
© Freescale Semiconductor, Inc., 2004. All rights reserved.

Freescale Semiconductor
Application Note

This product incorporates SuperFlash® technology licensed from SST.

AN2692
Rev. 0.2, 9/2004

MC9S12NE64 Integrated Ethernet
Controller
By Steven Torres

8/16 Bit System Engineering
Austin, Texas

Introduction

Ethernet connectivity of embedded devices is a growing trend in industrial and consumer applications.
Ethernet is a medium of choice because of its competitive performance, relatively low price of
implementation, established infrastructure, and interoperability. Ethernet is also easy to use, widely
available, and scalable. With Ethernet capability, embedded devices can be connected to the Internet,
which allows access to the embedded device from across the world. Figure 1 shows a simplified
illustration of an embedded device that is connected, transparently, to a remote host by the Internet.

Figure 1. Embedded Device on Internet

INTERNETCONTROL
BOARD

MOTOR

REMOTE HOST

EMBEDDED DEVICE

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

2 Freescale Semiconductor

Introduction

The MC9S12NE64 is a 16-bit MCU based on Freescale Semiconductor’s HCS12 CPU platform. It is the
first in a series of low-cost Ethernet-capable MCUs in a small package. The MC9S12NE64 provides a
complete, integrated, single-chip Ethernet solution. This application note provides a system overview of
the MC9S12NE64 and its integrated Ethernet controller. This discussion also describes how the
MC9S12NE64 fits into the network communication model of wired networks. This discussion describes
detailed setup for register configuration, initialization, and operation regarding the MC9S12NE64 Ethernet
capability; however, Freescale Semiconductor provides a free software driver for the MC9S12NE64
Ethernet controller, which greatly simplifies its setup and use. See EMAC and EPHY sections for details.

Connectivity Example Applications

Embedded devices with Ethernet capability can be implemented in a wide range of applications,
including:

• Database data logging or queries

• Web servers for remote embedded devices

• Remote monitoring (data collection/diagnostics)

• Control of remote devices

• Use of email by remote device

• Remote reprogramming of nonvolatile memory (FLASH)

The MC9S12NE64 provides a total solution for systems that:

• Need Ethernet connectivity

• Are end nodes on a network

• Need Ethernet connectivity, but not necessarily the fastest data throughput

• Need a low-cost Ethernet solution

• Need a reduced component count and package size

Ethernet Network Overview

This section provides an overview of Ethernet basics and discusses how the MC9S12NE64 fits into the
network communication model of wired Ethernet networks.

Ethernet is commonly used in local area networks (LANs) for device connectivity because it is inexpensive
and fast. Ethernet is a technology used in LANs where a group of network devices share a common
communications medium. In this application note, the focus is wired LANs because the MC9S12NE64 is
designed for wired LANs. The most common communications medium, for wired LANs, is category 5 (cat-
5) un-shielded twisted pair (UTP) cable. Using Ethernet technology and the shared communications
medium allows the sharing of resources and data among connected devices on the network. Wired
Ethernet is becoming a widely used communication tool much like an SCI or USB.

The IEEE 802.3™ standard defines how wired Ethernet works. Ethernet works on the basis that every
device connected to the network has a unique hardware address. Because Ethernet uses a shared
medium, when one device transmits an Ethernet packet on the network (an Ethernet packet as defined
in the IEEE 802.3 standard is shown in Figure 2), every device on the network sees that message. Each
device on the network starts to process the packet to determine whether the packet is meant for it by

Introduction

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 3

inspecting the incoming Ethernet packet destination hardware address. Depending on the destination
hardware address of the incoming packet, the device will either ignore the message or accept it for further
processing.

Figure 2. Format and Content of Ethernet Packets

Ethernet Packet

Figure 2 illustrates the specific structure of an Ethernet packet. Figure 2 shows that the data field of an
Ethernet packet is encapsulated by a media access controller (MAC) header and frame check sequence
(FCS) trailer.

It is important to understand the format and content of Ethernet packets that are transferred between
devices in a typical LAN because Ethernet devices operate on these data fields. The data fields are:

• MAC Header
– Preamble — Seven bytes of an alternating pattern of 1s and 0s that indicates that a frame is

coming and provides synchronization.
– Start of frame delimiter (SFD) — One byte that follows the preamble and consists of an

alternating pattern of 1s and 0s that ends with two consecutive 1s.
– Destination MAC address (or hardware MAC address) — 6-byte value that indicates the MAC

hardware address of the network device that should receive the Ethernet packet.
– Source MAC address (or source hardware address) — 6-byte value that indicates the MAC

hardware address of the network device that is sending the Ethernet packet.
– Length/type — 2-byte value that indicates the number of data bytes that are encapsulated by

the Ethernet packet if the length/type value is less-than or equal-to 1500. If the length/type field
is greater than 1536, the length/type field identifies the type (or Ethertype) of the packet. The
Ethertype identifies the higher-level protocol used to create the encapsulated data portion of
an Ethernet packet.

PREAMBLE

START DELIMITER

DESTINATION
MAC ADDRESS

SOURCE
MAC ADDRESS

LENGTH/TYPE

DATA
FIELD

PAD
FIELD

FRAME CHECK
4 BYTES

(LAYER 3 AND UP)

MAC HEADER

7 BYTES

1 BYTES

6 BYTES

6 BYTES

2 BYTES

10101010

10101011

ENCAPSULATED DATA 46 TO 1500

MAC TRAILER

BYTES

SEQUENCE

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

4 Freescale Semiconductor

Introduction

• Encapsulated data portion — 46 to 1500 bytes of user data.

• Frame check sequence trailer (frame check sequence) — 4-byte value that contains a 32-bit cyclic
redundancy check (CRC) value.

Ethernet is not the only component of the communication mechanism required for LAN operation.
Figure 3 provides a more complete look at the communication model used by a generic user application
that uses LAN. The network interface block is where Ethernet is positioned in the LAN communication
model. Figure 3 shows that the simplified block version provided is actually derived from a TCP/IP model,
which in turn is derived from ISO’s (the International Organization for Standardization) OSI (open systems
interface model) 7-layer theoretical communications model.

Figure 3. Block Diagram of TCP/IP Stack Model

The functionality that the data link layer and the physical layer provides to the LAN communication model
is very important. These layers work together to provide access to the analog world of the UTP cable. The
following bullets list some of the basic functions performed by the data link layer and the physical layer.

• Data link layer — MAC
– Packet error checking
– Data framing
– Network access

• Physical layer — PHY
– Analog signaling

This document will provide a brief overview of TCP/IP stack software, but TCP/IP stack software is not
the focus of this document.

USER APPLICATION

HTTP, TFTP, SMTP,

DEVICE DRIVER API

NETWORK

ETHERNET CONTROLLER
AND PHYSICAL INTERFACE

TCP/IP MODELISO’S OSI MODEL

APPLICATION API

TCP, UDP

IP, ARP, ICMP

DHCP, SNMP, etc...

SOCKET API TCP STACK
SOFTWARE

APPLICATION

TRANSPORT

NETWORK

LINK

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

7

6

5

4

3

2

1
NETWORK INTERFACE

MC9S12NE64 Integrated Ethernet Controller

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 5

MC9S12NE64 Integrated Ethernet Controller

This section will introduce the MC9S12NE64 and provide an overview of the MC9S12NE64 integrated
Ethernet controller. The discussion will also include a summary of the minimum number of printed circuit
board (PCB) components required in an MC9S12NE64 system to enable its Ethernet capability.

MC9S12NE64

The MC9S12NE64 includes 8K of RAM and 64K of FLASH. It also has other standard on-chip peripherals,
including two asynchronous serial communications interface modules (SCIs), a serial peripheral interface
(SPI), an inter-integrated circuit module (IIC), a 4-channel/16-bit timer module (TIM), an 8-channel/10-bit
analog-to-digital converter (ATD), and pins available as keypad wake-up inputs (KWUs). In addition, in
the 112-pin package, an expanded bus that is specified for operation at 16 MHz1 is available.

Integrated Ethernet Controller

The MC9S12NE64 introduces a new peripheral for the HCS12 CPU platform, an integrated Ethernet
controller. The MC9S12NE64 integrates an Ethernet controller that includes a MAC and PHY in one die
with the CPU, memory, and other HCS12 standard on-chip peripherals.

The MC9S12NE64 can be targeted at low-throughput connectivity applications that use a 3.3-V external
power supply. With an on-chip bandgap-based voltage regulator (VREG), an internal digital supply
voltage of 2.5 V (VDD) can also be generated.

A block diagram of the MC9S12NE64 is provided in Figure 4. More information on the MC9S12NE64 is
available from the Freescale Semiconductor website: http://freescale.com.

1. At a 16-MHz internal bus speed, the MC9S12NE64 integrated Ethernet controller is limited to 10-Mbps operation. A 25-MHz
internal bus speed is required for 100-Mbps operation.

http://freescale.com

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

6 Freescale Semiconductor

MC9S12NE64 Integrated Ethernet Controller

Figure 4. Block Diagram of the MC9S12NE64

MC9S12NE64 System Overview

The MC9S12NE64 is a single-chip Ethernet solution. Having an on-chip CPU, FLASH, RAM, MAC, and
PHY reduces the cost of implementing an embedded device with Ethernet connectivity, because no active
external components are required. The components required to enable the MC9S12NE64 and its
Ethernet interface are:

• MC9S12NE64 MCU

• 25-MHz clock

• 3.3-V power supply

• High-speed LAN magnetics isolation module (available in integrated RJ45 connectors)

• RJ45 connector

• Capacitors and resistors

• Optional: PHY status LEDs (available in integrated RJ45 connectors)

• Optional: BDM connector

Figure 5 provides an illustration of the MC9S12NE64 minimum system circuit implementation using the
MC9S12NE64 80-pin package.

NOTE
For basic operation of the MC9S12NE64 Ethernet controller, a 25-MHz
input with a tolerance of 25 ppm clock is required. The 25-MHz clock is
required to provide the clock input to the integrated PHY for its basic
operation. In addition, to operate at 100 Mbps, the internal bus clock must
be configured to 25 MHz. For 10 Mbps, an internal bus clock setting of 2.5
MHz is required as a minimum.

HCS12 CPU WITH DEBUG MODULE

2 X SCI

SPI IIC

VREG 3.3 V
TO 2.5 V CONVERTER

18 KEY WAKEUP
IRQ PORTS

EPHY

EMAC

64K FLASH

8K RAM

ATD
10-BIT, 8-CH

IN
TE

RN
AL

 B
U

S

TIMER
 16-BIT, 4-CH

MC9S12NE64 Integrated Ethernet Controller

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 7

To configure the bus clock to 25 MHz with a 25-MHz clock input, the CRG
(clock and reset generator) must be configured so that the PLL setting
yields the 25-MHz internal bus clock setting. See the Configuring the CRG
section for details.

Figure 5. MC9S12NE64 Minimum Web Server Circuit Implementation

MC9S12NE64 Packages

The MC9S12NE64 is available in two packages:

• 112-pin LQFP package — 70 I/O port pins and 10 input-only pins

• 80-pin TQFP-EP package — 38 I/O port pins and 10 input-only pins

The 80-pin TQFP-EP package does not have access to the multiplex address and data bus, and it has
an exposed flag for heat dissipation that requires PCB layout accommodation. If the port pins are not
bonded out in the chosen package, the user must initialize the registers to be inputs with enabled pull-up
resistance to avoid excess current consumption. Figure 6 shows the 112-pin LQFP package. Signals
shown in bold are not available on the 80-pin package.

75 OHMS

75 OHMS

1000 pF
2kV

CABLE SIDEMCU SIDE
T1

TRANSFORMER / RJ-45 CONNECTOR

T+
1

CT
2

T-
3

R+
4

CT
5

R-
6

J7
7

J3
3

J2
2

J5
5J4
4

J1
1

.
8

J8
8

J6
6

R11

2.2kC10

470Pf C11

4700Pf

R3

49.9

R1

49.9

R2

49.9

R4

49.9

3.3V

C2

0.01

MC9S12NE64

EARTH/CHASSIS

3.3V

J1

BACKGROUND DEBUG

1
1

3
3

5
5

2
2

4
4

6
6 *RESET

RJ-45

R5

12.4k 1%

PL1/LNKLED

PL3/DUPLED

PL2/SPDLED

3.3V

3.3V

3.3V

3.3V

*R
E

S
E

T3.3V

C3 0.22

C4 0.22

C5 0.22

PL0/ACTLED

PL4/COLLED

LED3

DUP_LED

R7

220

LED1

LNK_LED

R6

220

R8

220

LED2

SPD_LED

Y1
25 MHz

C8

15pF

C9

15pF

C7

0.22

R10

10M

PL3/DUPLED

PL1/LNKLED

PL2/SPDLED

C6 0.22

C1

0.22

U1

MII_TXER/KWH6/PH6
1

MII_TXEN/KWH5/PH5
2

MII_TXCLK/KWH4/PH4
3

MII_TXD3/KWH3/PH3
4

MII_TXD2/KWH2/PH2
5

MII_TXD1/KWH1/PH1
6

MII_TXD0/KWH0/PH0
7

MII_MDC/KWJ0/PJ0
8

MII_MDIO/KWJ1/PJ1
9

VDDX1
10

VSSX1
11

MII_CRS/KWJ2/PJ2
12

MII_COL/KWJ3/PJ3
13

MII_RXD0/KWG0/PG0
14

MII_RXD1/KWG1/PG1
15

MII_RXD2/KWG2/PG2
16

MII_RXD3/KWG3/PG3
17

MII_RXCLK/KWG4/PG4
18

MII_RXDV/KWG5/PG5
19

MII_RXER/KWG6/PG6
20

S
C

I0
_

 R
X

D
/

P
S

0
2

1

S
C

I0
_

T
X

D
/

P
S

1
2

2

S
C

I1
_

R
X

D
/ P

S
2

2
3

S
C

I1
_

 T
X

D
/ P

S
3

2
4

S
P

I_
 M

IS
O

/ P
S

4
2

5

S
P

I_
 M

O
S

I/
P

S
5

2
6

S
P

I_
 S

C
K

/
P

S
6

2
7

S
P

I_
S

S
/ P

S
7

2
8

V
S

S
X

2
3

0

V
D

D
X

2
3

1

R
E

S
E

T
3

2

V
D

D
P

L
L

3
3

X
F

C
3

4

V
S

S
P

LL
3

5

E
X

T
A

L
3

6

X
T

A
L

37

T
E

S
T

3
8

IR
Q

/
P

E
1

3
9

X
IR

Q
/

P
E

0
4

0

BKGD/MODC
41

PL4/COLLED
42

PL3/DUPLED
43

VSS2
44

VDD2
45

PHY_RBIAS
46

PHY_VSSA
47

PHY_VDDA
48

PHY_VDDTX
49

PHY_TXP
50

PHY_TXN
51

PHY_VSSTX
52

PHY_RXP
53

PHY_RXN
54

PHY_VDDRX
55

PHY_VSSRX
56

PL2/SPDLED
57

VDDR
58

PL1/LNKLED
59

PL0/ACTLED
60

P
A

D
0/

 A
N

0
61

P
A

D
1/

 A
N

1
62

P
A

D
2

/
A

N
2

63

P
A

D
3

/
A

N
3

64

P
A

D
4

/
A

N
4

65

P
A

D
5

/
A

N
5

66

P
A

D
6/

 A
N

6
67

P
A

D
7/

 A
N

7
68

V
D

D
A

69

V
R

H
70

V
R

L
71

V
S

S
A

72

V
S

S
1

73

V
D

D
1

74

P
T

7/
 T

IM
_

IO
C

7
75

P
T

6/
 T

IM
_

IO
C

6
76

P
T

5/
 T

IM
_

IO
C

5
77

P
T

4/
 T

IM
_

IO
C

4
78

P
J7

/
K

W
J7

/ I
IC

_
 S

C
L

79

P
J6

/ K
W

J6
/ I

IC
_

S
D

A
80

E
C

L
K

/P
E

4
2

9

LED5

COL_LED

R9

220

R12

220

LED4

ACT_LED

PL4/COLLED

PL0/ACTLED

OPTIONAL STATUS LED's

75 OHMS

75 OHMS

1000 pF
2kV

CABLE SIDEMCU SIDE
T1

TRANSFORMER / RJ-45 CONNECTOR

T+
1

CT
2

T-
3

R+
4

CT
5

R-
6

J7
7

J3
3

J2
2

J5
5J4
4

J1
1

.
8

J8
8

J6
6

75 OHMS

75 OHMS

1000 pF
2kV

CABLE SIDEMCU SIDE
T1

TRANSFORMER / RJ-45 CONNECTOR

T+
1

CT
2

T-
3

R+
4

CT
5

R-
6

J7
7

J3
3

J2
2

J5
5J4
4

J1
1

.
8

J8
8

J6
6

R11

2.2kC10

470Pf C11

4700Pf

R3

49.9

R1

49.9

R2

49.9

R4

49.9

3.3V

C2

0.01

MC9S12NE64

EARTH/CHASSIS

3.3V

J1

BACKGROUND DEBUG

1
1

3
3

5
5

2
2

4
4

6
6 *RESET

RJ-45

R5

12.4k 1%

PL1/LNKLED

PL3/DUPLED

PL2/SPDLED

3.3V

3.3V

3.3V

3.3V

*R
E

S
E

T3.3V

C3 0.22

C4 0.22

C5 0.22

PL0/ACTLED

PL4/COLLED

LED3

DUP_LED

R7

220

LED1

LNK_LED

R6

220

R8

220

LED2

SPD_LED

Y1
25 MHz

C8

15pF

C9

15pF

C7

0.22

R10

10M

PL3/DUPLED

PL1/LNKLED

PL2/SPDLED

C6 0.22

C1

0.22

U1

MII_TXER/KWH6/PH6
1

MII_TXEN/KWH5/PH5
2

MII_TXCLK/KWH4/PH4
3

MII_TXD3/KWH3/PH3
4

MII_TXD2/KWH2/PH2
5

MII_TXD1/KWH1/PH1
6

MII_TXD0/KWH0/PH0
7

MII_MDC/KWJ0/PJ0
8

MII_MDIO/KWJ1/PJ1
9

VDDX1
10

VSSX1
11

MII_CRS/KWJ2/PJ2
12

R6

220

R8

220

LED2

SPD_LED

Y1
25 MHz

C8

15pF

C9

15pF

C7

0.22

R10

10M

PL3/DUPLED

PL1/LNKLED

PL2/SPDLED

C6 0.22

C1

0.22

U1

MII_TXER/KWH6/PH6
1

MII_TXEN/KWH5/PH5
2

MII_TXCLK/KWH4/PH4
3

MII_TXD3/KWH3/PH3
4

MII_TXD2/KWH2/PH2
5

MII_TXD1/KWH1/PH1
6

MII_TXD0/KWH0/PH0
7

MII_MDC/KWJ0/PJ0
8

MII_MDIO/KWJ1/PJ1
9

VDDX1
10

VSSX1
11

MII_CRS/KWJ2/PJ2
12

MII_COL/KWJ3/PJ3
13

MII_RXD0/KWG0/PG0
14

MII_RXD1/KWG1/PG1
15

MII_RXD2/KWG2/PG2
16

MII_RXD3/KWG3/PG3
17

MII_RXCLK/KWG4/PG4
18

MII_RXDV/KWG5/PG5
19

MII_RXER/KWG6/PG6
20

S
C

I0
_

 R
X

D
/

P
S

0
2

1

S
C

I0
_

T
X

D
/

P
S

1
2

2

S
C

I1
_

R
X

D
/ P

S
2

2
3

S
C

I1
_

 T
X

D
/ P

S
3

2
4

S
P

I_
 M

IS
O

/ P
S

4
2

5

S
P

I_
 M

O
S

I/
P

S
5

2
6

S
P

I_
 S

C
K

/
P

S
6

2
7

S
P

I_
S

S
/ P

S
7

2
8

V
S

S
X

2
3

0

V
D

D
X

2
3

1

R
E

S
E

T
3

2

V
D

D
P

L
L

3
3

X
F

C
3

4

V
S

S
P

LL
3

5

E
X

T
A

L
3

6

X
T

A
L

37

T
E

S
T

3
8

IR
Q

/
P

E
1

3
9

X
IR

Q
/

P
E

0
4

0

BKGD/MODC
41

PL4/COLLED
42

PL3/DUPLED
43

VSS2
44

VDD2
45

PHY_RBIAS
46

PHY_VSSA
47

PHY_VDDA
48

PHY_VDDTX
49

PHY_TXP
50

PHY_TXN
51

PHY_VSSTX
52

PHY_RXP
53

PHY_RXN
54

PHY_VDDRX
55

PHY_VSSRX
56

PL2/SPDLED
57

VDDR
58

PL1/LNKLED
59

PL0/ACTLED
60

P
A

D
0/

 A
N

0
61

P
A

D
1/

 A
N

1
62

P
A

D
2

/
A

N
2

63

P
A

D
3

/
A

N
3

64

MII_COL/KWJ3/PJ3
13

MII_RXD0/KWG0/PG0
14

MII_RXD1/KWG1/PG1
15

MII_RXD2/KWG2/PG2
16

MII_RXD3/KWG3/PG3
17

MII_RXCLK/KWG4/PG4
18

MII_RXDV/KWG5/PG5
19

MII_RXER/KWG6/PG6
20

S
C

I0
_

 R
X

D
/

P
S

0
2

1

S
C

I0
_

T
X

D
/

P
S

1
2

2

S
C

I1
_

R
X

D
/ P

S
2

2
3

S
C

I1
_

 T
X

D
/ P

S
3

2
4

S
P

I_
 M

IS
O

/ P
S

4
2

5

S
P

I_
 M

O
S

I/
P

S
5

2
6

S
P

I_
 S

C
K

/
P

S
6

2
7

S
P

I_
S

S
/ P

S
7

2
8

V
S

S
X

2
3

0

V
D

D
X

2
3

1

R
E

S
E

T
3

2

V
D

D
P

L
L

3
3

X
F

C
3

4

V
S

S
P

LL
3

5

E
X

T
A

L
3

6

X
T

A
L

37

T
E

S
T

3
8

IR
Q

/
P

E
1

3
9

X
IR

Q
/

P
E

0
4

0

BKGD/MODC
41

PL4/COLLED
42

PL3/DUPLED
43

VSS2
44

VDD2
45

PHY_RBIAS
46

PHY_VSSA
47

PHY_VDDA
48

PHY_VDDTX
49

PHY_TXP
50

PHY_TXN
51

PHY_VSSTX
52

PHY_RXP
53

PHY_RXN
54

PHY_VDDRX
55

PHY_VSSRX
56

PL2/SPDLED
57

VDDR
58

PL1/LNKLED
59

PL0/ACTLED
60

P
A

D
0/

 A
N

0
61

P
A

D
1/

 A
N

1
62

P
A

D
2

/
A

N
2

63

P
A

D
3

/
A

N
3

64

P
A

D
4

/
A

N
4

65

P
A

D
5

/
A

N
5

66

P
A

D
6/

 A
N

6
67

P
A

D
7/

 A
N

7
68

V
D

D
A

69

V
R

H
70

V
R

L
71

V
S

S
A

72

V
S

S
1

73

V
D

D
1

74

P
T

7/
 T

IM
_

IO
C

7
75

P
T

6/
 T

IM
_

IO
C

6
76

P
T

5/
 T

IM
_

IO
C

5
77

P
T

4/
 T

IM
_

IO
C

4
78

P
J7

/
K

W
J7

/ I
IC

_
 S

C
L

79

P
J6

/ K
W

J6
/ I

IC
_

S
D

A
80

E
C

L
K

/P
E

4
2

9

LED5

COL_LED

R9

220

R12

220

LED4

ACT_LED

PL4/COLLED

PL0/ACTLED

OPTIONAL STATUS LED's

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

8 Freescale Semiconductor

MC9S12NE64 Integrated Ethernet Controller

Figure 6. Pinout of MC9S12NE64 112-Pin LQFP Package

CRG and Other Basic MC9S12NE64 Peripherals

An overview of the CRG (clocks and reset generator) and other MC9S12NE64 peripherals is provided in
this section. See the MC9S12NE64 block guides and device user guide for details about the CRG and
other MC9S12NE64 peripherals. Freescale Semiconductor document AN2552/D also discusses the
CRG and several peripherals that are found in the MC9S12E128. In fact, this discussion contains several
excerpts from AN2552/D because the MC9S12NE64 and MC9S12E128 share many modules.

PL0/ACTLED
PL1/LNKLED
VDDR
PL2/SPDLED
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PHY_VSSRX
PHY_VDDRX
PHY_RXN
PHY_RXP
PHY_VSSTX
PHY_TXN
PHY_TXP
PHY_VDDTX
PHY_VDDA
PHY_VSSA
PHY_RBIAS
VDD2
VSS2
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
PL3/DUPLED
PL4/COLLED
BKGD/MODC

P
J6

/K
W

J6
/I

IC
_S

D
A

P
J7

/K
W

J7
/I

IC
_S

C
L

P
T

4/
T

IM
_I

O
C

4
P

T
5/

T
IM

_I
O

C
5

P
T

6/
T

IM
_I

O
C

6
P

T
7/

T
IM

_I
O

C
7

P
K

7/
E

C
S

/R
O

M
C

T
L

P
K

6/
X

C
S

P
K

5/
X

A
D

D
R

19
P

K
4/

X
A

D
D

R
18

V
D

D
1

V
S

S
1

P
K

3/
X

A
D

D
R

17
P

K
2/

X
A

D
D

R
16

P
K

1/
X

A
D

D
R

15
P

K
0/

X
A

D
D

R
14

V
S

S
A

V
R

L
V

R
H

V
D

D
A

PA
D

7/
A

N
7

PA
D

6/
A

N
6

PA
D

5/
A

N
5

PA
D

4/
A

N
4

PA
D

3/
A

N
3

PA
D

2/
A

N
2

PA
D

1/
A

N
1

PA
D

0/
A

N
0

MII_TXER/KWH6/PH6
MII_TXEN/KWH5/PH5

MII_TXCLK/KWH4/PH4
MII_TXD3/KWH3/PH3
MII_TXD2/KWH2/PH2
MII_TXD1/KWH1/PH1
MII_TXD0/KWH0/PH0

MII_MDC/KWJ0/PJ0
MII_MDIO/KWJ1/PJ1
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3

VDDX1
VSSX1

ADDR4/DATA4/PB4
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
MII_CRS/KWJ2/PJ2
MII_COL/KWJ3/PJ3

MII_RXD0/KWG0/PG0
MII_RXD1/KWG1/PG1
MII_RXD2/KWG2/PG2
MII_RXD3/KWG3/PG3

MII_RXCLK/KWG4/PG4
MII_RXDV/KWG5/PG5
MII_RXER/KWG6/PG6

K
W

G
7/

P
G

7
S

C
I0

_R
X

D
/P

S
0

S
C

I0
_T

X
D

/P
S

1
S

C
I1

_R
X

D
/P

S
2

S
C

I1
_T

X
D

/P
S

3
S

P
I_

M
IS

O
/P

S
4

S
P

I_
M

O
S

I/
P

S
5

S
P

I_
S

C
K

/P
S

6
S

P
I_

S
S

/P
S

7
N

O
A

C
C

/P
E

7
M

O
D

B
/IP

IP
E

1/
P

E
6

M
O

D
A

/IP
IP

E
0/

P
E

5
E

C
LK

/P
E

4
V

S
S

X
2

V
D

D
X

2
R

E
S

E
T

V
D

D
P

LL
X

F
C

V
S

S
P

LL
E

X
TA

L
X

TA
L

T
E

S
T

P
L

6
P

L
5

L
S

T
R

B
/T

A
G

L
O

/P
E

3
R

/W
/P

E
2

IR
Q

/ P
E

1
X

IR
Q

/P
E

0

Signals shown in Bold are not available on the 80-pin package.

MC9S12NE64-Family
112LQFP

11
2

11
1

11
0

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 851

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57

MC9S12NE64 Integrated Ethernet Controller

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 9

Figure 7 illustrates the dependence of the peripherals, core, and memory on the CRG clock outputs,
including the core, bus (IPBus), and oscillator clocks.

Figure 7. MC9S12NE64 Clock Tree

The modules shown in Figure 7 are discussed in this section. A discussion of how each module uses the
clock signals from the CRG is provided.

Configuring the CRG

The source code for configuring the CRG and other peripherals can be created automatically with
Processor Expert™, which is a stand-alone utility of Unis that is available as a plug-in for CodeWarrior
software. The developer can also manually write code and determine the register settings for a specific
configuration. The equations used to determine peripheral settings are provided in this section.

The CRG module provides a set of registers that allows the user to control the operation and behavior of
the MCU in its various configurations and modes. The CRG registers that affect clocking include:

• SYNR register — Controls the multiplication factor of the PLL.

• REFDV register — Provides a finer granularity for the PLL multiplier steps.

• CLKSEL register — Configures and controls the clock behavior of the stop and wait modes of the
MCU. The PLLSEL bit in this register controls whether the system clocks are derived from the
PLLCLK or OSCCLK signal.

• PLLCTL register — Controls PLL functionality and other CRG functions. The PLLON bit in this
register turns on the PLL circuitry.

S12_CORE

FLASH

RAM

TIM

ATD

PIM

SCI

SPI

IIC

PMF

VREG

DAC

CRG

EXTAL

IPBUS CLOCK

CORE CLOCK

OSCILLATOR CLOCK

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

10 Freescale Semiconductor

MC9S12NE64 Integrated Ethernet Controller

These registers can be used to configure the internal bus clock to 25 MHz, which is required by the
MC9S12NE64 when operating at 100 Mbps. To configure the internal bus clock to 25 MHz with a 25-MHz
clock input, the PLL must be configured and initialized. This section discusses the initialization of the PLL.
The PLL can be configured as a frequency multiplier to run the MCU from a different timebase than that
of the incoming OSCCLK signal.

To select the timebase from which the system clock (SYSCLK) will be derived, the PLLSEL bit of the
CLKSEL register must be configured. SYSCLK can be either the OSCCLK signal coming from the OSC
module or the PLLCLK signal coming from the CRG PLL block. SYSCLK then becomes the source from
which both the core and the bus clocks are computed. Equation 1 and Equation 2 show the relationship
between the SYSCLK signal and the core and the bus clocks.

Equation 1:

Equation 2:

The PLLSEL bit configures the CRG clock PLL switch. If the PLLSEL bit is set, the system clocks are
derived from PLLCLK. If the PLLSEL bit is cleared, SYSCLK is derived from OSCCLK. So, depending on
the state of the PLLSEL bit, the bus clock can be calculated two different ways:

Equation 3: (In Equation 3, fPLL is the frequency of the PLLCLK signal.)

For MC9S12NE64, the PLLSEL bit must be set. Configuring the PLLCLK signal to the appropriate values
to achieve a 25-MHz SYSCLK signal requires configuring the CRG synthesizer register (SYNR) and CRG
reference divider register (REFDV). CRG registers include:

• SYNR — 6-bit value that controls the multiplication factor of the PLL. If PLLSEL is asserted, the
OSCCLK signal is multiplied by 2 × (SYNR + 1).

• REFDV — 4-bit value that provides a finer granularity for the PLL multiplier steps. If PLLSEL is
asserted, the OSCCLK signal is divided by (REFDV + 1).

The SYNR and REFDV values together modify the incoming signal into the PLL block, OSCCLK. The
combined contribution of these registers to the value of PLLCLK is shown in Equation 4.

Equation 4:

FLASH Clock

The oscillator clock is the input for the FLASH module. To perform FLASH program or erase operations,
the internal FLASH clock frequency (fFLASHCLK) must be configured to run between 150 kHz and 200 kHz.

fCore = fSYSCLK

fBus =
2

 fSYSCLK

if PLLSEL = 1, fCore = fPLL and fBus =
fPLL

2

if PLLSEL = 0, fCore = fOSCCLK and fBus =
fOSCCLK

2

from Equation 4.
fPLL can be calculated

2 × (SYNR + 1)

REFDV + 1
 × OSCCLKfPLL =

MC9S12NE64 Integrated Ethernet Controller

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 11

The FLASH uses the PRDIV8 and FDIV[5:0] bits in the FCLKDIV register to divide the oscillator clock
down to the required clock range. PRDIV8 is a 1-bit prescaler value that, if set, divides the oscillator clock
by 8. If PRDIV8 is clear, the oscillator clock is directly fed into the FCLKDIV divider. The FCLKDIV divider
includes a 6-bit value (bits FDIV[5:0]) that generates a divisor from 1 to 64. The divisor is equal-to
(FDIV[5:0]+1). Equation 5 is the resulting equation for the FLASH clock frequency (fFLASHCLK).

Equation 5:

SCI Clock Baud Rate (BRSCI)

The bus clock is the input for the SCI modules. Two asynchronous SCIs are available on the
MC9S12NE64. The SCI module version 3.x can be configured to operate in compliance with the IrDA SIR
(IrDA) specification.

The SCI uses the SCIxBDH and SCIxBDL. These registers together provide a 13-bit field for SCI baud
rate (BRSCI) configuration. SBR[12:0] is used to represent the 13-bit SCI baud rate register value.
SBR[12:0] can be set to any value from 0 to 8191. When SBR[12:0] = 0, the SCI baud rate generator is
disabled, which reduces system current consumption. For all other SCI baud rate calculations, use
Equation 6.

Equation 6:

The MC9S12NE64 SCI also can be operated in IrDA mode. In this mode, the SCI can modulate and
demodulate narrow pulse-widths as defined by the IrDA SIR standard. IrDA mode is enabled by setting
the IREN bit of the SCIBDH register. Equation 6 shows that the BRSCIIR calculation depends on the IREN
bit.

SPI Clock Baud Rate

The synchronous serial peripheral interface (SPI) allows duplex, synchronous serial communication
between the MCU and peripheral devices. The only clock source for the SPI module is the bus clock.

SPI baud rate (BRSPI) can be set using the SPI control register 2 (SPCR2). The SPCR2 register has two
3-bit values that contribute to an SPI baud rate divisor, SPPR[2:0] and SPR[2:0]. The first 3-bit value,
identified by the SPPR[2:0] bits, can have a value ranging from 1 to 8. The second 3-bit value, identified
by the SPR[2:0] bits, can have a value ranging from 2 to 256. The mathematical expression of the SPI
baud rate divisor is [(SPPR[2:0]+1) × 2(SPR[2:0]+1)]. Applying this expression to the bus clock yields a
formula for the SPI baud rate:

Equation 7:

fFLASHCLK =
fBus

(8PRDIV8 × (FDIV[5:0]+1))

If IREN = 0, BRSCI =
fBus

(16 × SBR[12:0])

If IREN = 1, BRSCIIR =
fBus

(32 × SBR[12:1])

BRSPI =
fBus

[(SPPR[2:0]+1) × 2(SPR[2:0]+1)]

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

12 Freescale Semiconductor

MC9S12NE64 Integrated Ethernet Controller

IIC Clock

The IIC bus is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange
between two devices. The only clock source for the IIC module is the bus clock. The device is designed
to operate at speeds up to 100 kbps.

The IIC baud rate is a function of the bus clock divided by the SCL divider. Equation 8 shows how to
generate the SCL divider and illustrates the IIC frequency divider register (IICF) relationship to the SCL
divider variables.

Equation 8:

Each of the variables in the SCL divider (MUL, SCI2tap, tap2tap, and SCL_TAP) can be derived from the
IICF IBCn bits.

The IIC baud rate is computed by Equation 9.

Equation 9:

TIM Clock Rate

The only clock source for the TIM module is the bus clock. The TIM clock feeds into the three 4-channel
timers with 16-bit counters.

The TIM clock rate, RDesiredTIM, is a function of the bus clock divided by the timer prescaler. The timer
prescaler includes the PR[2:0] bits of the TSCR2 register. The clock rate is computed by Equation 10.

Equation 10:

ATD Conversion Clock Frequency

The only clock source for the analog-to-digital (ATD) module is the bus clock. The ATD clock source feeds
into a 16-channel ATD converter with 10-bit resolution and sets the ATD conversion clock frequency,
fDesiredATD. Depending on the power supply voltage applied to the ATD converter, the ATD conversion
clock frequency will be in the range from 0.5 MHz to 2 MHz.

SCL divider = mul × [2 × {2 + SCL2tap + ((SCL_TAP – 1) × tap2tap)}]

IIC baud rate =
fBus

(mul × [2 × {2 + SCL2tap + (SCL_TAP – 1) × tap2tap)}]

SCL_TAP = 5 + IBC[2:0], if IBC[2:0] = 6, Tap = 12
 if IBC[2:0] = 7, Tap = 15

where: MUL = 2IBC[7:6]

tap2tap = 2IBC[5:3]

SCL2tap = (2IBC[5:3] – 2), if IBC[5:3] = 0, SCL2tap = 4
if IBC[5:3] = 1, SCL2tap = 4
if IBC[5:3] = 2, SCL2tap = 6

fBus

2(PR[2:0])
RDesiredTIM =

MC9S12NE64 Integrated Ethernet Controller

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 13

The ATD conversion clock frequency is a function of both the bus clock and an ATD prescaler value,
PRS[4:0]. The ATD conversion clock frequency can be calculated using Equation 11.

Equation 11:

The PRS[4:0] bits are found in the ATD control register 4 (ATDCTL4). PRS[4:0] allows 32 prescaler
values to divide the bus clock. Based on the selected bus clock frequency and required system
conversion times, the user must choose the prescaler value to achieve the required ATD conversion
rate—keeping in mind the minimum and maximum ATD clock range.

RTI Time-Out Period

The real-time interrupt (RTI) function can be used to generate a hardware interrupt at a fixed periodic rate,
fDesiredRTI. The RTI runs with a gated oscillator clock, OSCCLK. OSCCLK feeds into an RTI prescaler.

The RTI prescaler is controlled using the CRG RTI control register (RTICTL). This register controls the
two RTI frequency divide rate components. The RTI prescaler rate select bits (RTR[6:4]) and the RTI
modulus counter select bits (RTR[3:0]) are combined to determine the overall RTI frequency divide rate.
Use Equation 12 to calculate the RTI periodic rate.

Equation 12:

Note that if RTR[6:4] is equal-to zero, the RTI is disabled. In SCM mode, the RTI operates using fSCM.

COP Time-Out Period

The computer operating properly (COP) is a free-running watchdog timer. It enables the user to check
whether a program is running and sequencing correctly. Like the RTI, the COP runs with a gated oscillator
clock, OSCCLK. Three control bits, CR[2:0], in the COPCTL register allow the selection of seven COP
timeout periods, tDesiredCOP. Use Equation 13 to calculate tDesiredCOP. Note the special cases provided.

Equation 13:

Special cases:

• if CR[2:0] = 6, tDesiredCOP = tBus × 2
(23)

• if CR[2:0] = 7, tDesiredCOP = tBus × 2(24)

Note that if COP[2:0] is equal-to zero, the RTI is disabled. In SCM mode, the RTI operates using fSCM.

fDesiredATD =
fBUS

2 × (PRS[4:0] + 1)

fDesiredRTI =
fBus

(RTR[3:0] + 1) × (2(9 + RTR[6:4]))

tDesiredCOP = tBus × 2(12 + 2 × CR[2:0])

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

14 Freescale Semiconductor

MC9S12NE64 and the IEEE 802.3 Standard

MC9S12NE64 and the IEEE 802.3 Standard

The MC9S12NE64 Ethernet controller is compliant with the IEEE 802.3 standard and the 802.3, 802.3u,
and 802.3x specifications, so operation can be either 10 Mbps full-duplex, 10 Mbps half-duplex, 100 Mbps
full-duplex, or 100 Mbps half-duplex using a medium-independent interface (MII). Flow control and auto-
negotiation are also available. Figure 8 provides an overview of the IEEE 802.3 standard.

Figure 8. IEEE 802.3 Standard Overview

The IEEE 802.3 specifications that are relevant to the MC9S12NE64 design include:

• MAC — IEEE 802.3, clause 4

• Flow control — IEEE 802.3, clause 31 and annex 31B

• 10BASE-T — IEEE 802.3, clause 14

• 100BASE-TX — IEEE 802.3, clause 24 and 25

• Auto-negotiation — IEEE 802.3, clause 28

• MII — IEEE 802.3, clause 22

The MC9S12NE64 commitment to compliance is also demonstrated through its IEEE 802.3 conformance
and interoperability testing at the University of New Hampshire InterOperability Lab's (UNH IOL) Fast
Ethernet Consortium. This consortium tested the MC9S12NE64 MAC and PHY against the IEEE 803.2
design specification criteria to ensure that the Ethernet design is both correct and robust. The testing
gives assurance that the MC9S12NE64 is fully functional and, more important, interoperates with other
network devices from other manufacturers.

802.3
CSMA/CD

802.3
ETHERNET

802.3u
FAST ETHERNET

802.3x
FULL-DUPLEX OPS

802.3z
GIGABIT ETHERNET

1000BASE-SX
1000BASE-LX
1000BASE-CX

FLOW CONTROL
CONTROL FRAMES

PAUSE FRAMES
TYPE FIELD

100BASE-TX
100BASE-FX
100BASE-T4

AUTO-NEGOTIATION

10BASE-T
10BASE-5
10BASE-2

10Broad-36

MC9S12NE64 Ethernet Media Access Controller (EMAC)

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 15

MC9S12NE64 Ethernet Media Access Controller (EMAC)

The EMAC is an implementation of a media access controller (MAC) as defined by the IEEE 802.3
Ethernet standard. The EMAC implements the data link layer as described in the communication model
shown in Figure 3. The EMAC supports operation at both 10 Mbps and 100 Mbps. The EMAC also
implements the IEEE 802.3 medium-independent interface (MII) standard including the MII management
interface that can be used to set different PHY options and check PHY status. The EMAC also includes
the following features:

• Address recognition and filtering

• Promiscuous mode

• Ethertype filter

• External PHY mode

• Flow control with receive detection

• Two receive buffers with valid frame received detection

• One transmit buffer interface with transmit frame complete detection

• Buffer overrun detection

• Maximum frame size babbling detection

• Frame alignment, CRC, and frame length error detection

• MII serial management transfer detection

• Late collision and excessive collision detection

• Loopback mode

The MC9S12NE64 EMAC provides the mechanism for transferring data from the network layer of one
Ethernet-enabled device to another. In the course of these data transfers, the EMAC must also provide
data encapsulation, MAC address handling, and error detection. Data encapsulation is the framing,
delimiting, and conversion of data from the nibble bit (coming to and from the PHY) to data frames or
packets stored in the buffers. In addition, in half-duplex mode, the EMAC provides media access using
carrier sense multiple access/collision detect (CSMA/CD) protocol (see the Full Duplex (FDX) section).

Figure 9 is a block diagram of the EMAC module in the MC9S12NE64 with the internal bus clock as the
EMAC clock source.

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

16 Freescale Semiconductor

MC9S12NE64 Ethernet Media Access Controller (EMAC)

Figure 9. EMAC Block Diagram

The following EMAC options are described in this section:

• Network control

• MAC hardware address

• Address filtering mode

• Ethertype filtering

• Ethernet buffer configuration

• Multicast hash table

• Flow control

Network Control Register (NETCTL)

The network control (NETCTL) register is used mainly to enable the EMAC module and set duplex mode.
Figure 10 shows the NETCTL register.

EMAC

RAM
INTERFACE
SIGNALS

IP BUS
SIGNALS

RAM
INTERFACE
SIGNALS

RX BUFFER A
INTERFACE

RX BUFFER B
INTERFACE

MAC FLOW CONTROL

TX BUFFER
INTERFACE

IP BUS
REGISTER

RECEIVER

TRANSMITTER

MII
MANAGEMENT

MII

MII_RXCLK
MII_RXDV
MII_RXD[3:0]
MII_RXER

MII_TXCLK
MII_TXEN
MII_TXD[3:0]
MII_TXER
MII_CRS
MII_COL

MII_MDC
MII_MDIO

MC9S12NE64 Ethernet Media Access Controller (EMAC)

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 17

Figure 10. Network Control (NETCTL) Register

EMAC Enable (EMACE)

Setting the EMAC enable (EMACE) bit in the NETCTL register enables the EMAC. Before enabling the
EMAC, it is important to configure several other EMAC options. Some of these EMAC options are write-
once before the EMAC is enabled; others should be changed only while the EMAC is disabled.

Full Duplex (FDX)

The full duplex (FDX) bit in the NETCTL register configures the EMAC duplex setting. The EMAC can be
configured in half-duplex (FDX = 0) or full-duplex (FDX = 1) mode. The duplex setting in the EMAC must
be equivalent to the duplex setting in the PHY. If the PHY uses auto-negotiation, the duplex setting of the
PHY can be determined when a link is established and auto-negotiation is complete (Figure 22).

In half-duplex mode, the carrier sense multiple access/collision detect (CSMA/CD) protocol is used by the
EMAC in half-duplex. Using CSMA/CD provides a mechanism by which two or more network devices can
share a common communication medium by allowing only one device to transmit at a time. When more
than one network devices transmit simultaneously, their data collide and corrupt the transmission. In full-
duplex mode, simultaneous two-way transmissions over point-to-point links are allowed and the
CSMA/CD protocol is not required.

External PHY (EXTPHY)

The EXTPHY bit in the NETCTL register can configure the MC9S12NE64 PG[6:0], PH[6:0], and PJ[3:0]
pins to operate as an external MII. This allows the user to bypass the internal EPHY of the MC9S12NE64
device for either MII bus testing or to interface to an external PHY. If EXTPHY is set, the EPHY must not
be enabled. EXTPHY must be cleared (0) if using the MC9S12NE64 internal EPHY. If EXTPHY is cleared,
pins function as general-purpose input/output pins. Table 1 describes the MII interface mode for each MII
pin.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
EMACE

0 0
ESWAI EXTPHY MLB FDX

0

Write:

Reset: 0 0 0 0 0 0 0 0

 = Unimplemented

Table 1. MII Signal Descriptions

Pin MII Function
EXTPHY Bit Set

(EXTPHY = 1)
MII Signal Description

MII_RXER Receive error

MII_RXDV Receive data valid

MII_RXCLK Receive clock

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

18 Freescale Semiconductor

MC9S12NE64 Ethernet Media Access Controller (EMAC)

Hardware MAC Address

Each network device should have a unique 6-byte media access control (MAC) hardware address that
identifies that device on a network. A valid MAC hardware address should be assigned by the developer.
This address is used by the datalink layer, which is implemented by the MC9S12NE64 integrated Ethernet
controller and low-level drivers. If the device is not connected to a real network, a random MAC hardware
address can be used as long as no other device with the same 6-byte MAC hardware address is on the
same network.

MAC hardware address groups are assigned by the IEEE EtherType Field Registration Authority. The
IEEE-assigned MAC hardware address group is defined by the upper 24-bits of the MAC address. This
MAC hardware address group is called the organizational unique identifier (OUI). The lower 24-bits of the
MAC address are specified by the vendor as a serial number in most cases. The user must obtain a MAC
hardware address group for products that use the MC9S12NE64.

The assigned MAC hardware address must be programmed into the MAC unicast address (MACAD)
register in FLASH memory. These registers are one-time writable after reset.

MII_RXD3 Receive data 3

MII_RXD2 Receive data 2

MII_RXD1 Receive data 1

MII_RXD0 Receive data 0

MII_TXER Transmit error

MII_TXEN Transmit data enable

MII_TXCLK Transmit clock

MII_TXD3 Transmit data 3

MII_TXD2 Transmit data 2

MII_TXD1 Transmit data 1

MII_TXD0 Transmit data 0

MII_COL Collision detected

MII_CRS Carrier sense

MII_MDIO Management data I/O

MII_MDC Management data clock

Table 1. MII Signal Descriptions (Continued)

Pin MII Function
EXTPHY Bit Set

(EXTPHY = 1)
MII Signal Description

MC9S12NE64 Ethernet Media Access Controller (EMAC)

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 19

The MACAD registers are shown in Figure 11.

Figure 11. MACAD Registers

MAC Address Recognition and Filtering

MAC address recognition and filtering can be controlled using PROM, CONMC, and BCREF bits in the
receive control and status (RXCTS) register. Figure 12 shows the RXCTS register.

Figure 12. Receive Control and Status (RXCTS) Register

Address filtering is very powerful because it is managed in the EMAC state machine, thus it does not
require CPU bandwidth. In fact, while using this feature, unwanted Ethernet packets are blocked and do
not cause a flag or interrupt. With the MC9S12NE64, four filtering modes are available: unicast,
broadcast, multicast, and promiscuous filtering modes. Unicast, broadcast, and multicast modes can work
together, but the promiscuous filtering mode overrides all MAC hardware address recognition and
filtering.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Read:

MACAD[47:32]
Write:
Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Read:

MACAD[31:16]
Write:
Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Read:

MACAD[15:0]
Write:
Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 Bit 0

Read: RXACT 0 0
RFCE

0
PROM CONMC BCREJ

Write:

Reset: 0 0 0 0 0 0 0 0

 = Unimplemented

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

20 Freescale Semiconductor

MC9S12NE64 Ethernet Media Access Controller (EMAC)

Unicast Filter Mode

In unicast filter mode, the EMAC uses the MAC unicast address (MACAD) registers, which contain the
unique 6-byte address. The destination address of an incoming packet is compared to the MACAD value.
If the incoming frame’s destination address field does not match the MACAD value, the frame is rejected.
To set the device to unicast filter mode, the PROM bit must be cleared.

Broadcast Filter Mode

A broadcast Ethernet frame is identified by an Ethernet frame with a destination MAC address of FF-FF-
FF-FF-FF-FF (6-byte address of all 1s). A network uses the broadcast message format to address a
particular message to every device on the network. The address resolution protocol (ARP) uses this
mechanism when executing an address request process.

Setting the BCREJ bit of the RXCTS register will block broadcast messages from being accepted by the
MC9S12NE64. If the PROM bit is set, all address filtering is overridden and all Ethernet data frames are
accepted by the MC9S12NE64, regardless of the destination MAC address.

Multicast Filter Mode and Hash Table

In general, multicast Ethernet packets are used by network devices to address a particular message to
devices on the network that belong to a particular group. The developer or network administrator should
assign mutlicast groups.

If the value of the left-most bit of the MAC hardware address is 1, the Ethernet packet is considered to be
multicast. If the value of the left-most bit is 0, the Ethernet packet is considered to be unicast.

Using the CONMC bit, the MC9S12NE64 can be configured to either accept all incoming Ethernet packets
that are defined as multicast, or to accept only those multicast Ethernet packets that match the EMAC
multicast hash table.

• CONMC = 0 — All multicast Ethernet messages will be accepted, regardless of the contents of
multicast hash table

• CONMC = 1 and PROM = 0 — Only multicast Ethernet packets that pass the multicast hash table
test are accepted by the MC9S12NE64

The multicast hash table is implemented by the multicast hash table (MCHASH) registers,
MCHASH[63:0]. To initialize MCHASH, the 6-byte destination address of a multicast group must be
mapped into 1 of 64 bits of the MCHASH register. The mapping into MCHASH is accomplished by
calculating a 32-bit CRC value of the 6-byte destination address and then selecting the six most significant
bits of the CRC-encoded result. Next, the MCHASH register bit position that corresponds to the 6-bit value
must be set. Then, in multicast filter mode, the EMAC calculates the hash value of an incoming Ethernet
packet; if that value matches one of the initialized values, the packet would pass the hash table test and
be accepted.

NOTE
The broadcast message is a special case of a multicast message, but the
CONMC bit has no effect on broadcast messages.

MC9S12NE64 Ethernet Media Access Controller (EMAC)

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 21

Promiscuous Filter Mode

Promiscuous filtering mode is set using the PROM of the RXCTS register.

• PROM = 0 — Unicast, broadcast, and multicast filtering modes behave as described in the
previous section

• PROM = 1 — Promiscuous mode is enabled and all frames are accepted, regardless of address

Setting the MC9S12NE64 to enable promiscuous mode is useful for diagnosing network issues, but it can
overburden the MCU.

Ethertype Filtering

Ethertype filtering is provided as an additional means to reduce MC9S12NE64 CPU use. This feature
uses the internal EMAC state machine to automatically filter-out and ignore incoming Ethernet packets
before the packet is accepted by the EMAC buffer. It also indicates to the CPU that a packet is received
without using any CPU cycles. Figure 13 is the Ethertype control (ETCTL) register, and Figure 14 is the
Ethertype (ETYPE) register. If any ETCTL register bit is set, the Ethertype filter is enabled.

Figure 13. Ethertype Control (ETCTL) Register

Figure 14. Ethertype (ETYPE) Register

Ethertype filtering is based on filtering an incoming Ethernet packet’s length/type data field in the MAC
header. Figure 15 shows the position of the 2-byte length/type data field in the standard Ethernet packet
structure. Figure 15 shows that the length/type data is a part of the MAC header after the MAC hardware
source address.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
FPET

0 0
FEMW FIPV6 FARP FIPV4 FIEEE

Write:

Reset: 0 0 0 0 0 0 0 0

 = Unimplemented

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Read:

ETYPE
Write:
Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

22 Freescale Semiconductor

MC9S12NE64 Ethernet Media Access Controller (EMAC)

Figure 15. Format and Content of Ethernet Packets (Repeated)

Ethertype filtering allows only packets with an approved type/length field value to be accepted by the
MC9S12NE64 filter. Multiple Ethertype filtering targets can be designated in ETCTL register. The ETCTL
register provides five fixed Ethertype targets and one programmable Ethertype target. The available
filtering targets include:

• FPET (programmable Ethertype) — If this filter target is used (FPET = 1), a 2-byte value for an
Ethertype filter target must be provided using the ETYPE register

• FEMW (emWare® data type) — Ethertype value of 0x8876

• FIPV6 (Internet protocol version 6) — Ethertype value of 0x86DD

• FARP (address resolution protocol) — Ethertype value of 0x0806

• FIPV4 (Internet protocol version 4) — Ethertype value of 0x0800

• FIEEE (IEEE 802.3 length field) — Length data field that ranges from 0x0000 to 0x05DC

Configuring Ethernet Buffers and Maximum Frame Length Settings

The MC9S12NE64 has 8K of RAM that is available and shared between user RAM and the EMAC
Ethernet buffer space. The EMAC Ethernet buffer space consists of three buffers, which contain:

• One transmit buffer — The user must store the following data in the transmission buffer to prepare
a data packet for transmission:
– Destination address
– Source address
– Type/length
– Data

PREAMBLE

START DELIMITER

DESTINATION
MAC ADDRESS

SOURCE
MAC ADDRESS

LENGTH/TYPE

DATA
FIELD

PAD
FIELD

FRAME CHECK
4 BYTES

(LAYER 3 AND UP)

MAC HEADER

7 BYTES

1 BYTES

6 BYTES

6 BYTES

2 BYTES

10101010

10101011

ENCAPSULATED DATA 46 TO 1500

MAC TRAILER

BYTES

SEQUENCE

MC9S12NE64 Ethernet Media Access Controller (EMAC)

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 23

• Two receive buffers — Incoming Ethernet packets store the following data in a receive buffer if a
buffer is available:
– Destination address
– Source address
– Type/length
– Data
– Frame check sequence

Each EMAC Ethernet buffer is designed to hold only one Ethernet packet at a time. In addition, the EMAC
Ethernet buffer space is user programmable. The following section provides a detailed review of the
EMAC Ethernet buffers.

Buffer Size and Starting Address Mapping (BUFMAP)

The buffer size and starting address mapping data field (BUFMAP) in the Ethernet buffer configuration
register (BUFCFG) allows the user to program the EMAC Ethernet buffer space and specify the ratio
between user RAM and RAM used for the EMAC buffers.

BUFMAP specifies the EMAC Ethernet buffer size configuration options that determine the size of the
MC9S12NE64 receive and transmit Ethernet buffers within system RAM.

The BUFCFG register is shown in Figure 16.

Figure 16. Ethernet Buffer Configuration (BUFCFG)

Table 2 provides the configurations for the MC9S12NE64 system RAM usage with the available BUFMAP
settings. Table 2 shows that when EMAC Ethernet buffer space is maximized, user RAM is reduced.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read: 0
BUFMAP

0
MAXFL

Write:

Reset
:

0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 0

 = Unimplemented

Table 2. EMAC Ethernet Buffer Size and User RAM

BUFMAP
Individual
Buffer Size

(Bytes)

Total Size of EMAC
Ethernet Buffer
Space (Bytes)

Remainder RAM for
User Application

(Bytes)

0 128 384 = 0.375K 7.625K

1 256 768 = 0.75K 7.25K

2 512 1536 = 1.5K 6.5K

3 1K 3072 = 3K 5K

4 1.5K 4608 = 4.5K 3.5K

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

24 Freescale Semiconductor

MC9S12NE64 Ethernet Media Access Controller (EMAC)

Because the maximum size of an Ethernet frame is approximately 1.5K, a setting of BUFMAP = 4 would
allow each of the three MC9S12NE64 buffers to hold one Ethernet packet of the maximum allowable size
as dictated by the IEEE 802.3 specification. Setting BUFMAP < 4 can:

• Maximize user RAM

• Filter Ethernet packets based on size

The setting of BUFMAP is a system/network design decision. If the devices on a network should accept
only Ethernet packets of a certain size limit, BUFMAP can be configured to ignore packets that are too
large. Setting BUFMAP to create a buffer based on size can reduce the burden on the CPU by ignoring
packets that are too large. It is recommended that the system/network is designed to avoid use of large
packets to maximize user RAM.

If a packet exceeds the receive buffer size, when BUFMAP < 4, the corresponding receive overrun error
flag is set and the packet is filtered-out and ignored. No receive error flag or any other flag is set. No CPU
bandwidth is used because the EMAC state machine does all packet filtering.

Receive Maximum Frame Length (MAXFL)

The receive maximum frame length (MAXFL) bits in the BUFCFG register allow the user to define a
packet size limit. This setting compliments the BUFMAP bits configuration and can also be used to filter-
out unwanted Ethernet packets based on their size. The MAXFL setting specifies the maximum receive
frame length (in bytes). Received Ethernet packets that exceed MAXFL cause the babbling receive error
interrupt flag (BREIF) to set. A CPU interrupt can be configured to occur if the babbling receive error
interrupt enable bit (BREIE) is set.

Setting MAXFL prevents the buffer overrun flag from being set and does not automatically filter-out and
ignore the packets. The packet must be manually removed by clearing the corresponding received valid
flag and clearing the BREIF bit.

Flow Control

Flow control is an optional part of the IEEE 802.3 specification and is applicable only in full-duplex mode.
Flow control allows a network device to pause network traffic by sending or receiving a pause Ethernet
packet to relieve network traffic congestion.

Receiving Pause Frames

If the reception flow control enable (RFCE) bit is set in the RXCTS register, the receiver detects incoming
pause frames. The detection of a pause packet is accomplished by one or both of the following:

• Multicast destination address of 01-80-C2-00-00-01 is detected

• Type/length field Ethertype value is 0x8808

A 16-bit value in the incoming pause packet specifies the duration of the pause event in units of 512 bit
times (valid values are from 0x0000 to 0xFFFF). When RFCE is set and a pause frame is detected, the
receive flow control interrupt flag (RFCIF) in the IEVENT register is asserted and the EMAC transmitter
stops transmitting data frames for the received pause duration.

MC9S12NE64 Ethernet Media Access Controller (EMAC)

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 25

Hardware Generated Pause Control Frame Transmission

If no transmission is in progress and the EMAC is in full-duplex mode, a PAUSE command can be
launched by writing a value of 0x02 to the 2-bit transmit command (TCMD) field in the transmit control
and status (TXCTS) register. Figure 17 shows the TXCTS register.

Figure 17. Transmit Control and Status (TXCTS) Register

Before transmitting a pause packet, the user must configure the pause timer value and counter (PTIME)
register. The PTIME register specifies the duration of the pause event in units of 512 bit times. To write
to the PTIME register, the pause timer register control (PTRC) bit in the TXCTS register must be set,
because when set, writes to the PTIME register update the duration of a pause control frame.

NOTE
The reception of a pause frame stops transmission using the START
command, but it does not prevent transmission of pause control frames. In
addition, pause frames may be accepted even if both receive buffers are
full.

MII Management Interface

The MII management interface consists of a pair of signals that are used to send and receive information
across the MII between the MAC and PHY to display PHY status information or configure different PHY
options. These signals are also available in external PHY mode (see Table 1). To initialize the MII
management interface, the management clock rate select (MDCSEL) bit field in the MII management
command and status (MCMST) register must be configured. See the MCMST register in Figure 18.

Figure 18. MII Management Command and Status (MCMST) Register

Bit 7 6 5 4 3 2 1 Bit 0

Read: TXACT 0
CSFL PTRC SSB

0 0 0

Write: TCMD

Reset: 0 0 0 0 0 0 0 0

 = Unimplemented

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 BUSY
NOPRE MDCSEL

Write: OP

Reset: 0 0 0 0 0 0 0 0

 = Unimplemented

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

26 Freescale Semiconductor

MC9S12NE64 Ethernet Media Access Controller (EMAC)

The MDCSEL bit field sets the MDC frequency and must be equal-to or less-than 2.5 MHz, according to
the IEEE 802.3 specification. Using the following equation, with a 25-MHz clock driving the
MC9S12NE64, the MDCSEL bit field should be set to 0x05:

MDC frequency = bus clock frequency ÷ (2 × MDCSEL)

Other important data registers referenced for MII management read and write operations are included in
the list below with a brief description:

• MII management PHY address (MPADR) — 5-bit PADDR field in MPADR specifies the PHY
address. When using the MII management interface with the internal PHY, the PHY address setting
in the EMAC and EPHY must match. With a 5-bit field, an MII management interface can target up
to 32 attached PHY devices.

• MII management register address (MRADR) — 5-bit RADDR field in MRADR specifies 1 of the 32
internal PHY registers of a device. These internal PHY registers are 16 bits wide. A subset of 32
registers is defined by the IEEE 802.3 standard. These 32 PHY registers can be accessed only
through the MII management interface and are not visible through the MC9S12NE64 register map.

• MII management write data (MWDATA) — The 16-bit WDATA data field in MWDATA is used
during an MII management write operation. Before initiating an MII write operation, the value to be
written must be stored in the WDATA data field.

• MII management read data (MRDATA) — 16-bit RDATA data field in MRDATA contains the MII
management read operation result. RDATA is valid only when the MII management transfer
complete interrupt flag (MMCIF) in the interrupt event (IEVENT) register is set after a valid read
frame operation.

Read Operation

Before performing a read operation by MII management, values for the PADDR and RADDR fields must
be configured by the user indicating which PHY device is to be addressed and which 16-bit register is to
be read, respectively. Setting the OP field in the MCMST register to 0x02 while the BUSY bit is clear
initiates the MII management read and sets the BUSY bit. As soon as the read MII management frame
operation is complete, the BUSY bit clears, the MRDATA register is updated with the MII read result, and
the MMCIF bit is set.

Write Operation

To perform a write operation by MII management interface, the user must provide a value for the PADDR
and RADDR fields, indicating which PHY device is to be addressed and which 16-bit register is to be read,
respectively. The user must also provide the value to be written and store that value in the WDATA data
field. Setting the OP field in the MCMST register to 0x01 while the BUSY bit is clear initiates the MII
management write and sets the BUSY bit. As soon as the write MII management frame operation is
complete, the BUSY bit clears and the MMCIF bit is set.

MC9S12NE64 Ethernet Physical Transceiver (EPHY)

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 27

MC9S12NE64 Ethernet Physical Transceiver (EPHY)

The EPHY is an implementation of an Ethernet physical transceiver (PHY) as defined by IEEE 802.3
standard. For basic operation, the EPHY must be supplied a 25-MHz clock input specified at 25 ppm.

The EPHY is compliant with IEEE 802.3 specifications for 10BASE-T (clause 14) and 100BASE-TX
(clauses 24 and 25).

• 10BASE-T specification — PHY operation at 10 Mbps, called Ethernet, over un-shielded twisted
pair (UTP) copper cable.

• 100BASE-TX specification — PHY operation at 100 Mbps, called Fast Ethernet, also over UTP
copper cable.

The EPHY is also compliant with Ethernet operation using category 5 UTP copper cable at cable lengths
of 100 meters.

The EPHY (like the EMAC) supports the MII and the MII management interface (see IEEE 802.3
clause 22). The EMAC and EPHY use the MII to exchange data, set up the EPHY, and communicate
status. The EPHY also includes the following features:

• Supports auto-negotiation

• Auto-negotiation next page ability

• Full-duplex and half-duplex support

• Digital adaptive equalization

• Baseline wander (BLW) correction

• Loopback modes

The EPHY provides digital/analog encoding and decoding, which is required for the MC9S12NE64 to
communicate on the UTP cable. A block diagram of this peripheral is provided in the Figure 19. Figure 19
shows that the clock input of the EPHY is the 25-MHz reference clock (REF CLOCK).

Table 3. Summary of EPHY Compatibility

Technology

Maximum
Segment
Length

(Meters)

Encoding
Method Topology Media Bit Rate

(Mbps)

10BASE-T 100 Manchester Star
2 Pair UTP
Cat. 3, 4, 5

10

100BASE-TX 100
4B/5B with

MLT-3
Star

2 Pair UTP
Cat. 5

100

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

28 Freescale Semiconductor

MC9S12NE64 Ethernet Physical Transceiver (EPHY)

Figure 19. EPHY Block Diagram

EPHY Registers and Configuration Options

The integrated EPHY is designed to provide control and status access by the EMAC (through the MII
management interface). Therefore, the EPHY has only a few directly accessible registers. The EPHY
registers available from the EPHY register map include:

• Ethernet physical transceiver control register 0 (EPHYCTL0)

• Ethernet physical transceiver control register 1 (EPHYCTL1)

• Ethernet physical transceiver status register (EPHYSR)

EPHYCTL0 and EPHYCTL1 are used mainly to enable the EPHY (by setting the EPHYCTL0 EPHYEN
bit). Figure 20 shows the EPHYCTL0 and EPHYCTL1 registers.

CLOCK RECOVERY
MANCHESTER DECODE

POLARITY CORRECTION
SQUELCH

LINK DETECT

10BASE-T
RECEIVER

100BASE-TX
RECEIVER

MLT-3 DECODE
DESCRAMBLER

4B/5B
DECODE

4B/5B
ENCODE

MANCHESTER ENCODER
DIGITAL WAVE SHAPING

SCRAMBLER
MLT-3 ENCODE

10BASE-T
 PLL

100BASE-TX
 PLL

VOLTAGE/CURRENT
REFERENCES

COLLISION
CARRIER SENSE

AUTO
NEGOTIATE

10BASET
DRIVER

VGA CONTROL
(COARSE EQUALIZER)
DIGITAL EQUALIZER

SLICER
TIMING CONTROL

BLW CONTROL

100BASETX
DRIVER

MANAGEMENT
(MII)

CONFIGURATION
REGISTERS

100BASE-TX
LOOPBACK

100BASE-TX
DIG LOOP B

10BASE-T
DIG LOOP B

MII
LOOPBACK

MII

RxP

RxN

TxP

TxN

RBias

REF
CLOCK

MDIO

M
II C

O
N

NECTIO
N

S

MC9S12NE64 Ethernet Physical Transceiver (EPHY)

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 29

Figure 20. Ethernet Physical Transceiver Control Register 0 and Register 1

Before enabling the EPHY, it is important to configure several EPHY options. Some basic settings will be
made using the EPHYCTL0 and EPHYCTL1 registers, but the majority of the EPHY settings will be
configured through the MII management interface through the EMAC (see the Internal EPHY Control and
Status Registers section). The EPHY options that can be set through the EPHY register map are:

• EPHY address configuration (see EPHYADD[4:0] in EPHYCTL1)

• EPHY clock generation disable (see DIS100 and DIS10 in EPHYCTL0)

• EPHY LED enable (see LEDEN in EPHYCTL0)

• EPHY enable (see EPHYEN in EPHYCTL0)

• Auto-negotiation disable setting (see ANDIS in EPHYCTL0)

• EPHY interrupt enable (see EPHYIEN in EPHYCTL0)

Configuring the EPHY address, EPHY clock generation disable, and LED enable is straightforward. The
EPHY address must be recorded by the user so that when an MII management operation is executed, the
correct PHY address (see the MPADDR register description in the MII Management Interface section) is
provided. The EPHY enable, EPHY clock generation disable, and LED enable bits are typically set or
cleared as part of the EPHY initialization sequence.

Auto-Negotiation Disable

Auto-negotiation is a mechanism that allows two network devices to select the best common speed and
duplex mode automatically during link initiation. The EPHY can be configured to advertise specific speed,
duplex mode, and pause operation abilities by configuring the EPHY auto-negotiate advertisement
register, which is accessible only through the MII management interface (see the Auto-Negotiate
Advertisement Register section). Auto-negotiation is defined in the IEEE 802.3 standard in clause 28.

The MC9S12NE64 can be operated with or without enabling auto-negotiation. In some instances, the
user may need to specify speed, duplex mode, and flow control settings for a particular application.
Disabling auto-negotiation may be required to establish a link due to interoperability issues.

If the ANDIS bit in the EPHYCTL0 register has a reset value of 1 (and EPHYEN is set, which indicates
that the EPHY is enabled), auto-negotiation is disabled. The ANDIS bit is internally latched to the ANE bit
of the EPHY PHY control register. Typically, the PHY control register is accessible only by the EMAC
through the MII management interface. The PHY control register is part of the internal EPHY register that

Register Name Bit 7 6 5 4 3 2 1 Bit 0

Ethernet Physical
Transceiver Control

Register 0
(EPHYCTL0)

Read:
EPHYEN ANDIS DIS100 DIS10 LEDEN

EPHYWA
I

0
EPHYIEN

Write:

Reset: 0 1 1 1 0 0 0 0

Ethernet Physical
Transceiver Control

Register 1
(EPHYCTL1)

Read: 0 0 0 PHYADD
4

PHYADD
3

PHYADD
2

PHYADD
1

PHYADD
0Write:

Reset: 0 0 0 0 0 0 0 0

 = Unimplemented

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

30 Freescale Semiconductor

MC9S12NE64 Ethernet Physical Transceiver (EPHY)

is not accessible from the MC9S12NE64 register map. With auto-negotiation disabled, the speed and
duplex mode for the EPHY must be manually set using the MII management interface and writing to the
DPLX and DATARATE bits of the PHY control register (see Figure 22).

If auto-negotiation is used, the ANDIS bit in the EPHYCTL0 register should be cleared (alternatively, the
ANE bit of the EPHY PHY control register can be set through the MII). When the EPHY and EPHY clock
are enabled, the MC9S12NE64 will use auto-negotiation to determine speed, duplex mode, and flow
control settings. When auto-negotiation is complete, the device must ensure that the EMAC is also
configured to operate with the settings that the auto-negotiation process resolved. To determine the
resolved capabilities, the EPHY proprietary status register must be read using an EMAC MII read
operation and then decoded (see Figure 26).

EPHY Interrupt Enable

Before enabling the EPHY interrupts (by setting the EPHYIEN bit in the EPHYCTL0 register), the EPHY
PHY interrupt control register (see Figure 27) must be configured. The PHY interrupt control register is
not visible from the EMAC MII management interface (see the Interrupt Control Register section).

Clearing the EPHY Interrupt

Figure 21 shows the Ethernet physical transceiver status register (EPHYSR), which is used to clear an
EPHY interrupt. Clearing an EPHY interrupt is a two-step process:

• Read the EPHY internal interrupt register (register 0x10) through the MII management interface
(MDIO)

• Write the EPHYIP bit to 1

Reading an internal EPHY register through the MII management interface is performed by an MII read
operation by the EMAC. For an EMAC MII read operation, the user must provide a PHY address (PADDR)
and PHY register address (RADDR). After the MII read operation, the result of the MII read is stored in
the MRDATA register (see the MII Management Interface section).

Figure 21. Ethernet Physical Transceiver Status Register (EPHYSR)

Internal EPHY Control and Status Registers

These registers are not directly accessible from the MC9S12NE64 register map. Using the EMAC MII
read and write operation will provide access to these internal EPHY registers. IEEE 802.3 specifies the
register set, which consists of 32 individual 16-bit PHY registers. The IEEE 802.3 specification refers to
these registers as the MII management register set (see IEEE 802.3, clause 22). IEEE 802.3 specifies
the contents of registers 0 through 15; registers 16 through 31 can be defined by the developer.

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 100DIS 10DIS 0 0 0
EPHYIF

Write:

Reset: 0 0 1 1 0 0 0 0

 = Unimplemented

MC9S12NE64 Ethernet Physical Transceiver (EPHY)

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 31

PHY Control Register

The PHY control register has several important control registers for EPHY basic operation. Some basic
control settings are discussed in this section. Figure 22 shows the PHY control register.

Figure 22. PHY Control Register (MII Management Register 0)

• DATA_RATE — Allows the user to select 10 Mbps or 100 Mbps speed if auto-negotiation is
disabled. If DATA_RATE = 0, then 10 Mbps is selected. If DATA_RATE = 1, then 100 Mbps is
selected.

• ANE — Setting this bit enables auto-negotiation. This bit can be latched on start-up based on the
setting of the ANDIS bit in the EPHYCTL0 register (see the EPHY Registers and Configuration
Options section).

• RAN — Setting RAN can restart auto-negotiation. Restarting auto-negotiation is required when the
link to the network is lost. (For example, unplugging the PHY from the network will cause link loss.)
The status of the link can be determined by EPHY interrupts (see the Interrupt Control Register
section).

• DPLX — The duplex mode is manually configured with the DPLX bit when auto-negotiation is
disabled. Duplex mode options are full-duplex and half-duplex. Setting the DPLX bit configures the
link for full-duplex mode.

PHY Status Register and Proprietary Status Register

There are two status registers available to the user, the PHY status register and the proprietary status
register. Most status indication, for basic operation, that will be discussed is contained in the proprietary
status register. Typically, the MC9S12NE64 reads this status register when an EPHY interrupt occurs.
The two most important interrupts are those which occur when:

• Auto-negotiation is complete

• Status of the link has changed

This section describes several important bits. See the MC9S12NE64 data sheet for a complete
description of all bits.

Figure 23. PHY Status Register (MII Management Register 1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Read:

RESET
LOOP
BACK

DATA
RATE ANE PDWN ISOL RAN DPLX

COL
TEST

0 0 0 0 0 0 0

Write:
Reset: 0 0 1 X 0 0 0 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Read: 100-T4

100X-
FD

100X-
HD

10T
FD

1T
HDO

0 0 0 0
SUP
PRE

AN
COMP

REM
FLT

AN
ABL

LNK
STST

JAB
DT

EX
CAP

Write:
Reset: 0 0 1 X 0 0 0 1 0 0 0 0 0 0 0 0

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

32 Freescale Semiconductor

MC9S12NE64 Ethernet Physical Transceiver (EPHY)

Figure 24. Proprietary Status Register (MII Management Register 17)

• ANCOMP and ANNC — Both indicate whether auto-negotiation is complete. ANNC is a duplicate
of ANCOMP. When auto-negotiation is enabled, the contents of MII management registers 4
through 7 are valid. When auto-negotiation is complete, the EMAC must be adjusted to ensure that
duplex and flow control settings are correct (by referencing the DPMD and SPD bits). The user is
notified of a change in auto-negotiation by an EPHY interrupt.

• LNKSTST and LNK — If LNKSTST = 1 (a link is established), LNK must be clear (LNK = 0). An
EPHY interrupt indicates a change in the network link.

• PDMD — Indicates the current duplex mode of the PHY. When set, the PHY is operating in full-
duplex mode. When clear, operation is half-duplex.

• SPD — Indicates the current speed mode of the PHY. When set, the PHY is operating in 100 Mbps
mode. When clear, operation is 10 Mbps mode.

• PRCVD and ANC_MODE: Indicate status of auto-negotiation process. When PRCVD = 1, the
auto-negotiation base page has been received. If ANC_MODE = 1, auto-negotiation not resolved
to a common operating mode. See the Auto-Negotiate Advertisement Register section.

Auto-Negotiate Advertisement Register

The configuration of this register determines which functional capabilities the EPHY advertises during the
auto-negotiation process. The advertisement options that can be set by the auto-negotiate advertisement
register are:

• NXTP — Next page capability

• FLC_TL — Flow control capability

• TAF_100FD — 100BASE-TX full-duplex capability

• TAF_100HD — 100BASE-TX half-duplex capability

• TAF_10FD — 10BASE-T full-duplex capability

• TAF_10HD — 10BASE-T half-duplex capability

Figure 25. Auto-Negotiate Advertisement Register (MII Management Register 4)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Read: 0 LNK PDMD SPD 0 ANNC PRCVD

ANC
MODE

0 0 PLR 0 0 0 0 0

Write:
Reset: 0 0 1 X 0 0 0 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Read:

NXTP
0

RFLT
0 0

FLCTL
0 TAF

100FD
TAF

100HD
TAF

10FD
TAF

10HD
SELECTOR FIELD [4:0]

Write:
Reset: 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

MC9S12NE64 Ethernet Physical Transceiver (EPHY)

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 33

Figure 25 shows the auto-negotiate advertisement register. Setting the bits for a particular Ethernet option
ensures that a capability is advertised during auto-negotiation. For example, if the user does not want to
allow a network device to ever negotiate to full-duplex operation at 100 Mbps using flow control, the user
could ensure that both the FLCTL and TAF_100FD bits are clear before enabling the EPHY clock
generation (if auto-negotiation is set).

Interrupt Control Register

The interrupt control register indicates which events would trigger an EPHY interrupt. An EPHY interrupt
is indicated by the EPHYIF bit in the EPHYSR register; a CPU interrupt is triggered only if the EPHYIEN
bit in the EPHYCTL0 bit is set. Also, when an EPHY interrupt occurs, a two-step interrupt-clearing
mechanism is required (as discussed in the Clearing the EPHY Interrupt section). A brief discussion of
select PHY interrupt events is provided in this section. The interrupt control register is shown in Figure 26.

Figure 26. Interrupt Control Register (MII Management Register 16)

See the MC9S12NE64 data sheet for a complete description of all bits. Some interrupt control register
bits are described below:

• ACKIE (acknowledge bit received interrupt enable) and PRIE (page received interrupt enable) —
Indicate that the auto-negotiation process is exchanging base pages.

• LCIE (link changed enable) — Occurs when the link changes meaning (either a new link has been
established, or an established link has been lost). To determine what has occurred after this
interrupt, the PHY status register and proprietary status register must be read and decoded
according to the PHY Status Register and Proprietary Status Register section.

• ANIE (auto-negotiation changed enable) — Occurs when the state of the auto-negotiation state
machine has changed since the last access of this register. A change to the auto-negotiation state
machine may require re-verification of the resolved auto-negotiation settings (see the PHY Status
Register and Proprietary Status Register section).

• PDFIE — Occurs when both auto-negotiation and parallel detection mechanisms for determining
a link partner’s ability fail.

Reading the interrupt control register (through the EMAC MII management interface) is an important part
of the clearing mechanism for the EPHYIF bit, but it is more important to decode which PHY interrupt
occurred and correctly handle these interrupt events.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Read: 0

ACKIE PRIE LCIE ANIE PDFIE RFIE JABIE
0 ACKR PGR LNK

CNG
AN

CNG
PDF RMTF JABI

Write:
Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

34 Freescale Semiconductor

Initializing the MC9S12NE64 Ethernet Controller

Initializing the MC9S12NE64 Ethernet Controller

The EMAC and EPHY are designed as two separate modules on the MC9S12NE64, but if using the
internal EPHY, they should be initialized together. The following procedure will prepare the MC9S12NE64
integrated Ethernet controller for general Ethernet operation.

1. Initialize the CRG to generate a 25-MHz internal bus clock. This is required for 100-Mbps
operation. A 2.5-MHz bus clock would be acceptable for 10-Mbps operation, but remember that the
MC9S12NE64 requires a 25-MHz clock input.

2. Disable the EPHY clock by setting the DIS10 and DIS100 bits in the EPHYCTL0 register to 1. The
EPHY clocks will not be enabled until both EMAC and EPHY are completely configured.

3. Configure the PHY address using the EPHYCTL1 register bits EPHYADD[4:0]. EPHYADD[4:0] will
latch EPHY register 14 when the EPHYEN bit is set.

4. Configure auto-negotiation:

– If auto-negotiation is used, clear the ANDIS bit in the EPHYCTL0 register.
– If auto-negotiation is not used, set the ANDIS bit in the EPHYCTL0 register.

5. Enable EPHY LEDs by setting the LEDEN bit in the EPHYCTL0 register.

6. Enable EPHY interrupts by setting the LEDEN bit in the EPHYCTL0 register.

7. Enable EPHY by setting the EPHYEN bit in the EPHYCTL0 register. If the EPHY is enabled, MII
operation between the EMAC and EPHY is possible.

8. Configure the EMAC MDC clock using the MDCSEL bits in the MCMST register.

9. Configure the EMAC Ethernet buffer space in memory using the BUFMAP bit field in BUFCFG
register.

10. Configure the EMAC maximum reception frame length using the MAXFL bit field in the BUFCFG
register.

11. Configure the MAC hardware 6-byte address using the MACAD registers.

12. Configure the EMAC Ethertype filter mode using the ETYPE and ETCTL registers.

13. Configure the EMAC MAC hardware address filter mode. Options include configuring the BCREJ,
CONMC, and PROM bits of the RXCTS register. The receive flow control configuration (RFCE bit)
must be configured only if auto-negotiation is disabled. If auto-negotiation is used, this setting must
be configured after auto-negotiation is complete and the pause setting is resolved.

14. Configure EMAC loopback (MLB bit) and external PHY mode (EXTPHY bit) if required. If auto-
negotiation is disabled, the EMAC duplex mode (FDX bit) can also be configured. If auto-
negotiation is enabled, the EMAC duplex mode should be configured after auto-negotiation is
complete.

15. Enable the EMAC by setting the EMACE bit in the NETCTL register.

16. Configure and enable EMAC interrupts as needed using the EMAC interrupt mask (IMASK)
register.

17. Initialize and transmit pause time duration:

a. Set the PTRC bit in the TXSCTS register.
b. Configure the PTIME register.

18. Enable system interrupts.

Using the MC9S12NE64 Ethernet Interface

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 35

19. Configure EPHY through the EMAC MII management interface — Configure speed, duplex mode,
and flow control EPHY auto-negotiation advertisement by writing to the EPHY auto-negotiate
advertisement register.

20. Configure EPHY through the EMAC MII management interface:

a. Configure the EPHY interrupts by writing to the EPHY interrupt control register.
b. Read the EPHY interrupt control register to verify content of the EPHY interrupt control

register.
21. Start the EPHY clock generators.

– If auto-negotiation is used, start the EPHY clock generators by clearing the DIS100 and DIS10
bit of the EPHYCTL0 register.

– If auto-negotiation is not used:
a. Configure the EPHY through the EMAC MII management interface and configure speed and

duplex mode by writing to the DPLX and DATARATE bits in the EPHY control register.
b. Start the EPHY clock generators by clearing the DIS100 and DIS10 bit of the EPHYCTL0

register.
22. If auto-negotiation is used, as soon as both auto-negotiation is complete and a link is established,

the negotiated pause and duplex settings can be determined from the EPHY MII registers. The
EMAC then must be updated by configuring the RFCE and FDX bits to match the negotiated pause
and duplex settings.

After initialization, the MC9S12NE64 can transmit and receive Ethernet packets on a network. A brief
overview of transmit and receive operations using the MC9S12NE64 is provided in the following sections.

Using the MC9S12NE64 Ethernet Interface

After configured and initialized, the MC9S12NE64 Ethernet interface is easy to use. An overview of
sending and receiving Ethernet packets is described in this section.

Buffer Transmit Operation

To start an Ethernet transmission, the user data, destination address, source address, and length/type
field data must be written to the transmit buffer.

The packet can be transmitted using a START command. The START command is launched by writing
a value of 0x01 to the 2-bit transmit command (TCMD) field in the transmit control and status (TXCTS)
register when the transmitter active status (TXACT) bit is clear. The transmitter automatically appends the
frame check sequence.

Buffer Receive Operation

Valid data is received when the receive buffer (A or B) complete flag is set. The received data is stored
in the receive buffer and is available for user access.

To clear a buffer that has been processed, the receive buffer complete interrupt flag for the corresponding
buffer must be cleared.

If the two receive buffers are full, other incoming Ethernet packets are dropped. The two receive buffers
are full when RXACIF and RXBCIF in the IEVENT register are set to 1.

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

36 Freescale Semiconductor

Network Data Transaction at Upper Layer Protocols

Network Data Transaction at Upper Layer Protocols

Reception and transmission of Ethernet packets as described in the Using the MC9S12NE64 Ethernet
Interface section is not the level that typical user Ethernet applications use. Typically, a software stack
such as TCP/IP is used to initiate and maintain communications within the network and assist the user
network application. Figure 3 shows ISO’s OSI communication model. Figure 27 provides an overview of
how the user data from the user application is encapsulated and eventually is transmitted.

Figure 27. User Data Encapsulated to and from the Upper Layers TCP/IP Model

When a packet is received, the protocol layers are decoded and removed. This process, called de-
encapsulation, correctly processes the packet with the appropriate upper layer protocols to access the
user data.

Table 4 describes some of the upper layer protocols shown in Figure 3 and Figure 27. These protocols
are components of a TCP/IP stack. Transmission and reception of user data at the upper protocol layers
is managed by TCP/IP software. A TCP/IP stack defines a set of protocols that allows network devices to
connect to a specific device and exchange data on a network. These protocols, defined by RFC (request
for comments), enable an embedded device to send email, serve web pages, transfer files, and provide
other basic connectivity functions.

APPLICATION DATA

USER DATA

USER DATA

APPLICATION DATA

APPLICATION DATA

APPLICATION

TCP

IP

NETWORK
INTERFACE

ETHERNET

ETHERNET
HEADER

IP
HEADER

TCP
HEADER

ETHERNET
TRAILER

TCP
HEADER

APPLICATION
HEADER

TCP SEGMENT

IP DATAGRAM

ETHERNET FRAME
14 20 20 4

46 to 1500 BYTE

Conclusion

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 37

 Conclusion

The MC9S12NE64 is a tightly-integrated, easy-to-use, single-chip solution for embedded Ethernet
applications. Because the MC9S12NE64 integrates Ethernet functionally in a single package, it provides
a low-cost solution. The Ethernet functionality of the MC9S12NE64 complies to the IEEE 802.3
specification to provide improved network functionality and interoperability. Configuration and initialization
of this tightly-integrated solution is also enhanced by C-based development tools. Combining the
MC9S12NE64 with a TCP/IP stack provides an interface for developing Ethernet-enabled embedded
devices with a rich set of network functionality.

NOTE
With the exception of mask set errata documents, if any other
Freescale Semiconductor document contains information that conflicts with
the information in the device user guide, the user guide should be
considered to have the most current and correct data.

Although specific methods and tools were used to develop and debug this
demo, Freescale Semiconductor does not recommend or endorse any
particular methodology, tool, or vendor. These methods and tools are
provided only to describe the generic principles and features that may be
required for development of a networked device.

Table 4. Some Upper Layer Protocols in the TCP/IP Stack Model

Acronym/
Term Description Definition

DHCP Dynamic host configuration protocol Allocates IP addresses dynamically

DNS Domain name server
Program/computer that converts a domain name into its

IP address

FTP File transfer protocol Used to transfer files across a network

HTTP Hyper text transfer protocol Used to transmit web pages

ICMP Internet control message protocol Used to report errors from IP level and above

IP Internet protocol Mechanism for delivering packets across a network

SMTP Simple mail transfer protocol Used for sending and receiving email

SNMP Simple network management protocol
Used by computers that monitor and manage network

activity to communicate with one another and the
computers they are monitoring

TCP Transmission control protocol Guarantees delivery of data

TFTP Trivial file transfer protocol
Subset of FTP that does not require valid username and

password

UDP User datagram protocol

Found at the network layer along with the TCP protocol.
UDP does not guarantee reliable, sequenced packet
delivery. If data does not reach its destination, UDP
does not retransmit, but TCP does.

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

38 Freescale Semiconductor

Notes

Notes

This page is intentionally blank

Notes

MC9S12NE64 Integrated Ethernet Controller, Rev. 0.2

Freescale Semiconductor 39

This page is intentionally blank

AN2692
Rev. 0.2, 9/2004

How to Reach Us:

USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

Japan:
Freescale Semiconductor Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com

Information in this document is provided solely to enable system and software implementers to use

Freescale Semiconductor products. There are no express or implied copyright licenses granted

hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any

liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters

which may be provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer’s technical experts.

Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.

Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or

sustain life, or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall

indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was

negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners. Processor Expert™ is a

trademark of UNIS, Ltd. emWare is a registered trademark of emWare, Inc.

© Freescale Semiconductor, Inc. 2004.

	Introduction
	Connectivity Example Applications
	Ethernet Network Overview
	Ethernet Packet

	MC9S12NE64 Integrated Ethernet Controller
	MC9S12NE64
	Integrated Ethernet Controller
	MC9S12NE64 System Overview
	MC9S12NE64 Packages
	CRG and Other Basic MC9S12NE64 Peripherals
	Configuring the CRG
	FLASH Clock
	SCI Clock Baud Rate (BRSCI)
	SPI Clock Baud Rate
	IIC Clock
	TIM Clock Rate
	ATD Conversion Clock Frequency
	RTI Time-Out Period
	COP Time-Out Period

	MC9S12NE64 and the IEEE 802.3 Standard
	MC9S12NE64 Ethernet Media Access Controller (EMAC)
	Network Control Register (NETCTL)
	EMAC Enable (EMACE)
	Full Duplex (FDX)
	External PHY (EXTPHY)

	Hardware MAC Address
	MAC Address Recognition and Filtering
	Unicast Filter Mode
	Broadcast Filter Mode
	Multicast Filter Mode and Hash Table
	Promiscuous Filter Mode

	Ethertype Filtering
	Configuring Ethernet Buffers and Maximum Frame Length Settings
	Buffer Size and Starting Address Mapping (BUFMAP)
	Receive Maximum Frame Length (MAXFL)

	Flow Control
	Receiving Pause Frames
	Hardware Generated Pause Control Frame Transmission

	MII Management Interface
	Read Operation
	Write Operation

	MC9S12NE64 Ethernet Physical Transceiver (EPHY)
	EPHY Registers and Configuration Options
	Auto-Negotiation Disable
	EPHY Interrupt Enable
	Clearing the EPHY Interrupt

	Internal EPHY Control and Status Registers
	PHY Control Register
	PHY Status Register and Proprietary Status Register
	Auto-Negotiate Advertisement Register
	Interrupt Control Register

	Initializing the MC9S12NE64 Ethernet Controller
	Using the MC9S12NE64 Ethernet Interface
	Buffer Transmit Operation
	Buffer Receive Operation

	Network Data Transaction at Upper Layer Protocols
	Conclusion

