6249829 0017840 647 |

MITSUBISHI SEMICONDUCTOR (GaAs FET)

MGF1402B

LOW NOISE GaAs FET

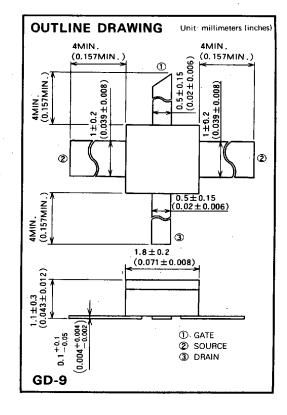
DESCRIPTION

The MGF1402B low-noise GaAs FET with an N-channel Schottky gate is designed for use in S to X band amplifiers and oscillators. The hermetically sealed metalceramic package assures minimum parasitic losses, and has a configuration suitable for microstrip circuits.

FEATURES

- Low noise figure NF_{min} = 3.0dB (TYP.) @ f = 12GHz
- High associated gain G_s = 8dB (TYP.) @ f = 12GHz
- High reliability and stability

APPLICATION


S to X band low-noise amplifiers and oscillators.

QUALITY GRADE

IG, IGX, IGV

RECOMMENDED BIAS CONDITIONS

- V_{DS}=3V
- I_D=10mA
- Refer to Bias Procedure

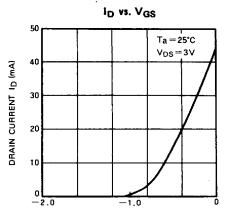
ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

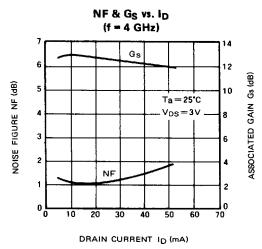
Symbol	Parameter	Ratings	Unit
VGDQ	Gate to drain voltage	-6	V
VGSO	Gate to source voltage	-6	V
ID .	Drain current	100	mA
PT	Total power dissipation +1	360	mW
Tch	Channel temperature	175	°C
Tstg	Storage temperature	- 55~ + 175	· •c

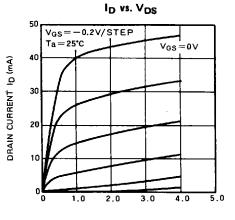
*1:To=25°C

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

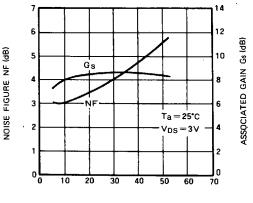
Symbol	Parameter	Test conditions		Limits			
	, aromator	reat conditions	Min	Min Typ		- Unit	
V(BR)GDO	Gate to drain breakdown voltage	$H_{\rm G} = -100 \mu \rm A$	-6			V	
V(BR)GSO	Gate to source breakdown voltage	$I_{\rm G} = -100 \mu \rm A$	-6	-	-	v	
loss	Gate to source leakage current	$V_{GS} = -3V, V_{DS} = 0V$	-	_	10	μА	
IDSS	Saturated drain current	V _{GS} =0V, V _{DS} =3V	30	60	100	mA	
Vgs(off)	Gate to source cut-off voltage	$V_{DS}=3V, I_{D}=100\mu A$	-0.3	_	-3.5	V	
9m	Transconductance	V _{DS} =3V, I _D =10mA	25	45	-	mS	
Gs	Associated gain	$V_{DS}=3V$, $I_D=10mA$, f=12GHz	5	8	-	dB	
NFmin	Minimum noise figure	Ainimum noise figure $V_{DS}=3V$, $I_{D}=10mA$, $f=12GHz$		3.0	4.0	dB	
Rth (ch-a)	Thermal resistance +1	ΔVf method	_		416	τ/w	

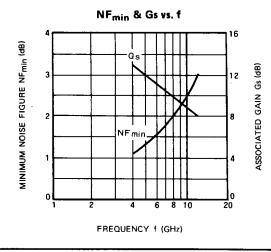

2 - 20


MITSUBISHI SEMICONDUCTOR (GaAs FET)


LOW NOISE GaAs FET

TYPICAL CHARACTERISTICS





DRAIN TO SOURCE VOLTAGE VDS (V)

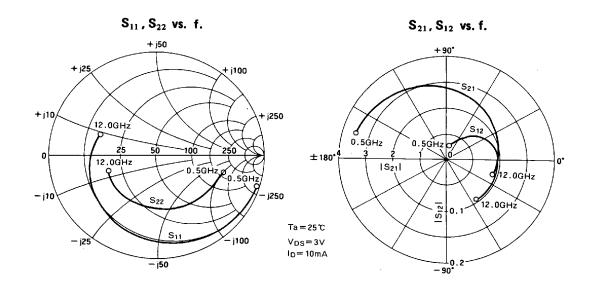
NF & G_S vs. 1_D (f = 12 GHz)

DRAIN CURRENT ID (mA)

LOW NOISE GaAs FET

NOISE PARAMETERS (VDS=3V, ID=10mA)

Freq.	I	Popt	Rn	NFmin	
(GHz)	Magn, Angle (deg.)		(Ω)	(dB)	
4	0,649	61,5	28.0	0.96	
8	0.437	138.1	32.0	1,85	
12	0.414	-168.1	15.0	2.76	

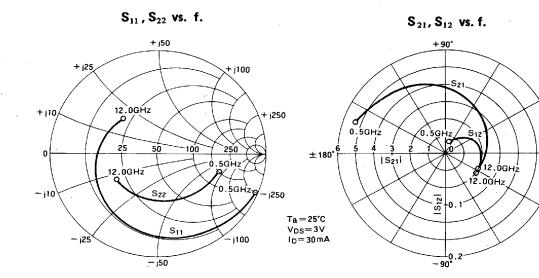

Glp and P1dB (Ta=25°C, $V_D=3V$)

· · · · · · · · · · · · · · · · · · ·	f=4	GHz	f = 12GHz			
	I _D =10mA	I _D =30mA	ID=10mA	1 _D =30mA		
Gip (dB)	15.5	16.8	9.6	10.5		
P _{1dB} (dBm)	12.6	14.5	10.5	12.7		

2 - 22

LOW NOISE GaAs FET

S PARAMETERS (Ta=25°C, V_{DS}=3V, I_D=10mA)


Freq.	S ₁₁		S ₂₁		S ₁₂		S ₂₂			MSG/MAG
(GHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	к	(dB)
0.5	0.995	- 17.7	3.463	163.8	0.024	76.2	0.649	- 13.6	0.067	21.6
1.0	0.974	- 27.0	3.378	154.7	0.032	69.2	0.634	- 20.8	0.178	20.2
1.5	0.954	- 36.4	3.293	145.6	0.040	62.3	0.620	- 28.1	0.255	19.2
2.0	0.933	- 45.7	3.208	136.5	0.048	55.3	0.606	- 35.3	0.315	18.3
2.5	0.913	- 55.1	3.123	127.4	0.056	48.4	0.592	- 42.6	0.367	17.5
3.0	0.892	- 64.4	3.038	118.3	0.064	41.4	0.578	- 49.8	0.412	16.8
3.5	0.872	- 73.8	2.953	109.2	0.072	34.5	0.563	- 57.1	0.454	16.1
4.0	0.851	- 83.t	2.868	100.1	0.080	27.5	0.549	- 64.3	0.494	15.5
4.5	0.827	- 92.2	2.772	91.4	0.083	21.1	0.536	- 71.6	0.554	15.2
5.0	0.802	- 101.4	2.676	82.8	0.087	14.7	0.524	- 78.9	0.617	14.9
5.5	0.778	- 110.5	2.579	74.1	0.090	8.3	0.511	- 86.2	0.680	14.5
6.0	0.753	- 119.6	2.483	65.4	0.094	1.9	0.498	- 93.5	0.747	14.2
6.5	0.736	- 126.4	2.401	58.2	0.095	- 3.1	0.495	- 99.6	0.803	14.0
7.0	0.719	- 133.2	2.319	51,1	0.095	- 8.0	0.493	- 105.8	0.862	13.9
7.5	0.702	- 140.0	2.238	43.9	0.096	- 13.0	0.491	- 111.9	0.926	13.7
8.0	0.685	- 146.8	2.156	36.7	0.097	- 17.9	0.488	- 118.0	0.993	13.5
8.5	0.669	- 153.3	2.109	29.8	0.097	-22.5	0.488	- 123.1	1.053	12.0
9.0	0.652	- 159.8	2.061	23.0	0.098	-27.2	0.487	- 128.3	1.115	11.2
9.5	0.636	- 166.2	2.014	16.1	0.098	-31.8	0.487	- 133.4	1.179	10.6
10.0	0.619	- 172.7	1.967	9.2	0.098	- 36.4	0.487	- 138.5	1.244	10.1
10.5	0.603	- 179.9	1.931	2.0	0.098	-41.1	0.484	- 143.9	1.313	9.6
11.0	0.586	172.9	1.895	- 5.3	0.098	45.8	0.481	- 149.2	1.384	9.2
11.5	0.569	165.7	1.858	- 12.6	0.097	- 50.4	0.478	- 154.6	1.458	8.8
12.0	0.553	158.5	1.822	- 19.8	0.097	-55.1	0.475	- 159.9	1.535	8.4

6249829 0017844 292 🗰

LOW NOISE GaAs FET

0'

S PARAMETERS ($T_a = 25^{\circ}C$, $V_{DS} = 3V$, $I_D = 30mA$)

Freq.	S ₁₁		S ₂₁		S ₁₂		· S ₂₂		ĸ	MSG/MAG
(GHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.		(dB)
0.5	0.997	- 22.7	5.280	159.8	0.023	73.1	0.592	- 16.3	0.055	23.7
1.0	0.966	- 33.5	5.084	150.2	0.028	66.5	0.576	- 23.2	0.198	22.6
1.5	0.934	- 44.2	4.889	140.7	0.034	59.8	0.559	- 30.2	0.307	21.6
2.0	0.902	- 54.9	4.694	131.1	0.039	53.1	0.543	- 37.1	0.398	20.8
2.5	0.870	- 65.6	4.499	121.6	0.045	46.4	0,526	- 44.1	0.477	20.0
3.0	0.838	- 76.4	4.303	112.0	0.050	39.8	0.510	- 51.0	0.550	19.3
3.5	0.807	- 87.1	4.108	102.5	, 0.056	33.1	0.493	- 58.0	0.620	18.7
4.0	0.775	- 97.8	3.913	92.9	0.061	26.4	0.477	- 64.9	0.689	18.1
4.5	0.748	- 107.6	3.730	84.3	0.063	21.4	0.467	- 71.6	0.764	17.7
5.0	0.720	- 117.5	3.546	75.7	0.065	16.3	0.457	- 78.3	0.846	17.4
5.5	0.693	- 127.3	3.362	67.1	0.066	11.3	0.447	- 85.0	0.935	17.1
6.0	0.666	- 137.1	3.179	58.5	0.068	6.2	0.437	- 91.7	1.033	15.6
6.5	0.648	- 144.5	3.050	51.5	0.068	2.7	0,437	- 96.8	1,108	14.5
7.0	0.631	- 152.0	2.922	44.6	0.069	- 0.8	0.437	101.9	1.189	13.7
7.5	D.613	- 159.4	2.793 .	37.6	0.069	- 4.2	0.438	- 106.9	1.278	12.9
8.0	0.595	- 166.8	2.665	30.6	0.069	- 7.7	0.438	- 112.0	1.374	12.2
8.5	0.579	- 174.3	2.586	23.7	0.069	- 11.0	0.440	-116.7	1.451	11.8
9.0	0.563	178.2	2.507	16.9	0.069	- 14.3	0.441	- 121.4	1.531	11.3
9.5	0.547	170.7	2.427	10.0	0.069	- 17.6	0.443	- 126.0	1.617	10.9
10.0	0.531	. 163.2	2.348	3.1	0.069	- 20.9	0.445	- 130.7	1.707	10.4
10.5	0.516	155.9	2.293	- 4.0	0.070	- 24.6	0.445	- 135.1	1.770	10.1
11.0	0.502	148.5	2.238	- 11.0	0.070	-28.2	0.444	- 139.5	1.834	9.7
11.5	0.487	141.2	2.183	- 18.1	0.071	-31.9	0.444	- 143.8	1.900	9.4
12.0	0.472	133.8	2.128	- 25.1	0.072	-35.5	0.444	- 148.2	1.968	9.1

2 - 24

