

Application Note

AN2681/D
Rev. 0, 03/2004

MC9328MX21
1-Wire Interface on the
i.MX21 Application
Processor

This document contains information on a product under development. Motorola reserves the right to change or
discontinue this product without notice. © Motorola, Inc., 2004. All rights reserved.

By Anish Trivedi

Contents
1 Introduction1
2 i.MX21 1-Wire Hardware

Interface.......................3
3 Configuration...............6
4 Program Source Code 7
5 Experimental Battery

Discharge Data13
6 Summary....................16
7 Referenced Documents16

The 1-Wire Interface on the i.MX21 Application Processor is an on-chip peripheral
device that establishes bi-directional communication with one or more external 1-Wire
devices. This application note illustrates the steps required to establish communication
between the on-chip 1-Wire Interface and an external MAXIM/Dallas Semiconductor
Multichemistry Battery Fuel Gauge device, DS2751.

1 Introduction
The i.MX21 General Purpose I/O (GPIO) port E can be configured for use as a 1-Wire
port. A 1-Wire system consists of an I/O data pin that can be driven to logic high, driven
to logic low, or can act as an input. There is also an associated ground pin. The system
requires one bus master, and can support multiple slave devices. There is only one slave
device (the DS2751) for the scenario considered in this application note, with the i.MX21
acting as the bus master.

1.1 1-Wire Battery Fuel Gauge Circuit
The fuel gauge circuit is shown below. It contains sensors for battery voltage, current
flowing through the 25 mΩ sense resistor, and die temperature. These values are stored in
internal registers that are updated every few ms. Registers are read through the data pin on
the DS2751 that is connected to the 1-Wire port on the i.MX21.

Figure 1. DS2751 Fuel Gauge Circuit

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Introduction

2 MC9328MX21 Application Note MOTOROLA

1.2 Communication Protocol
To communicate with the DS2751, the 1-Wire Interface must follow a protocol. The flowchart below,
reproduced from the DS2751 specification, illustrates the transaction flow required between the i.MX21
processor and the DS2751.

Figure 2. DS2751 1-Wire Communication

When idle, the 1-Wire bus is high until the i.MX21 drives it low during a reset pulse. The bus is held low
for a specified time interval, subsequently the slave devices respond with a presence pulse. When the
presence of slave devices has been detected, the i.MX21 proceeds to the addressing portion of the
sequence.

As shown in Figure 2, there are four valid Net Address Commands:

1. Read: the DS2751 address, if the DS2751 is the only device connected. Otherwise, all devices try
to transmit their address, which results in a data collision.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

i.MX21 1-Wire Hardware Interface

MOTOROLA MC9328MX21 Application Note 3

2. Match: an address that is transmitted bit-by-bit, while all the slaves listen. As soon as a mismatch
occurs, the slave ignores the rest of the transmission until a reset pulse is seen.

3. Search: learn the addresses of all devices connected to the bus via the process of elimination.
This scenario does not use this address command, so it will not be discussed in detail. See
Chapter 5 of the Book of DS19xx_iButton Standards found at www.maxim-ic.com for a complete
explanation of net address search.

4. Skip: addressing all together, as long as only the DS2751 is connected. This is the scheme
employed for the testing documented in this paper. The DS2751 is ready to accept a function
command after receiving the skip net address command.

The DS 2751 is equipped with internal registers, a 32-byte EEPROM, and a 16-byte SRAM for battery
statistics storage and battery capacity calculations. The function commands recognized by the DS2751
include Read Data from DS2751 registers and memory, Write Data to certain registers and memory,
Copy Data from the SRAM to the EEPROM, Recall Data from the EEPROM to the SRAM, and Lock an
EEPROM block containing the specified address.

For this scenario, a Lithium Ion battery is connected as shown in Figure 1. The rate at which the battery
loses its charge depends on the load current, which was controlled using the potentiometer. The DS2751
records the voltage readings to its 16-bit voltage register. The i.MX21 is programmed to read the voltage
readings from the DS2751 through the 1-Wire interface every few minutes while the battery is
discharging. The following sections explain how to interface with the 1-Wire module on the i.MX21, and
also provide the software for communication with the DS2751.

2 i.MX21 1-Wire Hardware Interface
GPIO port E on the i.MX21 processor can be configured as a 1-Wire bus. Timing requirements are met in
hardware with the help of the clock (1 MHz) and the 1-Wire state machine. The registers identified in
Table 1are available to control the 1-Wire communication.

Table 1. 1-Wire Module Register Memory Locations

Description Name Address

1-Wire Control Register CONTROL 0x10009000

1-Wire Time Divide Register TIME_DIVIDER 0x10009002

1-Wire Reset Register RESET 0x10009004

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

i.MX21 1-Wire Hardware Interface

4 MC9328MX21 Application Note MOTOROLA

2.1 Control Register
The 16-bit Control register is used to drive the communication with the 1-Wire external device.

Table 2. Control Register Description

Name Description Settings

Bits 15-8 Reserved bits N/A

RPP
Bit 7

RESET PRESENCE PULSE—This bit is
self-clearing, and is cleared after the
detection of the presence pulse from the 1-
Wire interface.

0 = Do nothing / pulse complete.
1 = Generate Reset Pulse and sample for
DS2502 presence pulse.
This bit is self-clearing and will be cleared
after the presence is detected.

PST
Bit 6

PRESENCE STATUS—This bit is valid
after the RPP bit is self-cleared.

0 = Device not present.
1 = Device present.
This bit is valid after the RPP bit is self-
cleared.

WR0
Bit 5

WRITE 0—This bit is self-clearing and will
be cleared when the write of the bit is
complete.

0 = Do nothing / Write sequence complete.
1 = Write a 0 bit to the interface.
This bit is self-clearing and will be cleared
when the write of the bit is complete.

WR1
Bit 4

WRITE 1 / READ—This bit is self-clearing
and will be cleared when the write of the bit
is complete. This also reads the bit
because Write 1 and Read timings are
identical. The value of the read bit is stored
in RDST, and is valid after WR1/RD is self-
cleared.

0 = Do nothing / Write sequence complete.
1 = Write a 1 bit to the interface.
This bit is self-clearing and will be cleared
when the write of the bit is complete. When
used for a Read operation, the read bit is
stored in RDST, and is valid after WR1/RD
is self-cleared.

RDST
Bit 3

READ STATUS—This bit is valid after the
WR1/RD bit is self-cleared.

0 = A 0 was sampled during a read.
1 = A 1 was sampled during a read.
This bit is valid after the WR1/RD bit is self-
cleared.

Reserved Bits
2-0

Reserved Bits N/A

The programmer only needs to set the bits as specified in the Control register when communicating with
the 1-Wire device and then signal the self-clearing bits when the transaction is complete.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

i.MX21 1-Wire Hardware Interface

MOTOROLA MC9328MX21 Application Note 5

2.2 TIME_DIVIDER Register
The TIME_DIVIDER register divides the peripheral clock, ipg_clock, to generate the internal clock to the
1-Wire module.
The value in the register must be such that IPG_CLOCK / (TIME_DIVIDER+1) • 1 MHz

Table 3. TIME_DIVIDER Register Description

Name Description Settings

Bits 15-8 Reserved bits N/A

dvdr
Bits 7-0

Predivider Factor—This field is used to
set the clock divider setting to control the
frequency of the generated clock.

0 = Divider value is 1 (default).
1 = Divider value is 2.
…

FF = Divider value is 256.

2.3 RESET Register
The RESET register resets the 1-Wire state machine. Resetting the state machine aborts any transaction
that is currently taking place, and reverts the bus to logic high.

Table 4. RESET Register Description

Name Description Settings

Bits 15-1 Reserved bits N/A

RST
Bit 0

Software Reset—The reset register is
used to reset the module through software.

0 = 1-Wire is not reset.
1 = 1-Wire is reset.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Configuration

6 MC9328MX21 Application Note MOTOROLA

3 Configuration
The following settings must be configured to ensure proper operation for the 1-Wire interface.

Table 5. Configuration Settings

Register Name Description Settings

MPCTL0
MPCTL1

Set MCU & System PLL (MPLL) value.
Set BRMO, which affects jitter
performance of the MPLL.

See Chapter 7 of the MC9328MX21
Application Processor Reference Manual,
Draft Rev. 1.10, 2/23/2004, for information
on these registers.

CSCR Scale the MPLL by a factor between 1
and 4 to set FCLK. Configure HCLK by
setting BCLKDIV, which divides FCLK to
generate HCLK. Configure IPDIV, the
HCLK divider that generates
IPG_CLOCK, the clock to the 1-Wire
interface.

HCLK = FCLK / (BCLKDIV+1)

IPG_CLOCK = HCLK / (IPDIV+1)

Bits [15-14]: PRESC is the 2-bit scaling
factor to generate FCLK. 00 = divider is 1,
… 11 = divider is 4.

Bits [13-10]: BCLKDIV is the divider that
generates HCLK. Must equal ‘0010’
(divider is 3). (See note below)

Bit 9: IPDIV is the divider that generates
the clock to the 1-Wire™. Must equal ‘1’
(divider is 2). (See note below)

CSCR
MPCTL1

Restart the MPLL for the settings to take
effect.

The read-only Lock Flag (LF) in the
MPCTL1 register indicates whether the
MPLL output is valid. This bit must be high
before using the 1-Wire interface.

Bit 21 of CSCR: Set MPLL_RESTART to
restart the MPLL at the new frequency.

Bit 15 of MPCTL1: LF will be set when the
restart has completed.

PCCR0 Enable GPIO. Bit 11: GPIO_EN must be set.

PTE_GIUS
GPR_E

Configure GPIO port E for 1-Wire use. Clear Bit 16 of PTE_GIUS, and set Bit 16
of GRP_E.

AIPI_PSR0
AIPI_PSR1

Configure the AIPI for 16-bit
communication, since the 1-Wire registers
are 16-bit wide.

Set AIPI_PSR0 Bit 9, and clear AIPI_PSR1
bit 9.

PCCR1 Enable the ipg_clock to the 1-Wire
module.

Set Bit 31.

TIME_DIVIDER Set the value such that
IPG_CLOCK / (TIME_DIVIDER+1) = 1
MHz. A 1-Wire clock as close to 1 MHz as
possible is required for proper operation.

Bits[7-0]: 0 = Divider is 1
1 = Divider is 2
…
FF = Divider is 256.

NOTE:

The errata document for the i.MX21 reference manual, MC9328MX21
Chip Errata-Rev 0, 2/6/2004 (order number MC9328MX21CE/D), notes
that the BCLKDIV parameter must equal ‘0010’ so that HCLK = FCLK
/ (BCLKDIV+1) = FCLK / 3, and that IPDIV parameter must equal 1, so
that IPG_CLOCK = HCLK / (IPDIV+1) = HCLK / 2.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Program Source Code

MOTOROLA MC9328MX21 Application Note 7

4 Program Source Code
The following code configures the i.MX21 application processor 1-Wire interface, and reads the value
from the DS2751 voltage register every five minutes. The Battery_Gauge_1-Wire_Test.mcp file contains
all the supporting software necessary to run this code on an i.MX21L ADS or EVB. The file was created
in the Metrowerks CodeWarrior IDE.

4.1 Configuration Code
The SysInit() function, found in the file SysInit.c, performs the necessary configuration of the PLLs and
GPIO port E as noted in section 3. It initializes the MPLL to 266 MHz, with a PRESC divide factor of 1,
and an IPDIV divide factor of 2, resulting in a 44.3 MHz IPG_CLOCK.

Code Example 1. SysInit()
void SysInit(void)
{
 // initialize PLL and clocks here
 // Set up the MPLL for 266.0000537MHz
 // PD = 0; MFI = 7; MFN = 115; MFD = 123
 *(p_uint32_t)CRM_MPCTL0 = 0x007B1C73;
 *(p_uint32_t)CRM_MPCTL1 = 0x00000040;
 // set BRMO since 1/10 < MFN/MFD+1 < 9/10

 // Set up the SPLL for 287.9999978Mhz operation
 *(p_uint32_t)CRM_SPCTL0 = 0x03B02227;

 // now configure the CSCR register
 // clear all bits except for PRESC
 *(p_uint32_t)CRM_CSCR &= 0x0000C000;

 // Now set USBDIV=5; SD_CNT=3; BCLKDIV=2; IPDIV=1; HCLK will be 88.6MHz
 // IPG_CLOCK = HCLK / (IPDIV+1) => IPG_CLOCK will be 44.3 MHz
 *(p_uint32_t)CRM_CSCR |= 0x17000A07;

 // Last step, clear PRESC to 0
 *(p_uint32_t)CRM_CSCR &= 0xFFFF3FFF;

 // Now, restart the PLLs
 *(p_uint32_t)CRM_CSCR |= 0x00600000;

 // Wait for lock flag to set
 while((*(p_uint32_t)CRM_MPCTL1 & 0x00008000) != 0x00008000);
 while((*(p_uint32_t)CRM_SPCTL1 & 0x00008000) != 0x00008000);

 // enable the following in the PCCR0
 // HCLK_DMA, LCDC, LCDC_PIXCLK, DMA_EN, GPIO_EN
 *(p_uint32_t)CRM_PCCR0 |= 0x44042800;

 /* Enable 1-Wire Bus */

 // Configure GPIO pin for 1-Wire use
 *(p_uint32_t)GPIOE_GIUS &= 0xFFFEFFFF;
 *(p_uint32_t)GPIOE_GPR |= 0x00010000;
 // enable the ipg_clock to 1-Wire interface
 *(p_uint32_t)CRM_PCCR1 |= 0x80000000;
 // Configure AIPI for 16 bit 1-Wire communication
 *(p_uint32_t)AIPI1_PSR0 |= 0x00000200;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Program Source Code

8 MC9328MX21 Application Note MOTOROLA

 *(p_uint32_t)AIPI1_PSR1 &= 0xFFFFFDFF;

}

The PRESC bits are not touched during the initial clear of the CSCR register, but are later cleared after
the remaining PLL settings have been set. This is the convention followed for setting the PRESC bits for
the i.MX21.

4.2 1-Wire Code
The Main.c file is listed below. The main function sets up the 1-Wire clock to 1 MHz, then sets the
stopwatch timer to 5 minutes. Subsequently an infinite while loop is entered. After the 5-minute timer is
up, the i.MX21 initializes communication (using a reset pulse) to detect any 1-Wire devices. If a presence
pulse is not detected, then the program exits. The program will also exit when the battery voltage goes
below the threshold voltage for the DS2751, approximately 2.5 V, which causes the DS2751 to shut off.
After the initialization, a read command is sent with the address for the voltage register. This is followed
by a receive function, which listens for data from the DS2751 and then assimilates it properly into a
register. The Multi-ICE tool was used to debug over the JTAG interface on the i.MX21 with the ARM™
eXtended Debugger (AXD) tool.

Code Example 2. Main.c
/**
**

 C M O D U L E F I L E

 (c) Copyright Motorola SPS 2000-2003
 ALL RIGHTS RESERVED

**

 Project Name : Maxim DS2751 Battery Fuel Gauge 1-Wire Verification
 Project No. :
 Title :
 File Name : main.c
 Last Modified : 10/20/2003
 (MM/DD/YYYY)

Description : The main function for the 1-Wire device, DS2751, functional
verification. This test will communicate with the DS2751
over the 1-Wire data bus using the direct addressing mode,
assuming that only one slave is present on the bus. The
program will read back voltage values recorded by the

 DS2751 to ensure proper functionality.

 Author: Anish Trivedi

 History (MM/DD/YYYY):
 10/20/2003 - Initial Proposal

*/
#include <stdio.h>
#include "common.h"
#include "tht_memory_map_defines.h"

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Program Source Code

MOTOROLA MC9328MX21 Application Note 9

#include "testcase.h"

/* Modify SysInit() for different system initialization settings */
extern int SysInit(void);
extern int MemInit(void);

/**
D E F I N E S
**/

/***
 Public Functions
***/

int init_1wire(void);
void write1(void);
void write0(void);
void read(uint8_t addr);
uint16_t receive(void);
float volts_decode(uint16_t volts);
float temp_decode(uint16_t temp);
float acc_curr_decode(int16_t acc_curr);

int32_t main(void)
{

 uint16_t voltage, temperature, acc_current;

 SysInit();
 MemInit();

 // enable the stopwatch interrupt
 *(p_uint32_t)(RTC_RTCIENR) = 0x00000001;

 // enable the RTC in the PCCR1
 *(p_uint32_t)(CRM_PCCR1) |= 0x20000000;

 // set the time dividor=44-1 to produce a ~1 MHz clock
 *(p_uint16_t)OWIRE_TIME_DIV = 0x002B;

 // set the stopwatch to 5 mins
 *(p_uint32_t) RTC_STPWCH = 4;

 while (1) {

 // wait for stopwatch interrupt
 while ((*(p_uint32_t)(RTC_RTCISR) & 0x00000001) != 0x00000001);

 // initialize communication with 1-wire device
 if (init_1wire() == 0)
 return -1;

 // read from voltage register
 read(0x0C);

 // Receive voltage register MSB & LSB from DS2751
 voltage = receive();

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Program Source Code

10 MC9328MX21 Application Note MOTOROLA

 printf("%f\n", volts_decode(voltage));

 // clear the stopwatch interrupt
 *(p_uint32_t)(RTC_RTCISR) |= 0x00000001;

 // set the stopwatch to 5 mins again
 *(p_uint32_t) RTC_STPWCH = 4;
 }
}

int init_1wire(void) {

 // Send a reset pulse
 *(p_uint16_t)OWIRE_CTRL = 0x0080;

 // wait for RPP bit to clear
 while ((*(p_uint16_t)OWIRE_CTRL & 0x0080) != 0);

 if ((*(p_uint16_t)OWIRE_CTRL & 0x0040) == 0) {
 printf("One-Wire Device not present.\n");
 return 0;
 }

 // Send "Skip Net Address" Command (0xCC = 11001100)
 write0(); write0(); write1(); write1();
 write0(); write0(); write1(); write1();

 return 1;

}

void write1 (void) {

 // write a 1 to the 1-wire data pin
 *(p_uint16_t)OWIRE_CTRL |= 0x0010;
 // wait until the transaction is complete
 while ((*(p_uint16_t)OWIRE_CTRL & 0x0010) != 0);
}

void write0 (void) {

 // write a 0 to the 1-wire data pin
 *(p_uint16_t)OWIRE_CTRL |= 0x0020;
 // wait until the transaction is complete
 while ((*(p_uint16_t)OWIRE_CTRL & 0x0020) != 0);
}

void read (uint8_t addr) {

 // Send the "Read" command (0x69 = 01101001)
 write1(); write0(); write0(); write1();
 write0(); write1(); write1(); write0();

 // Send the address to read from

 (addr & 0x01) ? write1() : write0();

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Program Source Code

MOTOROLA MC9328MX21 Application Note 11

 (addr & 0x02) ? write1() : write0();
 (addr & 0x04) ? write1() : write0();
 (addr & 0x08) ? write1() : write0();
 (addr & 0x10) ? write1() : write0();
 (addr & 0x20) ? write1() : write0();
 (addr & 0x40) ? write1() : write0();
 (addr & 0x80) ? write1() : write0();

}

uint16_t receive(void) {

 int i;
 uint16_t in_bit;
 uint16_t x = 0;

 // read the 16 bit value, 1 bit at a time
 i = 0;
 while (i < 16) {

 // Read timing is same as Write 1
 write1();
 in_bit = *(p_uint16_t)OWIRE_CTRL & 0x0008;

 // MSB
 if (i < 8)
 in_bit = in_bit << (5+i);
 // LSB
 else if (i > 7 && i < 12)
 in_bit = in_bit >> (i-12);
 else
 in_bit = in_bit << (i-11);

 x |= in_bit;

 i++;
 }

 return x;
}

float volts_decode(uint16_t volts) {

 int coded_volts;
 float decoded_volts;

 coded_volts = volts >> 5;

 // check sign bit, front fill with 1's if negative
 if (volts & 0x8000)
 coded_volts |= 0xFFFFF800;

 // units are 4.88 mV -> convert to volts
 decoded_volts = coded_volts * 4.88 / 1000;

 return decoded_volts;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Program Source Code

12 MC9328MX21 Application Note MOTOROLA

}

float temp_decode(uint16_t temperature) {

 int coded_temp;
 float decoded_temp;

 coded_temp = temperature >> 5;

 // check sign bit, front fill with 1's if negative
 if (temperature & 0x8000)
 coded_temp |= 0xFFFFF800;

 // units are .125 deg C -> convert to deg C
 decoded_temp = coded_temp * .125;

 return decoded_temp;

}

float acc_curr_decode(int16_t acc_curr) {

 int coded_acc_curr;
 float decoded_curr;

 coded_acc_curr = acc_curr >> 3;

 if (acc_curr & 0x8000)
 coded_acc_curr |= 0xFFFFE000;

 // units are 6.25 uV, convert to mA given 25 mohm resistor
 decoded_curr = coded_acc_curr * 6.25 / 1000 / 25;

 return decoded_curr;

}
/**/
/***************** END OF FILE ******************************/

4.2.1 Reusability of 1-Wire Code
Communication with any 1-Wire device requires sending an initial reset pulse, subsequently, all devices
on the 1-Wire bus respond with a presence pulse. After the detection of a presence pulse, the net address
command is sent by the i.MX21. The net address command may be one of the four enumerated in Section
1.2, on page 2. All 1-Wire devices must follow this handshaking procedure to ensure proper
communication with the bus master. Therefore, the device detection and addressing portions of the code,
along with the i.MX21 setup and control code, can be reused for other 1-Wire devices.

After the handshaking procedure has successfully completed, and communication between the i.MX21
processor and the slave device has been established, the i.MX21 issues a function command (such as read
the voltage register on the DS2751). This command can be unique to each 1-Wire device. Code Sample 2
(main.c), presented above, must be modified accordingly.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Experimental Battery Discharge Data

MOTOROLA MC9328MX21 Application Note 13

5 Experimental Battery Discharge Data
Using the code presented here and the scenario described here, battery voltage readings were taken every
few minutes from the battery gauge over the 1-Wire interface with the load current held at a constant
value. Data for two values of the current, 500 mA and 250 mA, are presented in Table 6.

5.1 500 mA Current
The battery voltage was read every 15 minutes, and the potentiometer was set to such a value as to draw a
load current of 500 mA. Table 6 lists the amount of time elapsed since the battery was connected to the
circuit, and the battery voltage was read from the DS2751.

Table 6. Battery Voltage During Discharge with 500 mA Current

Elapsed Time (Minutes) Battery Voltage (V)

0 4.19
15 4.01
30 3.95
45 3.90
60 3.84
75 3.80
90 3.75

105 3.66
120 3.54
135 3.38
150 3.23
165 3.00
180 2.80
195 2.58
200 0

No voltage is seen across the battery terminals after the voltage drops below 2.6 V, because of the
protection circuit built-in to the battery. At the same point, the DS2751 also shuts down, since its
threshold voltage for operation is 2.5 V.

5.2 250 mA Current
To obtain a different discharging curve, the load current was held at 250 mA. Using the stopwatch timer
in the i.MX21, the battery voltage was read from the DS2751 every 5 minutes. The following table lists
the voltage values observed over time.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Experimental Battery Discharge Data

14 MC9328MX21 Application Note MOTOROLA

Table 7. Battery Voltage During Discharge with 250 mA Current

Elapsed Time (Minutes) Battery Voltage (V)

0 4.19
5 4.09
10 4.08
15 4.07
20 4.06
25 4.04
30 4.04
35 4.02
40 4.01
45 4.00
50 3.99
55 3.99
60 3.98
65 3.97
70 3.96
75 3.95
80 3.95
85 3.94
90 3.93
95 3.92

100 3.91
105 3.90
110 3.90
115 3.89
120 3.88
125 3.87
130 3.87
135 3.86
140 3.86
145 3.85
150 3.84
155 3.83
160 3.82
165 3.81
170 3.80
175 3.79
180 3.77
185 3.76
190 3.74
195 3.72
200 3.70
205 3.68
210 3.66
215 3.65
220 3.63
225 3.61
230 3.58
235 3.56
240 3.54
245 3.51
250 3.49

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Experimental Battery Discharge Data

MOTOROLA MC9328MX21 Application Note 15

Elapsed Time (Minutes) Battery Voltage (V)

255 3.46
260 3.44
265 3.42
270 3.39
275 3.36
280 3.34
285 3.31
290 3.28
295 3.25
300 3.23
305 3.20
310 3.17
315 3.14
320 3.11
325 3.08
330 3.05
335 3.02
340 2.99
345 2.97
350 2.94
355 2.91
360 2.88
365 2.85
370 2.83
375 2.80
380 2.77
385 2.74
390 2.71
395 2.67
400 2.63
405 2.55
410 2.42
415 0

The battery lasts approximately twice as long when the load current is divided by half.

5.3 Estimating Battery Capacity
After the characterization of the battery is complete, the remaining capacity can be calculated using a few
equations. Knowing the FULLI and EMPTYI values of the battery voltage for a given load current I, and
given the most recent voltage reading V, the remaining battery capacity can be estimated as:

Capacity = [(V - EMPTYI) / (FULLI - EMPTYI)] x 100%

The estimated battery capacity for both the 500 mA and 250 mA load currents over the duration of the
discharge are presented in the following plot. The FULL value for both cases is 4.19V, while the
EMPTY500 = 2.42V and EMPTY250 = 2.58V.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Summary

16 MC9328MX21 Application Note MOTOROLA

Figure 3. Battery Capacity Calculation

6 Summary
The 1-Wire interface on the i.MX21 application processor requires configuration of the MPLL, GPIO,
and AIPI registers before any 1-Wire hardware registers can be accessed. Timing requirements are crucial
for proper operation, and the 1-Wire state machine and the internal clock provide the necessary signals.
The clock must be configured to approximately 1 MHz. The user can then set the 1-Wire Control register
to send and receive bits over the 1-Wire bus.1

7 Referenced Documents
1. DS2751 Multichemistry Battery Fuel Gauge Data Sheet, Maxim/Dallas Semiconductor

2. Lithium-Ion Cell Fuel Gauging with Dallas Semiconductor Battery Monitor ICs,
Maxim/Dallas Semiconductor (order number App Note 131)

3. MC9328MX21 Chip Errat, (order number MC9328MX21CE/D)

4. MC9328MX21 Application Processor Reference Manua, (order number
MC9328MX21RM/D)

5. Software for i.MX21 Application Processor 1-Wire Interface (order number AN2681SW)

1 1-Wire is a registered trademark of Maxim /Dallas Semiconductor.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center, 3-
20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,
2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to

use Motorola products. There are no express or implied copyright licenses granted hereunder

to design or fabricate any integrated circuits or integrated circuits based on the information in

this document.

Motorola reserves the right to make changes without further notice to any products herein.

Motorola makes no warranty, representation or guarantee regarding the suitability of its

products for any particular purpose, nor does Motorola assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all liability,

including without limitation consequential or incidental damages. “Typical” parameters which

may be provided in Motorola data sheets and/or specifications can and do vary in different

applications and actual performance may vary over time. All operating parameters, including

“Typicals” must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of others. Motorola

products are not designed, intended, or authorized for use as components in systems intended

for surgical implant into the body, or other applications intended to support or sustain life, or for

any other application in which the failure of the Motorola product could create a situation where

personal injury or death may occur. Should Buyer purchase or use Motorola products for any

such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its

officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any

claim of personal injury or death associated with such unintended or unauthorized use, even if

such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. All
other product or service names are the property of their respective owners. ARM and the ARM
POWERED logo are the registered trademarks of ARM Limited.

Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2004

AN2681/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

