

December 2000

FQD4N20L / FQU4N20L

200V LOGIC N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology is especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation modes. These devices are well suited for high efficiency switching DC/DC converters, switch mode power supplies, and motor control.

Features

- 3.2A, 200V, $R_{DS(on)} = 1.35\Omega @V_{GS} = 10 V$
- Low gate charge (typical 4.0 nC)
- Low Crss (typical 6.0 pF)
- Fast switching
- 100% avalanche tested
- · Improved dv/dt capability
- Low level gate drive requirement allowing direct operation from logic drivers

Absolute Maximum Ratings $T_C = 25$ °C unless otherwise noted

Symbol	Parameter		FQD4N20L / FQU4N20L	Units	
V _{DSS}	Drain-Source Voltage		200	V	
I _D	Drain Current - Continuous (T _C = 25°C	C)	3.2	А	
	- Continuous (T _C = 100°	°C)	2.02	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	12.8	А	
V _{GSS}	Gate-Source Voltage		± 20	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	52	mJ	
I _{AR}	Avalanche Current	(Note 1)	3.2	А	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	3.0	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns	
P_{D}	Power Dissipation (T _A = 25°C) *		2.5	W	
	Power Dissipation (T _C = 25°C)		30	W	
	- Derate above 25°C		0.24	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		4.17	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W

* When mounted on the minimum pad size recommended (PCB Mount)

Symbol	Parameter	Test Conditions	3	Min	Тур	Max	Units
Off Cha	aracteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		200			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced	to 25°C		0.16		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 200 V, V _{GS} = 0 V				1	μА
		V _{DS} = 160 V, T _C = 125°C			-	10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
On Cha	aracteristics						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$		1.0		2.0	V
R _{DS(on)}	Static Drain-Source	V _{GS} = 10 V, I _D = 1.6 A V _{GS} = 5 V, I _D = 1.6 A			1.10	1.35	Ω
D3(0H)	On-Resistance				1.13	1.40	
9 _{FS}	Forward Transconductance	$V_{DS} = 25 \text{ V}, I_{D} = 1.6 \text{ A}$	(Note 4)		3.0		S
∼ISS	Input Capacitance	$V_{DO} = 25 \text{ V} V_{DO} = 0 \text{ V}$			240	310	pF
C _{iss}	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz			240 36	310 45	pF pF
C _{oss} C _{rss}	<u>'</u>	50 . 00 .			-		
C _{oss}	Output Capacitance	50 . 00 .			36	45	pF
C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz			36	45	pF
C _{oss} C _{rss} Switch	Output Capacitance Reverse Transfer Capacitance ing Characteristics	f = 1.0 MHz $V_{DD} = 100 \text{ V}, I_D = 3.8 \text{ A},$			36 6	45 8	pF pF
C _{oss} C _{rss} Switch	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time	f = 1.0 MHz			36 6 7	45 8 25	pF pF
C_{oss} C_{rss} Switch $t_{d(on)}$ t_r	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time	f = 1.0 MHz $V_{DD} = 100 \text{ V}, I_D = 3.8 \text{ A},$	(Note 4, 5)		36 6 7 70	45 8 25 150	pF pF
$\begin{aligned} & C_{oss} \\ & C_{rss} \\ & \textbf{Switch} \\ & \textbf{t}_{d(on)} \\ & \textbf{t}_{r} \\ & \textbf{t}_{d(off)} \end{aligned}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	f = 1.0 MHz $V_{DD} = 100 \text{ V}, I_D = 3.8 \text{ A},$	(Note 4, 5)	 	36 6 7 70 15	45 8 25 150 40	pF pF ns ns
$\begin{array}{c} C_{oss} \\ C_{rss} \\ \hline \\ \textbf{Switch} \\ t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \\ Q_{g} \\ \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	f = 1.0 MHz $V_{DD} = 100 \text{ V}, I_{D} = 3.8 \text{ A},$ $R_{G} = 25 \Omega$		 	36 6 7 70 15 40	45 8 25 150 40 90	pF pF ns ns ns
C_{oss} C_{rss} Switch $t_{d(on)}$ t_r $t_{d(off)}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 100 \text{ V}, I_{D} = 3.8 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 160 \text{ V}, I_{D} = 3.8 \text{ A},$	(Note 4, 5)	 	36 6 7 70 15 40 4.0	45 8 25 150 40 90 5.2	pF pF ns ns ns
$\begin{array}{c} C_{oss} \\ C_{rss} \\ \hline \\ \textbf{Switch} \\ t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$f = 1.0 \text{ MHz}$ $V_{DD} = 100 \text{ V}, I_{D} = 3.8 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 160 \text{ V}, I_{D} = 3.8 \text{ A},$ $V_{GS} = 5 \text{ V}$	(Note 4, 5)	 	36 6 7 70 15 40 4.0	45 8 25 150 40 90 5.2	pF pF ns ns ns ns
$\begin{array}{c} C_{oss} \\ C_{rss} \\ \hline \\ \textbf{Switch} \\ t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \end{array}$	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	f = 1.0 MHz $V_{DD} = 100 \text{ V}, I_{D} = 3.8 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 160 \text{ V}, I_{D} = 3.8 \text{ A},$ $V_{GS} = 5 \text{ V}$	(Note 4, 5)	 	36 6 7 70 15 40 4.0	45 8 25 150 40 90 5.2	pF pF ns ns ns ns
C_{oss} C_{rss} Switch $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd}	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics ar	$f = 1.0 \text{ MHz}$ $V_{DD} = 100 \text{ V}, I_{D} = 3.8 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 160 \text{ V}, I_{D} = 3.8 \text{ A},$ $V_{GS} = 5 \text{ V}$ and Maximum Ratings of the Forward Current	(Note 4, 5)	 	36 6 7 70 15 40 4.0 1.0	45 8 25 150 40 90 5.2 	pF pF ns ns ns ns nc nC
C_{oss} C_{rss} Switch $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics ar Maximum Continuous Drain-Source Dio	$f = 1.0 \text{ MHz}$ $V_{DD} = 100 \text{ V}, I_{D} = 3.8 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 160 \text{ V}, I_{D} = 3.8 \text{ A},$ $V_{GS} = 5 \text{ V}$ and Maximum Ratings of the Forward Current	(Note 4, 5)	 	36 6 7 70 15 40 4.0 1.9	45 8 25 150 40 90 5.2 	pF pF ns ns ns ns nC nC
C_{oss} C_{rss} Switch $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S	Output Capacitance Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics ar Maximum Continuous Drain-Source Diode F	$f = 1.0 \text{ MHz}$ $V_{DD} = 100 \text{ V}, I_{D} = 3.8 \text{ A},$ $R_{G} = 25 \Omega$ $V_{DS} = 160 \text{ V}, I_{D} = 3.8 \text{ A},$ $V_{GS} = 5 \text{ V}$ $N = 160 \text{ Maximum Rating}$	(Note 4, 5)	 	36 6 7 70 15 40 4.0 1.0	45 8 25 150 40 90 5.2 	ns ns ns nC nC nC

- $\label{eq:Notes:1} \begin{tabular}{ll} \textbf{Notes:} \\ \textbf{1.} & \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature} \\ \textbf{2.} & \textbf{L} = \textbf{7.6mH, } |_{A_S} = 3.2A, \ V_{DD} = 50V, \ R_G = 25 \ \Omega. \ Starting \ T_J = 25^{\circ}C \\ \textbf{3.} & \textbf{I}_{SD} \leq 3.8A, \ di/dt \leq 300A/\mu s, \ V_{DD} \leq BV_{DSS}, \ Starting \ T_J = 25^{\circ}C \\ \textbf{4.} & \textbf{Pulse Test: Pulse width} \leq 300\mu s, \ Duty \ cycle \leq 2\% \\ \textbf{5.} & \textbf{Essentially independent of operating temperature} \\ \end{tabular}$

Typical Characteristics

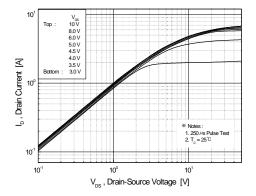


Figure 1. On-Region Characteristics

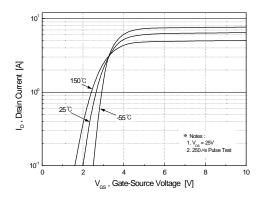


Figure 2. Transfer Characteristics

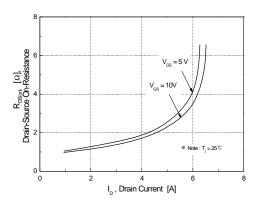


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

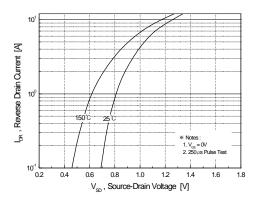


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

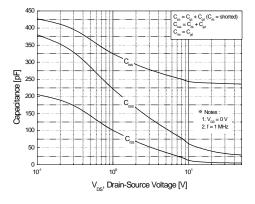


Figure 5. Capacitance Characteristics

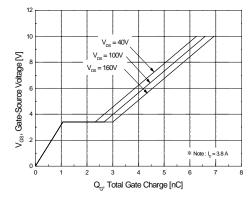
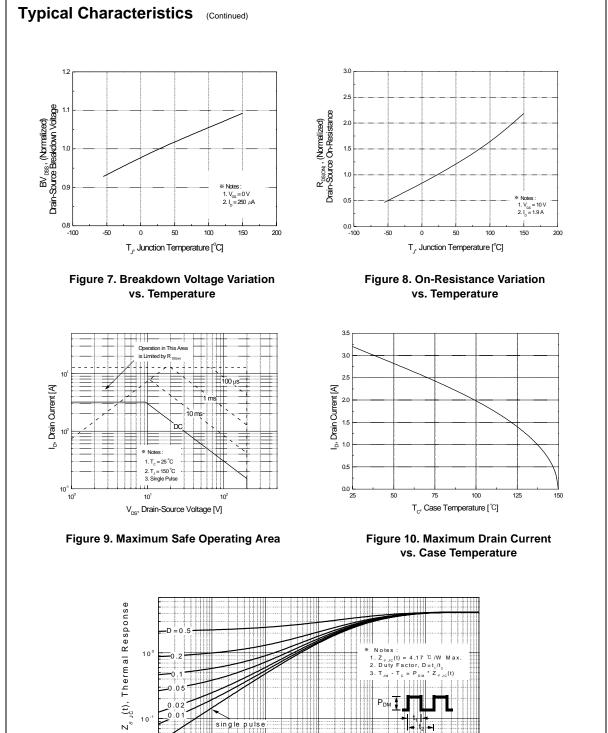
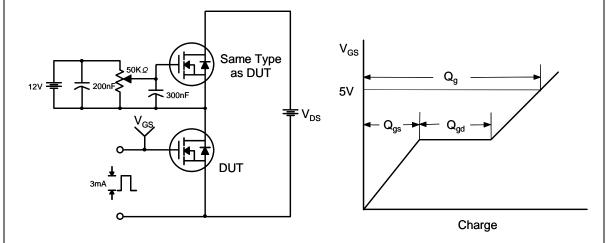


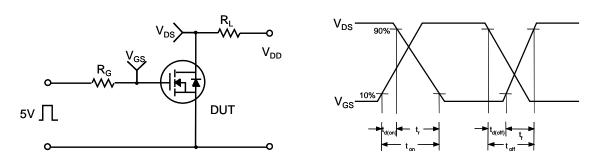
Figure 6. Gate Charge Characteristics

©2000 Fairchild Semiconductor International Rev. A2, December 2000

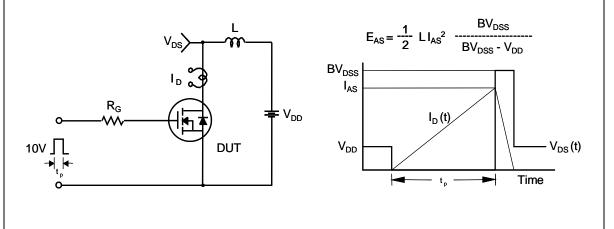


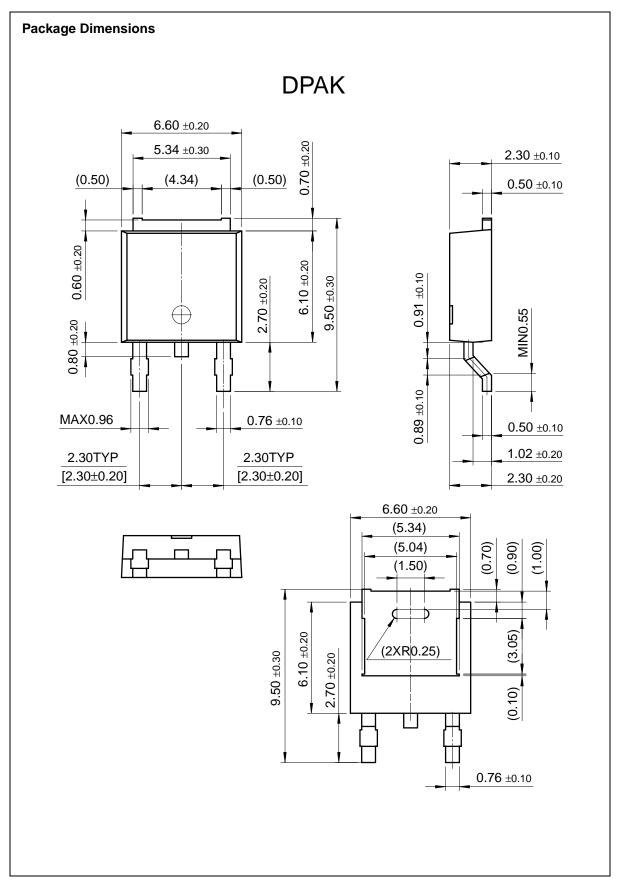

Figure 11. Transient Thermal Response Curve

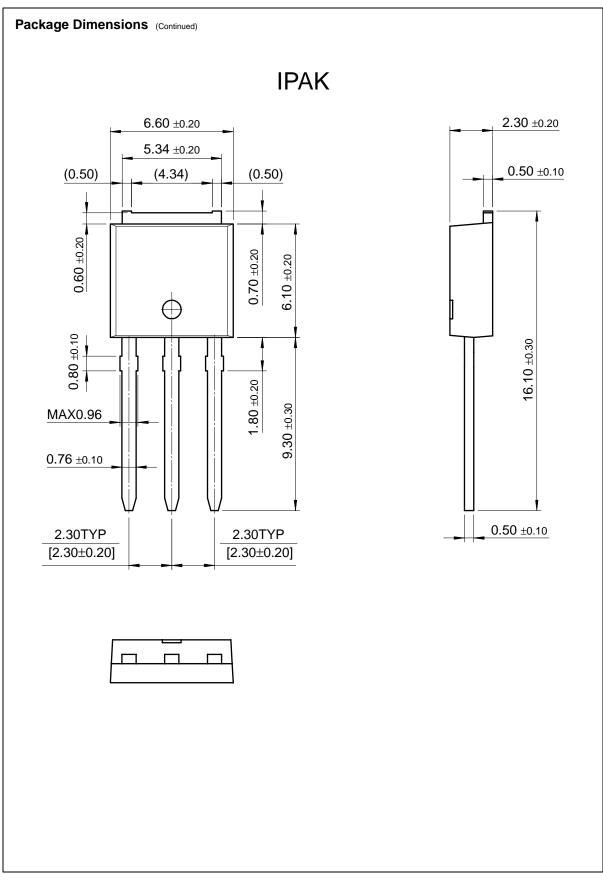
t₁, Square Wave Pulse Duration [sec]


©2000 Fairchild Semiconductor International Rev. A2, December 2000

10


Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms



Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms DUT I_{SD o} Driver Same Type as DUT V_{DD} • dv/dt controlled by R_G • I_{SD} controlled by pulse period Gate Pulse Width V_{GS} Gate Pulse Period 10V (Driver) I_{FM} , Body Diode Forward Current \mathbf{I}_{SD} di/dt (DUT) I_{RM} **Body Diode Reverse Current** V_{DS} (DUT) Body Diode Recovery dv/dt **Body Diode** Forward Voltage Drop

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 QS^{TM}

FAST[®] Quiet Series™
FASTr™ SuperSOT™-3

GTO™ SuperSOT™-6

FACT Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

SuperSOT™-8

SyncFET™

TinyLogic™

UHC™

 VCX^{TM}

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2000 Fairchild Semiconductor International Rev. A, January 2000