

N-Channel Enhancement-Mode Vertical DMOS FETs

Ordering Information

BV _{DSS} /	R _{DS(ON)} (max)	I _{D(ON)}	Order Number / Package		
BV _{DGS}		(min)	TO-92	20-Pin C-Dip	
220V	1.25Ω	5.0A	—	VN2222NC	
240V	1.25Ω	5.0A	VN2224N3		

High Reliability Devices

See pages 5-4 and 5-5 for MILITARY STANDARD Process Flows and Ordering Information.

Features

- Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- Low C_{ISS} and fast switching speeds
- Excellent thermal stability
- Integral Source-Drain diode
- High input impedance and high gain

Applications

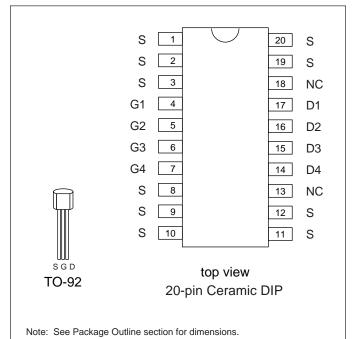
- Motor controls
- Converters
- Amplifiers
- Switches

11/12/01

- Power supply circuits
- Drivers (relays, hammers, solenoids, lamps, memories, displays, bipolar transistors, etc.)

Absolute Maximum Ratings

Drain-to-Source Voltage	BV _{DSS}
Drain-to-Gate Voltage	BV _{DGS}
Gate-to-Source Voltage	± 20V
Operating and Storage Temperature	-55°C to +150°C
Soldering Temperature*	300°C


* Distance of 1.6 mm from case for 10 seconds.

Advanced DMOS Technology

These enhancement-mode (normally-off) transistors utilize a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Package Options

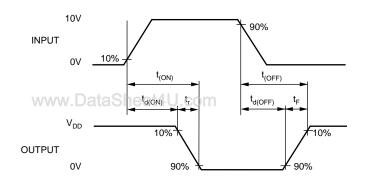
Supertex Inc. does not recommend the use of its products in life support applications and will not knowingly sell its products for use in such applications unless it receives an adequate "products liability indemnification insurance agreement." Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http://www.supertex.com. For complete liability information on all Supertex products, refer to the most current databook or to the Legal/Disclaimer page on the Supertex website.

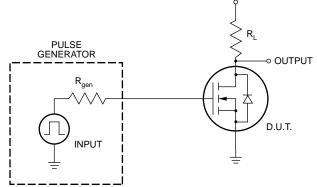
Thermal Characteristics

Package	I _D (continuous)*	I _D (pulsed)	Power Dissipation @ T _C = 25°C	$^{ heta_{jc}}$ °C/W	θ _{ja} °C/W	I _{DR} *	I _{DRM}
TO-92	540mA	5.0A	1.0W	125	170	540mA	5.0A

* $I_{_{D}}$ (continuous) is limited by max rated $T_{_{j}}$

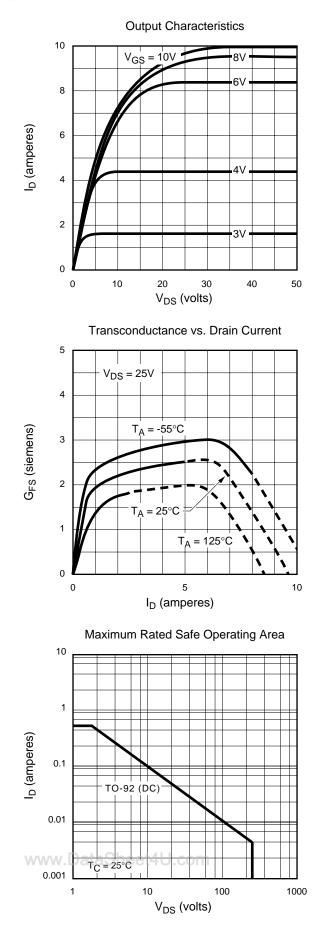
Electrical Characteristics (@ 25°C unless otherwise specified)

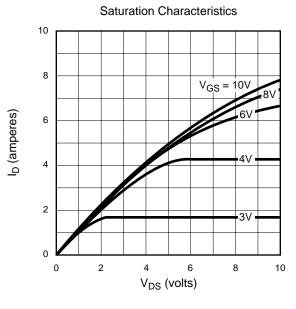

Symbol	Parameter		Min	Тур	Max	Unit	Conditions	
BV_{DSS}	Drain-to-Source	VN2224	240			V	$V_{GS} = 0V, I_D = 5mA$	
	Breakdown Voltage	VN2222	220					
V _{GS(th)}	Gate Threshold Voltage		1.0		3.0	V	$V_{GS} = V_{DS}, I_D = 5mA$	
$\Delta V_{GS(th)}$	Change in $V_{GS(th)}$ with Temperature			-4	-5	mV/°C	$V_{GS} = V_{DS}, I_D = 5mA$	
I _{GSS}	Gate Body Leakage			1	100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
I _{DSS}	DSS Zero Gate Voltage Drain Current				50	μΑ	$V_{GS} = 0V, V_{DS} = Max Rating$	
					5	mA	$V_{GS} = 0V$, $V_{DS} = 0.8$ Max Rating $T_A = 125^{\circ}C$	
I _{D(ON)}	ON-State Drain Current		2			А	$V_{GS} = 5V, V_{DS} = 25V$	
				10			$V_{GS} = 10V, V_{DS} = 25V$	
R _{DS(ON)}	Static Drain-to-Source			1.0	1.5	Ω	$V_{GS} = 5V, I_D = 2A$	
	ON-State Resistance			0.9	1.25		$V_{GS} = 10V, I_D = 2A$	
$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with Temperature			1.0	1.4	%/°C	$V_{GS} = 10V, I_D = 2A$	
G _{FS}	Forward Transconductance		1.0	2.2		Q	$V_{DS} = 25V, I_{D} = 2A$	
C _{ISS}	Input Capacitance Common Source Output Capacitance			300	350	pF	V _{GS} = 0V, V _{DS} = 25V f = 1 MHz	
C _{OSS}				85	150			
C _{RSS}	Reverse Transfer Capacitance			20	35			
t _{d(ON)}	Turn-ON Delay Time			6	15			
t _r	Rise Time			16	25	ns	$V_{DD} = 25V$ $I_D = 2A$	
t _{d(OFF)}	Turn-OFF Delay Time			65	90		$R_{GEN} = 10\Omega$	
t _f	Fall Time			30	60			
V_{SD}	Diode Forward Voltage Drop			0.8	1.0	V	$V_{GS} = 0V, I_{SD} = 100mA$	
t _{rr}	Reverse Recovery Time			500		ns	$V_{GS} = 0V, I_{SD} = 1A$	

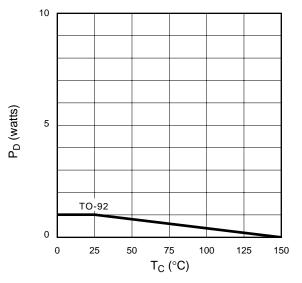

Notes:

1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)

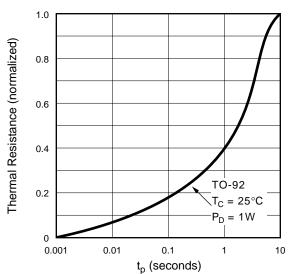
2. All A.C. parameters sample tested.

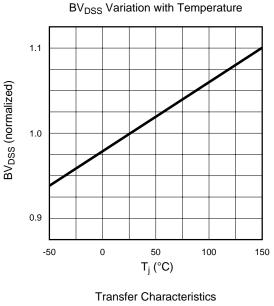

Switching Waveforms and Test Circuit

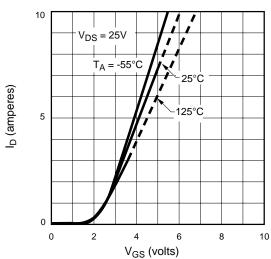



VDD

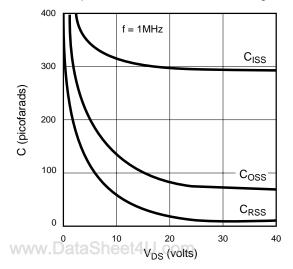
Typical Performance Curves



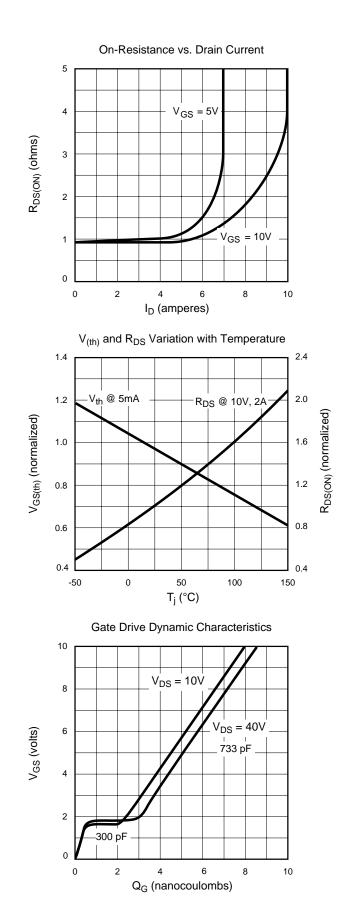

Power Dissipation vs. Case Temperature



Thermal Response Characteristics



Typical Performance Curves



Capacitance vs. Drain-to-Source Voltage

11/12/01

1235 Bordeaux Drive, Sunnyvale, CA 94089 TEL: (408) 744-0100 • FAX: (408) 222-4895 www.supertex.com

©2001 Supertex Inc. All rights reserved. Unauthorized use or reproduction prohibited.