0	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
66	PB0	I/O	TTL	GPIO port B bit 0
	CCP0	I/O	TTL	Capture/Compare/PWM 0
67	PB1	I/O	TTL	GPIO port B bit 1
	CCP2	I/O	TTL	Capture/Compare/PWM 2
68	VDD	-	Power	Positive supply for I/O and some logic.
69	GND	-	Power	Ground reference for logic and I/O pins.
70	PB2	I/O	TTL	GPIO port B bit 2
	I2C0SCL	I/O	OD	I2C module 0 clock
71	PB3	I/O	TTL	GPIO port B bit 3
	I2C0SDA	I/O	OD	I2C module 0 data
72	PEO	I/O	TTL	GPIO port E bit 0
	SSI1Clk	I/O	TTL	SSI module 1 clock
73	PE1	I/O	TTL	GPIO port E bit 1
	SSI1Fss	I/O	TTL	SSI module 1 frame
74	PE2	I/O	TTL	GPIO port E bit 2
	SSI1Rx	I	TTL	SSI module 1 receive
75	PE3	I/O	TTL	GPIO port E bit 3
	SSI1Tx	0	TTL	SSI module 1 transmit
76	CMOD1	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
77	PC3	I/O	TTL	GPIO port C bit 3
	TDO	0	TTL	JTAG TDO and SWO
	SWO	0	TTL	JTAG TDO and SWO
78	PC2	I/O	TTL	GPIO port C bit 2
	TDI	I	TTL	JTAG TDI
79	PC1	I/O	TTL	GPIO port C bit 1
	TMS	I/O	TTL	JTAG TMS and SWDIO
	SWDIO	I/O	TTL	JTAG TMS and SWDIO
80	PC0	I/O	TTL	GPIO port C bit 0
	TCK	I	TTL	JTAG/SWD CLK
	SWCLK	I	TTL	JTAG/SWD CLK
81	VDD	-	Power	Positive supply for I/O and some logic.
82	GND	-	Power	Ground reference for logic and I/O pins.
83	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
84	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
85	PH1	I/O	TTL	GPIO port H bit 1
	PWM3	0	TTL	PWM 3

Pin Number	Pin Name	Pin Type	Buffer Type	Description
86	PH0	I/O	TTL	GPIO port H bit 0
	PWM2	0	TTL	PWM 2
87	GND	-	Power	Ground reference for logic and I/O pins.
88	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
89	PB7	I/O	TTL	GPIO port B bit 7
	TRST	I	TTL	JTAG TRSTn
90	PB6	I/O	TTL	GPIO port B bit 6
	C0+	I	Analog	Analog comparator 0 positive input
91	PB5	I/O	TTL	GPIO port B bit 5
	C1-	I	Analog	Analog comparator 1 negative input
92	PB4	I/O	TTL	GPIO port B bit 4
	C0-	I	Analog	Analog comparator 0 negative input
93	VDD	-	Power	Positive supply for I/O and some logic.
94	GND	-	Power	Ground reference for logic and I/O pins.
95	PD4	I/O	TTL	GPIO port D bit 4
	CCP3	I/O	TTL	Capture/Compare/PWM 3
96	PD5	I/O	TTL	GPIO port D bit 5
97	GNDA	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
98	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
99	PD6	I/O	TTL	GPIO port D bit 6
	Fault	I	TTL	PWM Fault
100	PD7	I/O	TTL	GPIO port D bit 7
	IDX0	I	TTL	QEI module 0 index

Table 19-2. Signals by Signal Name

Pin Name	Pin Number	Pin Type	Buffer Type	Description
C0+	90	I	Analog	Analog comparator 0 positive input
C0-	92	I	Analog	Analog comparator 0 negative input
COo	58	0	TTL	Analog comparator 0 output
C1+	24	I	Analog	Analog comparator positive input
C1-	91	I	Analog	Analog comparator 1 negative input
Clo	46	0	TTL	Analog comparator 1 output
C2+	23	I	Analog	Analog comparator positive input
C2-	22	I	Analog	Analog comparator 2 negative input
CCP0	66	I/O	TTL	Capture/Compare/PWM 0

Pin Name	Pin Number	Pin Type	Buffer Type	Description	
CCP1	34	I/O	TTL	Capture/Compare/PWM 1	
CCP2	67	I/O	TTL	Capture/Compare/PWM 2	
CCP3	95	I/O	TTL	Capture/Compare/PWM 3	
CMOD0	65	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.	
CMOD1	76	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.	
Fault	99	I	TTL	PWM Fault	
GND	9	-	Power	Ground reference for logic and I/O pins.	
GND	15	-	Power	Ground reference for logic and I/O pins.	
GND	21	-	Power	Ground reference for logic and I/O pins.	
GND	33	-	Power	Ground reference for logic and I/O pins.	
GND	39	-	Power	Ground reference for logic and I/O pins.	
GND	45	-	Power	Ground reference for logic and I/O pins.	
GND	54	-	Power	Ground reference for logic and I/O pins.	
GND	57	-	Power	Ground reference for logic and I/O pins.	
GND	63	-	Power	Ground reference for logic and I/O pins.	
GND	69	-	Power	Ground reference for logic and I/O pins.	
GND	82	-	Power	Ground reference for logic and I/O pins.	
GND	87	-	Power	Ground reference for logic and I/O pins.	
GND	94	-	Power	Ground reference for logic and I/O pins.	
GNDA	4	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.	
GNDA	97	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.	
HIB	51	0	TTL	An output that indicates the processor is in hibernate mode.	
I2C0SCL	70	I/O	OD	I2C module 0 clock	
I2C0SDA	71	I/O	OD	I2C module 0 data	
IDX0	100	I	TTL	QEI module 0 index	
LDO	7	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 µF or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).	
NC	16	-	-	No connect. Leave the pin electrically unconnected/isolated.	
NC	17	-	-	No connect. Leave the pin electrically unconnected/isolated.	
NC	36	-	-	No connect. Leave the pin electrically unconnected/isolated.	

Pin Name	Pin Number	Pin Type	Buffer Type	Description
NC	37	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	40	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	41	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	83	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	84	-	-	No connect. Leave the pin electrically unconnected/isolated.
OSC0	48	I	Analog	Main oscillator crystal input or an external clock reference input.
OSC1	49	0	Analog	Main oscillator crystal output.
PAO	26	I/O	TTL	GPIO port A bit 0
PA1	27	I/O	TTL	GPIO port A bit 1
PA2	28	I/O	TTL	GPIO port A bit 2
PA3	29	I/O	TTL	GPIO port A bit 3
PA4	30	I/O	TTL	GPIO port A bit 4
PA5	31	I/O	TTL	GPIO port A bit 5
PA6	34	I/O	TTL	GPIO port A bit 6
PA7	35	I/O	TTL	GPIO port A bit 7
PBO	66	I/O	TTL	GPIO port B bit 0
PB1	67	I/O	TTL	GPIO port B bit 1
PB2	70	I/O	TTL	GPIO port B bit 2
PB3	71	I/O	TTL	GPIO port B bit 3
PB4	92	I/O	TTL	GPIO port B bit 4
PB5	91	I/O	TTL	GPIO port B bit 5
PB6	90	I/O	TTL	GPIO port B bit 6
PB7	89	I/O	TTL	GPIO port B bit 7
PCO	80	I/O	TTL	GPIO port C bit 0
PC1	79	I/O	TTL	GPIO port C bit 1
PC2	78	I/O	TTL	GPIO port C bit 2
PC3	77	I/O	TTL	GPIO port C bit 3
PC4	25	I/O	TTL	GPIO port C bit 4
PC5	24	I/O	TTL	GPIO port C bit 5
PC6	23	I/O	TTL	GPIO port C bit 6
PC7	22	I/O	TTL	GPIO port C bit 7
PDO	10	I/O	TTL	GPIO port D bit 0
PD1	11	I/O	TTL	GPIO port D bit 1
PD2	12	I/O	TTL	GPIO port D bit 2
PD3	13	I/O	TTL	GPIO port D bit 3
PD4	95	I/O	TTL	GPIO port D bit 4
PD5	96	I/O	TTL	GPIO port D bit 5
PD6	99	I/O	TTL	GPIO port D bit 6

Pin Name	Pin Number	Pin Type	Buffer Type	Description
PD7	100	I/O	TTL	GPIO port D bit 7
PEO	72	I/O	TTL	GPIO port E bit 0
PE1	73	I/O	TTL	GPIO port E bit 1
PE2	74	I/O	TTL	GPIO port E bit 2
PE3	75	I/O	TTL	GPIO port E bit 3
PE4	6	I/O	TTL	GPIO port E bit 4
PE5	5	I/O	TTL	GPIO port E bit 5
PE6	2	I/O	TTL	GPIO port E bit 6
PE7	1	I/O	TTL	GPIO port E bit 7
PF0	47	I/O	TTL	GPIO port F bit 0
PF1	61	I/O	TTL	GPIO port F bit 1
PF2	60	I/O	TTL	GPIO port F bit 2
PF3	59	I/O	TTL	GPIO port F bit 3
PF4	58	I/O	TTL	GPIO port F bit 4
PF5	46	I/O	TTL	GPIO port F bit 5
PF6	43	I/O	TTL	GPIO port F bit 6
PF7	42	I/O	TTL	GPIO port F bit 7
PGO	19	I/O	TTL	GPIO port G bit 0
PG1	18	I/O	TTL	GPIO port G bit 1
PHO	86	I/O	TTL	GPIO port H bit 0
PH1	85	I/O	TTL	GPIO port H bit 1
PhA0	25	I	TTL	QEI module 0 Phase A
PhB0	47	I	TTL	QEI module 1 Phase B
PWM0	10	0	TTL	PWM 0
PWM1	11	0	TTL	PWM 1
PWM2	86	0	TTL	PWM 2
PWM3	85	0	TTL	PWM 3
PWM4	2	0	TTL	PWM 4
PWM5	1	0	TTL	PWM 5
RST	64	I	TTL	System reset input.
SSIOClk	28	I/O	TTL	SSI module 0 clock
SSIOFss	29	I/O	TTL	SSI module 0 frame
SSIORx	30	I	TTL	SSI module 0 receive
SSIOTx	31	0	TTL	SSI module 0 transmit
SSI1Clk	72	I/O	TTL	SSI module 1 clock
SSI1Fss	73	I/O	TTL	SSI module 1 frame
SSI1Rx	74	I	TTL	SSI module 1 receive
SSI1Tx	75	0	TTL	SSI module 1 transmit
SWCLK	80	I	TTL	JTAG/SWD CLK
SWDIO	79	I/O	TTL	JTAG TMS and SWDIO
SWO	77	0	TTL	JTAG TDO and SWO
TCK	80	I	TTL	JTAG/SWD CLK

Pin Name	Pin Number	Pin Type	Buffer Type	Description
TDI	78	I	TTL	JTAG TDI
TDO	77	0	TTL	JTAG TDO and SWO
TMS	79	I/O	TTL	JTAG TMS and SWDIO
TRST	89	I	TTL	JTAG TRSTn
UORx	26	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
UOTx	27	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
UlRx	12	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
UlTx	13	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
VBAT	55	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
VDD	8	-	Power	Positive supply for I/O and some logic.
VDD	20	-	Power	Positive supply for I/O and some logic.
VDD	32	-	Power	Positive supply for I/O and some logic.
VDD	44	-	Power	Positive supply for I/O and some logic.
VDD	56	-	Power	Positive supply for I/O and some logic.
VDD	68	-	Power	Positive supply for I/O and some logic.
VDD	81	-	Power	Positive supply for I/O and some logic.
VDD	93	-	Power	Positive supply for I/O and some logic.
VDD25	14	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD25	38	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD25	62	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD25	88	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDDA	3	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
VDDA	98	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
WAKE	50	I	-	An external input that brings the processor out of hibernate mode when asserted.

Pin Name	Pin Number	Pin Type	Buffer Type	Description
XOSC0	52	I	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
XOSC1	53	0	Analog	Hibernation Module oscillator crystal output.

Table 19-3. Signals by Function, Except for GPIO

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
Analog	C0+	90	I	Analog	Analog comparator 0 positive input
Comparators	C0-	92	I	Analog	Analog comparator 0 negative input
	C0o	58	0	TTL	Analog comparator 0 output
	C1+	24	I	Analog	Analog comparator positive input
	C1-	91	I	Analog	Analog comparator 1 negative input
	C10	46	0	TTL	Analog comparator 1 output
	C2+	23	I	Analog	Analog comparator positive input
	C2-	22	I	Analog	Analog comparator 2 negative input
General-Purpose	CCP0	66	I/O	TTL	Capture/Compare/PWM 0
Timers	CCP1	34	I/O	TTL	Capture/Compare/PWM 1
	CCP2	67	I/O	TTL	Capture/Compare/PWM 2
	CCP3	95	I/O	TTL	Capture/Compare/PWM 3
I2C	I2C0SCL	70	I/O	OD	I2C module 0 clock
	I2C0SDA	71	I/O	OD	I2C module 0 data
JTAG/SWD/SWO	SWCLK	80	I	TTL	JTAG/SWD CLK
	SWDIO	79	I/O	TTL	JTAG TMS and SWDIO
	SWO	77	0	TTL	JTAG TDO and SWO
	TCK	80	I	TTL	JTAG/SWD CLK
	TDI	78	I	TTL	JTAG TDI
	TDO	77	0	TTL	JTAG TDO and SWO
	TMS	79	I/O	TTL	JTAG TMS and SWDIO
PWM	Fault	99	I	TTL	PWM Fault
	PWM0	10	0	TTL	PWM 0
	PWM1	11	0	TTL	PWM 1
	PWM2	86	0	TTL	PWM 2
	PWM3	85	0	TTL	PWM 3
	PWM4	2	0	TTL	PWM 4
	PWM5	1	0	TTL	PWM 5
Power	GND	9	-	Power	Ground reference for logic and I/O pins.
	GND	15	-	Power	Ground reference for logic and I/O pins.
	GND	21	-	Power	Ground reference for logic and I/O pins.
	GND	33	-	Power	Ground reference for logic and I/O pins.
	GND	39	-	Power	Ground reference for logic and I/O pins.

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
	GND	45	-	Power	Ground reference for logic and I/O pins.
	GND	54	-	Power	Ground reference for logic and I/O pins.
	GND	57	-	Power	Ground reference for logic and I/O pins.
	GND	63	-	Power	Ground reference for logic and I/O pins.
	GND	69	-	Power	Ground reference for logic and I/O pins.
	GND	82	-	Power	Ground reference for logic and I/O pins.
	GND	87	-	Power	Ground reference for logic and I/O pins.
	GND	94	-	Power	Ground reference for logic and I/O pins.
	GNDA	4	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	GNDA	97	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	HIB	51	0	TTL	An output that indicates the processor is in hibernate mode.
	LDO	7	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
	VBAT	55	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
	VDD	8	-	Power	Positive supply for I/O and some logic.
	VDD	20	-	Power	Positive supply for I/O and some logic.
	VDD	32	-	Power	Positive supply for I/O and some logic.
	VDD	44	-	Power	Positive supply for I/O and some logic.
	VDD	56	-	Power	Positive supply for I/O and some logic.
	VDD	68	-	Power	Positive supply for I/O and some logic.
	VDD	81	-	Power	Positive supply for I/O and some logic.
	VDD	93	-	Power	Positive supply for I/O and some logic.
	VDD25	14	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	38	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	62	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	88	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDDA	3	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
	VDDA	98	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
	WAKE	50	I	-	An external input that brings the processor out of hibernate mode when asserted.
QEI	IDX0	100	I	TTL	QEI module 0 index
	PhA0	25	I	TTL	QEI module 0 Phase A
	PhB0	47	I	TTL	QEI module 1 Phase B
SSI	SSIOClk	28	I/O	TTL	SSI module 0 clock
	SSIOFss	29	I/O	TTL	SSI module 0 frame
	SSIORx	30	I	TTL	SSI module 0 receive
	SSIOTx	31	0	TTL	SSI module 0 transmit
	SSI1Clk	72	I/O	TTL	SSI module 1 clock
	SSI1Fss	73	I/O	TTL	SSI module 1 frame
	SSI1Rx	74	I	TTL	SSI module 1 receive
	SSI1Tx	75	0	TTL	SSI module 1 transmit
System Control & Clocks	CMOD0	65	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
	CMOD1	76	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
	OSC0	48	I	Analog	Main oscillator crystal input or an external clock reference input.
	OSC1	49	0	Analog	Main oscillator crystal output.
	RST	64	I	TTL	System reset input.
	TRST	89	I	TTL	JTAG TRSTn
	XOSC0	52	Ι	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
	XOSC1	53	0	Analog	Hibernation Module oscillator crystal output.
UART	UORx	26	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
	UOTx	27	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
	UlRx	12	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
	UlTx	13	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.

Table 19-4. GPIO Pins and Alternate Functions

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PAO	26	UORx	
PA1	27	UOTx	
PA2	28	SSIOClk	

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PA3	29	SSIOFss	
PA4	30	SSIORx	
PA5	31	SSIOTx	
PA6	34	CCP1	
PA7	35		
PBO	66	CCP0	
PB1	67	CCP2	
PB2	70	I2C0SCL	
PB3	71	I2C0SDA	
PB4	92	C0-	
PB5	91	C1-	
PB6	90	C0+	
PB7	89	TRST	
PCO	80	TCK	SWCLK
PC1	79	TMS	SWDIO
PC2	78	TDI	
PC3	77	TDO	SWO
PC4	25	PhA0	
PC5	24	C1+	
PC6	23	C2+	
PC7	22	C2-	
PDO	10	PWM0	
PD1	11	PWM1	
PD2	12	UlRx	
PD3	13	UlTx	
PD4	95	CCP3	
PD5	96		
PD6	99	Fault	
PD7	100	IDX0	
PEO	72	SSIIClk	
PE1	73	SSI1Fss	
PE2	74	SSI1Rx	
PE3	75	SSI1Tx	
PE4	6		
PE5	5		
PE6	2	PWM4	
PE7	1	PWM5	
PFO	47	PhB0	
PF1	61		
PF2	60		
PF3	59		
PF4	58	COo	

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PF5	46	Clo	
PF6	43		
PF7	42		
PGO	19		
PG1	18		
PHO	86	PWM2	
PH1	85	PWM3	

19.2 108-Pin BGA Package Pin Tables

Table 19-5. Signals by Pin Number

Pin Number	Pin Name	Pin Type	Buffer Type	Description
A1	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
A2	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
A3	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
A4	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
A5	GNDA	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
A6	PB4	I/O	TTL	GPIO port B bit 4
	C0-	I	Analog	Analog comparator 0 negative input
A7	PB6	I/O	TTL	GPIO port B bit 6
	C0+	I	Analog	Analog comparator 0 positive input
A8	PB7	I/O	TTL	GPIO port B bit 7
	TRST	I	TTL	JTAG TRSTn
A9	PC0	I/O	TTL	GPIO port C bit 0
	TCK	I	TTL	JTAG/SWD CLK
	SWCLK	I	TTL	JTAG/SWD CLK
A10	PC3	I/O	TTL	GPIO port C bit 3
	TDO	0	TTL	JTAG TDO and SWO
	SWO	0	TTL	JTAG TDO and SWO
A11	PE0	I/O	TTL	GPIO port E bit 0
	SSI1Clk	I/O	TTL	SSI module 1 clock
A12	PE3	I/O	TTL	GPIO port E bit 3
	SSI1Tx	0	TTL	SSI module 1 transmit
B1	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
B2	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
В3	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
B4	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
B5	GNDA	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
B6	GND	-	Power	Ground reference for logic and I/O pins.
B7	PB5	I/O	TTL	GPIO port B bit 5
	C1-	I	Analog	Analog comparator 1 negative input
B8	PC2	I/O	TTL	GPIO port C bit 2
	TDI	I	TTL	JTAG TDI
B9	PC1	I/O	TTL	GPIO port C bit 1
	TMS	I/O	TTL	JTAG TMS and SWDIO
	SWDIO	I/O	TTL	JTAG TMS and SWDIO
B10	CMOD1	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
B11	PE2	I/O	TTL	GPIO port E bit 2
	SSI1Rx	I	TTL	SSI module 1 receive
B12	PE1	I/O	TTL	GPIO port E bit 1
	SSI1Fss	I/O	TTL	SSI module 1 frame
C1	PE7	I/O	TTL	GPIO port E bit 7
	PWM5	0	TTL	PWM 5
C2	PE6	I/O	TTL	GPIO port E bit 6
	PWM4	0	TTL	PWM 4
C3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
C4	GND	-	Power	Ground reference for logic and I/O pins.
C5	GND	-	Power	Ground reference for logic and I/O pins.
C6	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
C7	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
C8	PH1	I/O	TTL	GPIO port H bit 1
	PWM3	0	TTL	PWM 3
C9	PHO	I/O	TTL	GPIO port H bit 0
	PWM2	0	TTL	PWM 2
C10	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.

July 26, 2008

Pin Number	Pin Name	Pin Type	Buffer Type	Description
C11	PB2	I/O	TTL	GPIO port B bit 2
	I2C0SCL	I/O	OD	I2C module 0 clock
C12	PB3	I/O	TTL	GPIO port B bit 3
	I2C0SDA	I/O	OD	I2C module 0 data
D1	PE4	I/O	TTL	GPIO port E bit 4
D2	PE5	I/O	TTL	GPIO port E bit 5
D3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
D10	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
D11	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
D12	PB1	I/O	TTL	GPIO port B bit 1
	CCP2	I/O	TTL	Capture/Compare/PWM 2
E1	PD4	I/O	TTL	GPIO port D bit 4
	CCP3	I/O	TTL	Capture/Compare/PWM 3
E2	PD5	I/O	TTL	GPIO port D bit 5
E3	LDO	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
E10	VDD33	-	Power	Positive supply for I/O and some logic.
E11	CMOD0	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
E12	PB0	I/O	TTL	GPIO port B bit 0
	CCP0	I/O	TTL	Capture/Compare/PWM 0
F1	PD7	I/O	TTL	GPIO port D bit 7
	IDX0	I	TTL	QEI module 0 index
F2	PD6	I/O	TTL	GPIO port D bit 6
	Fault	I	TTL	PWM Fault
F3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
F10	GND	-	Power	Ground reference for logic and I/O pins.
F11	GND	-	Power	Ground reference for logic and I/O pins.
F12	GND	-	Power	Ground reference for logic and I/O pins.
G1	PD0	I/O	TTL	GPIO port D bit 0
	PWMO	0	TTL	PWM 0
G2	PD1	I/O	TTL	GPIO port D bit 1
	PWM1	0	TTL	PWM 1
G3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
G10	VDD33	-	Power	Positive supply for I/O and some logic.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
G11	VDD33	-	Power	Positive supply for I/O and some logic.
G12	VDD33	-	Power	Positive supply for I/O and some logic.
H1	PD3	I/O	TTL	GPIO port D bit 3
	UlTx	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
H2	PD2	I/O	TTL	GPIO port D bit 2
	UlRx	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
H3	GND	-	Power	Ground reference for logic and I/O pins.
H10	VDD33	-	Power	Positive supply for I/O and some logic.
H11	RST	I	TTL	System reset input.
H12	PF1	I/O	TTL	GPIO port F bit 1
J1	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
J2	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
J3	GND	-	Power	Ground reference for logic and I/O pins.
J10	GND	-	Power	Ground reference for logic and I/O pins.
J11	PF2	I/O	TTL	GPIO port F bit 2
J12	PF3	I/O	TTL	GPIO port F bit 3
K1	PG0	I/O	TTL	GPIO port G bit 0
K2	PG1	I/O	TTL	GPIO port G bit 1
К3	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
K4	PF7	I/O	TTL	GPIO port F bit 7
K5	GND	-	Power	Ground reference for logic and I/O pins.
K6	GND	-	Power	Ground reference for logic and I/O pins.
K7	VDD33	-	Power	Positive supply for I/O and some logic.
K8	VDD33	-	Power	Positive supply for I/O and some logic.
К9	VDD33	-	Power	Positive supply for I/O and some logic.
K10	GND	-	Power	Ground reference for logic and I/O pins.
K11	XOSCO	I	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
K12	XOSC1	0	Analog	Hibernation Module oscillator crystal output.
L1	PC4	I/O	TTL	GPIO port C bit 4
	PhA0	I	TTL	QEI module 0 Phase A
L2	PC7	I/O	TTL	GPIO port C bit 7
	C2-	Ι	Analog	Analog comparator 2 negative input
L3	PAO	I/O	TTL	GPIO port A bit 0
	UORx	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
L4	PA3	I/O	TTL	GPIO port A bit 3
	SSIOFss	I/O	TTL	SSI module 0 frame
L5	PA4	I/O	TTL	GPIO port A bit 4
	SSIORx	I	TTL	SSI module 0 receive
L6	PA6	I/O	TTL	GPIO port A bit 6
	CCP1	I/O	TTL	Capture/Compare/PWM 1
L7	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
L8	PF5	I/O	TTL	GPIO port F bit 5
	C10	0	TTL	Analog comparator 1 output
L9	PF4	I/O	TTL	GPIO port F bit 4
	C00	0	TTL	Analog comparator 0 output
L10	GND	-	Power	Ground reference for logic and I/O pins.
L11	OSC0	I	Analog	Main oscillator crystal input or an external clock reference input.
L12	VBAT	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
M1	PC5	I/O	TTL	GPIO port C bit 5
	C1+	<u> </u>	Analog	Analog comparator positive input
M2	PC6	I/O	TTL	GPIO port C bit 6
	C2+	1	Analog	Analog comparator positive input
M3	PA1	I/O	TTL	GPIO port A bit 1
	UOTx	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
M4	PA2	I/O	TTL	GPIO port A bit 2
	SSIOClk	I/O	TTL	SSI module 0 clock
M5	PA5	I/O	TTL	GPIO port A bit 5
	SSIOTx	0	TTL	SSI module 0 transmit
M6	PA7	I/O	TTL	GPIO port A bit 7
M7	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
M8	PF6	I/O	TTL	GPIO port F bit 6
M9	PF0	I/O	TTL	GPIO port F bit 0
	PhB0	I	TTL	QEI module 1 Phase B
M10	WAKE	I	-	An external input that brings the processor out of hibernate mode when asserted.
M11	OSC1	0	Analog	Main oscillator crystal output.
M12	HIB	0	TTL	An output that indicates the processor is in hibernate mode.

Table 19-6. Signals by Signal Name

Pin Name	Pin Number	Pin Type	Buffer Type	Description
C0+	A7	I	Analog	Analog comparator 0 positive input

Pin Name	Pin Number	Pin Type	Buffer Type	Description
C0-	A6	I	Analog	Analog comparator 0 negative input
COo	L9	0	TTL	Analog comparator 0 output
C1+	M1	I	Analog	Analog comparator positive input
C1-	B7	I	Analog	Analog comparator 1 negative input
Clo	L8	0	TTL	Analog comparator 1 output
C2+	M2	I	Analog	Analog comparator positive input
C2-	L2	I	Analog	Analog comparator 2 negative input
CCP0	E12	I/O	TTL	Capture/Compare/PWM 0
CCP1	L6	I/O	TTL	Capture/Compare/PWM 1
CCP2	D12	I/O	TTL	Capture/Compare/PWM 2
CCP3	E1	I/O	TTL	Capture/Compare/PWM 3
CMOD0	E11	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
CMOD1	B10	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
Fault	F2	I	TTL	PWM Fault
GND	C4	-	Power	Ground reference for logic and I/O pins.
GND	C5	-	Power	Ground reference for logic and I/O pins.
GND	H3	-	Power	Ground reference for logic and I/O pins.
GND	J3	-	Power	Ground reference for logic and I/O pins.
GND	K5	-	Power	Ground reference for logic and I/O pins.
GND	K6	-	Power	Ground reference for logic and I/O pins.
GND	L10	-	Power	Ground reference for logic and I/O pins.
GND	K10	-	Power	Ground reference for logic and I/O pins.
GND	J10	-	Power	Ground reference for logic and I/O pins.
GND	F10	-	Power	Ground reference for logic and I/O pins.
GND	F11	-	Power	Ground reference for logic and I/O pins.
GND	B6	-	Power	Ground reference for logic and I/O pins.
GND	F12	-	Power	Ground reference for logic and I/O pins.
GNDA	B5	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
GNDA	A5	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
HIB	M12	0	TTL	An output that indicates the processor is in hibernate mode.
I2C0SCL	C11	I/O	OD	I2C module 0 clock
I2C0SDA	C12	I/O	OD	I2C module 0 data
IDX0	F1	I	TTL	QEI module 0 index

Pin Name	Pin Number	Pin Type	Buffer Type	Description
LDO	E3	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 µF or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
NC	B1	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	A1	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	B3	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	B2	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	A2	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	A3	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	B4	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	A4	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	J1	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	J2	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	К3	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	M7	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	L7	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	C10	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	D11	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	D10	-	-	No connect. Leave the pin electrically unconnected/isolated.
OSC0	L11	I	Analog	Main oscillator crystal input or an external clock reference input.
OSC1	M11	0	Analog	Main oscillator crystal output.
PAO	L3	I/O	TTL	GPIO port A bit 0
PA1	M3	I/O	TTL	GPIO port A bit 1
PA2	M4	I/O	TTL	GPIO port A bit 2
PA3	L4	I/O	TTL	GPIO port A bit 3
PA4	L5	I/O	TTL	GPIO port A bit 4
PA5	M5	I/O	TTL	GPIO port A bit 5
PA6	L6	I/O	TTL	GPIO port A bit 6
PA7	M6	I/O	TTL	GPIO port A bit 7

Pin Name	Pin Number	Pin Type	Buffer Type	Description
PBO	E12	I/O	TTL	GPIO port B bit 0
PB1	D12	I/O	TTL	GPIO port B bit 1
PB2	C11	I/O	TTL	GPIO port B bit 2
PB3	C12	I/O	TTL	GPIO port B bit 3
PB4	A6	I/O	TTL	GPIO port B bit 4
PB5	B7	I/O	TTL	GPIO port B bit 5
РВб	A7	I/O	TTL	GPIO port B bit 6
PB7	A8	I/O	TTL	GPIO port B bit 7
PCO	A9	I/O	TTL	GPIO port C bit 0
PC1	B9	I/O	TTL	GPIO port C bit 1
PC2	B8	I/O	TTL	GPIO port C bit 2
PC3	A10	I/O	TTL	GPIO port C bit 3
PC4	L1	I/O	TTL	GPIO port C bit 4
PC5	M1	I/O	TTL	GPIO port C bit 5
PC6	M2	I/O	TTL	GPIO port C bit 6
PC7	L2	I/O	TTL	GPIO port C bit 7
PD0	G1	I/O	TTL	GPIO port D bit 0
PD1	G2	I/O	TTL	GPIO port D bit 1
PD2	H2	I/O	TTL	GPIO port D bit 2
PD3	H1	I/O	TTL	GPIO port D bit 3
PD4	E1	I/O	TTL	GPIO port D bit 4
PD5	E2	I/O	TTL	GPIO port D bit 5
PD6	F2	I/O	TTL	GPIO port D bit 6
PD7	F1	I/O	TTL	GPIO port D bit 7
PEO	A11	I/O	TTL	GPIO port E bit 0
PE1	B12	I/O	TTL	GPIO port E bit 1
PE2	B11	I/O	TTL	GPIO port E bit 2
PE3	A12	I/O	TTL	GPIO port E bit 3
PE4	D1	I/O	TTL	GPIO port E bit 4
PE5	D2	I/O	TTL	GPIO port E bit 5
PE6	C2	I/O	TTL	GPIO port E bit 6
PE7	C1	I/O	TTL	GPIO port E bit 7
PFO	M9	I/O	TTL	GPIO port F bit 0
PF1	H12	I/O	TTL	GPIO port F bit 1
PF2	J11	I/O	TTL	GPIO port F bit 2
PF3	J12	I/O	TTL	GPIO port F bit 3
PF4	L9	I/O	TTL	GPIO port F bit 4
PF5	L8	I/O	TTL	GPIO port F bit 5
PF6	M8	I/O	TTL	GPIO port F bit 6
PF7	K4	I/O	TTL	GPIO port F bit 7
PG0	K1	I/O	TTL	GPIO port G bit 0
PG1	K2	I/O	TTL	GPIO port G bit 1

Pin Name	Pin Number	Pin Type	Buffer Type	Description
PH0	C9	I/O	TTL	GPIO port H bit 0
PH1	C8	I/O	TTL	GPIO port H bit 1
PhA0	L1	I	TTL	QEI module 0 Phase A
PhB0	M9	I	TTL	QEI module 1 Phase B
PWMO	G1	0	TTL	PWM 0
PWM1	G2	0	TTL	PWM 1
PWM2	C9	0	TTL	PWM 2
PWM3	C8	0	TTL	PWM 3
PWM4	C2	0	TTL	PWM 4
PWM5	C1	0	TTL	PWM 5
RST	H11	I	TTL	System reset input.
SSIOClk	M4	I/O	TTL	SSI module 0 clock
SSIOFss	L4	I/O	TTL	SSI module 0 frame
SSIORx	L5	I	TTL	SSI module 0 receive
SSIOTx	M5	0	TTL	SSI module 0 transmit
SSI1Clk	A11	I/O	TTL	SSI module 1 clock
SSI1Fss	B12	I/O	TTL	SSI module 1 frame
SSI1Rx	B11	I	TTL	SSI module 1 receive
SSI1Tx	A12	0	TTL	SSI module 1 transmit
SWCLK	A9	I	TTL	JTAG/SWD CLK
SWDIO	B9	I/O	TTL	JTAG TMS and SWDIO
SWO	A10	0	TTL	JTAG TDO and SWO
TCK	A9	I	TTL	JTAG/SWD CLK
TDI	B8	I	TTL	JTAG TDI
TDO	A10	0	TTL	JTAG TDO and SWO
TMS	B9	I/O	TTL	JTAG TMS and SWDIO
TRST	A8	I	TTL	JTAG TRSTn
UORx	L3	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
UOTx	M3	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
UlRx	H2	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
UlTx	H1	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
VBAT	L12	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
VDD25	C3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD25	D3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.

Pin Name	Pin Number	Pin Type	Buffer Type	Description
VDD25	F3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD25	G3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD33	K7	-	Power	Positive supply for I/O and some logic.
VDD33	G12	-	Power	Positive supply for I/O and some logic.
VDD33	K8	-	Power	Positive supply for I/O and some logic.
VDD33	K9	-	Power	Positive supply for I/O and some logic.
VDD33	H10	-	Power	Positive supply for I/O and some logic.
VDD33	G10	-	Power	Positive supply for I/O and some logic.
VDD33	E10	-	Power	Positive supply for I/O and some logic.
VDD33	G11	-	Power	Positive supply for I/O and some logic.
VDDA	C6	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
VDDA	C7	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
WAKE	M10	I	-	An external input that brings the processor out of hibernate mode when asserted.
XOSC0	К11	I	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
XOSC1	K12	0	Analog	Hibernation Module oscillator crystal output.

Table 19-7. Signals by Function, Except for GPIO

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
Analog Comparators	C0+	A7	I	Analog	Analog comparator 0 positive input
	C0-	A6	I	Analog	Analog comparator 0 negative input
	C0o	L9	0	TTL	Analog comparator 0 output
	C1+	M1	I	Analog	Analog comparator positive input
	C1-	B7	I	Analog	Analog comparator 1 negative input
	C10	L8	0	TTL	Analog comparator 1 output
	C2+	M2	I	Analog	Analog comparator positive input
	C2-	L2	I	Analog	Analog comparator 2 negative input
General-Purpose Timers	CCP0	E12	I/O	TTL	Capture/Compare/PWM 0
	CCP1	L6	I/O	TTL	Capture/Compare/PWM 1
	CCP2	D12	I/O	TTL	Capture/Compare/PWM 2

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
	CCP3	E1	I/O	TTL	Capture/Compare/PWM 3
I2C	I2C0SCL	C11	I/O	OD	I2C module 0 clock
	I2C0SDA	C12	I/O	OD	I2C module 0 data
JTAG/SWD/SWO	SWCLK	A9	I	TTL	JTAG/SWD CLK
	SWDIO	B9	I/O	TTL	JTAG TMS and SWDIO
	SWO	A10	0	TTL	JTAG TDO and SWO
	TCK	A9	I	TTL	JTAG/SWD CLK
	TDI	B8	I	TTL	JTAG TDI
	TDO	A10	0	TTL	JTAG TDO and SWO
	TMS	B9	I/O	TTL	JTAG TMS and SWDIO
PWM	Fault	F2	I	TTL	PWM Fault
	PWM0	G1	0	TTL	PWM 0
	PWM1	G2	0	TTL	PWM 1
	PWM2	C9	0	TTL	PWM 2
	PWM3	C8	0	TTL	PWM 3
	PWM4	C2	0	TTL	PWM 4
	PWM5	C1	0	TTL	PWM 5
Power	GND	C4	-	Power	Ground reference for logic and I/O pins.
	GND	C5	-	Power	Ground reference for logic and I/O pins.
	GND	H3	-	Power	Ground reference for logic and I/O pins.
	GND	J3	-	Power	Ground reference for logic and I/O pins.
	GND	K5	-	Power	Ground reference for logic and I/O pins.
	GND	K6	-	Power	Ground reference for logic and I/O pins.
	GND	L10	-	Power	Ground reference for logic and I/O pins.
	GND	K10	-	Power	Ground reference for logic and I/O pins.
	GND	J10	-	Power	Ground reference for logic and I/O pins.
	GND	F10	-	Power	Ground reference for logic and I/O pins.
	GND	F11	-	Power	Ground reference for logic and I/O pins.
	GND	B6	-	Power	Ground reference for logic and I/O pins.
	GND	F12	-	Power	Ground reference for logic and I/O pins.
	GNDA	B5	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	GNDA	A5	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	HIB	M12	0	TTL	An output that indicates the processor is in hibernate mode.
	LDO	E3	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
-------------------------	----------	---------------	----------	----------------	--
	VBAT	L12	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
	VDD25	C3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	D3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	F3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	G3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD33	K7	-	Power	Positive supply for I/O and some logic.
	VDD33	G12	-	Power	Positive supply for I/O and some logic.
	VDD33	K8	-	Power	Positive supply for I/O and some logic.
	VDD33	K9	-	Power	Positive supply for I/O and some logic.
	VDD33	H10	-	Power	Positive supply for I/O and some logic.
	VDD33	G10	-	Power	Positive supply for I/O and some logic.
	VDD33	E10	-	Power	Positive supply for I/O and some logic.
	VDD33	G11	-	Power	Positive supply for I/O and some logic.
	VDDA	C6	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
	VDDA	C7	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
	WAKE	M10	I	-	An external input that brings the processor out of hibernate mode when asserted.
QEI	IDX0	F1	I	TTL	QEI module 0 index
	PhA0	L1	I	TTL	QEI module 0 Phase A
	PhB0	M9	I	TTL	QEI module 1 Phase B
SSI	SSIOClk	M4	I/O	TTL	SSI module 0 clock
	SSIOFss	L4	I/O	TTL	SSI module 0 frame
	SSIORx	L5	I	TTL	SSI module 0 receive
	SSIOTx	M5	0	TTL	SSI module 0 transmit
	SSI1Clk	A11	I/O	TTL	SSI module 1 clock
	SSI1Fss	B12	I/O	TTL	SSI module 1 frame
	SSI1Rx	B11	I	TTL	SSI module 1 receive
	SSI1Tx	A12	0	TTL	SSI module 1 transmit
System Control & Clocks	CMOD0	E11	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
	CMOD1	B10	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.

July 26, 2008

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
	OSC0	L11	I	Analog	Main oscillator crystal input or an external clock reference input.
	OSC1	M11	0	Analog	Main oscillator crystal output.
	RST	H11	I	TTL	System reset input.
	TRST	A8	I	TTL	JTAG TRSTn
	XOSC0	K11	Ι	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
	XOSC1	K12	0	Analog	Hibernation Module oscillator crystal output.
UART	UORx	L3	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
	UOTx	M3	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
	UlRx	H2	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
	UlTx	H1	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.

Table 19-8. GPIO Pins and Alternate Functions

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PAO	L3	UORx	
PA1	M3	UOTx	
PA2	M4	SSIOClk	
PA3	L4	SSIOFss	
PA4	L5	SSIORx	
PA5	M5	SSIOTx	
РАб	L6	CCP1	
PA7	M6		
PBO	E12	CCP0	
PB1	D12	CCP2	
PB2	C11	I2C0SCL	
PB3	C12	I2C0SDA	
PB4	A6	C0-	
PB5	B7	C1-	
PB6	A7	C0+	
PB7	A8	TRST	
PCO	A9	TCK	SWCLK
PC1	В9	TMS	SWDIO
PC2	B8	TDI	
PC3	A10	TDO	SWO
PC4	L1	PhA0	
PC5	M1	C1+	
PC6	M2	C2+	

Preliminary

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PC7	L2	C2-	
PDO	G1	PWM0	
PD1	G2	PWM1	
PD2	H2	UlRx	
PD3	H1	UlTx	
PD4	E1	CCP3	
PD5	E2		
PD6	F2	Fault	
PD7	F1	IDX0	
PEO	A11	SSI1Clk	
PE1	B12	SSI1Fss	
PE2	B11	SSI1Rx	
PE3	A12	SSI1Tx	
PE4	D1		
PE5	D2		
PE6	C2	PWM4	
PE7	C1	PWM5	
PFO	M9	PhB0	
PF1	H12		
PF2	J11		
PF3	J12		
PF4	L9	COo	
PF5	L8	Clo	
PF6	M8		
PF7	K4		
PGO	K1		
PG1	K2		
PHO	C9	PWM2	
PH1	C8	PWM3	

20 Operating Characteristics

Table 20-1. Temperature Characteristics

Characteristic ^a	Symbol	Value	Unit
Industrial operating temperature range	T _A	-40 to +85	°C
Extended operating temperature range	T _A	-40 to +105	°C

a. Maximum storage temperature is 150°C.

Table 20-2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance (junction to ambient) ^a	Θ_{JA}	34	°C/W
Average junction temperature ^b	TJ	$T_A + (P_{AVG} \cdot \Theta_{JA})$	°C

a. Junction to ambient thermal resistance θ_{JA} numbers are determined by a package simulator.

b. Power dissipation is a function of temperature.

21 Electrical Characteristics

21.1 DC Characteristics

21.1.1 Maximum Ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

Characteristic	Symbol	Va	lue	Unit
u		Min	Max	
I/O supply voltage (V _{DD})	V _{DD}	0	4	V
Core supply voltage (V _{DD25})	V _{DD25}	0	3	V
Analog supply voltage (V _{DDA})	V _{DDA}	0	4	V
Battery supply voltage (V _{BAT})	V _{BAT}	0	4	V
Input voltage	V _{IN}	-0.3	5.5	V
Maximum current per output pins	I	-	25	mA

 Table 21-1. Maximum Ratings

a. Voltages are measured with respect to GND.

Important: This device contains circuitry to protect the inputs against damage due to high-static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either GND or V_{DD}).

21.1.2 Recommended DC Operating Conditions

For special high-current applications, the GPIO output buffers may be used with the following restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the V_{OL} value is specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only a maximum of two per side of the physical package or BGA pin group with the total number of high-current GPIO outputs not exceeding four for the entire package.

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{DD}	I/O supply voltage	3.0	3.3	3.6	V
V _{DD25}	Core supply voltage	2.25	2.5	2.75	V
V _{DDA}	Analog supply voltage	3.0	3.3	3.6	V
V _{BAT}	Battery supply voltage	2.3	3.0	3.6	V
V _{IH}	High-level input voltage	2.0	-	5.0	V
V _{IL}	Low-level input voltage	-0.3	-	1.3	V
V _{SIH}	High-level input voltage for Schmitt trigger inputs	0.8 * V _{DD}	-	V _{DD}	V
V _{SIL}	Low-level input voltage for Schmitt trigger inputs	0	-	0.2 * V _{DD}	V

Table 21-2. Recommended DC Operating Conditions

Parameter	Parameter Name	Min	Nom	Max	Unit	
V _{OH} ^a	High-level output voltage	2.4	-	-	V	
V _{OL} a	Low-level output voltage	-	-	0.4	V	
I _{ОН}	High-level source current, V _{OH} =2.4 V					
	2-mA Drive	2.0	-	-	mA	
	4-mA Drive	4.0	-	-	mA	
	8-mA Drive	8.0	-	-	mA	
I _{OL}	Low-level sink current, V_{OL} =0.4 V					
	2-mA Drive	2.0	-	-	mA	
	4-mA Drive	4.0	-	-	mA	
	8-mA Drive	8.0	-	-	mA	

a. V_{OL} and V_{OH} shift to 1.2 V when using high-current GPIOs.

21.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{LDOOUT}	Programmable internal (logic) power supply output value	2.25	2.5	2.75	V
	Output voltage accuracy	-	2%	-	%
t _{PON}	Power-on time	-	-	100	μs
t _{ON}	Time on	-	-	200	μs
t _{OFF}	Time off	-	-	100	μs
V _{STEP}	Step programming incremental voltage	-	50	-	mV
C _{LDO}	External filter capacitor size for internal power supply	1.0	-	3.0	μF

Table 21-3. LDO Regulat	or Characteristics
-------------------------	--------------------

21.1.4 Power Specifications

The power measurements specified in the tables that follow are run on the core processor using SRAM with the following specifications (except as noted):

- V_{DD} = 3.3 V
- V_{DD25} = 2.50 V
- V_{BAT} = 3.0 V
- V_{DDA} = 3.3 V
- Temperature = 25°C
- Clock Source (MOSC) =3.579545 MHz Crystal Oscillator
- Main oscillator (MOSC) = enabled
- Internal oscillator (IOSC) = disabled

Parameter	Parameter Name	Conditions	3.3 V V	V _{DD} , V _{DDA} , ddphy	2.5 V V _{DD25}		3.0 V V _{BAT}		Unit
			Nom	Max	Nom	Max	Nom	Max	
I _{DD_RUN}	Run mode 1	V _{DD25} = 2.50 V	3	pending ^a	64	pending ^a	0	pending ^a	mA
	(Flash loop)	Code= while(1){} executed in Flash							
		Peripherals = All ON							
		System Clock = 25 MHz (with PLL)							
	Run mode 2	V _{DD25} = 2.50 V	0	pending ^a	33	pending ^a	0	pending ^a	mA
	(Flash loop)	Code= while(1){} executed in Flash							
		Peripherals = All OFF							
		System Clock = 25 MHz (with PLL)							
	Run mode 1	V _{DD25} = 2.50 V	3	pending ^a	57	pending ^a	0	pending ^a	mA
	(SRAM loop)	Code= while(1){} executed in SRAM							
		Peripherals = All ON							
		System Clock = 25 MHz (with PLL)							
	Run mode 2	V _{DD25} = 2.50 V	0	pending ^a	27	pending ^a	0	pending ^a	mA
	(SRAM loop)	Code= while(1){} executed in SRAM							
		Peripherals = All OFF							
		System Clock = 25 MHz (with PLL)							
I _{DD_SLEEP}	Sleep mode	V _{DD25} = 2.50 V	0	pending ^a	12	pending ^a	0	pending ^a	mA
		Peripherals = All OFF							
		System Clock = 25 MHz (with PLL)							
IDD_DEEPSLEEP	Deep-Sleep	LDO = 2.25 V	0.14	pending ^a	0.18	pending ^a	0	pending ^a	mA
	mode	Peripherals = All OFF							
		System Clock = IOSC30KHZ/64							
IDD_HIBERNATE	Hibernate	V _{BAT} = 3.0 V	0	0	0	0	16	pending ^a	μA
	mode	V _{DD} = 0 V							
		V _{DD25} = 0 V							
		V _{DDA} = 0 V							
		Peripherals = All OFF							
		System Clock = OFF							
		Hibernate Module = 32 kHz							

Table 21-4. Detai	led Power S	pecifications
-------------------	-------------	---------------

a. Pending characterization completion.

21.1.5 Flash Memory Characteristics

Table 21-5. Flash Memory Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
PE _{CYC}	Number of guaranteed program/erase cycles before failure ^a	10,000	100,000	-	cycles
T _{RET}	Data retention at average operating temperature of 85°C (industrial) or 105°C (extended)	10	-	-	years
T _{PROG}	Word program time	20	-	-	μs
T _{ERASE}	Page erase time	20	-	-	ms
T _{ME}	Mass erase time	200	-	-	ms

a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.

21.1.6 Hibernation

Table 21-6. Hibernation Module DC Characteristics

Parameter	Parameter Name	Value	Unit
V _{LOWBAT}	Low battery detect voltage	2.35	V

21.2 AC Characteristics

21.2.1 Load Conditions

Unless otherwise specified, the following conditions are true for all timing measurements. Timing measurements are for 4-mA drive strength.

Figure 21-1. Load Conditions

21.2.2 Clocks

Table 21-7. Phase Locked Loop (PLL) Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{ref_crystal}	Crystal reference ^a	3.579545	-	8.192	MHz
f _{ref_ext}	External clock reference ^a	3.579545	-	8.192	MHz
f _{pll}	PLL frequency ^b	-	400	-	MHz
T _{READY}	PLL lock time	-	-	0.5	ms

a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration (RCC) register.

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{IOSC}	Internal 12 MHz oscillator frequency	8.4	12	15.6	MHz
f _{IOSC30KHZ}	Internal 30 KHz oscillator frequency	21	30	39	KHz
f _{XOSC}	Hibernation module oscillator frequency	-	4.194304	-	MHz
f _{XOSC_XTAL}	Crystal reference for hibernation oscillator	-	4.194304	-	MHz
f _{XOSC_EXT}	External clock reference for hibernation module	-	32.768	-	KHz
f _{MOSC}	Main oscillator frequency	1	-	8	MHz
t _{MOSC_per}	Main oscillator period	125	-	1000	ns
f _{ref_crystal_bypass}	Crystal reference using the main oscillator (PLL in BYPASS mode)	1	-	8	MHz
f _{ref_ext_bypass}	External clock reference (PLL in BYPASS mode)	0	-	25	MHz
f _{system_clock}	System clock	0	-	25	MHz

Table 21-8. Clock Characteristics

Table 21-9. Crystal Characteristics

Parameter Name		Va	lue		Units
Frequency	8	6	4	3.5	MHz
Frequency tolerance	±50	±50	±50	±50	ppm
Aging	±5	±5	±5	±5	ppm/yr
Oscillation mode	Parallel	Parallel	Parallel	Parallel	-
Temperature stability (-40°C to 85°C)	±25	±25	±25	±25	ppm
Temperature stability (-40°C to 105°C)	±25	±25	±25	±25	ppm
Motional capacitance (typ)	27.8	37.0	55.6	63.5	pF
Motional inductance (typ)	14.3	19.1	28.6	32.7	mH
Equivalent series resistance (max)	120	160	200	220	Ω
Shunt capacitance (max)	10	10	10	10	pF
Load capacitance (typ)	16	16	16	16	pF
Drive level (typ)	100	100	100	100	μW

21.2.3 Analog Comparator

Table 21-10. Analog Comparator Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{OS}	Input offset voltage	-	±10	±25	mV
V _{CM}	Input common mode voltage range	0	-	V _{DD} -1.5	V
C _{MRR}	Common mode rejection ratio	50	-	-	dB
T _{RT}	Response time	-	-	1	μs
T _{MC}	Comparator mode change to Output Valid	-	-	10	μs

Table 21-11. Analog Comparator Voltage Reference Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
R _{HR}	Resolution high range	-	V _{DD} /32	-	LSB
R _{LR}	Resolution low range	-	V _{DD} /24	-	LSB
A _{HR}	Absolute accuracy high range	-	-	±1/2	LSB

Parameter	Parameter Name	Min	Nom	Max	Unit
A_{LR}	Absolute accuracy low range	-	-	±1/4	LSB

21.2.4 I²C

Table 21-12. I²C Characteristics

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
l1 ^a	t _{SCH}	Start condition hold time	36	-	-	system clocks
l2 ^a	t _{LP}	Clock Low period	36	-	-	system clocks
I3 ^b	t _{SRT}	<code>I2CSCL/I2CSDA</code> rise time (V _{IL} =0.5 V to V $_{\rm IH}$ =2.4 V)	-	-	(see note b)	ns
l4 ^a	t _{DH}	Data hold time	2	-	-	system clocks
I5 ^c	t _{SFT}	<code>I2CSCL/I2CSDA</code> fall time (V _{IH} =2.4 V to V $_{IL}$ =0.5 V)	-	9	10	ns
l6 ^a	t _{HT}	Clock High time	24	-	-	system clocks
I7 ^a	t _{DS}	Data setup time	18	-	-	system clocks
I8 ^a	t _{SCSR}	Start condition setup time (for repeated start condition only)	36	-	-	system clocks
19 ^a	t _{scs}	Stop condition setup time	24	-	-	system clocks

a. Values depend on the value programmed into the TPR bit in the I²C Master Timer Period (I2CMTPR) register; a TPR programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table above. The I²C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above values are minimum values.

b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.

c. Specified at a nominal 50 pF load.

Figure 21-2. I²C Timing

21.2.5 Hibernation Module

The Hibernation Module requires special system implementation considerations since it is intended to power-down all other sections of its host device. The system power-supply distribution and interfaces to the device must be driven to 0 V_{DC} or powered down with the same external voltage regulator controlled by $\overline{\text{HIB}}$.

The external voltage regulators controlled by $\overline{\text{HIB}}$ must have a settling time of 250 µs or less.

Table 21-13 Hibernation Module AC Characteristics

Parameter No	Parameter	Parameter Name		Nom	Мах	Unit
H1	t _{HIB_LOW}	Internal 32.768 KHz clock reference rising edge to /HIB asserted	-	200	-	μs
H2	t _{HIB_HIGH}	Internal 32.768 KHz clock reference rising edge to /HIB deasserted	-	30	-	μs
H3	t _{WAKE_ASSERT}	/WAKE assertion time	62	-	-	μs

Parameter No	Parameter	Parameter Name	Min	Nom	Max	Unit
H4	t _{WAKETOHIB}	/WAKE assert to /HIB desassert	62	-	124	μs
H5	t _{XOSC_SETTLE}	XOSC settling time ^a	20	-	-	ms
H6	t _{HIB_REG_WRITE}	Time for a write to non-volatile registers in HIB module to complete	92	-	-	μs
H7	t _{HIB_TO_VDD}	$\overline{\mathtt{HIB}}$ deassert to VDD and VDD25 at minimum operational level	-	-	250	μs

a. This parameter is highly sensitive to PCB layout and trace lengths, which may make this parameter time longer. Care must be taken in PCB design to minimize trace lengths and RLC (resistance, inductance, capacitance).

Figure 21-3. Hibernation Module Timing

21.2.6 Synchronous Serial Interface (SSI)

Table 21-14. 551 Unaracteristics	Table	21-14.	SSI	Characteristics
----------------------------------	-------	--------	-----	-----------------

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
S1	t _{clk_per}	SSIC1k cycle time	2	-	65024	system clocks
S2	t _{clk_high}	SSIC1k high time	-	1/2	-	t clk_per
S3	t _{clk_low}	SSIC1k low time	-	1/2	-	t clk_per
S4	t _{clkrf}	SSIClk rise/fall time	-	7.4	26	ns
S5	t _{DMd}	Data from master valid delay time	0	-	20	ns
S6	t _{DMs}	Data from master setup time	20	-	-	ns
S7	t _{DMh}	Data from master hold time	40	-	-	ns
S8	t _{DSs}	Data from slave setup time	20	-	-	ns
S9	t _{DSh}	Data from slave hold time	40	-	-	ns

Figure 21-4. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement

Figure 21-6. SSI Timing for SPI Frame Format (FRF=00), with SPH=1

21.2.7 JTAG and Boundary Scan

Table 21-15. JTAG Characteristics

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
J1	f _{TCK}	TCK operational clock frequency	0	-	10	MHz
J2	t _{TCK}	TCK operational clock period	100	-	-	ns
J3	t _{TCK_LOW}	TCK clock Low time	-	t _{TCK}	-	ns
J4	t _{тск_нідн}	TCK clock High time	-	t _{TCK}	-	ns
J5	t _{TCK_R}	TCK rise time	0	-	10	ns
J6	t _{TCK_F}	TCK fall time	0	-	10	ns
J7	t _{TMS_SU}	TMS setup time to TCK rise	20	-	-	ns
J8	t _{TMS_HLD}	TMS hold time from TCK rise	20	-	-	ns
J9	t _{TDI_SU}	TDI setup time to TCK rise	25	-	-	ns
J10	t _{TDI_HLD}	TDI hold time from TCK rise	25	-	-	ns
J11	TCK fall to Data Valid from High-Z	2-mA drive	-	23	35	ns
t _{TDO_ZDV}		4-mA drive		15	26	ns
		8-mA drive		14	25	ns
		8-mA drive with slew rate control		18	29	ns
J12	${\tt TCK}$ fall to Data Valid from Data Valid	2-mA drive	-	21	35	ns
t _{TDO_DV}		4-mA drive		14	25	ns
		8-mA drive		13	24	ns
		8-mA drive with slew rate control		18	28	ns

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
J13	TCK fall to High-Z from Data Valid	2-mA drive	-	9	11	ns
t _{TDO DVZ}		4-mA drive		7	9	ns
_		8-mA drive		6	8	ns
		8-mA drive with slew rate control		7	9	ns
J14	t _{TRST}	TRST assertion time	100	-	-	ns
J15	t _{TRST_SU}	TRST setup time to TCK rise	10	-	-	ns

Figure 21-7. JTAG Test Clock Input Timing

Figure 21-8. JTAG Test Access Port (TAP) Timing

Figure 21-9. JTAG TRST Timing

21.2.8 General-Purpose I/O

Note: All GPIOs are 5 V-tolerant.

Parameter	Parameter Name	Condition	Min	Nom	Max	Unit
t _{GPIOR}	GPIO Rise Time (from 20% to 80% of $\mathrm{V}_\mathrm{DD})$	2-mA drive	-	17	26	ns
		4-mA drive		9	13	ns
		8-mA drive		6	9	ns
		8-mA drive with slew rate control		10	12	ns
t _{GPIOF}	GPIO Fall Time (from 80% to 20% of $\mathrm{V}_\mathrm{DD})$	2-mA drive	-	17	25	ns
		4-mA drive		8	12	ns
		8-mA drive		6	10	ns
		8-mA drive with slew rate control		11	13	ns

Table 21-16. GPIO Characteristics

21.2.9 Reset

Table 21-17. Reset Characteristics

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
R1	V _{TH}	Reset threshold	-	2.0	-	V
R2	V _{BTH}	Brown-Out threshold	2.85	2.9	2.95	V
R3	T _{POR}	Power-On Reset timeout	-	10	-	ms
R4	T _{BOR}	Brown-Out timeout	-	500	-	μs
R5	T _{IRPOR}	Internal reset timeout after POR	6	-	11	ms
R6	T _{IRBOR}	Internal reset timeout after BOR ^a	0	-	1	μs
R7	T _{IRHWR}	Internal reset timeout after hardware reset ($\overline{\mathtt{RST}}$ pin)	0	-	1	ms
R8	T _{IRSWR}	Internal reset timeout after software-initiated system reset ^a	2.5	-	20	μs
R9	T _{IRWDR}	Internal reset timeout after watchdog reset ^a	2.5	-	20	μs
R10	T _{VDDRISE}	Supply voltage (V _{DD}) rise time (0V-3.3V)	-	-	250	ms
R11	T _{MIN}	Minimum RST pulse width	2	-	-	μs

a. 20 * t _{MOSC_per}

Figure 21-10. External Reset Timing (RST)

Figure 21-12. Brown-Out Reset Timing

Figure 21-13. Software Reset Timing

Figure 21-14. Watchdog Reset Timing

22 Package Information

Figure 22-1. 100-Pin LQFP Package

Note: The following notes apply to the package drawing.

- 1. All dimensions shown in mm.
- 2. Dimensions shown are nominal with tolerances indicated.
- 3. Foot length 'L' is measured at gage plane 0.25 mm above seating plane.

Body +2.00 mm	Footprint, 1.4 mm	package thickness
Symbols	Leads	100L
A	Max.	1.60
A ₁	-	0.05 Min./0.15 Max.
A ₂	±0.05	1.40
D	±0.20	16.00
D ₁	±0.05	14.00
E	±0.20	16.00
E ₁	±0.05	14.00
L	+0.15/-0.10	0.60
е	Basic	0.50
b	+0.05	0.22
θ	-	0°-7°
ddd	Max.	0.08
ccc	Max.	0.08
JEDEC Refer	ence Drawing	MS-026
Variation [Designator	BED

Figure 22-2. 108-Ball BGA Package

- Note: The following notes apply to the package drawing.
 - 1. ALL DIMENSIONS ARE IN MILLIMETERS.
 - 2. 'e' REPRESENTS THE BASIC SOLDER BALL GRID PITCH.
 - 3. 'M' REPRESENTS THE BASIC SOLDER BALL MATRIX SIZE. AND SYMBOL 'N' IS THE NUMBER OF BALLS AFTER DEPOPULATING.
 - (b' IS MEASURABLE AT THE MAXIMUM SOLDER BALL DIAMETER AFTER REFLOW PARALLEL TO PRIMARY DAILY (C).
 - ⚠ DIMENSION 'ccc' IS MEASURED PARALLEL TO PRIMARY DATUM €.
 - RIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
 - 7. PACKAGE SURFACE SHALL BE MATTE FINISH CHARMILLES 24 TO 27.
 - 8. SUBSTRATE MATERIAL BASE IS BT RESIN.
 - 9. THE OVERALL PACKAGE THICKNESS "A" ALREADY CONSIDERS COLLAPSE BALLS
 - 10. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
 - $\widehat{\mathbf{M}}$ except dimension b.

Symbols	MIN	NOM	MAX							
A	1.22	1.36	1.50							
A1	0.29	0.34	0.39							
A3	0.65	0.70	0.75							
с	0.28	0.32	0.36							
D	9.85	10.00	10.15							
D1	8.80 BSC									
E	9.85	10.00	10.15							
E1	8.80 BSC									
b	0.43	0.48	0.53							
bbb		.20								
ddd		.12								
е	C	.80 BS	С							
f	-	0.60	-							
М		12								
n		108								
REF: J	EDEC	; MO-2	19F							

A Serial Flash Loader

A.1 Serial Flash Loader

The Stellaris[®] serial flash loader is a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface. The serial flash loader uses a simple packet interface to provide synchronous communication with the device. The flash loader runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used. The two serial interfaces that can be used are the UART0 and SSI0 interfaces. For simplicity, both the data format and communication protocol are identical for both serial interfaces.

A.2 Interfaces

Once communication with the flash loader is established via one of the serial interfaces, that interface is used until the flash loader is reset or new code takes over. For example, once you start communicating using the SSI port, communications with the flash loader via the UART are disabled until the device is reset.

A.2.1 UART

The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is automatically detected by the flash loader and can be any valid baud rate supported by the host and the device. The auto detection sequence requires that the baud rate should be no more than 1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the same as the hardware limitation for the maximum baud rate for any UART on a Stellaris[®] device which is calculated as follows:

Max Baud Rate = System Clock Frequency / 16

In order to determine the baud rate, the serial flash loader needs to determine the relationship between its own crystal frequency and the baud rate. This is enough information for the flash loader to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows the host to use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the flash loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can use to calculate the ratios needed to program the UART to match the host's baud rate. After the host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received after at least twice the time required to transfer the two bytes, the host can resend another pattern of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has received a synchronization pattern correctly. For example, the time to wait for data back from the flash loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate of 115200, this time is 2*(20/115200) or 0.35 ms.

A.2.2 SSI

The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications, with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See "Frame Formats" on page 307 in the SSI chapter for more information on formats for this transfer protocol. Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running

the flash loader. Since the host device is the master, the SSI on the flash loader device does not need to determine the clock as it is provided directly by the host.

A.3 Packet Handling

All communications, with the exception of the UART auto-baud, are done via defined packets that are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same format for receiving and sending packets, including the method used to acknowledge successful or unsuccessful reception of a packet.

A.3.1 Packet Format

All packets sent and received from the device use the following byte-packed format.

```
struct
{
 unsigned char ucSize;
 unsigned char ucCheckSum;
 unsigned char Data[];
};
ucSize
                               The first byte received holds the total size of the transfer including
                               the size and checksum bytes.
ucChecksum
                               This holds a simple checksum of the bytes in the data buffer only.
                               The algorithm is Data[0]+Data[1]+...+ Data[ucSize-3].
Data
                               This is the raw data intended for the device, which is formatted in
                               some form of command interface. There should be ucSize-2
                               bytes of data provided in this buffer to or from the device.
```

A.3.2 Sending Packets

The actual bytes of the packet can be sent individually or all at once; the only limitation is that commands that cause flash memory access should limit the download sizes to prevent losing bytes during flash programming. This limitation is discussed further in the section that describes the serial flash loader command, COMMAND_SEND_DATA (see "COMMAND_SEND_DATA (0x24)" on page 492).

Once the packet has been formatted correctly by the host, it should be sent out over the UART or SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This does not indicate that the actual contents of the command issued in the data portion of the packet was received correctly.

A.3.3 Receiving Packets

The flash loader sends a packet of data in the same format that it receives a packet. The flash loader may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte is the size of the packet followed by a checksum byte, and finally followed by the data itself. There is no break in the data after the first non-zero byte is sent from the flash loader. Once the device communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to indicate that the transmission was successful. The appropriate response after sending a NAK to the flash loader is to resend the command that failed and request the data again. If needed, the host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the

flash loader only accepts the first non-zero data as a valid response. This zero padding is needed by the SSI interface in order to receive data to or from the flash loader.

A.4 Commands

The next section defines the list of commands that can be sent to the flash loader. The first byte of the data should always be one of the defined commands, followed by data or parameters as determined by the command that is sent.

A.4.1 COMMAND_PING (0X20)

This command simply accepts the command and sets the global status to success. The format of the packet is as follows:

Byte[0] = 0x03; Byte[1] = checksum(Byte[2]); Byte[2] = COMMAND_PING;

The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status, the receipt of an ACK can be interpreted as a successful ping to the flash loader.

A.4.2 COMMAND_GET_STATUS (0x23)

This command returns the status of the last command that was issued. Typically, this command should be sent after every command to ensure that the previous command was successful or to properly respond to a failure. The command requires one byte in the data of the packet and should be followed by reading a packet with one byte of data that contains a status code. The last step is to ACK or NAK the received data so the flash loader knows that the data has been read.

Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_GET_STATUS

A.4.3 COMMAND_DOWNLOAD (0x21)

This command is sent to the flash loader to indicate where to store data and how many bytes will be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit values that are both transferred MSB first. The first 32-bit value is the address to start programming data into, while the second is the 32-bit size of the data that will be sent. This command also triggers an erase of the full area to be programmed so this command takes longer than other commands. This results in a longer time to receive the ACK/NAK back from the board. This command should be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size are valid for the device running the flash loader.

The format of the packet to send this command is a follows:

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_DOWNLOAD
Byte[3] = Program Address [31:24]
Byte[4] = Program Address [23:16]
Byte[5] = Program Address [15:8]
Byte[6] = Program Address [7:0]
Byte[7] = Program Size [31:24]
```

```
Byte[8] = Program Size [23:16]
Byte[9] = Program Size [15:8]
Byte[10] = Program Size [7:0]
```

A.4.4 COMMAND_SEND_DATA (0x24)

This command should only follow a COMMAND_DOWNLOAD command or another COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands automatically increment address and continue programming from the previous location. The caller should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program successfully and not overflow input buffers of the serial interfaces. The command terminates programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has been received. Each time this function is called it should be followed by a COMMAND_GET_STATUS to ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK to this command, the flash loader does not increment the current address to allow retransmission of the previous data.

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]
```

A.4.5 COMMAND_RUN (0x22)

This command is used to tell the flash loader to execute from the address passed as the parameter in this command. This command consists of a single 32-bit value that is interpreted as the address to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK signal back to the host device before actually executing the code at the given address. This allows the host to know that the command was received successfully and the code is now running.

```
Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]
```

A.4.6 COMMAND_RESET (0x25)

This command is used to tell the flash loader device to reset. This is useful when downloading a new image that overwrote the flash loader and wants to start from a full reset. Unlike the COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and set up for the new code. It can also be used to reset the flash loader if a critical error occurs and the host device wants to restart communication with the flash loader.

Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET

The flash loader responds with an ACK signal back to the host device before actually executing the software reset to the device running the flash loader. This allows the host to know that the command was received successfully and the part will be reset.

B Register Quick Reference

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
System Base 0x4	Contro)													
DID0, type	e RO, offse	t 0x000, re:	set -												
		VER									CLA	ASS			
			MAJ	JOR							MIN	IOR			
PBORCTL	, type R/W	, offset 0x0	30, reset 0)	0000.7FF	2			1							
														BORIOR	
LDOPCTL	, type R/W	, offset 0x0	34, reset 0x	(0000.0000											
												VA	ADJ		
RIS, type	RO, offset	0x050, rese	et 0x0000.00	000											
									PLLLRIS					BORRIS	
IMC, type	R/W, offse	t 0x054, res	set 0x0000.0	0000											
									PLLLIM					BORIM	
MISC, typ	e R/W1C, o	ffset 0x058	3, reset 0x0	000.000				1							
									PLLLMIS					BORMIS	
RESC, typ	e R/W, offs	set 0x05C,	reset -					1							
										LDO	SW	WDT	BOR	POR	EXT
RCC, type	R/W, offse	et 0x060, re	set 0x078E	.3AD1				1					1		
				ACG		SYS	DIV		USESYSDIV		USEPWMDIV		PWMDIV		
		PWRDN		BYPASS			ХТ	AL		osc	SRC			IOSCDIS	MOSCDIS
PLLCFG,	type RO, o	ffset 0x064	, reset -												
						F							R		
RCC2, typ	e R/W, offs	set 0x070, r	eset 0x078	0.2810											
USERCC2					SYS	DIV2									
		PWRDN2		BYPASS2						OSCSRC2					
DSLPCLK	CFG, type	R/W, offset	t 0x144, res	et 0x0780.	0000										
					DSDIV	ORIDE									
									[DSOSCSR	0				
DID1, type	e RO, offse	t 0x004, re:	set -												
	VI	ER			FA	۹M					PAR	TNO			
	PINCOUNT								TEMP		Pł	KG	ROHS	QL	JAL
DC0, type	RO, offset	0x008, res	et 0x007F.0	03F											
							SRA	MSZ							
							FLAS	SHSZ							
DC1, type	RO, offset	0x010, res	et 0x0010.7	'0DF											
											PWM				
	MINS	YSDIV						MPU	HIB		PLL	WDT	SWO	SWD	JTAG
DC2, type	RO, offset	0x014, res	et 0x0707.1	133											
					COMP2	COMP1	COMP0						TIMER2	TIMER1	TIMER0
			I2C0				QEI0			SSI1	SSI0			UART1	UART0
DC3, type	RO, offset	0x018, res	et 0x8F00.E	BFFF											
32KHZ				CCP3	CCP2	CCP1	CCP0								
PWMFAULT		C2PLUS	C2MINUS	C10	C1PLUS	C1MINUS	C00	COPLUS	COMINUS	PWM5	PWM4	PWM3	PWM2	PWM1	PWM0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DC4, type	RO, offset	0x01C, res	set 0x0000.	00FF								1			
								GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
RCGC0. tv	vpe R/W. of	fset 0x100.	. reset 0x0(0000040								1			
	, p. e. e. e. e. e. e. e.										PWM				
									HIB			WDT			
SCGC0 th	vne R/W. of	fset 0x110	reset 0x00	000040											
	, po : e : i, o:										PWM				
									HIB			WDT			
DCGC0, tr	vpe R/W. of	fset 0x120	reset 0x00	000040											
	, , , ,										PWM				
									HIB			WDT			
RCGC1. t	vpe R/W. of	fset 0x104	. reset 0x00	000000								1			
	, , , ,				COMP2	COMP1	COMP0						TIMER2	TIMER1	TIMER0
			12C0				QEI0			SSI1	SSI0			UART1	UART0
SCGC1. tv	vpe R/W. of	fset 0x114.	reset 0x00	000000										-	
					COMP2	COMP1	COMPO						TIMER2	TIMER1	TIMER0
			I2C0				QEI0			SSI1	SSI0			UART1	UART0
DCGC1. t	vpe R/W. of	fset 0x124	, reset 0x00	000000								I			
					COMP2	COMP1	COMP0						TIMER2	TIMER1	TIMER0
			I2C0				QEI0			SSI1	SSI0			UART1	UART0
RCGC2. t	vpe R/W. of	fset 0x108	. reset 0x00	000000											
								GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SCGC2. tv	vpe R/W. of	fset 0x118.	reset 0x00	000000								I			
		,													
								GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
DCGC2, t	vpe R/W, of	fset 0x128.	, reset 0x00	000000								I			
			, 												
								GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SRCR0, ty	/pe R/W, of	fset 0x040,	reset 0x00	000000								1	1		
											PWM				
									HIB			WDT			
SRCR1, ty	/pe R/W, of	fset 0x044,	reset 0x00	000000								1			
					COMP2	COMP1	COMP0						TIMER2	TIMER1	TIMER0
			I2C0				QEI0			SSI1	SSI0			UART1	UART0
SRCR2, ty	pe R/W, of	fset 0x048,	reset 0x00	000000			1								
								GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Hiberna	ation Mo	dule													
Base 0x4	400F.C000														
HIBRTCC	, type RO, c	offset 0x00	0, reset 0x	0000.0000											
							RT	сс							
							RT	СС							
HIBRTCM	0, type R/W	l, offset 0x	004, reset (0xFFFF.FFF	F										
							RTO	CMO							
							RTO	CMO							
HIBRTCM	1, type R/W	, offset 0x	008, reset (xFFFF.FFF	F										
							RTO	CM1							
							RTO	CM1							
HIBRTCL	D, type R/W	, offset 0x	00C, reset	0xFFFF.FFF	F										
							RT	CLD							
							RT	CLD							

July 26, 2008

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HIBCTL,	type R/W, o	ffset 0x010), reset 0x0	000.000											
								VABORT	CLK32EN	LOWBATEN	PINWEN	RTCWEN	CLKSEL	HIBREQ	RTCEN
HIBIM, ty	/pe R/W, off	set 0x014,	reset 0x000	0.0000								1			
												EXTW	LOWBAT	RTCALT1	RTCALT0
HIBRIS, 1	type RO, off	iset 0x018,	reset 0x000	00.0000								1			
												EXTW	LOWBAT	RTCALT1	RTCALT0
HIBMIS.	type RO. of	fset 0x01C	. reset 0x00	00.0000								1			
,	.,,,,,,		,												
								_				EXTW	LOWBAT	RTCALT1	RTCALT0
HIBIC ty	ne R/W1C	offset 0x02	0 reset 0x(1							
THEIO, ty	pe 10 0 10, 0	011361 0702	.0, 10301 0.0					1							
												FXTW	LOWBAT	RTCALT1	RTCALTO
UIRDICI		offe of 0x0	24 maget 0w	0000 7555									LOWBAI	RIOALII	RIGALIU
INDRIG	, type R/W,	onset uxuz	24, Teset UX	0000.7FFF											
							1	RIN							
HIBDATA	A, type R/W,	offset 0x0	30-0x12C, r	eset 0x000	0.0000										
							ŀ								
							ŀ	RID							
Interna	al Memor	У													
Flash I	Registers	s (Flash	Control	Offset)											
Base 0x	400F.D000)													
FMA, typ	e R/W, offse	et 0x000, re	eset 0x0000	.0000											
															OFFSET
							OF	FSET							
FMD, typ	e R/W, offse	et 0x004, re	eset 0x0000	.0000											
							D	ATA							
							D	ATA							
FMC, typ	e R/W, offse	et 0x008, re	eset 0x0000	.0000											
							W	RKEY							
												COMT	MERASE	ERASE	WRITE
FCRIS, ty	ype RO, offs	set 0x00C,	reset 0x000	0.0000										2	
														PRIS	ARIS
FCIM, typ	pe R/W, offs	et 0x010, r	eset 0x0000	0.0000										*	
														PMASK	AMASK
FCMISC.	type R/W10	C, offset 0x	014, reset (x0000.000	0			1						1	
,															
														PMISC	AMISC
Interne	al Momor	v													
Fleeh		у (Стара)			、 、										
Flash I	ADDE EDDO	s (Syster	m Contro	DI Offset)										
Dase UX		offenst first i	0	10											
USECRL	, τype R/W,	offset 0x14	iu, reset 0x*	18											
											US	EC			
FMPRE0	, type R/W,	offset 0x13	0 and 0x20	0, reset 0xF	FFF.FFFF										
							READ	ENABLE							
							READ	ENABLE							

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FMPPE0,	type R/W, c	offset 0x134	4 and 0x400	0, reset 0xF	FFF.FFFF										
							PROG	ENABLE							
							PROG_	ENABLE							
USER DE	3G, type R/	N, offset 0)	(1D0, reset	0xFFFF.FF	FE										
NW		,	.,					DATA							
						DA	ATA							DBG1	DBG0
USER RE	G0. type R	/W. offset 0)x1E0. rese	t 0xFFFF.F	FFF									_	
NW		,						DATA							
							DA	TA							
USER RE	G1 type R	/W offset ()x1F4 rese	t 0xFFFF F	FFF										
NW		, onoer e	, 1000					ΠΑΤΑ							
							DA	TA							
EMPRE1	type R/W o	offset 0x20	4 reset OxF	FFF FFFF											
	())01011 , (MOCT UXED	4, 10001 0XI				READ	ENARI E							
EMDRE2	type R/W (offect (1v20)	8 reset Ovi	000 0000											
	Ghe Mar, C		o, 16361 UXU				PEAD								
							READ								
EMPPE?	type P/M	ffeet 0v20	C resot 0v	000 0000											
I WIF KES,	The Link (o, reset UX				DEAD								
		ffa at 0x 40	4				ILAD_								
FWIPPE1,	type R/W, C	mset ux404	4, reset uxr	·FFF.FFFF			PROO								
							PROG_								
							PROG_	ENABLE							
FMPPE2,	type R/W, c	offset 0x40	8, reset 0x0	0000.0000											
							PROG_								
							PROG_	ENABLE							
FMPPE3,	type R/W, c	offset 0x40	C, reset 0x0	0000.0000											
							PROG_								
							PROG_	ENABLE							
Genera	I-Purpos	e Input/	Outputs	(GPIOs)										
GPIO Po	ort A base:	0x4000.4	000												
GPIO Po	ort C base:	0x4000.6	000												
GPIO Po	ort D base:	0x4000.7	000												
GPIO PC	ort F base:	0x4002.4	000												
GPIO Po	ort G base:	0x4002.6	000												
		0,4002.7	000		•										
GFIODAL	r, type R/M	, onset ux	ooo, reset u												
0010010											DA	AIA			
GPIODIR,	type R/W,	onset Ux40	u, reset 0x(0000.0000											
											_				
	Date -										D	иK			
GPIOIS, t	ype κ/W, of	rset ux404,	, reset 0x00	000000											
												5			
GPIOIBE,	type R/W, o	offset 0x40	8, reset 0x(0000.0000											
											IE	BE			
GPIOIEV,	type R/W, c	offset 0x40	C, reset 0x(0000.0000											
											IE	EV			

24	20	20	20	07	26	25	24	22	22	01	20	10	10	17	10
31	30	29	20	21	20	25	24	23	22	21	20	19	10	17	10
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIOIM, 1	type R/W, of	fset 0x410	, reset 0x0	000.0000											
,	,														
											IN	1E			
GPIORIS.	type RO. o	ffset 0x414	I. reset 0x0	000.0000											
,															
											R	IS			
GPIOMIS	type RO. o	ffset 0x41	B. reset 0x0	000.0000											
	, ., po , o		.,												
											M	IS			
GPIOICR	type W1C	offset 0x4	1C reset 0	x0000 0000											
or lording	type mie,	011001 074	10,100010												
											10	0			
GPIOAES	EL type R/	W offeet 0	v420 rosof	!											
	, type to	••, 011361 0	A420, 10301	-											
											AFS	SEL			
CRIODRS	P tupo PM	/ offect 0v	500 reset		-										
SI IODR2	, type n/w	, onset ux			•										
											DR	V2			
CRIODRA	D tune D/M	L offeet Ox	E04 report		n										
GFIODR4	R, type R/M	, onset ux	504, Teset		5										
											DR	V4			
CRIODR		1	500 recet	0.0000.000	^										
GPIODRO	R, type R/W	, onset ux	SUO, reset	UXUUUU.UUU	J		1				1			1	
											DR	V8			
000000		- # 0	00												
GPIOODF	k, type k/w,	onset ux5	uc, reset u	x0000.0000						1	1				
											O	DE			
	6		40												
GPIOPUR	κ, type κ/w,	onset ux5	10, reset -							1					
											Pl	JE			
000000	6		44	-0000 0000											
GPIOPDE	κ, type κ/w,	offset UX5	14, reset u	KUUUU.UUUU											
											P	DE			
	Auro Dati	- #	40					1							
GPIOSLR	, type R/W,	onset 0x5	io, reset 0)												
											SI	RL			
CDICDE	L forme D Att		10					1							
GPIODEN	i, type R/W,	onset 0x5	ic, reset -												
											DF	EN			
			500					1							
GPIOLOC	K, type R/V	v, offset 0x	520, reset	UX0000.000	1										
							LC	CK							
							10	CK							
0.000							20								
GPIOCR,	type -, offse	et 0x524, r	eset -												
											C	R			
											0				
GPIOPeri	phID4, type	RO, offset	t 0xFD0, re	set 0x0000.	0000										
											PI	74			
											C II	- 1			
GPIOPeri	phID5, type	RO, offset	t 0xFD4, re	set 0x0000.	0000										
											pi	75			
											PI	<i></i>			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIOPer	iphID6, type	RO, offse	t 0xFD8, re	set 0x0000	.0000										
											PI	D6			
GPIOPer	iphID7, type	RO, offse	t 0xFDC, re	set 0x0000	.0000										
											PI	D7			
GPIOPer	iphID0, type	RO, offse	t 0xFE0, re	set 0x0000	.0061										
											PI	D0			
GPIOPer	iphID1, type	RO, offse	t 0xFE4, re	set 0x0000	.0000										
											PI	D1			
GPIOPer	iphID2, type	e RO, offse	t 0xFE8, re	set 0x0000	.0018										
											PI	D2			
GPIOPer	iphID3, type	e RO, offse	t 0xFEC, re	set 0x0000	.0001										
											PI	D3			
GPIOPC	ellID0, type	RO, offset	0xFF0, res	et 0x0000.0	00D										
											CI	D0			
GPIOPC	ellID1, type	RO, offset	0xFF4, res	et 0x0000.0	0F0										
											CI	D1			
GPIOPC	ellID2, type	RO, offset	0xFF8, res	et 0x0000.0	005										
											CI	D2			
GPIOPCe	ellID3, type	RO, offset	0xFFC, res	et 0x0000.0	00B1										
											CI	D3			
Genera Timer0 I	al-Purpos base: 0x40	se Time 03.0000	rs												
Timer2	base: 0x40	03.2000													
GPTMCF	G, type R/W	/, offset 0x	000, reset ()x0000.000	0										
														GPTMCFG	i
GPTMTA	MR, type R/	W, offset 0	x004, reset	t 0x0000.00	00			1	1						
												TAAMS	TACMR	TA	MR
GPTMTB	MR, type R	/W, offset ()x008, reset	t 0x0000.00	00						1				
												TBAMS	TBCMR	TB	MR
GPTMCT	L, type R/W	, offset 0x	00C, reset (0x0000.000	0							•			
	TBPWML	TBOTE		TBE	VENT	TBSTALL	TBEN		TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
GPTMIM	R, type R/W	, offset 0x0)18, reset 0	x0000.0000)	1	1								
					CBEIM	CBMIM	TBTOIM					RTCIM	CAEIM	CAMIM	TATOIM
GPTMRI	S, type RO,	offset 0x01	IC, reset 0x	0000.0000											
					CBERIS	CBMRIS	TBTORIS					RTCRIS	CAERIS	CAMRIS	TATORIS

31 30 29 29 27 29 29 29 20 19 18 17 16 31 13 12 11 10 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th></t<>													1			
14 15 12 11 10 9 8 7 8 5 4 3 2 1 0 07TMME. type RW, offeet 0x020, reset 0x0000 DFFF 02EMM	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
GPTMARLS, type R00, offeet 0x020, reset 0x0000.000 CBEMIS CBMARLS TBTOMIS A	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CREAMS CREAMS CREAMS TRETOWS RECAMS CARIANS TRETOWS CA	GPTMMIS	S, type RO,	offset 0x02	20, reset 0x	0000.0000											
OPTIMIZE, type RW, offset 0x024, reset 0x0000.FFFF (16-bit mode) and 0xFFFFFFF (23-bit mode) RTCOM CARMIN TATOMIN GPTIMIZER, type RW, offset 0x024, reset 0x0000.FFFF SAMUAL TATOMIN RTCOM CARMIN TATOMIN GPTIMIZER, type RW, offset 0x024, reset 0x0000.FFFF SAMUAL TATAMIN TATAMIN TATAMIN TATAMIN GPTIMIZER, type RW, offset 0x020, reset 0x0000.FFFF TOULRI TOULRI TOULRI TOULRI GPTIMIZER, type RW, offset 0x030, reset 0x0000.FFFF TOULRI TOULRI TOULRI TOULRI GPTIMIZER, type RW, offset 0x030, reset 0x0000.0000 TOULRI TOULRI TOULRI TOULRI GPTIMIZER, type RW, offset 0x030, reset 0x0000.0000 TOURRI TOURRI TOURRI TOURRI GPTIMIZER, type RW, offset 0x040, reset 0x0000.0000 TOURRI TOURRI TOURRI TOURRI GPTIMIZER, type RW, offset 0x040, reset 0x0000.0000 TOURRI TOURRI TOURRI TOURRI GPTIMIZER, type RW, offset 0x040, reset 0x0000.0000 TOURRI TOURRI TOURRI TOURRI GPTIMIZER, type RW, offset 0x040, reset 0x0000.00000 TOURRI TOURRI													1			
QPTMURE, type WC, offset 0x024, reset 0x0000.0000 RTCORN TERTONN RTCO						ODEMIC	CDMMIC	TOTOMIC					DTOMIC	CAEMIC	CAMMUS	TATOMIC
GPTMICR, type WLC, offield 0x024, resel 0x000, FFFF Import 1 (4-bit mode) and 0x7FFFFFFF (2-bit mode) Import 1 (4-bit mode) (4-bit mode) GPTMTAULR, type RW, offield 0x020, resel 0x0000, FFFF (4-bit mode) and 0x7FFFFFFF (22-bit mode) Import 1 (4-bit mode) (4-bit mode) (4-bit mode) Import 1 (4-bit mode) (4-bit mode) (4-bit mode) GPTMTAULR, type RW, offield 0x020, resel 0x0000, FFFF (4-bit mode) and 0x7FFFFFFFF (22-bit mode) Import 1 (4-bit mode) (4-bit mode) (4-bit mode) (4-bit mode) Import 1 (4-bit mode) (CBEIMIS	CBIVIIVIIS	TETOMIS					RICIVIIS	CAEIMIS	CAIVIIVIIS	TATOMIS
CRECENT CRECENT <t< td=""><td>GPTMICF</td><td>R, type W10</td><td>c, offset 0x</td><td>024, reset 0</td><td>x0000.000</td><td>0</td><td></td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td><td></td><td></td></t<>	GPTMICF	R, type W10	c, offset 0x	024, reset 0	x0000.000	0				_		_				
CBECIANT CBECIANT CBECIANT CBECIANT CANCENT CANCENT CANCENT TADORNT GPTMTALER, type RW, offset 0x020, reset 0x0000.FFFF (14-bit mode) TALERL No																
GPTMTAULE, type RW, offset 0x028, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFF (2 bit mode) TAIL RL GPTMTBILR, type RW, offset 0x020, reset 0x0000.FFFF TAIL RL GPTMTAULE, type RW, offset 0x031, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (12 bit mode) TAIL RL GPTMTBILR, type RW, offset 0x031, reset 0x0000.FFFF TAIL RL GPTMTAUATCHR, type RW, offset 0x031, reset 0x0000.FFFF TAIL RL GPTMTBILR, type RW, offset 0x031, reset 0x0000.0000 TAIL RL GPTMTAURTCHR, type RW, offset 0x031, reset 0x0000.0000 TAIL RL GPTMTAURT, type RW, offset 0x034, reset 0x0000.0000 TAIL RL GPTMTBILR, type RW, offset 0x044, reset 0x0000.0000 TAIL RL GPTMTAURT, type RW, offset 0x044, reset 0x0000.0000 TAIL RL GPTMTAURT, type RW, offset 0x044, reset 0x0000.0000 TAIL RL GPTMTBILR, type RW, offset 0x044, reset 0x0000.0000 TAIL RL GPTMTBILR, type RW, offset 0x044, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (16-bit mode) TAIL RL GPTMTBILR, type RW, offset 0x044, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (16-bit mode) TAIL RL GPTMTBILR, type RO, offset 0x040, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (16-bit mode) TAIL RL GPTMTBILR, type RO, offset 0x040, reset 0x0000.FFFF (16-bit mode) and 0x I I I I I I I I I I I I I I I I						CBECINT	CBMCINT	TBTOCINT					RTCCINT	CAECINT	CAMCINT	TATOCINT
TAILERI	GPTMTA	ILR, type R	/W, offset 0	x028, reset	t 0x0000.FF	FF (16-bit ı	node) and	0xFFFF.FF	FF (32-bit	mode)						
TAUE RL CPTIMTBLR, type RW, offest 0x020, reset 0x000.FFFF TRUE								ΤΔΙΙ	RH							
GPTMTBILE, type RW, offset 0x02C, reset 0x0000_FFFF Image: Control of Contr								тли								
GPTMTBLE, type RW, offset 0x000, FFFF TBLE. Image: Control Contro Control Control Control Control Contro Control Cont																
Carry and the set of	GPTMTB	ILR, type R	/W, offset 0	0x02C, rese	t 0x0000.FI	FFF	1	1								
TBIL GPTMTAMATCHR, type RW, offset 0x030, reset 0x0000 FFFF (16-bit mode) and 0xFFFF (52-bit mode) TAMRH TAMRH <td></td>																
GPTMTAMAPCHR, type RW, offset 0x030, reset 0x0000_FFFF (16-bit mode) and 0xFFFF FFF (22-bit mode) Image: State								TBI	LRL							
TAMRH TAMRI TAMRI TAMRI Image: State Stat	GPTMTA	MATCHR, t	ype R/W, of	ffset 0x030,	, reset 0x00	00.FFFF (1	6-bit mode) and 0xFF	FF.FFFF (3	2-bit mode)					
GPTMTEMATCHR, type RW, offset 0x034, reset 0x000_FFFF TEMMRL GPTMTAPR, type RW, offset 0x038, reset 0x000_0x000 TAPER GPTMTAPR, type RW, offset 0x038, reset 0x000_0x000 TAPER GPTMTAPR, type RW, offset 0x030, reset 0x000_0x000 TAPER GPTMTAPR, type RW, offset 0x040, reset 0x0000_0x000 TAPER GPTMTAPR, type RO, offset 0x040, reset 0x00000_0x000 TAPER WDTLADAD, type RW, offset 0x000, reset 0x00000_FFFF TAPER WDTLADAD, type RW, offset 0x000, reset 0x0000_FFFF TAPER WDTLADAD, type RW, offset 0x000, reset 0x0000_FFFF TAPER WDTLADAD, type RW, offset 0x0000, reset 0x0000_FFFF TAPER								TAN	1RH							
GPT/TEPMATCHR, type R/W, offset 0x038, reset 0x0000.PFFF TBMRL TBMRL TAPSR GPT/TTAPR, type R/W, offset 0x038, reset 0x0000.0000 TAPSR TAPSR GPT/TTAPR, type R/W, offset 0x036, reset 0x0000.0000 TAPSR TAPSR GPT/TTAPR, type R/W, offset 0x040, reset 0x0000.0000 TAPSR TAPSR GPT/TTAPR, type R/W, offset 0x040, reset 0x0000.0000 TAPSR TAPSR GPT/TTAPMR, type R/W, offset 0x040, reset 0x0000.0000 TAPSMR TAPSMR GPT/TTAPMR, type R/W, offset 0x044, reset 0x0000.0000 TAPSMR TAPSMR GPT/TTAPMR, type R/W, offset 0x044, reset 0x0000.0000 TAPSMR TAPSMR GPT/TTAPMR, type R/W, offset 0x044, reset 0x0000.0000 TAPSMR TAPSMR GPT/TTAPMR, type R/W, offset 0x044, reset 0x0000.0000 TAPSMR TAPSMR GPT/TTAPMR, type R/W, offset 0x044, reset 0x0000.0000 TAPSMR TAPSMR GPT/TTAR, type R/W, offset 0x046, reset 0x0000.0000 TAPSMR TAPSMR GPT/TTAR, type R/W, offset 0x046, reset 0x0000.0000 TAPSMR TARH TARH TARH TARH TARH GPT/TTAR, type R/W, offset 0x0004, reset 0x0000.0000 TAPSMR TARH WDT/Load WDT/Load RESEN <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>TAN</td><td>/RI</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								TAN	/RI							
GPT INTER DURING COURSE, UPBER COURSE, PEREL COURSE, PEREL COURSE, PEREL COURSE, PEREL COURSE, PEREL COURSE, PEREL PERE	COTMATO	MATCHD		foot 0-024	*0001 00			1730								
TBMRL TBMRL TBMRL GPTMTAPR, type RW, offset 0x038, reset 0x0000.0000 Image: Control on the	GPINIB	WAIGHR, t	yperk/w, o	iiset 0x034,	, reset uxu(JUU.FFFF										
TBMRL GPTMTAPR, type R/W, offset 0x038, reset 0x0000,0000 TAPSR GPTMTAPR, type R/W, offset 0x036, reset 0x000,0000 TAPSR GPTMTAPR, type R/W, offset 0x036, reset 0x000,0000 TBPSR GPTMTAPMR, type R/W, offset 0x048, reset 0x000,0000 TBPSR GPTMTAPMR, type R/W, offset 0x048, reset 0x000,0000 TAPSN GPTMTAPMR, type R/W, offset 0x048, reset 0x000,0000 TAPSN GPTMTAPMR, type R/W, offset 0x048, reset 0x000,0000 TAPSNR GPTMTAPMR, type R/W, offset 0x048, reset 0x0000,0000 TBPSNR GPTMTAPMR, type R/W, offset 0x048, reset 0x0000,0000 TBPSNR GPTMTAPMR, type R/W, offset 0x040, reset 0x0000,0000 TBPSNR GPTMTAPMR, type R/W, offset 0x040, reset 0x0000,0000 TBPSNR WDTLOAD TBPSNR WDTLOAD, type R/W, offset 0x040, reset 0x0FFFF,FFF WDTLOAD WDTLOAD, type R/W, offset 0x0408, reset 0x0000,0000 MDTLOAD WDTLOAD, type R/W, offset 0x0408, reset 0x0000,0000 MDTLOAD WDTLOAD, type R/W, offset 0x0408, reset 0x0000,0000 MDTLOAD																
GPT TATAPE, type R/W, offset 0x008, reset 0x0000.0000 TAPESR TAPESR TAPESR GPT TATEPR, type R/W, offset 0x030, reset 0x0000.0000 TAPESR TAPESR TAPESR GPT TAPER, type R/W, offset 0x030, reset 0x0000.0000 TAPESR TAPESR TAPESR GPT TAPER, type R/W, offset 0x040, reset 0x0000.0000 TAPESR TAPESR TAPESR GPT TAPEMR, type R/W, offset 0x040, reset 0x0000.0000 TAPESMR TAPESMR TAPESMR GPT TAPE MR, type R/W, offset 0x044, reset 0x0000.0000 TAPESMR TAPESMR TAPESMR GPT TAPE MR, type R/W, offset 0x044, reset 0x0000.0000 TAPESMR TAPESMR TAPESMR GPT TAPE MR, type R/W, offset 0x044, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (22-bit mode) TAPESMR TAPESMR GPT TAPE MR, type R/W, offset 0x046, reset 0x0000.FFFF TAPESMR TAPESMR TAPESMR GPT TAPE MR, type R/W, offset 0x004, reset 0x0000.FFFF TAPESMR TAPESMR TAPESMR GPT TAPE MR, type R/W, offset 0x004, reset 0x0000.FFFF TAPESMR TAPESMR TAPESMR GPT TAPE MR type R/W, offset 0x000, reset 0xFFFF.FFFF TAPESMR TAPESMR TAPESMR WDTLABA TAPESMR TAPESMR TAPESMR TAPESMR								TBN	/IRL							
GPTMTBPR, type R/W, offset 0x03C, reset 0x0000.0000 Image: constrained of the con	GPTMTA	PR, type R/	W, offset 0	x038, reset	0x0000.00	00										
GPT MTBPR, type R.W. offset 0x000, creset 0x0000,0000 TAPSR GPT MTAPMR, type R.W. offset 0x040, reset 0x0000,0000 TBPSR TBPSR GPT MTAPMR, type R.W. offset 0x040, reset 0x0000,0000 TAPSMR TAPSMR GPT MTBPMR, type R.W. offset 0x040, reset 0x0000,0000 TAPSMR TAPSMR GPT MTBPMR, type R.W. offset 0x044, reset 0x0000,0000 TAPSMR TAPSMR GPT MTBPMR, type R.W. offset 0x044, reset 0x0000,0000 TAPSMR TAPSMR GPT MTBPMR, type R.W. offset 0x044, reset 0x0000,0000 TAPSMR TAPSMR GPT MTBPMR, type R.W. offset 0x044, reset 0x0000,0000 TAPSMR TAPSMR GPT MTAP.MR, type R.W. offset 0x044, reset 0x0000,0FFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode) TAPSMR GPT MTBP.MR, type R.W. offset 0x040, reset 0x0000,FFFF TAPSMR TAPSMR WDTLOAD, type R.W. offset 0x000, reset 0xFFFF.FFFF WDTLoad TAPSMR WDTALUE, type R.W. offset 0x000, reset 0xFFFF.FFFF WDTLoad TAPSMR WDTALUE, type R.W. offset 0x000, reset 0x0000, 0000 RESEN RESEN NTEN WDTALUE, type R.W. offset 0x000, reset 0x0000, 0000 RESEN RESEN NTEN WDTINCR, type R.W. offset 0x000, reset 0x0000, 0000																
GPTMTEPR, type RW, offset 0x040, reset 0x0000.0000 TBPSR TBPSR GPTMTAPNR, type RW, offset 0x040, reset 0x0000.0000 TAPSMR Image: Control of												TA	PSR			
GPT IMT DP N, type RUN, offset 0x000, reset 0x0000.0000 TBPSR TBPSR GPT MTAPNR, type RW, offset 0x000, reset 0x0000.0000 TAPSMR TAPSMR GPT MTBPNR, type RW, offset 0x004, reset 0x0000.0000 TAPSMR TAPSMR GPT MTBPNR, type RW, offset 0x044, reset 0x0000.0000 TBPSM TAPSMR GPT MTBPNR, type RO, offset 0x044, reset 0x0000.0000 TBPSMR TAPSMR GPT MTBPNR, type RO, offset 0x044, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode) TBPSMR GPT MTBR, type RO, offset 0x046, reset 0x0000.FFFF TARL TARL GPT MTBR, type RO, offset 0x040, reset 0x0000.FFFF TARL TARL GPT MTBR, type RO, offset 0x040, reset 0x0000.FFFF TBRL TARL WDTLOAD, type RW, offset 0x000, reset 0xFFFF.FFFF WDTLoAd TBRL WDTLOAD, type RW, offset 0x000, reset 0xFFFF.FFFF WDTLoAd RESEN WDTLOAD, type RW, offset 0x000, reset 0xFFFF.FFFF TERL TERL WDTALUE, type RW, offset 0x000, reset 0xFFFF.FFFF TERL TERL WDTALUE, type RW, offset 0x000, reset 0x0000.0000 RESEN RESEN NTERN WDTRLOAD, type RW, offset 0x000, reset 0x0000.0000 RESEN RESEN NTERN WDTRLOAD, type RW, offset 0x000, r	COTMTR	PR type R	W offect 0	v03C rosot		00							-			
GPTMTAPUR, type RW, offset 0x040, reset 0x0000.0000 Image: Control (Control (Contro) (Contro) (Control (Control (Control (Control (Contro	GFTWITE	гк, цре к	vv, onset u	x030, 16361									1			
Contraction																
GPTNTAPMR, type RW, offset 0x040, reset 0x0000.0000 Image: Control of Sect 0x0000.0000 Image: Control of Sect 0x0000.0000 Image: Control of Sect 0x0000.0000 GPTNTBPMR, type RW, offset 0x044, reset 0x0000.0000 Image: Control of Sect 0x040, reset 0x000.0000 Image: Control of Sect 0x040, reset 0x000.FFFF Image: Control of Sect 0x040, reset 0x000.FFFF Image: Control of Sect 0x040, reset 0x000.FFF Image: Control of Sect 0x040, reset 0x000.FFF Image: Control of Sect 0x040, reset 0x000.FFF Image: Control of Sect 0x040, reset 0x040, reset 0x000.FFF Image: Control of Sect 0x040, reset 0xFFF.FFF Image: Control of Sect 0x040, reset 0x040, rese												TB	PSR			
GPT MTAR, type RW, offset 0x040, reset 0x0000.0000 Image: Control operation oper	GPTMTA	PMR, type l	R/W, offset	0x040, rese	et 0x0000.0	000										
GPT MTRP MR, type R/W, offset 0x044, reset 0x0000.0000 Image: constraint of the set 0x0000.0000 GPT MTAP MR, type R/W, offset 0x044, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode) Image: constraint of the set 0x044, reset 0x000.FFFF GPT MTAR, type R0, offset 0x042, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode) Image: constraint of the set 0x044, reset 0x000.FFFF GPT MTAR, type R0, offset 0x042, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode) Image: constraint of the set 0x044, reset 0x000.FFFF GPT MTAR, type R0, offset 0x042, reset 0x000.FFFF Image: constraint of the set 0x0400.0000 Image: constraint of the set 0x0400.FFF W0TLOAD Image: constraint of the set 0x040, reset 0xFFFF.FFFFF Image: constraint of the set 0x0400.0000 Image: constraint of the set 0x0400.reset 0xFFFF.FFF W0TLOAD, type R/W, offset 0x000, reset 0xFFFF.FFFFF Image: constraint of the set 0x0400.reset 0xFFFF.FFFF Image: constraint of the set 0x0400.reset 0xFFF.FFFF W0TVALUE, type R0, offset 0x000, reset 0xFFFF.FFFFF Image: constraint of the set 0x0400.reset 0xFFFF.FFFF Image: constraint of the set 0x4400.0000 W0TVALUE, type R/W, offset 0x000, reset 0xFFFF.FFFF Image: constraint of the set 0x4400.0000 Image: constraint of the set 0x4400.0000 W0TVALUE, type R/W, offset 0x000, reset 0xFFFF.FFFF Image: constraint of the set 0x4400.0000.0000 Image: constraint of the set 0x4400.reset 0x4000.reset 0x400.reset 0x4400.reset 0x40																
GPTWTEPPMR, type R/W, offset 0x0044, reset 0x0000.0000 Image: constraint of the constraint o												TAF	PSMR			
Gr Min Di Min y per Kin diate dor in decentre of the bit mode) and 0xFFFF.FFFF (32-bit mode) TBPSMR TBPSMR GPTMTAR, type RO, offset 0x046, reset 0x0000.FFFF TARH TARH TARH GPTMTBR, type RO, offset 0x046, reset 0x0000.FFFF TARH Image: Control of the bit mode) Image: Control of the bit mode) GPTMTBR, type RO, offset 0x046, reset 0x0000.FFFF TARH Image: Control of the bit mode) Image: Control of the bit mode) GPTMTBR, type RO, offset 0x046, reset 0x0000.FFFF TBRL Image: Control of the bit mode) Image: Control of the bit mode) WDTLOAD, type RW, offset 0x000, reset 0xFFFF.FFFF Image: Control of the bit mode) WDTLOAD, type RW, offset 0x000, reset 0xFFFF.FFFF Image: Control of the bit mode) WDTVALUE, type RW, offset 0x008, reset 0x0000.0000 Image: Control of the bit mode) WDTVALUE, type RW, offset 0x008, reset 0x0000.0000 Image: Control of the bit mode) Image: Control of the bit mode) <td>GPTMTB</td> <td>PMR type</td> <td>R/W offset</td> <td>0x044 res</td> <td>et 0x0000 0</td> <td>000</td> <td></td>	GPTMTB	PMR type	R/W offset	0x044 res	et 0x0000 0	000										
GPTMTAR, type R0, offset 0x0408, reset 0x000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode) TBPSMR TARH TARH <td></td> <td>i iiiti, type</td> <td>ian, enser</td> <td>0,044,100</td> <td></td>		i iiiti, type	ian, enser	0,044,100												
Idea																
GPTMTAR, type R0, offset 0x048, reset 0x0000.FFFF (16-bit mode) and 0xFFF.FFFF (32-bit mode) TARH TARH TARH TARH GPTMTBR, type R0, offset 0x04C, reset 0x000.FFFF GPTMTAR, type R0, offset 0x04C, reset 0x000.FFFF TBRL Watchdog Timer Base 0x4000.0000 WDTLOAD, type RW, offset 0x000, reset 0xFFF.FFFF WDTLoad WDTVALUE, type R0, offset 0x004, reset 0xFFF.FFFF WDTVALUE, type R/W, offset 0x004, reset 0xFFF.FFFF WDTVALUE, type R/W, offset 0x004, reset 0xFFF.FFFF WDTValue WDTVALUE, type R/W, offset 0x000, reset 0x-0000 WDTVALUE WDTVALUE, type R/W, offset 0x000, reset 0x-0000 WDTVALUE WDTVALUE WDTVALUE WDTVALUE WDTVALUE WDTVALUE WDTVALUE WDTVALUE WDTCTL, type R/W, offset 0x000, reset 0x-000.0000 WDTINCIr WDTINCIr </td <td></td> <td>IBH</td> <td>SMR</td> <td></td> <td></td> <td></td>												IBH	SMR			
TARH TARL GPTMTBR, type R0, offset 0x000, FFFF GPTMTBR, type R0, offset 0x000, reset 0x0000, FFFF TBRL Watchdog Timer Base 0x4000, 0000 WDTLoad WDTLoad WDTLoad WDTVALUE, type R0, offset 0x004, reset 0xFFFF.FFFF WDTValue WDTValue WDTValue WDTValue WDTValue WDTValue WDTVALUE, type R0, offset 0x000, reset 0x0000.0000 WDTVALUE, type RW, offset 0x000, reset 0x000.0000 WDTCTL, type RW, offset 0x000, reset 0x000.0000 WDTICIC WDTICIC WDTINCIr WDTINCIR WDTINCIR WDTINCIR WDTINCIR WDTINCIR WDTINCIR WDTINCIR WDTINCIR	GPTMTA	R, type RO,	offset 0x0	48, reset 0x	(0000.FFFF	(16-bit mo	de) and 0x	FFFF.FFFF	(32-bit mo	de)						
TARL GPTMTBR, type RO, offset 0x0000.FFFF GPTMTBR, type RO, offset 0x000.FFFF Watchdog Timer Base 0x4000.0000 WOTLOAD, type RW, offset 0x000, reset 0xFFF.FFFF WDTLoad WDTLoad WDTLoad WDTVALUE, type RO, offset 0x004, reset 0xFFF.FFFF WDTValue WDTVALUE, type R/W, offset 0x000, reset 0x0000.0000 WDTICR WDTICR WDTICR WDTICR WDTICR WDTINCI' WDTINCI' <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>TA</td> <td>RH</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								TA	RH							
GPTMTBR, type R0, offset 0x000, FFFF Image: Second Sec								TA	RL							
TBRL TBRL WATCHOOG Timer Base 0x4000.0000 WDTLOAD, type R/W, offset 0x000, reset 0xFFFF.FFFF WDTLoad WDTLoad WDTLoad WDTLoad WDTLoad WDTLoad WDTVALUE, type R/W, offset 0x000, reset 0xFFFF.FFFF WDTValue WDTValue WDTValue WDTValue WDTValue WDTValue WDTValue WDTValue WDTVALUE, type R/W, offset 0x000, reset 0x0000.0000 WDTVALUE WDTVALUE, type R/W, offset 0x000, reset 0x0000.0000 WDTCTL, type R/W, offset 0x000, reset 0x0000.0000 WDTICI: WDTINCI:	GPTMTB	R, type RO	, offset 0x0	4C, reset 0	x0000.FFFI	-										
TBRL TBRL WATChOog Timer Base 0x4000.0000 Base 0x4000.0000, reset 0xFFF.FFFF WDTLOAD, type R/W, offset 0x000, reset 0xFFF.FFFF WDTLoad WDTVALUE, type RO, offset 0x004, reset 0xFFF.FFFF WDTVALUE, type RO, offset 0x004, reset 0xFFF.FFFF WDTValue WDTValue WDTValue WDTValue WDTVALUE, type R/W, offset 0x000, reset 0x0000.0000 WDTCTL, type R/W, offset 0x000, reset 0x0000.0000 WDTCR, type WO, offset 0x000, reset - WDTICICI WDTINCIr WDTINCIR <td></td>																
Watchdog Timer Base 0x4000.0000 WDTLOAD, type R/W, offset 0x000, reset 0xFFFF.FFFF WDTLoad WDTVALUE, type R0, offset 0x004, reset 0xFFFF.FFFF WDTValue WDTCTL, type R/W, offset 0x000, reset 0x0000.0000 WDTCR, type WO, offset 0x000, reset								TB	RI							
Watchdog 11mer Base 0x4000.0000 WDTLOAD, type R/W, offset 0x000, reset 0xFFFF.FFFF WDTLoad WDTVALUE, type RO, offset 0x004, reset 0xFFFF.FFFF WDTVALUE, type R/W, offset 0x004, reset 0xFFFF.FFFF WDTVALUE WDTCTL, type R/W, offset 0x0000, reset 0x0000.0000 WDTINCIr WDTINCIR <																
Base 0x4000, orgeset 0x000, reset 0xFFFF.FFFF WDTLoad WDTLoad WDTVALUE, type RO, offset 0x000, reset 0xFFFF.FFFF WDTVALUE, type RO, offset 0x000, reset 0xFFFF.FFFF WDTVALUE, type RO, offset 0x000, reset 0xFFFF.FFFF WDTValue WDTValue WDTValue WDTValue WDTValue WDTValue WDTVCIL, type R/W, offset 0x000, ocooo WDTCTL, type R/W, offset 0x000, reset 0x0000.0000 WDTICIr WDTICIr WDTINCIr	Watcho	log Time	er													
WDTLOAD, type R/W, offset 0x000, reset 0xFFF.FFFF WDTLoad WDTLOad WDTVALUE, type R/V, offset 0x004, reset 0xFFF.FFFF WDTVAlue WDTValue WDTValue WDTValue WDTValue WDTValue WDTValue WDTValue WDTVALUE, type R/W, offset 0x008, reset 0x000.0000 WDTICR, type R/W, offset 0x008, reset 0x000.0000 WDTICR, type R/W, offset 0x000, reset - WDTICR type R/W, offset 0x000, reset - WDTICR' WDTICR' WDTINCI' WDTING ' A	Base 0x	4000.0000)													
WDTLoad WDTLoad WDTVALUE, type RO, offset 0x004, reset 0xFFFF.FFFF WDTValue WDTVALUE, type RO, offset 0x008, reset 0x0000 WDTValue WDTCTL, type R/W, offset 0x008, reset 0x0000 Image: Comparison of the comparison of	WDTLOA	D, type R/V	V, offset 0x	000, reset (0xFFFF.FFF	F										
WDTLoad WDTVALUE, type RO, offset 0x004, reset 0x0FFFF.FFFF WDTValue WDTValue WDTValue WDTValue WDTVALUE, type R/W, offset 0x008, reset 0x0000.0000 WDTCTL, type R/W, offset 0x008, reset 0x0000.0000 WDTOTL, type R/W, offset 0x000, reset 0x0000.0000 WDTICE WDTICR, type R/W, offset 0x000, reset - WDTINCIr								WDT	Load							
WDTVALUE, type RO, offset 0x004, reset 0xFFF.FFFF WDTValue WDTValue WDTCTL, type R/W, offset 0x008, reset 0x0000.0000 WDTCTL, type R/W, offset 0x000, reset 0x0000.0000 WDTICR, type WO, offset 0x000, reset 0x0000, reset 0x000, reset 0x0000, reset 0x0000, reset 0x0000, reset 0x000, reset 0x00								WDT	Load							
WDTValue WDTValue WDTCTL, type R/W, offset 0x0008, reset 0x0000.0000 Image: Section of Secti	WDTVAL	UE, type R	D, offset 0x	004, reset (0xFFFF.FF	F										
WDTValue WDTCL, type R/W, offset 0x000, reset 0x0000.0000 Image: I		, -, -, -, -, -, -, -, -, -, -, -, -,	.,	,				\W/DT	Value							
WDTCL, type R/W, offset 0x008, reset 0x000.0000 MDTCTL, type R/W, offset 0x008, reset 0x000.0000 Image: Colspan="12">Colspan="12">Colspan="12" Colspan="12" Col								WDT	Value							
WDTCTL, type R/W, offset 0x008, reset 0x0000.0000 Image: constraint of the set 0x000.0000 Image: constraint of the								WDI	value							
Image: Constraint of the state of the st	WDTCTL	, type R/W,	offset 0x00	08, reset 0x	0000.0000											
Mode Mode Mode Mode Mode Mode RESEN INTEN WDTICR, type WO, offset 0x00C, reset - WDTINCIr WDTINCIr WDTINCIr WDTINCIr WDTINCIr WDTRIS, type RO, offset 0x010, reset 0x000.0000 MOTE IN THE INFORMATION OF THE INFORM																
WDTICR, type WO, offset 0x00C, reset - WDTIntClr WDTIntClr WDTIntClr WDTRIS, type RO, offset 0x010, reset 0x0000.0000 WDTRIS															RESEN	INTEN
WDTIntCir WDTINTCir <th< td=""><td>WDTICR.</td><td>type WO, o</td><td>offset 0x00</td><td>C, reset -</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	WDTICR.	type WO, o	offset 0x00	C, reset -	•											
WDTINtClr WDTRIS, type RO, offset 0x010, reset 0x0000.0000 Image: I	,							WDT	IntClr							
WDTRIS, type RO, offset 0x010, reset 0x0000.0000									IntClr							
WDTRIS, type RO, ottset 0x0010, reset 0x0000.0000								1001								
Image: Constraint of the second sec	WDTRIS,	type RO, o	rrset 0x010	, reset 0x0	000.0000											
WDTRIS																
																WDTRIS

												1			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WDTMIS	type RO o	ffset 0x01	4 reset 0x0	000 0000							1				
	, type ito, o	11361 0701	+, 10301 UAU	1				1							
															WDTMIS
WDTTES	T type R/W	offset 0x/	118 reset 0	x0000 0000				1							
	, type 10 m	, 011361 07-	+10, 10301 0	1				1							
							STALL								
	K type R/M	/ offset 0x	C00 reset	0×0000 000	0			1							
	, ., .,	.,	,	•	•										
							WD	LOCK							
							WD ⁻	FLock							
WDTPeri	phID4. type	RO. offse	t 0xFD0. res	set 0x0000.	0000										
	F 7.916 -	.,	, .	1											
											P	.D4			
WDTPeri	phID5, type	RO, offse	t 0xFD4, res	set 0x0000.	0000										
		,													
											PI	D5			
WDTPeri	phID6, type	RO, offse	t 0xFD8, res	set 0x0000.	0000										
											-				
											Р	D6			
WDTPeri	phID7, type	RO, offset	t 0xFDC, re	set 0x0000.	0000										
											P	<u> </u>			
WDTPeri	phID0, type	RO, offse	t 0xFE0, res	set 0x0000.	0005										
											P				
				1							• •				
WDTPeri	phID1, type	RO, offse	t 0xFE4, res	set 0x0000.	0018			-							
											P	D1			
		P.0													
WDTPeri	phiD2, type	RO, offse	t UXFE8, res	set 0x0000.	0018										
											P	D2			
WDTBori	nhID2 tuno	BO offee		oot 0x0000	0001			1							
WDIFen	pinos, type	RO, Olise	UXFEC, IE	Sel UXUUUU.	0001										
											P	D3			
WDTPCe	UIDO type F	20 offset	OvFFO rese	-t 0x0000 0	סטר										
											С	D0			
WDTPCe	llID1, type F	RO, offset	0xFF4. rese	et 0x0000.00)F0										
	, ., ., .	.,	.,		-										
											C	D1			
WDTPCe	ellID2, type F	RO, offset	0xFF8, rese	et 0x0000.00	005										
											С	D2			
WDTPCe	ellID3, type F	RO, offset	0xFFC, res	et 0x0000.0	0B1										
											-				
											C	JJ			
Univer	sal Asvn	chrono	us Recei	ivers/Tra	nsmitter	rs (UAR	Ts)								
UARTO	base: 0x40	000.000													
UART1	base: 0x40	000.D000													
	tuno DAti	offent Out	00 100010	0000 0000											
UARIDR	, type R/W,	onset ux0	uu, reset ux												
				OE	BE	PE	FE				D	ATA			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
UARTRS	R/UARTECH	R, type RO	offset 0x0	04, reset 0	<0000.0000										
												OE	BE	PE	FE
UARTRS		tvne WO	offset 0x0)04 reset 0	×0000 0000	1						1			
		ц, сурс пе	,												
											D4	 ΔΤΔ			
	turne DO e	ffact 0x040	waaat 0x0	000.0000							07				
UARTER,	type RO, 0	IISEL UXU IC	, reset uxu	000.0090											
								TYPE	DVEE	TYPE	DVEE	DU OV			
					-			IAFE	RAFF	IAFF	RAFE	BUST			
UARTILP	R, type R/W	/, offset Ux	020, reset (JX0000.000	J										
											ILPD	OVSR			
UARTIBR	D, type R/V	V, offset 0x	024, reset	0x0000.000	0										
							DIV	INT							
UARTFB	RD, type R/	W, offset 0	x028, reset	0x0000.00	00							-			
												DIVF	RAC		
UARTLCI	RH, type R/	W, offset 0	k02C, reset	t 0x0000.00	00										
								SPS	WL	EN	FEN	STP2	EPS	PEN	BRK
UARTCTI	, type R/W	offset 0x0	30, reset 0	x0000.0300											
						RXE	TXE	LBE					SIRLP	SIREN	UARTEN
UARTIFL	S, type R/W	, offset 0x) 34, reset 0)x0000.0012	2									1	-
											RXIFLSEL			TXIFLSEL	
UARTIM.	type R/W, c	offset 0x03	B. reset 0x0	000.0000											
,	.,,.		.,												
					OEIM	BEIM	PEIM	FEIM	RTIM	TXIM	RXIM				
	turno BO	offect 0x03	C reset 0x	0000 0005	02	DLim					- ouiii				
UARTRIS	, type KO, t		C, Teset UX	0000.0001											
					OFRIC	DEDIO	DEDIO	FEDIO	DTDIC	TYDIC	DVDIC				
					UERIS	BERIS	PERIS	FERIS	RIRIS	I ARIS	RARIS				
UARIMIS	s, type RO,	offset 0x04	0, reset 0x	0000.0000											
					051110	DEVIC	DELVIS			-	DV/ VO				
					OEMIS	BEMIS	PEMIS	FEMIS	RIMIS	TXMIS	RXMIS				
UARTICR	t, type W1C	, offset 0x(044, reset 0	x0000.0000)										
					OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC				
UARTPer	iphID4, typ	e RO, offse	t 0xFD0, re	eset 0x0000	.0000							-			
											PI	D4			
UARTPer	iphID5, typ	e RO, offse	et 0xFD4, re	eset 0x0000	.0000										7
											PI	D5			
UARTPer	iphID6, typ	e RO, offse	t 0xFD8, re	eset 0x0000	.0000										
											PI	D6			
UARTPer	iphID7, typ	e RO, offse	t 0xFDC, re	eset 0x0000	0.0000										
											PI	D7			
												· ·			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	inhID0 type	RO offse	t 0xEE0 re	set 0x0000	0011			1				1			
GAILTIE	ipinibo, typ	5 100, 01130													
											P	DU			
UARTPer	riphID1, type	e RO, offse	et 0xFE4, re	eset 0x0000	0.0000										
											P	D1			
UARTPer	riphID2, type	e RO, offse	et 0xFE8, re	eset 0x0000	0.0018										
											P	D2			
UARTPer	riphID3, type	e RO, offse	et 0xFEC, re	eset 0x000	0.0001										
		,	,												
											P	ן 201			
		DO offect	0.4550		0000							20			
UARTPO	ешьо, туре	RO, onset	UXFFU, res		0000			1				1			
											С	ID0			
UARTPC	ellID1, type	RO, offset	0xFF4, res	et 0x0000.	00F0										
											C	ID1			
UARTPC	ellID2, type	RO, offset	0xFF8, res	et 0x0000.	0005										
											С	ID2			
UARTPC	ellID3. type	RO. offset	0xFFC. res	set 0x0000.	00B1										
		,													
											C	 3			
											0	100			
Synchi	ronous S	erial Int	erface (S	SSI)											
SSI0 ba	se: 0x4000 se: 0x4000	0.8000													
SSICPO		ffeot 0x000	rocot 0x0	000 0000											
SSICKU,	type R/ww, o		, reset uxu	000.0000				1							
			S	CR				SPH	SPO	F	RF		D	SS	
SSICR1,	type R/W, of	ffset 0x004	l, reset 0x0	000.0000											
												SOD	MS	SSE	LBM
SSIDR, ty	/pe R/W, off	set 0x008,	reset 0x00	00.0000											
							D	ATA				1			
SSISR. tv	pe RO. offs	et 0x00C	reset 0x000	00.0003											
	, ,														
											Dev	DEF	DNE	TNE	тсг
0010757	Auro Barr	- 41	10								160		RINE	TINE	IFE
SSICPSR	, τype R/W,	onset 0x0	10, reset 0>	kuuuu.0000											
											CPS	DVSR			
SSIIM, ty	pe R/W, offs	et 0x014,	reset 0x000	00.000											
												TXIM	RXIM	RTIM	RORIM
SSIRIS, t	ype RO, offs	set 0x018,	reset 0x00	00.0008											
		.,													
												TXPIS	RXBIG	RTRIS	ROBBIG
COMPO -			roact C.	00.0000									101110	11110	NONING
SSIMIS, t	ype KO, off	set uxu1C,	reset 0x00	00000											
												TXMIS	RXMIS	RTMIS	RORMIS

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSIICR, t	ype W1C, o	ffset 0x020), reset 0x0	000.0000		-									
														RTIC	RORIC
SSIPerip	hID4, type F	RO, offset 0)xFD0, rese	et 0x0000.00	00										
											PI	D4			
SSIPerip	hID5, type F	RO, offset (xFD4, rese	et 0x0000.00	00										
											PI	D5			
SSIPerip	hID6, type F	RO, offset (xFD8, rese	et 0x0000.00	00										
											PI	D6			
SSIPerip	hID7, type F	RO, offset 0)xFDC, rese	et 0x0000.00	000			1							
			,												
											PI	D7			
SSIPerin	hID0. type F	RO, offset ()xFF0, rese	t 0x0000.00	22			1							
											PI	D0			
SSIPerin	hID1 type F	20 offset (VEE4 rese	t 0x0000 00	00										
con crip	1110 1, t y pe i		, 1000												
											PI	1			
SCIDorin		O offect (+ 0×0000 00	10										
SSIFerip	nibz, type r	to, onset t	JAFEO, Tese	1 020000.00	10										
											PI	DZ			
SSIPerip	niD3, type F	(O, offset (IXFEC, rese	et 0x0000.00	001										
					_						PI	D3			
SSIPCell	ID0, type R0	D, offset 0x	(FF0, reset	0x0000.000	D										
											CI	D0			
SSIPCell	ID1, type R0	D, offset 0x	FF4, reset	0x0000.00F	0										
											CI	D1			
SSIPCell	ID2, type R0	D, offset 0x	FF8, reset	0x0000.000	5						1				
											CI	D2			
SSIPCell	ID3, type R0	D, offset 0x	FFC, reset	0x0000.00E	31										
											CI	D3			
Inter-In	ntegrated	Circuit	(I ² C) Inte	erface											
I ² C Ma	ster														
I2C Mas	ster 0 base	: 0x4002.0	0000												
I2CMSA,	type R/W, o	ffset 0x000	0, reset 0x0	0000.0000											
											SA				R/S
I2CMCS.	type RO, of	fset 0x004	, reset 0x00	000.0000				1							
									BUSBSY	IDLE	ARBLST	DATACK	ADRACK	ERROR	BUSY
I2CMCS	type WO. o	ffset 0x004	. reset 0x0	000.0000											
,	.,,.		,												
												ACK	STOP	STAPT	RUN
													UTUF	UIAN	1.ON
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
----------------------	---------------	-------------------------	------------------------	------------	----	----	----	----	----	-----	-----	----------	-----	------	---------
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I2CMDR,	type R/W, o	offset 0x00	8, reset 0x(0000.0000				1				1			
											DA	TA			
I2CMTPF	R, type R/W,	offset 0x0	0C, reset 0	x0000.0001											
											TI	PR			
I2CMIMR	, type R/W,	offset 0x0 [,]	10, reset 0x	0000.0000											
															IM
I2CMRIS	, type RO, o	ffset 0x014	4, reset 0x0	0000.0000								1			
															RIS
I2CMMIS	, type RO, o	offset 0x01	8, reset 0x0	0000.0000				1							
															MIS
I2CMICR	, type WO, o	offset 0x01	C, reset 0x	0000.0000				1							
															IC
I2CMCR,	type R/W, c	offset 0x02	0, reset 0x(0000.0000				1							
										SFE	MFE				LPBK
Inter-Ir	ntegrated		(I ² C) Int	erface											
I ² C SIa			(,												
I2C Slav	ve 0 base:	0x4002.0	800												
12CSOAF	R. type R/W.	offset 0x0	00. reset 0	x0000.0000											
	1.11														
												OAR			
12CSCSF	R, type RO, c	offset 0x00	4, reset 0x	0000.0000											
			,												
													FBR	TREQ	RREQ
12CSCSF	R. type WO.	offset 0x00)4. reset 0x	0000.0000											
			,												
															DA
I2CSDR.	type R/W. o	ffset 0x008	3. reset 0x0	000.0000											
			,												
											DA	I ATA			
I2CSIMR	, type R/W, o	offset 0x00	C, reset 0x	0000.0000				1							
															DATAIM
I2CSRIS,	, type RO, of	ffset 0x010), reset 0x0	000.0000				I							
															DATARIS
12CSMIS	, type RO, o	ffset 0x014	4, reset 0x0	0000.0000											
															DATAMIS
I2CSICR	, type WO. o	offset 0x01	8, reset 0x0	0000.0000											
															DATAIC

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
A	^											1			
Analog	Compai	rators													
Base 0x4	4003.C000)													
ACMIS, ty	/pe R/W1C,	offset 0x0	0, reset 0x(0000.0000											
													IN2	IN1	IN0
ACRIS, ty	vpe RO, offs	set 0x04, re	eset 0x0000	0.0000											
													INIO	INIA	INIO
													INZ	INT	INU
ACINTEN	, type R/W,	offset 0x0	8, reset 0x0	0000.0000											
													IN2	IN1	INO
													1142		1110
ACREFC	TL, type R/V	N, offset 0>	(10, reset 0	x0000.0000											
						EN	RNG						VR	EF	
ACCTATO	turne DO			000.0000											
ACSIAIU	, туре ко, с	JISELUXZU	, reset uxut	000.0000											
														OVAL	
ACSTAT1	, type RO, o	offset 0x40	reset 0x00	000.0000				1							
	, .,,, .		,												
														OVAL	
ACSTAT2	, type RO, o	offset 0x60	, reset 0x00	000.0000											
														01/01	
														OVAL	
ACCTL0,	type R/W, c	offset 0x24	, reset 0x00	000.000											
					124	RCP						19	EN	CINIV	
					7101						IOEWIE			0111	
ACCTL1,	type R/W, c	offset 0x44	, reset 0x00	000.0000											
					ASI	RCP					ISLVAL	IS	EN	CINV	
ACCTI 2	type P/M c	ffeat 0x64	rocot 0x00	00000								I			
A001122,	type to ti, c	11361 07.04	, 16361 0700					1							
					ASI	RCP					ISLVAL	IS	EN	CINV	
	Nidth Mo	dulator	(D\M/M)												
Page Or	4002 8000	uulatoi													
Base 0x4	4002.8000														
PWMCTL	, type R/W,	offset 0x00	00, reset 0x	0000.0000											
													GlobalSvnc?	GlobalSvnc1	GlobalSvnc0
	a														
PWMSYN	C, type R/V	v, offset 0x	004, reset (UX0000.000	U										
													Sync2	Sync1	Sync0
			0x000 ****	ot 0x0000 0	000								•	-	•
	occ, type i	ww, onset	JAUUO, FES												
										PWM5En	PWM4En	PWM3En	PWM2En	PWM1En	PWM0En
	ERT. type R	/W. offset (0x00C. rese	et 0x0000.00	000										
	, ., ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	.,	,		-										
										PWM5Inv	PWM4Inv	PWM3Inv	PWM2Inv	PWM1Inv	PWM0Inv
PWMFAU	LT, type R/	N, offset 0	k010, reset	0x0000.000	0										
										E //-	F 111	F 115	F 115	F 11.1	F 115
										⊢ault5	⊦ault4	⊢ault3	⊢ault2	⊢ault1	⊢ault0
PWMINTE	EN, type R/V	N, offset 0>	c014, reset	0x0000.000	0										
															IntFault
													IntP\//\42	IntP\\/\44	IntP\/\/

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PWMRIS	type RO, of	ffset 0x018	. reset 0x00	000.0000											
	, ., po, o		,												IntFoult
					-										
PWMISC	, type R/W10	C, offset 0x	(01C, reset	0x0000.000	0			1							
															IntFault
													IntPWM2	IntPWM1	IntPWM0
PWMSTA	TUS, type R	O, offset 0	x020, reset	t 0x0000.00	00										
															Fault
PWM0CT	L, type R/W	, offset 0x()40, reset 0	x0000.0000											
										CmpBUpd	CmpAUpd	LoadUpd	Debug	Mode	Enable
PWM1CT	I type R/W	offset 0x(180 reset 0	×0000 0000											
	_ , type 1011	, 011001 074													
										CreanDilland	Crean Al Jund		Debug	Mada	Fashla
										Спрвора	Спраора	соасоро	Debug	wode	Enable
PWM2CT	L, type R/W	, offset 0x(JCU, reset 0	x0000.0000)										
										CmpBUpd	CmpAUpd	LoadUpd	Debug	Mode	Enable
PWM0IN	TEN, type R/	W, offset ()x044, reset	t 0x0000.00	00										
										IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
PWM1IN	TEN, type R/	W, offset ()x084, reset	t 0x0000.00	00								8		8
										IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
PWM2IN	TEN type R/	W offset ()x0C4 rese	t 0x0000 00	00										
	1 En, type 10	n, enser e	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
										IntCompDD	IntCom DLL	IntCmn AD	IntComp Al I	IntCatl and	latCatZasa
DUGGODU										пистирьо	пистрео	пістра	IntempAo	Intenteoau	Intentzero
PWMORI	S, type RO, o	offset 0x04	18, reset uxi	0000.0000											
										IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
PWM1RI	S, type RO, o	offset 0x08	88, reset 0x0	0000.0000											
										IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
PWM2RI	S, type RO, o	offset 0x00	C8, reset 0x	0000.0000											
										IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
PWM0IS	C. type R/W1	C. offset ()x04C. rese	t 0x0000.00	00										
		,	,		-										
										IntCmnBD	IntCmpBL	IntCmnAD	IntCmnAl I	IntCntl oad	IntCntZero
DIAMATICA		C offeet(W08C #888	A 0×0000 00						птотпров	Intompbo	intomp/tb	intomp/ to	IntointEodd	Intenteore
FVINTISC	o, type R/W	o, onset (AUOC, rese	. 0.0000.00											
										IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
PWM2IS0	C, type R/W1	C, offset 0	0x0CC, rese	et 0x0000.00	000										
										IntCmpBD	IntCmpBU	IntCmpAD	IntCmpAU	IntCntLoad	IntCntZero
PWMOLC	DAD, type R/	W, offset 0	x050, reset	0x0000.00	00										
							Lo	ad							
PWM1LC	AD, type R/	W, offset 0	x090, reset	0x0000.00	00										
			,												
							1.0	l							
L															

July 26, 2008

												1 10			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PWM2LC	DAD, type R/	W, offset 0	x0D0, reset	t 0x0000.00	00										
								au							
PWM0CC	OUNT, type I	RO, offset ()x054, rese	t 0x0000.00	00										
							Co	ount							
PWM1C0	OUNT, type I	RO, offset ()x094, rese	t 0x0000.00	00										
							Cr								
								Juni							
PWM2C0	JUN I, type I	KO, offset (JXUD4, rese	t 0x0000.00	000			1				1			
							Co	ount							
PWM0C	MPA, type R	/W, offset 0	x058, reset	0x0000.00	00										
							Co	Adm				1			
DWAAC		M offeet 0	V008	0,0000.000	00			r							
- WWITCH	wra, type R	w, onset u	AUJO, reset	020000.000											
							Co	mpA							
PWM2CM	MPA, type R	/W, offset 0	x0D8, rese	t 0x0000.00	00										
							Со	mpA				1			
PWM0C	MPR type R	/W offset (x05C rese	t 0x0000 00	00										
	in D, type it	in, onoer e	,1000					1							
							Co	трв							
PWM1C	MPB, type R	/W, offset 0	x09C, rese	t 0x0000.00	00					_	_	•	_		
							Co	mpB							
PWM2CM	MPB, type R	/W, offset 0	x0DC, rese	t 0x0000.00	000										
							Co	 mpB							
DWMAG				0				прв							
PWM0G	ENA, type R	W, offset u	1x060, reset	0x0000.00	00			1				1			
				ActCn	npBD	ActCm	pBU	ActCr	npAD	ActC	mpAU	Act	Load	Act	Zero
PWM1G	ENA, type R	/W, offset 0	x0A0, rese	t 0x0000.00	00										
				ActCn	npBD	ActCm	pBU	ActCr	npAD	ActC	mpAU	Act	Load	Act	Zero
PWM2C		W offect 0						1	•		P	1			-
1 111/201	Line, type R	, onset u													
				ActCn	npBD	ActCm	pBU	ActCr	npAD	ActC	mpAU	Act	Load	Act	Zero
PWM0G	ENB, type R	/W, offset 0	x064, reset	0x0000.00	00										
				ActCn	npBD	ActCm	pBU	ActCr	mpAD	ActC	mpAU	Act	Load	Act	Zero
PWM1G	ENB, type R	W. offset f	x0A4. rese	t 0x0000.00	00					1		1			
	, ., pera	.,	,												
				A -10	an D D	A-10	• DU	A -10		1-10		A -	Lood		7050
				ActCn	првр	ActUm	μου	ActCr	прар	ActC	прац	Act	LUad	Act	Lein
PWM2G	ENB, type R	/W, offset 0	x0E4, reset	t 0x0000.00	00										
				ActCn	npBD	ActCm	pBU	ActCr	npAD	ActC	mpAU	Act	Load	Act	Zero
PWM0DE	BCTL, type F	R/W, offset	0x068, rese	et 0x0000.00	000	1								1	
			.,												
															Enchia
															Enable

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	0	8	7	6	5		3	2	1	0
- 13	14	15	12		10	3	0	1	0	5	4	5	2	1	0
PWM1DE	BCTL, type F	R/W, offset	0x0A8, res	et 0x0000.	0000										
															Enable
PWM2DE	BCTL. type F	R/W. offset	0x0E8. res	et 0x0000.0	000										
	7.31.5	,	,												
															F 11
															Enable
PWM0DE	BRISE, type	R/W, offset	t 0x06C, re	set 0x0000	.0000										
									Rise	Delay					
PWM1DF	BRISE, type	R/W. offset	t 0x0AC, re	set 0x0000	.0000										
		,		1											
									Rise	Delay					
PWM2DE	BRISE, type	R/W, offset	t 0x0EC, re	set 0x0000	.0000										
									Rise	Delay					
	BFALL. type	R/W. offse	t 0x070. re	set 0x0000	.0000										
	, ., .,	., 550													
									E	Delevi					
									Fall	Jelay					
PWM1DE	BFALL, type	R/W, offse	t 0x0B0, re	set 0x0000	.0000										
									Fall	Delay					
PWM2DF	BFALL type	R/W. offse	t 0x0F0, re	set 0x0000	0000										
	, ijpo														
									Fall	Jelay					
Quadra	ature End	coder Int	terface (QEI)											
QEI0 ba	ase: 0x4002	2.C000													
QEICTL,	type R/W, o	ffset 0x000	, reset 0x0	000.0000											
				IND/I						ValEn	DeeMade	CanMada	CiaMada	Curren	Fachle
			STALLEN		INVB	INVA		veiDiv		VeiEn	Resivioue	Capiviode	Sigiviode	Swap	Enable
QEISTAT	, type RO, o	ffset 0x004	, reset 0x0	000.0000											
														Direction	Error
QEIPOS,	type R/W, o	offset 0x008	3, reset 0x0	0000.0000											
							Pos	sition							
							Por	sition							
							FUS	SILIUT							
QEIMAX	POS, type R	/W, offset (0x00C, rese	et 0x0000.0	000										
							Max	xPos							
							Max	xPos							
QEILOAD	D, type R/W,	offset 0x0	10, reset 0:	x0000.0000											
	,						L c	oad							
								nad							
0.515															
	, type RO, o	mset 0x014	, reset 0x0	000.0000											
							Ti	me							
							Ti	me							
QEICOUI	NT, type RO	, offset 0x0	18, reset 0	x0000.0000)										
							Co	ount							
							Cr	ount							
0.000								Jun							
QEISPÉE	D, type RO	, offset 0x0	1C, reset 0	x0000.000	J										
							Sp	eed							
							Sp	eed							
QEIINTE	N, type R/W	, offset 0x0	20, reset 0	x0000.0000)										
		-													
												IntError	IntD:-	IntTimer	Intinday
												III(Erfor	Intuir	munmer	mundex

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
QEIRIS, t	ype RO, off	set 0x024,	reset 0x00	00.000											
												IntError	IntDir	IntTimer	IntIndex
QEIISC, t	ype R/W1C	offset 0x0	28, reset 0	x0000.0000	1										
												IntError	IntDir	IntTimer	IntIndex

C Ordering and Contact Information

C.1 Ordering Information

Table C-1. Part Ordering Information

Orderable Part Number	Description
LM3S1620-IBZ25	Stellaris [®] LM3S1620 Microcontroller
LM3S1620-IBZ25 (T)	Stellaris [®] LM3S1620 Microcontroller
LM3S1620-EQC25	Stellaris [®] LM3S1620 Microcontroller
LM3S1620-EQC25 (T)	Stellaris [®] LM3S1620 Microcontroller
LM3S1620-IQC25	Stellaris [®] LM3S1620 Microcontroller
LM3S1620-IQC25 (T)	Stellaris [®] LM3S1620 Microcontroller

C.2 Kits

The Luminary Micro Stellaris[®] Family provides the hardware and software tools that engineers need to begin development quickly.

 Reference Design Kits accelerate product development by providing ready-to-run hardware, and comprehensive documentation including hardware design files:

http://www.luminarymicro.com/products/reference_design_kits/

 Evaluation Kits provide a low-cost and effective means of evaluating Stellaris[®] microcontrollers before purchase:

http://www.luminarymicro.com/products/kits.html

 Development Kits provide you with all the tools you need to develop and prototype embedded applications right out of the box:

http://www.luminarymicro.com/products/development_kits.html

See the Luminary Micro website for the latest tools available, or ask your Luminary Micro distributor.

C.3 Company Information

Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based microcontrollers (MCUs). Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3 processor, delivering the world's first silicon implementation of the Cortex-M3 processor. Luminary Micro's introduction of the Stellaris® family of products provides 32-bit performance for the same price as current 8- and 16-bit microcontroller designs. With entry-level pricing at \$1.00 for an ARM technology-based MCU, Luminary Micro's Stellaris product line allows for standardization that eliminates future architectural upgrades or software tool changes.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com sales@luminarymicro.com

C.4 Support Information

For support on Luminary Micro products, contact:

support@luminarymicro.com +1-512-279-8800, ext. 3