

Industrial Temperature USB 2.0 Flash Media Controller and USB Hub Combo

PRODUCT FEATURES

General Description

The SMSC USB2640i/USB2641i is a USB 2.0 compliant, Hi-Speed hub for USB port expansion with an attached mass storage class peripheral controller. The controller allows read/write capability to popular flash media formats from the following families:

- xD-Picture CardTM (xD)¹
- Memory StickTM (MS)
- Secure DigitalTM (SD)
- MultiMediaCardTM (MMC)

The USB2640i/USB2641i is a fully integrated, single chip solution providing USB expansion and integrated flash card media reader/writer capability of ultra high performance operation. Average sustained transfer rates exceeding 35 MB/s are possible if the media and host can support those rates.

Highlights

- 48-pin QFN package
- The SMSC USB2640i/USB2641i supports the industrial temperature range of -40°C to 85°C
- Hub controller with internally connected ultra fast flash media reader/writer and 2 exposed downstream ports for external peripheral expansion
- Flash media reader/writer employs multiplexed card interfaces which are optimized for use with single card insertion combo sockets
- Hardware-controlled data flow architecture for all selfmapped media
- Optional support for external firmware access via SPI interface

Features

- Single chip flash media controller
- Transaction translator (TT) in the hub supports operation of FS and LS peripherals
- Over 30 port configuration options
- Customizable vendor ID, product ID, language ID
- On board 24 MHz crystal driver circuit
- Optional external 24 MHz clock input
- GPIO configuration and polarity: Up to 8 GPIOs for special function use
- Internal card power FET
- 8051 8-bit microprocessor
- Internal regulator for 1.8V core operation
- Optimized pinout improves signal flow, easing implementation and allowing for improved signal integrity treatment
- Optimized for low latency interrupt handling
- Hub and flash media reader/writer configuration from a single source: External I²C ROM or external SPI ROM
- EEPROM update via USB
- Please see the USB2640i/USB2641i Software Release Notes for additional software features

Applications

- Printers
- Desktop and Mobile PCs
- Consumer A/V
- Media Players/Viewers
- Vista ReadyBoost™

SMSC USB2640i/USB2641i

DATASHEET

Datasheet

^{1.}xD-Picture Card not applicable to USB2641i.

ORDER NUMBER(S):

USB2640i/USB2641i-HZH for 48-PIN, QFN LEAD-FREE RoHS COMPLIANT PACKAGE

"XX" in the order number indicates the internal ROM firmware revision level.

Please contact your SMSC representative for more information.

80 ARKAY DRIVE, HAUPPAUGE, NY 11788 (631) 435-6000, FAX (631) 273-3123

Copyright © 2008 SMSC or its subsidiaries. All rights reserved.

Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC's website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems Corporation ("SMSC"). Product names and company names are the trademarks of their respective holders.

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Revision 2.0 (10-03-08)

Table of Contents

Chap 1.1 1.2	ter 1 Overview Device Features OEM Selectable Features.	.7 .8 .9
Chap	ter 2 Acronyms	10
Chap	ter 3 Pin Configurations	11
Chap 4.1	ter 4 Pin Tables	13 13
Chap	ter 5 Block Diagrams	15
Chap 6.1 6.2 6.3 6.4	ter 6 Pin Descriptions USB2640i/USB2641i Pin Descriptions Buffer Type Descriptions Port Power Control Port Power Control ROM BOOT Sequence	17 17 23 24 26
Chap 7.1 7.2 7.3	ter 7 Configuration Options. Hub	27 27 27 27 27 27 27 28 33
7.4 7.5	7.3.5 In-Circuit EEPROM Programming Default Configuration Option: Reset 7.5.1 Internal POR Hardware Reset 7.5.2 External Hardware RESET_N 7.5.3 USB Bus Reset	48 48 48 48 48 48 48 49
Chap 8.1	ter 8 Pin Reset States	50 50
Chap 9.1 9.2 9.3 9.4	ter 9 DC Parameters. Maximum Guaranteed Ratings. Operating Conditions DC Electrical Characteristics Capacitance	54 55 55 57
Chap 10.1	ter 10 AC Specifications	58 58
Chap	ter 11 Package Outline	<u>59</u>

Chapter 12	GPIO	Usage	• • • •		•••	•••	•••	•••	•••	••	•••	•••	••	•••	••	•••	••	••	••	••	••	••	••	•••	. 6	0
------------	------	-------	---------	--	-----	-----	-----	-----	-----	----	-----	-----	----	-----	----	-----	----	----	----	----	----	----	----	-----	-----	---

List of Tables

Table 4.1	USB2640i 48-Pin Table	13
Table 4.2	USB2641i 48-Pin Table	14
Table 6.1	USB2640i/USB2641i Pin Descriptions	17
Table 6.2	USB2640i/USB2641i Buffer Type Descriptions	23
Table 7.1	Internal Flash Media Controller Configurations	28
Table 7.2	Hub Controller Configurations	29
Table 7.3	Other Internal Configurations.	30
Table 7.4	FET Configuration	33
Table 7.5	Port Remap Register for Ports 1 & 2	45
Table 7.6	Port Remap Register for Port 3	46
Table 7.7	Reset_N Timing for EEPROM Mode	49
Table 8.1	Legend for Pin Reset States Table	50
Table 8.2	USB2640i Pin Reset States.	50
Table 8.3	USB2641i Pin Reset States.	52
Table 9.1	Pin Capacitance.	57
Table 12.1	USB2640i/USB2641i GPIO Usage	60

List of Figures

Figure 3.1	USB2640i 48-Pin QFN 1	11
Figure 3.2	USB2641i 48-Pin QFN 1	12
Figure 5.1	USB2640i Block Diagram 1	15
Figure 5.2	USB2641i Block Diagram 1	16
Figure 6.1	Port Power Control with USB Power Switch	24
Figure 6.2	Port Power control with Poly Fuse	25
Figure 6.3	Port Power with Ganged Control with Poly Fuse	25
Figure 6.4	USB2640i/USB2641i SPI ROM Connection	26
Figure 6.5	USB2640i/USB2641i I ² C Connection	26
Figure 7.1	Reset_N Timing for EEPROM Mode 4	19
Figure 8.1	Pin Reset States	50
Figure 9.1	Supply Rise Time Models	54
Figure 10.1	Typical Crystal Circuit	58
Figure 10.2	Formula to find value of C1 and C21 5	58
Figure 11.1	USB2640i/USB2641i 48-Pin QFN	59

Chapter 1 Overview

The SMSC USB2640i/USB2641i is an integrated USB 2.0 compliant, Hi-Speed hub for USB port expansion with an attached bulk only mass storage class peripheral controller. This multi-format flash media controller and USB Hub Combo features 3 downstream ports: one port is dedicated to an internally connected ultra fast flash media reader/writer and 2 exposed downstream ports are available for external peripheral expansion.

The SMSC USB2640i/USB2641i is an ultra fast, OEM configurable, hub controller IC with 3 downstream ports for embedded USB solutions. The USB2640i/USB2641i will attach to an upstream port as a Full-Speed Hub or as a Full-/Hi-Speed Hub. The hub supports Low-Speed, Full-Speed, and Hi-Speed (if operating as a Hi-Speed Hub) downstream devices on all of the enabled downstream ports.

All required resistors on the USB ports are integrated into the hub. This includes all series termination resistors on D+ and D– pins and all required pull-down and pull-up resistors on D+ and D– pins. The over-current sense inputs for the downstream facing ports have internal pull-up resistors.

The USB2640i/USB2641i includes over 30 programmable features including:

PortMap (also referred to as port remap) which provides flexible port mapping and disable sequences. The downstream ports of a USB2640i/USB2641i hub can be reordered or disabled in any sequence to support multiple platform designs with minimum effort. For any port that is disabled, the USB2640i/USB2641i automatically reorders the remaining ports to match the USB host controller's port numbering scheme.

PortSwap which adds per-port programmability to USB differential-pair pin locations. PortSwap allows direct alignment of USB signals (D+/D-) to connectors avoiding uneven trace length or crossing of the USB differential signals on the PCB.

PHYBoost which enables four programmable levels of USB signal drive strength in downstream port transceivers. PHYBoost attempts to restore USB signal integrity that has been compromised by system level variables such as poor PCB layout, long cables, etc.

1.1 Device Features

Hardware Features

- Single chip flash media controller
- The SMSC USB2640i/USB2641i supports the industrial temperature range of -40°C to 85°C
- Transaction translator (TT) in the hub supports operation of FS and LS peripherals
- Full power management with individual or ganged power control of each downstream port
- Optional support for external firmware access via SPI interface
 - 30 MHz or 60 MHz operation support
 - Single bit or dual bit mode support
 - Mode 0 or mode 3 SPI support
- Memory Stick Specification 1.43
- Memory Stick Pro Format Specification 1.02
- Memory Stick Pro-HG Duo Format Specification 1.01 compliant
 Memory Stick, MS Duo, HS-MS, MS Pro-HG, MS Pro
- xD-Picture Card 1.2 compliant
- Secure Digital 2.0 / MultiMediaCard Specification 4.3 compliant
 - SD 2.0, HS-SD, HC-SD
 - TransFlash™ and reduced form factor media
 - 1/4/8 bit MMC 4.2
- SDIO and MMC streaming mode support
- On board 24 MHz crystal driver circuit
- Optional external 24 MHz clock input. Must be used with an external resistor divider to provide a 1.8V signal.
- GPIO configuration and polarity
 - Up to 8 GPIOs for special function use: LED indicators, button inputs, power control to memory devices, etc. The number of actual GPIO's depends on the implementation configuration used.
 - One GPIO with up to 200 mA drive.
- Internal card power FET
 -Up to 200 mA operation available
 -"Fold-back" short circuit current protected
- 8051 8-bit microprocessor
 - 60 MHz single cycle execution
 - 64 KB ROM; 9 KB RAM
- Internal Regulator for 1.8V core operation
- Optimized pinout improves signal flow, easing implementation and allowing for improved signal integrity treatment

Software Features

- Optimized for low latency interrupt handling
- Hub and flash media reader/writer configuration from a single source: External I²C ROM or external SPI ROM
- EEPROM update via USB
- Please see the USB2640i/USB2641i Software Release Notes for additional software features

Revision 2.0 (10-03-08)

1.2 OEM Selectable Features

Hub

A default configuration is available in the USB2640i/USB2641i following a reset. The USB2640i/USB2641i may also be configured by an external I²C EEPROM or via external SPI flash.

The USB2640i/USB2641i supports several OEM selectable features:

- Compound device support (port is permanently hardwired to a downstream USB peripheral device), on a port-by-port basis.
- Select over-current sensing and port power control on an individual (port-by-port) or ganged (all
 ports together) basis to match the OEM's choice of circuit board component selection.
- Port power control and over-current detection/delay features
- Configure the delay time for filtering the over-current sense inputs.
- Configure the delay time for turning on downstream port power.
- Bus- or self-powered selection
- Hub port disable or non-removable configurations
- Port signal swapping for easier board layout
- Flexible port mapping and disable sequence. Ports can be disabled/reordered in any sequence to support multiple platforms with a single design. The hub will automatically reorder the remaining ports to match the host controller's numbering scheme.
- Programmable USB differential-pair pin location.
 Eases PCB layout by aligning USB signal lines directly to connectors
- Programmable USB signal drive strength. Recover USB signal integrity due to compromised system environments using 4 levels of signal drive strength.
- Indicate the maximum current that the 2-port hub consumes from the USB upstream port.
- Indicate the maximum current required for the hub controller.

Flash Media Controller

- Customize vendor ID, product ID, and device ID.
- 12-hex digit (max) serial number string
- Customizable vendor specific data by optional use of external serial EEPROM
- 28-character manufacturer ID and product string for flash media reader/writer
- LED blink interval or duration

FM: Flash Media
FMC: Flash Media Controller
FS: Full-speed Device
LS: Low-speed Device
HS: Hi-speed Device
I²C[®]: Inter-Integrated Circuit¹
MMC: MultiMediaCard
MSC: Memory Stick
MSC: Memory Stick Controller
OCS: Over-current Sense
SD: Secure Digital
SDC: Secure Digital Controller
UCHAR: Unsigned Character
UINT: Unsigned Integer
xD-Picture Card

Standard Microsystems is a registered trademark and SMSC is a trademark of Standard Microsystems Corporation. Other product and company names are trademarks or registered trademarks of their respective holders.

*Note: In order to develop, make, use, or sell readers and/or other products using or incorporating any of the SMSC devices made the subject of this document or to use related SMSC software programs, technical information and licenses under patent and other intellectual property rights from or through various persons or entities, including without limitation media standard companies, forums, and associations, and other patent holders may be required. These media standard companies, forums, and associations include without limitation the following: Sony Corporation (Memory Stick, Memory Stick Pro); SD3 LLC (Secure Digital); MultiMedia Card Association (MultiMediaCard); the SSFDC Forum (SmartMedia); the Compact Flash Association (Compact Flash); and Fuji Photo Film Co., Ltd., Olympus Optical Co., Ltd., and Toshiba Corporation (xD-Picture Card). SMSC does not make such licenses or technical information available; does not promise or represent that any such licenses or technical information will actually be obtainable from or through the various persons or entities (including the media standard companies, forums, and associations), or otherwise with respect to the terms under which they may be made available; and is not responsible for the accuracy or sufficiency of, or otherwise with respect to, any such technical information.

SMSC's obligations (if any) under the Terms of Sale Agreement, or any other agreement with any customer, or otherwise, with respect to infringement, including without limitation any obligations to defend or settle claims, to reimburse for costs, or to pay damages, shall not apply to any of the devices made the subject of this document or any software programs related to any of such devices, or to any combinations involving any of them, with respect to infringement or claimed infringement of any existing or future patents related to solid state disk or other flash memory technology or applications ("Solid State Disk Patents"). By making any purchase of any of the devices made the subject of this document, the customer represents, warrants, and agrees that it has obtained all necessary licenses under then-existing Solid State Disk Patents for the manufacture, use and sale of solid state disk and other flash memory products and that the customer will timely obtain at no cost or expense to SMSC all necessary licenses under such Solid State Disk Patents; that the manufacture and testing by or for SMSC of the units of any of the devices made the subject of this document, that SMSC shall have no obligation for royalties or otherwise under any Solid State Disk Patents by reason of any such manufacture, use, or sale of such units; and that SMSC shall have no obligation for any costs or expenses related to the customer's obtaining or having obtained rights or licenses under any Solid State Disk Patents.

SMSC MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, IN REGARD TO INFRINGEMENT OR OTHER VIOLATION OF INTELLECTUAL PROPERTY RIGHTS. SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES AGAINST INFRINGEMENT AND THE LIKE.

No license is granted by SMSC expressly, by implication, by estoppel or otherwise, under any patent, trademark, copyright, mask work right, trade secret, or other intellectual property right.

**To obtain this software program the appropriate SMSC Software License Agreement must be executed and in effect. Forms of these Software License Agreements may be obtained by contacting SMSC.

^{1.}I²C is a registered trademark of Philips Corporation.

Chapter 3 Pin Configurations

Figure 3.1 USB2640i 48-Pin QFN

Figure 3.2 USB2641i 48-Pin QFN

Revision 2.0 (10-03-08)

Chapter 4 Pin Tables

4.1 48-Pin Tables

Table 4.1	USB2640i 48-Pin	Table

xD (Only in USB2640i) / SECURE DIGITAL / MEMORY STICK INTERFACE (18 PINS)									
xD_D3 / SD_D1 / MS_D5	xD_D2 / SD_D0 / MS_D4	xD_D1 / SD_D7 / MS_D6	xD_D0 / SD_D6 / MS_D7						
xD_nWP / SD_CLK / MS_BS	xD_ALE / SD_D5 / MS_D1	xD_CLE / SD_CMD / MS_D0	xD_D7 / SD_D4 / MS_D2						
xD_D6 / SD_D3 / MS_D3	xD_D5 / SD_D2	xD_nRE	xD_nWE						
xD_D4 / GPIO6 / SD_WP / MS_SCLK	xD_nB/R	xD_nCE	GPIO12 / MS_INS						
GPIO14 / xD_nCD	GPIO15 / SD_nCD								
USB INTERFACE (9 PINS)									
USB+	USB-	XTAL1 (CLKIN)	XTAL2						
RBIAS	(3) VDDA33	VDD18PLL							
	2-PORT USB INT	ERFACE (7 PINS)							
USBDN_DP2	USBDN_DM2	PRTCTL2 PRTCTL3							
USBDN_DP3	USBDN_DM3	VBUS_DET							
	SPI INTERFA	ACE (4 PINS)							
SPI_CE_N	SPI_CLK / GPIO4 / SCL	SPI_DO / GPIO5 / SDA / SPI_SPD_SEL	SPI_DI						
	MISC (5 PINS)							
nRESET	TEST	GPIO1 / LED1 / TXD	GPIO2 / RXD						
GPIO10 (CRD_PWR)									
	DIGITAL POV	VER (5 PINS)							
(4) VDD33	VDD18								
TOTAL 48									

SECURE DIGITAL / MEMORY STICKINTERFACE (14 PINS)									
SD_D1 / MS_D5	SD_D0 / MS_D4	SD_D7 / MS_D6	SD_D6 / MS_D7						
SD_CLK / MS_BS	SD_D5 / MS_D1	SD_CMD / MS_D0	SD_D4 / MS_D2						
SD_D3 / MS_D3	SD_D2	GPIO12 / MS_INS	GPIO14						
GPIO6 / SD_WP / MS_SCLK	GPIO15 / SD_nCD								
USB INTERFACE (9 PINS)									
USB+	USB-	XTAL1 (CLKIN)	XTAL2						
RBIAS	(3) VDDA33	VDD18PLL							
2-PORT USB INTERFACE (7 PINS)									
USBDN_DP2	USBDN_DM2	PRTCTL2	PRTCTL3						
USBDN_DP3	USBDN_DM3	VBUS_DET							
	SPI INTERFA	ACE (4 PINS)							
SPI_CE_N	SPI_CLK / GPIO4 / SCL	SPI_DO / GPIO5 / SDA / SPI_SPD_SEL	SPI_DI						
	MISC (5 PINS)							
nRESET	TEST	GPIO1 / LED1 / TXD	GPIO2 / RXD						
GPIO10 (CRD_PWR)									
	DIGITAL POWER, NO	CONNECTS (9 PINS)							
(4) VDD33	VDD18	(4) NC							
TOTAL 48									

Table 4.2 USB2641i 48-Pin Table

Chapter 5 Block Diagrams

Figure 5.1 USB2640i Block Diagram

Figure 5.2 USB2641i Block Diagram

Chapter 6 Pin Descriptions

This section provides a detailed description of each signal. The signals are arranged in functional groups according to their associated interface.

The "n" symbol in the signal name indicates that the active, or asserted, state occurs when the signal is at a low voltage level. When "n" is not present before the signal name, the signal is asserted when at the high voltage level.

The terms assertion and negation are used exclusively. This is done to avoid confusion when working with a mixture of "active low" and "active high" signal. The term assert, or assertion, indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term negate, or negation, indicates that a signal is inactive.

6.1 USB2640i/USB2641i Pin Descriptions

NAME	SYMBOL	48-PIN QFN	BUFFER TYPE	DESCRIPTION
	xD IN	ITERFACE	(APPLIES O	ONLY TO USB2640i)
xD Write Protect	xD_nWP	21	O12PD	This pin is an active low write protect signal for the xD device.
				This pin has a weak pull-down resistor that is permanently enabled.
xD Address Strobe	xD_ALE	23	O12PD	This pin is an active high Address Latch Enable signal for the xD device.
				This pin has a weak pull-down resistor that is permanently enabled.
xD Command Strobe	xD_CLE	24	O12PD	This pin is an active high Command Latch Enable signal for the xD device.
				This pin has a weak pull-down resistor that is permanently enabled.
xD Data 7-0	xD_D[7:0]	30 32	I/O12PD	These pins are the bi-directional data signal xD_D7 - xD_D0.
		33 13 17		The bi-directional data signal has an internal weak pull-down resistor.
		18 19 20		
xD Read Enable	xD_nRE	27	O12PU	This pin is an active low read strobe signal for the xD device.
				When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal Power FET and is controlled by the xD_PU bit of the xDC_CTL register.
				If an external FET is used (Internal FET is disabled), then the internal pull-up is not available (external pull-ups must be used).

Table 6.1 USB2640i/USB2641i Pin Descriptions

NAME	SYMBOL	48-PIN QFN	BUFFER TYPE	DESCRIPTION
xD Write Enable	xD_nWE	22	O12PU	This pin is an active low write strobe signal for the xD device.
				When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal Power FET, and is controlled by the xD_PU bit of the xDC_CTL register.
				If an external FET is used (Internal FET is disabled), then the internal pull-up is not available (external pull-ups must be used).
xD Busy or Data Ready	xD_nB/R	28	IPU	This pin is connected to the BSY/RDY pin of the xD device.
				When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal Power FET, and is controlled by the xD_PU bit of the xDC_CTL register.
				If an external FET is used (Internal FET is disabled), then the internal pull-up is not available (external pull-ups must be used).
xD Chip Enable	xD_nCE	26	O12PU	This pin is an active low chip enable signal for the xD device.
				When using the internal FET, this pin has an internal weak pull-up resistor that is tied to the output of the internal Power FET, and is controlled by the xD_PU bit of the xDC_CTL register.
				If an external FET is used (Internal FET is disabled), then the internal pull-up is not available (external pull-ups must be used).
xD Card Detection GPIO	GPIO14 / xD_nCD	29	I/O12	GPIO: This general purpose pin may be used either as input, edge sensitive interrupt input, or output.
				xD_nCD: This is a GPIO designated as the xD- Picture Card detection pin.
		МЕМО	RY STICK IN	ITERFACE
MS Bus State	MS_BS	21	O12	This pin is connected to the BS pin of the MS device.
				It is used to control the Bus States 0, 1, 2, and 3 (BS0, BS1, and BS3) of the MS device.
MS Card Insertion GPIO	GPIO12 / MS_INS	31	IPU	GPIO: This general purpose pin may be used either as input, edge sensitive interrupt input, or output.
				MS_INS: This is a GPIO designated as the Memory Stick card detection Pin.
MS System CLK	MS_SCLK	13	O12	This pin is an output clock signal to the MS device.
				The clock frequency is software configurable.

Table 6.1 USB2640i/USB2641i Pin Descriptions (continued)

Revision 2.0 (10-03-08)

Table 6.1 USB2640i/USB2641i Pin Descriptions (continued)										
NAME	SYMBOL	48-PIN QFN	BUFFER TYPE	DESCRIPTION						
MS System Data In/Out	MS_D[7:0]	20 19 17 18	I/O12PD	These pins are the bi-directional data signals for the MS device. In serial mode, the most significant bit (MSB) of each byte is transmitted first by either MSC or MS device on MS_D0.						
		32 30 23 24		MS_D0, MS_D2, and MS_D3 have weak pull- down resistors. MS_D1 has a pull down resistor if in parallel mode, otherwise it is disabled. In 4 or 8 bit parallel modes, there is a weak pull-down resistor on all MS_D7 - MS_D0 signals.						
				The resistors are controlled by MSC_SYSTE_0, MSC_MODE_CTL and MSC_PRO_HG registers.						
	SECUR	E DIGITAL		DIACARD INTERFACE						
SD Data 7-0	SD_D[7:0]	19 20 23 30 32 33 17 18	I/O12PU	These are the bi-directional data signals SD_D0-SD_D7. SD_D0 - SD_D7 have weak pull-up resistors.						
SD Clock	SD_CLK	21	O12	This is an output clock signal to SD/MMC device. The clock frequency is software configurable.						
SD Command	SD_CMD	24	I/O12PU	This is a bi-directional signal that connects to the CMD signal of the SD/MMC device. The bi-directional signal should have an internal weak pull-up resistor.						
				The pull-up register can be controlled by:						

able 6.1	USB2640i/USB2641i Pii	Descriptions	(continued)
----------	-----------------------	--------------	-------------

SMSC USB2640i/USB2641i

SD_MMC_INTF_EN bit of SDC_MODE CTL. GPIO: This general purpose pin may be used

either as input, edge sensitive interrupt input, or

SD_WP: This is a GPIO designated as the Secure

GPIO: This general purpose pin may be used

SD_nCD: This is a GPIO designated as the

Secure Digital card detection pin.

either as input, edge sensitive interrupt input, or

These pins connect to the upstream USB bus data

These pins connect to the downstream USB bus

Digital card mechanical write detect pin.

SD Write

GPIO

Protected GPIO

SD Card Detect

USB Bus Data

USB Bus Data

GPIO6 /

SD WP

GPI015 /

SD nCD

USB-

USB+

USBDN DM

[3:2]

USBON DP

[3:2]

13

14

43

42

3

1

4 2

I/O12

I/012

USB INTERFACE

I/O-U

I/O-U

output.

output.

signals.

data signals.

NAME	SYMBOL	48-PIN QFN	BUFFER TYPE	DESCRIPTION
USB Power Enable	PRTCTL[3:2]	7 6	I/OD12PU	As an output, these pins enables power downstream USB peripheral devices. See Section 6.3, "Port Power Control" for diagram and usage instructions.
				As an input, when the power is enabled, these pins monitor the over-current condition. When an over-current condition is detected, the pins turn the power off.
Detect Upstream VBUS Power	VBUS_DET	39	I	Detects the state of upstream VBUS power. The Hub monitors VBUS_DET to determine when to assert the internal D+ pull-up resistor (signaling a connect event).
				When designing a detachable hub, connect this pin to the VBUS power pin of the USB port that is upstream of the Hub.
				For self-powered applications with a permanently attached host, this pin should be pulled up, typically to VDD33.
				VBUS is a 3.3V input. A resistor divider must be used when connecting to 5V USB power.
USB Transceiver Bias	RBIAS	47	I-R	A 12.0 $k\Omega$, $\pm 1.0\%$ resistor is attached from VSSA to this pin in order to set the transceiver's internal bias currents.
Crystal Input/External Clock Input	XTAL1 (CLKIN)	45	ICLKx	24 MHz Crystal or external clock input. This pin can be connected to one terminal of the crystal or it can be connected to an external 24MHz clock when a crystal is not used.
Crystal Output	XTAL2	44	OCLKx	24 MHz Crystal. This is the other terminal of the crystal, or it is left open when an external clock source is used to drive XTAL1(CLKIN).
				Note: Do not use it to drive any external circuitry other than the crystal circuit.
1.8V PLL Power Bypass	VDD18PLL	46		This pin is the 1.8V Power bypass for the PLL. This requires an external bypass capacitor of 1.0 μ F minimum.
3.3V Analog Power	VDDA33	5 41 48		3.3V Analog Power
			SPI INTERF	ACE
SPI Chip Enable	SPI_CE_N	8	O12	This is the active low chip enable output.
				If the SPI interface is enabled, this pin must be driven high in power down states.

Table 6.1 USB2640i/USB2641i Pin Descriptions (continued)

NAME	SYMBOL	48-PIN QFN	BUFFER TYPE	DESCRIPTION
SPI Clock	SPI_CLK / GPIO4 / SCL	9	I/O12	SPI_CLK: This is the SPI clock out to the serial ROM. See Section 6.4, "ROM BOOT Sequence" for diagram and usage instructions.
				When the SPI interface is disabled, by setting the SPI_DISABLE bit in the UTIL_CONFIG1 register, this pin becomes GPIO4.
				During reset, this pin must be driven low.
				GPIO: This pin may be used either as input, edge sensitive interrupt input, or output.
				SCL: When configured, this is the I ² C EEPROM clock pin.
SPI Data Out	SPI_DO / GPIO5 / SDA / SPI_SPD_SEL	10	I/O12	SPI_DO: This is the data out for the SPI port. See Section 6.4, "ROM BOOT Sequence" for diagram and usage instructions.
				When the SPI interface is disabled, by setting the SPI_DISABLE bit in the UTIL_CONFIG1 register, this pin becomes GPIO5.
				GPIO: This pin may be used either as input, edge sensitive interrupt input, or output.
				SDA: This pin is the data pin when the device is connected to the optional I ² C EEPROM.
				SPI_SPD_SEL: This pin is used to pick the speed of the SPI interface. During nRESET assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When nRESET is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality, the internal pull-down will be disabled.
				0 = 30 MHz 1 = 60 MHz The firmware can see the state of this bit in the SPI_CTL register.
				Note:
				If the latched value is '1', then the pin is tri-stated when the chip is in the suspend state.
				If the latched value is '0', then the pin is driven low during a suspend state.
SPI Data In	SPI_DI	11	I/O12PD	This is the data in to the controller from the ROM. This pin must have a weak internal pull-down applied at all times to prevent floating.

Table C 4		ntiona	(continued)	
Table 6.1	USB26401/USB26411 PIN Descri	ptions	(continuea))

NAME	SYMBOL	48-PIN QFN	BUFFER TYPE	DESCRIPTION
			MISC	
General Purpose I/O	GPIO1 / LED1 /	37	I/O12	GPIO: This pin may be used either as input, edge sensitive interrupt input, or output.
	TXD			LED: In addition, as an output, the GPIO1 can be used as output controlled by the LED1_GPIO1 register.
				TXD: The signal can be used as input to the TxD of UART in the device when the TXD_SEL bit in UTIL_CONFIG1 register is cleared to "0".
General Purpose I/O	GPIO2 / RXD	36	I/O12	GPIO: This pin may be used either as input, edge sensitive interrupt input, or output.
				RXD: In addition to the above, the signal can be used as input to the RXD of UART in the device when the RXD_SEL bit in UTIL_CONFIG1 register is cleared to "0".
General Purpose I/O	GPIO10 (CRD_PWR)	35	I/O200	These pins may be used either as input, edge sensitive interrupt input, or output. It is a requirement that this is the only FET used to power xD devices. Failure to do this will violate xD voltage specification on xD device pins.
				Card power drive: 3.3V (100 mA or 200 mA)
RESET input	nRESET	38	IS	This active low signal is used by the system to reset the chip. The active low pulse should be at least 1 μs wide.
TEST Input	TEST	40	I	This signal is used for testing the chip. If the test function is not used, tie this pin low externally.
		DIGITA	L / POWER	/ GROUND
1.8V Digital Core Power Bypass	VDD18	15		+1.8V Core power bypass. This requires an external bypass capacitor of 1.0 μF minimum.
3.3V Power & Voltage Regulator Input	VDD33	12 16 25 34		3.3V Power & Regulator Input.
Ground	VSS	SLUG		Ground Reference
No Connects	NC	22 26 27 28		No connect pins only apply to the USB2641i. No trace or signal should be routed/attached to these pins.

Table 6.1 USB2640i/USB2641i Pin Descriptions (continued)

Revision 2.0 (10-03-08)

6.2 Buffer Type Descriptions

Table 6.2 USB2640i/USB2641i Buffer Type Descriptions

BUFFER	DESCRIPTION
1	Input.
IPU	Input, weak internal pull-up.
IS	Input with Schmitt trigger.
I/O12	Input/output buffer with 12 mA sink and 12 mA source.
I/O200	Input/output buffer 12 mA with FET disabled, 100/200 mA source only when the FET is enabled.
I/O12PD	Input/output buffer with 12 mA sink and 12 mA source, with an internal weak pull-down resistor.
I/O12PU	Open drain, 12 mA sink with pull-up. Input with Schmitt trigger.
I/OD12PU	Input/open drain output buffer with a 12 mA sink.
O12	Output buffer with a 12 mA sink and a 12 mA source.
O12PD	Output buffer with 12 mA sink and 12 mA source, with a pull-down resistor.
O12PU	Output buffer with 12 mA sink and 12 mA source, with a pull-up resistor.
ICLKx	XTAL clock input.
OCLKx	XTAL clock output.
I/O-U	Analog input/output defined in USB specification.
I-R	RBIAS.

6.3 Port Power Control

Port Power Control Using USB Power Switch

The USB2640i/USB2641i has a single port power control and over-current sense signal for each downstream port. When disabling port power, the driver will actively drive a '0'. To avoid unnecessary power dissipation, the internal pull-up resistor will be disabled at that time. When port power is enabled, the output driver is disabled, and the pull-up resistor is enabled creating an open drain output. If there is an over-current situation, the USB Power Switch will assert the open drain OCS signal. The Schmitt trigger input will recognize this situation as a low. The open drain output does not interfere. The over-current sense filter handles the transient conditions, such as low voltage, while the device is powering up.

Figure 6.1 Port Power Control with USB Power Switch

Port Power Control Using a Poly Fuse

When using the USB2640i/USB2641i with a poly fuse, an external diode must be used (See Figure 6.2). When disabling port power, the driver will drive a '0'. This procedure will have no effect since the external diode will isolate the pin from the load. When port power is enabled, the output driver is disabled, and the pull-up resistor is enabled which creates an open drain output. This means that the pull-up resistor is providing 3.3V to the anode of the diode. If there is an over-current situation, the poly fuse will open. This will cause the cathode of the diode to go to 0V. The anode of the diode will be at 0.7V, and the Schmitt trigger input will register this as a low resulting in an over-current detection. The open drain output does not interfere.

Figure 6.2 Port Power control with Poly Fuse

When using a single poly fuse to power all devices, note that for the ganged situation, all power control pins must be tied together.

Figure 6.3 Port Power with Ganged Control with Poly Fuse

6.4 ROM BOOT Sequence

After power-on reset, the internal firmware checks for an external SPI flash device that contains a valid signature of "2DFU" (device firmware upgrade) beginning at address 0xFFFA. If a valid signature is found, then the external ROM is enabled and code execution begins at address 0x0000 in the external SPI device. Otherwise, code execution continues from the internal ROM.

If there is no SPI ROM detected, the internal firmware then checks for the presence of an I^2C ROM. The firmware looks for the signature 'ATA2' at the offset of 0xFC-0xFF in the I^2C ROM. The firmware reads in the I^2C ROM to configure the hardware and software internally. Please refer to section 7.3.2 EEPROM Data Descriptor on page 28 for the details of the configuration options.

The SPI ROM required for the USB2640i/USB2641i must be 1 Mbit and support either 30 MHz or 60 MHz. The frequency used is set using the SPI_SPD_SEL. For 30 MHz operation, this pin must be pulled to ground through a 100 k Ω resistor. For 60 MHz operation, this pin must pulled up through a 100 k Ω resistor. SPI_SPD_SEL: This pin is used to choose the speed of the SPI interface. During nRESET assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When nRESET is negated, the value on the pin will be internally latched, and the pin will revert to SPI_DO functionality, the internal pull-down will be disabled.

The firmware can determine the speed of operation on the SPI port by checking the SPI_SPEED in the SPI_CTL register (0x2400 - RESET = 0x02). Both 1- and 2-bit SPI operation is supported. For optimum throughput, a 2-bit SPI ROM is recommended. Both mode 0 and mode 3 SPI ROMS are also supported.

Figure 6.4 USB2640i/USB2641i SPI ROM Connection

Figure 6.5 USB2640i/USB2641i I²C Connection

Chapter 7 Configuration Options

7.1 Hub

SMSC's USB 2.0 hub is fully compliant to the Universal Serial Bus Specification available from the USB Implementer's Forum found at http://www.usb.org (Revision 2.0 April 27, 2000 and the 12/7/2000 and 5/28/2002 Errata). Please reference Chapter 11 (Hub Specification) for general details regarding hub operation and functionality.

The hub provides 1 transaction translator (TT) that is shared by both downstream ports (defined as single-TT configuration). The TT contains 4 non-periodic buffers.

7.1.1 Hub Configuration Options

The SMSC hub supports a large number of features (some are mutually exclusive), and must be configured in order to correctly function when attached to a USB host controller. There are two principal ways to configure the hub; The internal default settings or by settings stored in an external EEPROM or SPI Flash device.

7.1.1.1 Power Switching Polarity

The hub only supports "active high" port power controllers.

7.1.2 VBus Detect

According to Section 7.2.1 of the USB 2.0 Specification, a downstream port can never provide power to its D+ or D- pull-up resistors unless the upstream port's VBUS is in the asserted (powered) state. The VBUS_DET pin on the hub monitors the state of the upstream VBUS signal and will not pull-up the D+ resistor if VBUS is not active. If VBUS goes from an active to an inactive state (Not Powered), the hub will remove power from the D+ pull-up resistor within 10 seconds.

7.2 Card Reader

The SMSC USB2640i/USB2641i is fully compliant with the following flash media card reader specifications:

- Memory Stick Specification 1.43
- Memory Stick Pro Format Specification 1.02
- Memory Stick Pro-HG Duo Format Specification 1.01
 -Memory Stick, MS Duo, HS-MS, MS Pro-HG, MS Pro
- xD-Picture Card 1.2 compliant
- Secure Digital 2.0 / MultiMediaCard Specification 4.3 -SD 2.0, HS-SD, HC-SD

-TransFlash[™] and reduced form factor media

-1/4/8 bit MMC 4.2

7.3 System Configurations

7.3.1 EEPROM/SPI Interface

The USB2640i/USB2641i can be configured via a 2-wire (I²C) EEPROM (256x8) or an external SPI flash device containing the firmware for the USB2640i/USB2641i. If an external configuration device does not exist the internal default values will be used. If one of the external devices is used for

configuration, the OEM can update the values through the USB interface. The hub will then "attach" to the upstream USB host.

When using an external SPI Flash, the register addresses in the following three tables (Table 7.1, Table 7.2,) refer to offsets from the starting location 'FE80h'.

7.3.2 EEPROM Data Descriptor

Table 7.1 Internal Flash Media Controller Configurations

REG ADDR	REGISTER NAME	REGISTER DESCRIPTION	DEFAULT VALUE
00h-19h	USB_SER_NUM	USB Serial Number	"0000002640001" (Unicode)
1Ah-1Bh	USB_VID	USB Vendor ID	0424
1Ch-1Dh	USB_PID	USB Product ID	4050
1Eh-21h	USB_LANG_ID	USB Language Identifier	0409
22h-5Dh	USB_MFR_STR	USB Manufacturer String	"Generic" (Unicode)
5Eh-99h	USB_PRD_STR	USB Product String	"Ultra Fast Media Reader" (Unicode)
9Ah	USB_BM_ATT	USB BmAttribute	80h
9Bh	USB_MAX_PWR	USB Max Power	30h (96 mA)
9Ch	ATT_LB	Attribute Lo byte	40h (Reverse SD_WP only)
9Dh	ATT_HLB	Attribute Hi Lo byte	00h
9Eh	ATT_LHB	Attribute Lo Hi byte	00h
9Fh	ATT_HB	Attribute Hi byte	00h
A0h	Reserved	-	
A1h	Reserved	-	00h
A2h	Reserved	-	80h
A3h	Reserved	-	00h
A4h	LUN_PWR_LB	LUN Power Lo byte	00h
A5h	LUN_PWR_HB	LUN Power Hi byte	08h
A6h	Reserved	-	00h
A7h	Reserved	-	00h
A8h	LED_BLK_INT	Led Blink Interval	02h
A9h	LED_BLK_DUR	Led Blink After Access	28h
AAh - B0h	LUN0_ID_STR	Lun 0 Identifer String	"COMBO"
B1h - B7h	LUN1_ID_STR	Lun 1 Identifer String	"MS"
B8h - BEh	LUN2_ID_STR	Lun 2 Identifer String	"SM" (See Note 7.1)
BFh - C5h	LUN3_ID_STR	Lun 3 Identifer String	"SD/MMC"
C6h - CDh	INQ_VEN_STR	Inquiry Vendor String	"Generic"

Revision 2.0 (10-03-08)

REG ADDR	REGISTER NAME	REGISTER DESCRIPTION	DEFAULT VALUE
CEh - D2h	INQ_PRD_STR	Inquiry Product String	2640
D3h	DYN_NUM_LUN	Dynamic Number of Luns	FFh
D4h - D7h	LUN_DEV_MAP	Lun to Device Mapping	FFh, FFh, FFh, FFh
D8h - DAh	Reserved	-	00h, 04h, 09h
DBh - DDh	Reserved	-	5Ch, 59h, 9Ah

Table 7.1 Internal Flash Media Controller Configurations (continued)

Note 7.1 This value will be overridden with xD once an xD-Picture Card has been identified.

REG ADDR	REGISTER NAME	REGISTER DESCRIPTION	DEFAULT VALUE
DEh	VID_LSB	Vendor ID Least Significant Byte	24h
DFh	VID_MSB	Vendor ID Most Significant Byte	04h
E0h	PID_LSB	Product ID Least Significant Byte	40h
E1h	PID_MSB	Product ID Most Significant Byte	26h
E2h	DID_LSB	Device ID Least Significant Byte	00h
E3h	DID_MSB	Device ID Most Significant Byte	00h
E4h	CFG_DAT_BYT1	Configuration Data Byte 1	8Bh
E5h	CFG_DAT_BYT2	Configuration Data Byte 2	28h
E6h	CFG_DAT_BYT3	Configuration Data Byte 3	00h
E7h	NR_DEVICE	Non-Removable Devices	02h
E8h	PORT_DIS_SP	Port Disable (Self)	00h
E9h	PORT_DIS_BP	Port Disable (Bus)	00h
EAh	MAX_PWR_SP	Max Power (Self)	01h
EBh	MAX_PWR_BP	Max Power (Bus)	32h
ECh	HC_MAX_C_SP	Hub Controller Max Current (Self)	01h
EDh	HC_MAX_C_BP	Hub Controller Max Current (Bus)	32h
EEh	PWR_ON_TIME	Power-on Time	32h
EFh	BOOST_UP	Boost_Up	00h
F0h	BOOST_3:0	Boost_3:0	00h
F1h	PRT_SWP	Port Swap	00h
F2h	PRTR12	Port Remap 12	00h
F3h	PRTR3	Port Remap 3	00h

Table 7.2 Hub Controller Configurations

REG ADDR	REGISTER NAME	REGISTER DESCRIPTION	DEFAULT VALUE
F4h	MS_SD_CLK_LIM	MS/SD Clock Limit for Flash Media Controller	00h
F5h	N/A	Reserved	66h
F6h	N/A	Reserved	00h
F7-FBh	N/A	Reserved	00h
FCh-FFh	NVSTORE_SIG	Non-volatile storage signature ("ATA2")	"ATA2"

Table 7.3 Other Internal Configurations

7.3.2.1 0h-19h: USB Serial Number Option

BYTE NUMBER	BYTE NAME	DESCRIPTION
25:0	USB_SER_NUM	Default Value is: UNICODE "0000002640001".
		Maximum string length is 12 hex digits. Must be unique to each device.

7.3.2.2 1Ah-1Bh: USB Vendor ID Option

BYTE NUMBER	BYTE NAME	DESCRIPTION
1:0	USB_VID	This ID is unique for every vendor. The vendor ID is assigned by the USB Implementers Forum.

7.3.2.3 1Ch-1Dh: USB Product ID Option

BYTE NUMBER	BYTE NAME	DESCRIPTION
1:0	USB_PID	This ID is unique for every product. The product ID is assigned by the vendor.

7.3.2.4 1Eh-21h: USB Language Identifier Option

BYTE NUMBER	BYTE NAME	DESCRIPTION
3:0	USB_LANG_ID	USB LANGUAGE ID
		English Language Code = '0409'. Please refer to the USB 2.0 specification for Other Language Codes.

Revision 2.0 (10-03-08)

7.3.2.5 22h-5Dh: USB Manufacturer String Length

BYTE NUMBER	BYTE NAME	DESCRIPTION	
59:0	USB_MFR_STR	Manufacturer String Length	
		Maximum string length is 28 characters.	
		(See Note 7.2 below)	

7.3.2.6 5Eh-99h: USB Product String Length

BYTE NUMBER	BYTE NAME	DESCRIPTION	
59:0	USB_PRD_STR	Product String Length	
		This string will be used during the USB enumeration process in Windows. Maximum string length is 28 characters.	
		(See Note 7.2 below)	

Note 7.2 While the full strings are reported during USB enumeration, Windows XP/Vista reads concatenated version of the strings from the standard SCSI inquiry response when storing the values for display in the Windows registry and device manager.

7.3.2.7 9Ah: USB BmAttribute (1 byte)

BYTE NUMBER	BYTE NAME	DESCRIPTION	
7:0	USB_BM_ATT	Self- or Bus-Power: Selects between Self- and Bus-Powered operation.	
		The hub is either Self-Powered (draws less than 2 mA of upstream bus power) or Bus-Powered (limited to a 100 mA maximum of upstream power prior to being configured by the host controller).	
		When configured as a Bus-Powered device, the SMSC hub consumes less than 100 mA of current prior to being configured. After configuration, the Bus-Powered SMSC hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of upstream VBUS current. The current consumption is system dependent, and the OEM must ensure that the USB 2.0 specifications are not violated.	
		When configured as a Self-Powered device, <1 mA of upstream VBUS current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current.	
		80 = Bus-Powered operation c0 = Self-Powered operation A0 = Bus-Powered operation with remote wake-up E0 = Self-Powered operation with remote wake-up	

7.3.2.8 9Bh: USB MaxPower (1 byte)

BYTE NUMBER	BYTE NAME	DESCRIPTION
7:0	USB_MAX_PWR	USB Max Power Per USB specification. Do NOT set this value greater than 100 mA.

7.3.2.9 9Ch-9Fh: Attribute Byte Descriptions

BYTE	BYTE NAME	BIT NUMBER	DESCRIPTION		
1	ATT_LB	3:0	Always reads '0'.		
		4	Inquire Manufacturer and Product ID Strings		
			 Use the Inquiry Manufacturer and Product ID Strings. (default) - Use the USB Descriptor Manufacturer and Product ID Strings. 		
		5	Activity GPIO High when Suspended 1 - The activity LED GPIO is set to High when suspended. 0 (default) - The activity LED GPIO is set to Low when suspended.		
		6	Reverse SD Card Write Protect Sense 1 (default) - SD cards will be write protected when SW_nWP is high, and writable when SW_nWP is low. 0 - SD cards will be write protected when SW_nWP is low, and writable when SW_nWP is high.		
		7	Always reads '0'.		
2	ATT_HLB	3:0	Always reads '0'.		
		4	Activity LED True polarity 1 - Activity LED to Low True. 0 (default) - Activity LED polarity to High True.		
		5	Common Media Insert / Media Activity LED 1 - The activity LED will function as a common media inserted/media access LED. 0 (default) - The activity LED will remain in its idle state until media is accessed.		
		7:6	Always reads '0'.		
3	ATT_LHB	0	Attach on Card Insert / Detach on Card Removal 1 - Attach on Insert is enabled 0 (default) - Attach on Insert is disabled		
		1	Always reads '0'.		
		2	Use Lun Power Configuration. 1 - Custom LUN Power Configuration stored in the NVSTORE is used. 0 (default) - Default LUN Power Configuration is used.		
		7:3	Always reads '0'.		
4	ATT_HB	6:0	Always reads '0'.		
		7	xD Player Mode		

7.3.2.10 A4h-A5h: LUN Power Configuration

The USB2640i/USB2641i has one internal FET which can be utilized for card power. The settings are stored in NVSTORE and provide the following features:

1.A card can be powered by an external FET or internal FET.

2. The power limit can be set to 100 mA (Default) or 200 mA for the internal FET.

Each media uses two bytes to store its LUN power configuration. Bit 3 selects between internal or external. For internal FETs Bits 0 through 2 are used for the power limit. Only 2 of the possible 8 values are currently specified.

FET	TYPE	BITS	BIT TYPE	DESCRIPTION
0	FET Low	3:0	Low Nibble	Unused.
1	Byte	7:4	High Nibble	Unused.
2	FET High Byte	3:0	Low Nibble	0000b Disabled. 0001b External FET Enabled. 1000b Internal FET with 100 mA power limit. 1010b Internal FET with 200 mA power limit.
3		7:4	High Nibble	Unused.

Table 7.4 FET Configuration

7.3.2.11 A8h: LED Blink Interval (1 byte)

BIT NUMBER	BIT NAME	DESCRIPTION
7:0	LED_BLK_INT	The blink rate is programmable in 10 ms intervals. Hi bit indicates idle state: 0-Off, 1-On. The remaining bits are used to determine the blink interval up to a max of 128 x 10 ms.

7.3.2.12 A9h: Blink Duration (1 byte)

BIT NUMBER	BIT NAME	DESCRIPTION
7:0	LED_BLK_DUR	LED blink After Access. This byte is used to designate the number of seconds that the GPIO 0 LED will continue to blink after a drive access. Setting this byte to "05" will cause the GPIO 0 LED to blink for 5 seconds after a drive access.

7.3.3 LUN ID Strings

There are four LUN ID strings corresponding to LUN# 0, 1, 2, and 3: Number of Icons to Display, SM LUN #, MS LUN #, SD/MMC LUN #. The SM value will be overridden with xD once an xD-Picture Card has been identified.

7.3.3.1 AAh-B0h: Lun 0 Identifier String

BYTE NUMBER	BYTE NAME	STRING	DESCRIPTION
6:0	LUN0_ID_STR	"COMBO"	These bytes are used to specify the LUN descriptor returned by the device. These bytes are used in combination with the LUN to device mapping bytes in applications where the OEM wishes to reorder and rename the LUNs or utilizes a combo socket and wishes to rename the LUN.

7.3.3.2 B1h-B7h: Lun 1 Identifier String

BYTE NUMBER	BYTE NAME	STRING	DESCRIPTION
6:0	LUN1_ID_STR	"MS"	These bytes are used to specify the LUN descriptor returned by the device. These bytes are used in combination with the LUN to device mapping bytes in applications where the OEM wishes to reorder and rename the LUNs or utilizes a combo socket and wishes to rename the LUN.

7.3.3.3 B8h-BEh: Lun 2 Identifier String

BYTE NUMBER	BYTE NAME	STRING	DESCRIPTION
6:0	LUN2_ID_STR	"SM"	These bytes are used to specify the LUN descriptor returned by the device. These bytes are used in combination with the LUN to device mapping bytes in applications where the OEM wishes to reorder and rename the LUNs or utilizes a combo socket and wishes to rename the LUN.

7.3.3.4 BFh-C5h: Lun 3 Identifier String

BYTE NUMBER	BYTE NAME	STRING	DESCRIPTION
6:0	LUN3_ID_STR	"SD/MMC"	These bytes are used to specify the LUN descriptor returned by the device. These bytes are used in combination with the LUN to device mapping bytes in applications where the OEM wishes to reorder and rename the LUNs or utilizes a combo socket and wishes to rename the LUN.

7.3.3.5 C6h-CDh: Inquiry Vendor String

BYTE NUMBER	BYTE NAME	STRING	DESCRIPTION
7:0	INQ_VEN_STR	"Generic"	If bit 4 of the 1st attribute byte is set, the device will use these strings in response to a USB inquiry command, instead of the USB Descriptor Manufacturer and Product ID Strings.

7.3.3.6 CEh-D2h: Inquiry Product String

BYTE NUMBER	BYTE NAME	UINT	DESCRIPTION
4:0	INQ_PRD_STR	2640	If bit 4 of the 1st attribute byte is set, the device will use these strings in response to a USB inquiry command, instead of the USB Descriptor Manufacturer and Product ID Strings.

7.3.3.7 D3h: Dynamic Number of Luns

BIT NUMBER	BYTE NAME	UCHAR	DESCRIPTION
7:0	DYN_NUM_LUN	FFh	These bytes are used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket and the OEM wishes to have only a single icon displayed for one or more interfaces.
			If this field is set to "FF", the program assumes that you are using the default value of "04" and will display icons for xD, MS, and SD/MMC. If this field is any other value besides "FF", you must specify the LUN# assignments in the boxes starting with LUN 00 and going to (# of Icons to Display -1). Regardless of this setting, the USB2640i/USB2641i sets this value to '1'.

7.3.3.8 D4h-D7h: Lun to Device Mapping

BYTE NUMBER	BYTE NAME	UCHARS	DESCRIPTION
3:0	LUN_DEV_MAP	FFh, FFh, FFh, FFh	These bytes are used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket and the OEM wishes to have only a single icon displayed for one or more interfaces.
			If this field is set to "FF", the program assumes that you are using the default value of "04" and will display icons for xD, MS, and SD/MMC. If this field is any other value besides "FF", you must specify the LUN# assignments in the boxes starting with LUN 00 and going to (# of Icons to Display -1). Regardless of this setting, the USB2640i/USB2641i

7.3.3.9 D8h-DAh: Reserved

BIT NUMBER	BYTE NAME	BITS	DESCRIPTION
2:0	Reserved	00h, 04h, 09h	For internal use only.

7.3.3.10 DBh-DDh: Reserved

BIT NUMBER	BYTE NAME	BITS	DESCRIPTION
2:0	Reserved	5Ch, 59h, 9Ah	For internal use only.

7.3.3.11 DEh: Vendor ID (LSB)

BIT NUMBER	BYTE NAME	DESCRIPTION
7:0	VID_LSB	Least Significant Byte of the Vendor ID. This is a 16-bit value that uniquely identifies the Vendor of the user device (assigned by USB Implementers Forum).

7.3.3.12 DFh: Vendor ID (MSB)

BIT NUMBER	BYTE NAME	DESCRIPTION
7:0	VID_MSB	Most Significant Byte of the Vendor ID. This is a 16-bit value that uniquely identifies the Vendor of the user device (assigned by USB Implementers Forum).

7.3.3.13 E0h: Product ID (LSB)

BIT NUMBER	BIT NAME	DESCRIPTION
7:0	PID_LSB	Least Significant Byte of the Product ID. This is a 16-bit value that the Vendor can assign that uniquely identifies this particular product.

Revision 2.0 (10-03-08)

7.3.3.14 E1h: Product ID (MSB)

BIT NUMBER	BIT NAME	DESCRIPTION
7:0	PID_MSB	Most Significant Byte of the Product ID. This is a 16-bit value that the Vendor can assign that uniquely identifies this particular product.

7.3.3.15 E2h: Device ID (LSB)

BIT NUMBER	BIT NAME	DESCRIPTION
7:0	DID_LSB	Least Significant Byte of the Device ID. This is a 16-bit device release number in BCD (binary coded decimal) format.

7.3.3.16 E3h: Device ID (MSB)

BIT NUMBER	BIT NAME	DESCRIPTION
7:0	DID_MSB	Most Significant Byte of the Device ID. This is a 16-bit device release number in BCD format.

7.3.3.17 E4h: Config Data Byte 1 (CFG_DAT_BYT1)

BIT NUMBER	BIT NAME	DESCRIPTION
7	SELF_BUS_PWR	Self- or Bus-Power: Selects between Self- and Bus-Powered operation.
		The hub is either Self-Powered (draws less than 2 mA of upstream bus power) or Bus-Powered (limited to a 100 mA maximum of upstream power prior to being configured by the host controller).
		When configured as a Bus-Powered device, the SMSC hub consumes less than 100 mA of current prior to being configured. After configuration, the Bus-Powered SMSC hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of upstream VBUS current. The current consumption is system dependent, and the OEM must ensure that the USB 2.0 specifications are not violated.
		When configured as a Self-Powered device, <1 mA of upstream VBUS current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current.
		0 = Bus-Powered operation 1 = Self-Powered operation
6	Reserved	Always reads '0'.

BIT NUMBER	BIT NAME	DESCRIPTION
5	HS_DISABLE	Hi-Speed Disable: Disables the capability to attach as either a Hi-/Full-Speed device, and forces attachment as Full-Speed only (i.e. no Hi-Speed support).
		0 = Hi-/Full-Speed 1 = Full-Speed-Only (Hi-Speed disabled!)
4	Reserved	Always reads '0'.
3	EOP_DISABLE	 EOP Disable: Disables EOP generation of EOF1 when in Full-Speed mode. During FS operation only, this permits the hub to send EOP if no downstream traffic is detected at EOF1. See Section 11.3.1 of the USB 2.0 Specification for additional details. Note: generation of an EOP at the EOF1 point may prevent a Host Controller (operating in FS mode) from placing the USB bus in suspend. 0 = An EOP is generated at the EOF1 point if no traffic is detected. 1 = EOP generation at EOF1 is disabled (Note: This is normal USB
		operation).
		Note: This is a rarely used feature in the PC environment, existing drivers may not have been thoroughly debugged with this feature enabled. It is included because it is a permitted feature in Chapter 11 of the USB specification.
2:1	CURRENT_SNS	Over-Current Sense: Selects current sensing on a port-by-port basis, all ports ganged, or none (only for bus-powered hubs). The ability to support current sensing on a port or ganged basis is dependent upon the hardware implementation.
		00 = Ganged sensing (all ports together) 01 = Individual port-by-port 1x = Over-current sensing not supported (must only be used with Bus- Powered configurations!)
0	PORT_PWR	Port Power Switching: Enables power switching on all ports simultaneously (ganged), or port power is individually switched on and off on a port- by-port basis (individual). The ability to support power enabling on a port or ganged basis is dependent upon the hardware implementation.
		0 = Ganged switching (all ports together) 1 = Individual port-by-port switching

7.3.3.18 E5h: Config Data Byte 2 (CFG_DAT_BYT2)

BIT NUMBER	BIT NAME	DESCRIPTION
7:6	Reserved	Always reads '0'.
5:4	OC_TIMER	OverCurrent Timer: Over-current Timer delay. 00 = 50 ns 01 = 100 ns
		10 = 200 ns 11 = 400 ns

Revision 2.0 (10-03-08)

BIT NUMBER	BIT NAME	DESCRIPTION
3	COMPOUND	Compound Device: Allows OEM to indicate that the hub is part of a compound (see the USB Specification for definition) device. The applicable port(s) must also be defined as having a "Non-Removable Device".
		Note: When configured via strapping options, declaring a port as non-removable automatically causes the hub controller to report that it is part of a compound device.
		0 = No 1 = Yes, the hub is part of a compound device
2:0	Always reads '0'.	Always reads '0'.

7.3.3.19 E6h: Config Data Byte 3 (CFG_DAT_BYT3)

BIT NUMBER	BIT NAME	DESCRIPTION
7:4	Reserved	Always reads '0'.
3	PRTMAP_EN	Port Re-mapping enable: Selects the method used by the hub to assign port numbers and disable ports.
		'0' = Standard Mode. Strap options or the following registers are used to define which ports are enabled, and the ports are mapped as Port 'n' on the jub is reported as Port 'n' to the host, unless one of the ports is disabled, then the higher numbered ports are remapped in order to report contiguous port numbers to the host.
		Register 300Ah: Port Disable For Self-Powered Operation (Reset = 0x00). Register 300Bh: Port Disable For Bus-Powered Operation (Reset = 0x00).
		'1' = Port Re-map mode. The mode enables remapping via the registers defined below.
		Register 30FBh: Port Remap 12 (Reset = 0x00) Register 30FCh: Port Remap 3 (Reset = 0x00)
2:0	Reserved	Always reads '0'.

7.3.3.20 E7h: Non-Removable Device

BIT NUMBER	BYTE NAME	DESCRIPTION
7:0	NR_DEVICE	Non-removable Device: Indicates which port(s) include non-removable devices. '0' = port is removable, '1' = port is non-removable.
		Informs the host if one of the active ports has a permanent device that is undetachable from the hub. (Note: The device must provide its own descriptor data.)
		When using the internal default option, the NON_REM[1:0] pins will designate the appropriate ports as being non-removable.
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= 1; port 3 non-removable Bit 2= 1; Port 2 non-removable Bit 1= 1; Port 1 non removable Bit 0= Reserved, always = '0'
		Note: Bit 1 must be set to a '1' by the firmware for proper identification of the card reader as a non-removable device.

7.3.3.21 E8h: Port Disable For Self-Powered Operation

BIT NUMBER	BYTE NAME	DESCRIPTION
7:0	PORT_DIS_SP	Port Disable Self-Powered: Disables 1 or more ports. '0' = port is available, '1' = port is disabled.
		During Self-Powered operation this register selects the ports which will be permanently disabled. The ports are unavailable to be enabled or enumerated by a Host Controller. The ports can be disabled in any order since the internal logic will automatically report the correct number of enabled ports to the USB host and will reorder the active ports in order to ensure proper function.
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= 1; Port 3 is disabled Bit 2= 1; Port 2 is disabled Bit 1= 1; Port 1 is disabled Bit 0= Reserved, always = '0'

7.3.3.22 E9h: Port Disable For Bus-Powered Operation

BIT NUMBER	BYTE NAME	DESCRIPTION
7:0	PORT_DIS_BP	Port Disable Bus-Powered: Disables 1 or more ports. '0' = port is available, '1' = port is disabled.
		During Self-Powered operation, this register selects the ports which will be permanently disabled. The ports are unavailable to be enabled or enumerated by a Host Controller. The ports can be disabled in any order, the internal logic will automatically report the correct number of enabled ports to the USB host and will reorder the active ports in order to ensure proper function.
		When using the internal default option, the PRT_DIS[1:0] pins will disable the appropriate ports.
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= 1; Port 3 is disabled Bit 2= 1; Port 2 is disabled Bit 1= 1; Port 1 is disabled Bit 0 is Reserved, always = '0'

7.3.3.23 EAh: Max Power For Self-Powered Operation

BIT NUMBER	BYTE NAME	DESCRIPTION
7:0	MAX_PWR_SP	Max Power Self_Powered: Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a self-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value also includes the power consumption of a permanently attached peripheral if the hub is configured as a compound device, and the embedded peripheral reports 0 mA in its descriptors.
		Note: The USB 2.0 Specification does not permit this value to exceed 100 mA.

7.3.3.24 EBh: Max Power For Bus-Powered Operation

BIT NUMBER	BYTE NAME	DESCRIPTION
7:0	MAX_PWR_BP	Max Power Bus_Powered: Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a bus-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value also includes the power consumption of a permanently attached peripheral if the hub is configured as a compound device, and the embedded peripheral reports 0 mA in its descriptors.

7.3.3.25 ECh: Hub Controller Max Current For Self-Powered Operation

BIT NUMBER	BYTE NAME	DESCRIPTION
7:0	HC_MAX_C_SP	Hub Controller Max Current Self-Powered: Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a self-powered hub. This value includes the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value does NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device.
		 Note: The USB 2.0 Specification does not permit this value to exceed 100 mA. A value of 50 (decimal) indicates 100 mA, which is the default value.

7.3.3.26 EDh: Hub Controller Max Current For Bus-Powered Operation

BIT NUMBER	BYTE NAME	DESCRIPTION
7:0	HC_MAX_C_BP	Hub Controller Max Current Bus-Powered: Value in 2 mA increments that the hub consumes from an upstream port (VBUS) when operating as a bus- powered hub. This value will include the hub silicon along with the combined power consumption (from VBUS) of all associated circuitry on the board. This value will NOT include the power consumption of a permanently attached peripheral if the hub is configured as a compound device. A value of 50 (decimal) would indicate 100 mA, which is the default value.

7.3.3.27 EEh: Power-On Time

BIT NUMBER	BYTE NAME	DESCRIPTION
7:0	POWER_ON_TIME	Power-On Time: The length of time that it takes (in 2 ms intervals) from the time the host initiated power-on sequence begins on a port until power is adequate on that port. System software uses this value to determine how long to wait before accessing a powered-on port.

7.3.3.28 EFh: Boost_Up

BIT NUMBER	BIT NAME	DESCRIPTION
7:2	Reserved	Reserved
1:0	BOOST_IOUT	 USB electrical signaling drive strength Boost Bit for the Upstream Port 'A'. '00' = Normal electrical drive strength = No boost '01' = Elevated electrical drive strength = Low (approximately 4% boost) '10' = Elevated electrical drive strength = Medium (approximately 8% boost) '11' = Elevated electrical drive strength = High (approximately 12% boost) '11' = Elevated electrical drive strength = High (approximately 12% boost) Note: "Boost" could result in non-USB Compliant parameters (one example would be Test J/K levels), OEM should use a '00' value unless specific implementation issues require additional signal boosting to correct for degraded USB signalling levels.

7.3.3.29 F0h: Boost_3:0

BIT NUMBER	BIT NAME	DESCRIPTION
7:6	Reserved	Always reads '0'.
5:4	BOOST_IOUT_3	Upstream USB electrical signaling drive strength Boost Bit for Downstream Port '3'. '00' = Normal electrical drive strength = No boost '01' = Elevated electrical drive strength = Low (approximately 4% boost) '10' = Elevated electrical drive strength = Medium (approximately 8% boost) '11' = Elevated electrical drive strength = High (approximately 12% boost)
3:2	BOOST_IOUT_2	Upstream USB electrical signaling drive strength Boost Bit for Downstream Port '2'. '00' = Normal electrical drive strength = No boost '01' = Elevated electrical drive strength = Low (approximately 4% boost) '10' = Elevated electrical drive strength = Medium (approximately 8% boost) '11' = Elevated electrical drive strength = High (approximately 12% boost) '11' = Elevated electrical drive strength = High (approximately 12% boost) '11' = Elevated electrical drive strength = High (approximately 12% boost) Note: "Boost" could result in non-USB Compliant parameters (one example would be Test J/K levels), OEM should use a '00' value unless specific implementation issues require additional signal boosting to correct for degraded USB signalling levels.
1:0	Reserved	Always reads '0'.

7.3.3.30 F1h: Port Swap

BIT NUMBER	BYTE NAME	DESCRIPTION				
7:0	PRT_SWP	Port Swap: Swaps the Upstream and Downstream USB DP and DM Pins for ease of board routing to devices and connectors. '0' = USB D+ functionality is associated with the DP pin and D- functionality				
		is associated with the DM pin. '1' = USB D+ functionality is associated with the DM pin and D- functionality is associated with the DP pin.				
		Bit 7= Reserved Bit 6= Reserved Bit 5= Reserved Bit 4= Reserved Bit 3= '1'; Port 3 DP/DM is swapped Bit 2= '1'; Port 2 DP/DM is swapped Bit 1= Reserved Bit 0= '1':Upstream Port DP/DM is swapped				

7.3.3.31 F2h: Port Remap 12

BIT NUMBER	BYTE NAME		ļ	DESCRIPTION				
7:0	PRTR12	Port remap register for ports 1 & 2.						
		When a hub is enumerated by a USB Host Controller, the hub is only permitted to report how many ports it has; the hub is not permitted to select a numerical range or assignment. The Host Controller will number the downstream ports of the hub starting with the number '1', up to the number of ports that the hub reported having.						
		The host's port number is referred to as "Logical Port Number" and the physical port on the hub is the "Physical Port Number". When remapping mode is enabled (see PRTMAP_EN in Register 08h: Configuration Data Byte 3) the hub's downstream port numbers can be remapped to different logical port numbers (assigned by the host).						
		Note: OEM must ensure that Contiguous Logical Port Numbers are used, starting from number '1' up to the maximum number of enabled ports; this ensures that the hub's ports are numbered in accordance with the way a host will communicate with the ports.						
		Table 7.5 Port Remap Register for Ports 1 & 2						
		Bit [7:4]	Bit [7:4] '0000' Physical Port 2 is Disabled					
		'0001' Physical Port 2 is mapped to Logical Port 1						
		'0010' Physical Port 2 is mapped to Logical Port 2						
		'0011' Physical Port 2 is mapped to Logical Port 3						
		'0100' Illegal; Do Not Use to '1111'						
		Bit [3:0]	'0000'	Physical Port 1 is Disabled				
			'0001'	Physical Port 1 is mapped to Logical Port 1				
			'0010'	Physical Port 1 is mapped to Logical Port 2				
			'0011'	Physical Port 1 is mapped to Logical Port 3				
			ʻ0100' to ʻ1111'	Illegal; Do Not Use				

7.3.3.32 F3h: Port Remap 3

BIT NUMBER	BYTE NAME		l	DESCRIPTION			
7:0	PRTR3	Port remap register for port 3.					
		When a hub is enumerated by a USB Host Controller, the hub is only permitted to report how many ports it has; the hub is not permitted to select a numerical range or assignment. The Host Controller will number the downstream ports of the hub starting with the number '1', up to the number of ports that the hub reported having.					
		The host's port number is referred to as "Logical Port Number" and the physical port on the hub is the "Physical Port Number". When remapping mode is enabled (see PRTMAP_EN in Register 08h: Configuration Data Byte 3) the hub's downstream port numbers can be remapped to different logical port numbers (assigned by the host).					
		Note: OEM must ensure that Contiguous Logical Port Numbers are used, starting from number '1' up to the maximum number of enabled ports; this ensures that the hub's ports are numbered in accordance with the way a host will communicate with the ports.					
		Table 7.6 Port Remap Register for Port 3					
		Bit [7:4] '0000' Reserved					
			'0001'	Reserved			
		'0010' Reserved					
		'0011' Reserved					
		'0100' Illegal; Do Not Use to '1111'					
		Bit [3:0] '0000' Physical Port 3 is Disabled					
			'0001'	Physical Port 3 is mapped to Logical Port 1			
			'0010'	Physical Port 3 is mapped to Logical Port 2			
			'0011'	Physical Port 3 is mapped to Logical Port 3			
			'0100' to '1111'	Illegal; Do Not Use			

7.3.3.33 F4h: MS/SD Clock Limit

BYTE NAME	TYPE	BITS	DESCRIPTION
	Upper Nibble Bits	7:4	0: MS - 60 MHz Default, no limit 1: MS - 40 MHz 2: MS - 20 MHz 3: MS - 15 MHz
MG_GD_GER_EIM	Lower Nibble Bits	3:0	0: SD/MMC - 48 MHz 1: SD/MMC - 24 MHz 2: SD/MMC - 20 MHz 3: SD/MMC - 15 MHz

7.3.3.34 F5h: Reserved

BIT NUMBER	BYTE NAME	DEFAULT VALUE	DESCRIPTION
7:0	Reserved	66h	Reserved.

7.3.3.35 F6h: Reserved

BIT NUMBER	BYTE NAME	DEFAULT VALUE	DESCRIPTION
7:0	Reserved	00h	Reserved for media usage.

7.3.3.36 FCh-FFh: Non-volatile Storage Signature

BYTE NUMBER	BYTE NAME	STRING	DESCRIPTION
7:0	NVSTORE_SIG	"ATA2"	This signature is used to verify the validity of the data in the configuration area. The signature must be set to 'ATA2' for USB2640i/USB2641i.

7.3.4 I²C EEPROM

The I²C EEPROM interface implements a subset of the I²C Master Specification (Please refer to the Philips Semiconductor Standard I²C-Bus Specification for details on I²C bus protocols). The device's I²C EEPROM interface is designed to attach to a single "dedicated" I²C EEPROM, and it conforms to the Standard-mode I²C Specification (100 kbit/s transfer rate and 7-bit addressing) for protocol and electrical compatibility.

Note: Extensions to the I²C Specification are not supported.

The device acts as the master and generates the serial clock SCL, controls the bus access (determines which device acts as the transmitter and which device acts as the receiver), and generates the START and STOP conditions.

7.3.4.1 Implementation Characteristics

The device will only access an EEPROM using the Sequential Read Protocol.

7.3.4.2 Pull-Up Resistor

The circuit board designer is required to place external pull-up resistors (10 k Ω recommended) on the SDA/SMBDATA & SCL/SMBCLK/CFG_SELO lines (per SMBus 1.0 Specification, and EEPROM manufacturer guidelines) to Vcc in order to assure proper operation.

7.3.5 In-Circuit EEPROM Programming

The EEPROM can be programmed via ATE by pulling RESET_N low (which tri-states the device's EEPROM interface and allows an external source to program the EEPROM).

7.4 Default Configuration Option:

The SMSC device can be configured via its internal default configuration. Please see Section 7.3.2, "EEPROM Data Descriptor" for specific details on how to enable default configuration.

Please refer to Table 7.1 for the internal default values that are loaded when this option is selected.

7.5 Reset

There are two different resets that the device experiences. One is a hardware reset (either from the internal POR reset circuit or via the RESET_N pin) and the second is a USB Bus Reset.

7.5.1 Internal POR Hardware Reset

All reset timing parameters are guaranteed by design.

7.5.2 External Hardware RESET_N

A valid hardware reset is defined as assertion of RESET_N for a minimum of 1 μ s after all power supplies are within operating range. While reset is asserted, the device (and its associated external circuitry) consumes less than 500 μ A of current from the upstream USB power source.

Assertion of RESET_N (external pin) causes the following:

- 1. All downstream ports are disabled, and PRTCTL power to downstream devices is removed.
- 2. The PHYs are disabled, and the differential pairs will be in a high-impedance state.
- 3. All transactions immediately terminate; no states are saved.
- 4. All internal registers return to the default state (in most cases, 00h).
- 5. The external crystal oscillator is halted.
- 6. The PLL is halted.

7.5.2.1 RESET_N for EEPROM Configuration

Figure 7.1 Reset_N Timing for EEPROM Mode

Table 7.7 Res	set_N Timing	g for EEPROM Mo	de
---------------	--------------	-----------------	----

NAME	DESCRIPTION	MIN	ТҮР	МАХ	UNITS
t1	RESET_N asserted.	1			μsec
t2	Device recovery/stabilization.			500	μsec
t3	8051 programs device configuration		20	50	msec
t4	USB attach (See Note).			100	msec
t5	Host acknowledges attach and signals USB reset.	100			msec
t6	USB idle.		Undefined		msec
t7	Completion time for requests (with or without data stage).			5	msec

Note: All power supplies must have reached the operating levels mandated in Chapter 9, DC Parameters, prior to (or coincident with) the assertion of RESET_N.

7.5.3 USB Bus Reset

In response to the upstream port signaling a reset to the device, the device does the following:

Note: The device does not propagate the upstream USB reset to downstream devices.

- 1. Sets default address to 0.
- 2. Sets configuration to: Unconfigured.
- 3. Negates PRTCTL[3:2] to all downstream ports.
- 4. Clears all TT buffers.
- 5. Moves device from suspended to active (if suspended).
- 6. Complies with Section 11.10 of the USB 2.0 Specification for behavior after completion of the reset sequence.

The host then configures the device and the device's downstream port devices in accordance with the USB Specification.

Chapter 8 Pin Reset States

Figure 8.1 Pin Reset States

Table 8.1	Legend f	or Pin	Reset	States	Table
-----------	----------	--------	-------	--------	-------

SYMBOL	DESCRIPTION
Y	Hardware enables function
0	Ouput low
1	Output high
	Hardware disables function
Z	Hardware disables output driver (high impedance)
PU	Hardware enables pullup
PD	Hardware enables pulldown
HW	Hardware controls function, but state is protocol dependent
(FW)	Firmware controls function through registers
VDD	Hardware supplies power through pin, applicable only to CARD_PWR pins
none	Hardware disables pad

8.1 Pin Reset States

Table 8.2 USB2640i Pin Reset States

		RESET STATE						
PIN	PIN NAME	FUNCTION	OUTPUT	PU/ PD	INPUT			
1	USBDN_DM2	USBDN_DM2	0	PD				
2	USBDN_DP2	USBDN_DP2	0	PD				

Revision 2.0 (10-03-08)

		RESET STATE				
PIN	PIN NAME	FUNCTION	OUTPUT	PU/ PD	INPUT	
3	USBDN_DM3	USBDN_DM3	0	PD		
4	USBDN_DP3	USBDN_DP3	0	PD		
6	PRTCTL2	PRTCTL	0			
7	PRTCTL3	PRTCTL	0			
8	SPI_CE_N	SPI_CE_N	1			
9	SPI_CLK / GPIO4 / SCL	GPIO	0			
10	SPI_DO / GPIO5 / SDA / SPI_SPD_SEL	GPIO	Z	PD	Y	
11	SPI_DI	SPI_DI	Z	PD	Y	
13	xD_D4 / GPIO6 / SD_WP / MS_SCLK	GPIO	0			
14	GPIO15 / SD_nCD	GPIO	Z	PU	Y	
17	xD_D3 / SD_D1 / MS_D5	none	Z			
18	xD_D2 / SD_D0 / MS_D4	none	Z			
19	xD_D1 / SD_D7 / MS_D6	none	Z			
20	xD_D0 / SD_D6 / MS_D7	none	Z			
21	xD_nWP / SD_CLK / MS_BS	none	Z			
22	xD_nWE	none	Z			
23	xD_ALE / SD_D5 / MS_D1	none	Z			
24	xD_CLE / SD_CMD / MS_D0	none	Z			
26	xD_nCE	none	Z			
27	xD_nRE	none	Z			
28	xD_nB/R	none	Z			
29	GPIO14 / xD_nCD	GPIO	Z	рU	Y	
30	xD_D7 / SD_D4 / MS_D2	none	Z			
31	GPIO12 / MS_INS	GPIO	Z	рU	Y	
32	xD_D6 / SD_D3 / MS_D3	none	Z			
33	xD_D5 / SD_D2	none	Z			
35	GPIO10(CARD_PWR)	GPIO	Z			

Table 8.2 USB2640i Pin Reset States (continued)

		RESET STATE					
PIN	PIN NAME	FUNCTION	OUTPUT	PU/ PD	INPUT		
36	GPIO2 / RXD	GPIO	0				
37	GPIO1 / LED1 / TXD	GPIO1	0				
38	nRESET	nRESET	Z		Y		
39	VBUS_DET	VBUS_DET	Z		Y		
40	TEST	TEST	Z		Y		
42	USB+	USB+	Z				
43	USB-	USB-	Z				
44	XTAL2						
45	XTAL1 (CLKIN)						
47	RBIAS						

Table 8.2 USB2640i Pin Reset States (continued)

Table 8.3 USB2641i Pin Reset States

		RESET STATE					
PIN	PIN NAME	FUNCTION	OUTPUT	PU/ PD	INPUT		
1	USBDN_DM2	USBDN_DM2	0	PD			
2	USBDN_DP2	USBDN_DP2	0	PD			
3	USBDN_DM3	USBDN_DM3	0	PD			
4	USBDN_DP3	USBDN_DP3	0	PD			
6	PRTCTL2	PRTCTL	0				
7	PRTCTL3	PRTCTL	0				
8	SPI_CE_N	SPI_CE_N	1				
9	SPI_CLK / GPIO4 / SCL	GPIO	0				
10	SPI_DO / GPIO5 / SDA / SPI_SPD_SEL	GPIO	Z	PD	Y		
11	SPI_DI	SPI_DI	Z	PD	Y		
13	GPIO6 / SD_WP / MS_SCLK	GPIO	0				
14	GPIO15 / SD_nCD	GPIO	Z	PU	Y		
17	SD_D1 / MS_D5	none	Z				

Revision 2.0 (10-03-08)

		RESET STATE				
PIN	PIN NAME	FUNCTION	OUTPUT	PU/ PD	INPUT	
18	SD_D0 / MS_D4	none	Z			
19	SD_D7 / MS_D6	none	Z			
20	SD_D6 / MS_D7	none	Z			
21	SD_CLK / MS_BS	none	Z			
23	SD_D5 / MS_D1	none	Z			
24	SD_CMD / MS_D0	none	Z			
29	GPIO14	GPIO	Z	рU	Y	
30	SD_D4 / MS_D2	none	Z			
31	GPIO12 / MS_INS	GPIO	Z	рU	Y	
32	SD_D3 / MS_D3	none	Z			
33	SD_D2	none	Z			
35	GPIO10(CARD_PWR)	GPIO	Z			
36	GPIO2 / RXD	GPIO	0			
37	GPIO1 / LED1 / TXD	GPIO1	0			
38	nRESET	nRESET	Z		Y	
39	VBUS_DET	VBUS_DET	Z		Y	
40	TEST	TEST	Z		Y	
42	USB+	USB+	Z			
43	USB-	USB-	Z			
44	XTAL2					
45	XTAL1 (CLKIN)					
47	RBIAS					

Table 8.3 USB2641i Pin Reset States (continued)

Chapter 9 DC Parameters

9.1 Maximum Guaranteed Ratings

PARAMETER	SYMBOL	MIN	МАХ	UNITS	COMMENTS
Storage Temperature	T _{STOR}	-55	150	°C	
Lead Temperature			325	°C	Soldering < 10 seconds
3.3V supply voltage	V _{DD33,} V _{DDA33}	-0.5	4.0	V	
Voltage on USB+ and USB- pins		-0.5	(3.3V supply voltage + 2) \leq 6	V	
Voltage on GPIO10		-0.5	V _{DD33} + 0.3	V	When internal power FET operation of these pins are enabled, these pins may be simultaneously shorted to ground or any voltage up to 3.63V indefinitely, without damage to the device as long as V_{DD33} and V_{DDA33} are less than 3.63V and T_A is less than 70°C.
Voltage on any signal pin		-0.5	V _{DD33} + 0.3	V	
Voltage on XTAL1		-0.5	3.6	V	
Voltage on XTAL2		-0.5	2.0	V	

- **Note 9.1** Stresses above the specified parameters may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at any condition above those indicated in the operation sections of this specification is not implied.
- **Note 9.2** When powering this device from laboratory or system power supplies the Absolute Maximum Ratings must not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. When this possibility exists, a clamp circuit should be used.

Revision 2.0 (10-03-08)

9.2 **Operating Conditions**

PARAMETER	SYMBOL	MIN	МАХ	UNITS	COMMENTS
Operating Temperature	T _A	-40	85	°C	Ambient temperature in still air.
3.3V supply voltage	V _{DD33,} V _{DDA33}	3.0	3.6	V	A 3.3V regulator with an output tolerance of 1% must be used if the output of the internal power FET's must support a 5% tolerance.
3.3V supply rise time	t _{RT}	0	400	μS	(Figure 9.1)
1.8V supply rise time	t _{RT}	0	400	μS	(Figure 9.1)
Voltage on USB+ and USB- pins		-0.3	5.5	V	If any 3.3V supply voltage drops below 3.0V, then the MAX becomes:
					(3.3V supply voltage) + $0.5 \le 5.5$
Voltage on any signal pin		-0.3	V _{DD33}	V	
Voltage on XTAL1		-0.3	2.0	V	
Voltage on XTAL2		-0.3	2.0	V	

9.3 DC Electrical Characteristics

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	COMMENTS
I, IPU, IPD Type Input Buffer						
Low Input Level	V _{ILI}			0.8	V	TTL Levels
High Input Level	$V_{\rm IHI}$	2.0			V	
Pull Down	PD		72		μA	
Pull Up	PU		58		μA	
IS Type Input Buffer						
Low Input Level	V _{ILI}			0.8	V	TTL Levels
High Input Level	V _{IHI}	2.0			V	
Hysteresis	V _{HYSI}		420		mV	
ICLK Input Buffer						
Low Input Level	V _{ILCK}			0.5	V	
High Input Level	V _{IHCK}	1.4			V	
Input Leakage	IIL	-10		+10	μA	V _{IN} = 0 to V _{DD33}

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	COMMENTS
Input Leakage						
(All I and IS buffers)						
Low Input Leakage	Ι _{ΙL}	-10		+10	μA	V _{IN} = 0
High Input Leakage	I _{IH}	-10		+10	μA	V _{IN} = V _{DD33}
O12 Type Buffer						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 12 mA @ V _{DD33} = 3.3V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -12 mA @ V _{DD33} = 3.3V
Output Leakage	I _{OL}	-10		+10	μΑ	V _{IN} = 0 to V _{DD33} (Note 9.3)
I/O12, I/O12PU & I/O12PD Type Buffer						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 12 mA @ V _{DD33} = 3.3V
High Output Level	V _{OH}	V _{DD33} - 0.4			V	I _{OH} = -12 mA @ V _{DD33} = 3.3V
Output Leakage	I _{OL}	-10		+10	μΑ	V _{IN} = 0 to V _{DD33} (Note 9.3)
Pull Down	PD		72		μA	
Pull Up	PU		58		μA	
IO-U (Note 9.4)						
I-R (Note 9.5)						
Integrated Power FET Set to 100 mA						
Output Current (Note 9.6)	Ι _{ΟυΤ}	100			mA	Vdrop _{FET} = 0.22V
Short Circuit Current Limit	I _{SC}			140	mA	Vout _{FET} = 0V
On Resistance (Note 9.6)	R _{DSON}			2.1	Ω	I _{FET} = 70 mA
Output Voltage Rise Time	t _{DSON}			800	μS	C_{LOAD} = 10 μ F

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	COMMENTS
Integrated Power FET Set to 200 mA						
Output Current (Note 9.6)	I _{OUT}	200			mA	Vdrop _{FET} = 0.46V
Short Circuit Current Limit	I _{SC}			181	mA	Vout _{FET} = 0V
On Resistance (Note 9.6)	R _{DSON}			2.1	Ω	I _{FET} = 70 mA
Output Voltage Rise Time	t _{DSON}			800	μS	C_{LOAD} = 10 μ F
Supply Current Unconfigured						
Hi-Speed Host Full Speed Host	I _{CCINTHS} I _{CCINITFS}		65 60	80 75	mA mA	
Supply Current Active	I _{CC}		280	315	mA	
Supply Current Suspend	I _{CSBYI}		420	650	μA	
Supply Current Reset	I _{RST}		205	425	μA	

Note 9.3 Output leakage is measured with the current pins in high impedance.

Note 9.4 See the USB 2.0 Specification, Chapter 7, for USB DC electrical characteristics

- **Note 9.5** RBIAS is a 3.3V tolerant analog pin.
- **Note 9.6** Output current range is controlled by program software. The software disables the FET during short circuit condition.
- **Note 9.7** The 3.3V supply should be at least at 75% of its operating condition before the 1.8V supply is allowed to ramp up.

9.4 Capacitance

 T_A = 25°C; fc = 1 MHz; $V_{\mbox{DD33}}$ = 3.3V , $V_{\mbox{DD18}}$ = 1.8V

Table	9.1	Pin	Capacitance
-------	-----	-----	-------------

		LIMITS				
PARAMETER	SYMBOL	MIN	ТҮР	МАХ	UNIT	TEST CONDITION
Clock Input Capacitance	C _{XTAL}			2	pF	All pins (except USB pins and pins under test) are tied to AC ground.
Input Capacitance	C _{IN}			10	pF	
Output Capacitance	C _{OUT}			20	pF	

Chapter 10 AC Specifications

10.1 Oscillator/Clock

SMSC®

Crystal: Parallel Resonant, Fundamental Mode, 24 MHz \pm 100 ppm.

External Clock: 50% Duty cycle \pm 10%, 24 MHz \pm 100 ppm, Jitter < 100 ps rms.

Figure 10.1 Typical Crystal Circuit

Note: C_B equals total board/trace capacitance.

$$C_{L} = \frac{(C_{1} + C_{S1}) \times (C_{2} + C_{S2})}{(C_{1} + C_{S1} + C_{2} + C_{S2})}$$

Figure 10.2 Formula to find value of $\rm C_1$ and $\rm C_{21}$

Chapter 11 Package Outline

RECOMMENDED PCB LAND PATTERN

NOTESI 1. ALL DIMENSIONS ARE IN MILLIMETER. 2. POSITION TOLERANCE OF EACH TERMINAL AND EXPOSED PAD IS ± 0.05mm AT MAXIMUM MATERIAL CONDITION. DIMENSIONS "b" APPLIES TO PLATED TERMINALS AND IT IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP. 3. DETAILS OF TERMINAL HI IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE AREA INDICATED.

Figure 11.1 USB2640i/USB2641i 48-Pin QFN

Chapter 12 GPIO Usage

NAME	ACTIVE LEVEL	SYMBOL	DESCRIPTION AND NOTE	
GPIO1	Н	TxD / LED	Serial port transmit line / LED indicator	
GPIO2	Н	RxD	Serial port receive line	
GPIO4	Н	SCK	Serial EEPROM clock	
GPIO5	Н	SDA	Serial EEPROM data	
GPIO6	L	SD_WP	SD card write protect detect	
GPIO10	L	CRD_PWR_CTRL	Card power control	
GPIO12	L	MS_nCD	Memory Stick card detect	
GPIO14	L	xD_nCD	xD card detect	
GPIO15	L	SD_nCD	Secure Digital card detect	

Table 12.1 USB2640i/USB2641i GPIO Usage