SN74LS373 SN74LS374

Octal Transparent Latch with 3-State Outputs; Octal D-Type Flip-Flop with 3-State Output

The SN74LS373 consists of eight latches with 3-state outputs for bus organized system applications. The flip-flops appear transparent to the data (data changes asynchronously) when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable $(\overline{\mathrm{OE}})$ is LOW. When $\overline{\mathrm{OE}}$ is HIGH the bus output is in the high impedance state.

The SN74LS374 is a high-speed, low-power Octal D-type Flip-Flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented applications. A buffered Clock (CP) and Output Enable (OE) is common to all flip-flops. The SN74LS374 is manufactured using advanced Low Power Schottky technology and is compatible with all ON Semiconductor TTL families.

- Eight Latches in a Single Package
- 3-State Outputs for Bus Interfacing
- Hysteresis on Latch Enable
- Edge-Triggered D-Type Inputs
- Buffered Positive Edge-Triggered Clock
- Hysteresis on Clock Input to Improve Noise Margin
- Input Clamp Diodes Limit High Speed Termination Effects

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.75	5.0	5.25	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	0	25	70	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {OH }}$	Output Current - High			-2.6	mA
$\mathrm{I}_{\text {OL }}$	Output Current - Low			24	mA

ON Semiconductor
Formery a Division of Motorola http://onsemi.com

LOW POWER SCHOTTKY

PLASTIC
N SUFFIX
CASE 738

SOIC DW SUFFIX CASE 751D

ORDERING INFORMATION

Device	Package	Shipping
SN74LS373N	16 Pin DIP	1440 Units/Box
SN74LS373DW	16 Pin	$2500 /$ Tape \& Reel
SN74LS374N	16 Pin DIP	1440 Units/Box
SN74LS374DW	16 Pin	$2500 /$ Tape \& Reel

SN74LS373

PIN NAMES

$D_{0}-D_{7}$	Data Inputs
LE	Latch Enable (Active HIGH) Input
CP	Clock (Active HIGH Going Edge) Input
$\overline{\mathrm{OE}}$	Output Enable (Active LOW) Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	Outputs

NOTES:
a) 1 TTL Unit Load (U.L.) $=40 \mu \mathrm{~A}$ HIGH/1.6 mA LOW.

SN74LS374

LOADING (Note a)	
HIGH	LOW
0.5 U.L.	0.25 U.L.
65 U.L.	15 U.L.

TRUTH TABLE

LS373

$\mathbf{D}_{\boldsymbol{n}}$	LE	OE	$\mathbf{O}_{\boldsymbol{n}}$
H	H	L	H
L	H	L	L
X	L	L	Q_{0}
X	X	H	Z^{\star}

(RUTH
LS374

$\mathbf{D}_{\boldsymbol{n}}$	LE	OE	$\mathbf{O}_{\boldsymbol{n}}$
H	$-\ulcorner$	L	H
L	$-\ulcorner$	L	L
X	X	H	Z^{*}

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
Z = High Impedance

* Note: Contents of flip-flops unaffected by the state of the Output Enable input (OE).

SN74LS373 SN74LS374

LOGIC DIAGRAMS
SN74LS373

$\mathrm{V}_{\mathrm{CC}}=$ PIN 20
GND $=$ PIN 10
O = PIN NUMBERS

SN74LS374

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
$V_{\text {IL }}$	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
V_{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$	
V_{OH}	Output HIGH Voltage	2.4	3.1		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table	
	Output LOW Voltage		0.25	0.4	V	l OL $=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL or }} \mathrm{V}_{\mathrm{IH}} \\ & \text { per Truth Table } \end{aligned}$
OL			0.35	0.5	V	$\mathrm{IOL}=24 \mathrm{~mA}$	
$\mathrm{I}_{\text {OzH }}$	Output Off Current HIGH			20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$	
IozL	Output Off Current LOW			-20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	
I	Input HIGH Current			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
${ }_{1}$				0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$	
ILL	Input LOW Current			-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
los	Short Circuit Current (Note 1)	-30		-130	mA	$V_{C C}=$ MAX	
I_{CC}	Power Supply Current			40	mA	$V_{C C}=\mathrm{MAX}$	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Symbol	Parameter	Limits						Unit	Test Conditions
		LS373			LS374				
		Min	Typ	Max	Min	Typ	Max		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency				35	50		MHz	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, Data to Output		$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$				ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Clock or Enable to Output		$\begin{aligned} & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 15 \\ & 19 \end{aligned}$	28	ns	
$\begin{aligned} & \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable Time		15 25	$\begin{aligned} & 28 \\ & 36 \end{aligned}$		$\begin{aligned} & \hline 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	ns	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \\ & \hline \end{aligned}$	Output Disable Time		12 15	$\begin{aligned} & 20 \\ & 25 \end{aligned}$		12 15	20 25	ns	$\mathrm{C}_{\mathrm{L}}=5.0 \mathrm{pF}$

AC SETUP REQUIREMENTS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits				Unit
		LS373		LS374		
		Min	Max	Min	Max	
t_{w}	Clock Pulse Width	15		15		ns
$\mathrm{t}_{\text {s }}$	Setup Time	5.0		20		ns
$t_{\text {h }}$	Hold Time	20		0		ns

DEFINITION OF TERMS

SETUP TIME $\left(\mathrm{t}_{\mathrm{s}}\right)$ - is defined as the minimum time required for the correct logic level to be present at the logic input prior to LE transition from HIGH-to-LOW in order to be recognized and transferred to the outputs.

HOLD TIME (t_{h}) - is defined as the minimum time following the LE transition from HIGH-to-LOW that the logic level must be maintained at the input in order to ensure continued recognition.

SN74LS373

AC WAVEFORMS

Figure 1.

Figure 2.

AC LOAD CIRCUIT

Figure 4.

SN74LS374
AC WAVEFORMS

Figure 5.

Figure 7.

AC LOAD CIRCUIT

Figure 8.

PACKAGE DIMENSIONS

ON Semiconductor and

 are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: (+1) 303-308-7140 (M-F 2:30pm to 5:00pm Munich Time)
Email: ONlit-german@hibbertco.com
French Phone: (+1) 303-308-7141 (M-F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com
English Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549
Phone: 81-3-5487-8345
Email: r14153@onsemi.com
Fax Response Line: 303-675-2167 800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

