
© Motorola, Inc., 2004

AN2616
2/2004, Rev. 1

Getting Started with HCS08
and CodeWarrior Using C

Application Note

By Stephen Pickering
8/16-bit Systems Group
East Kilbride, Scotland

Overview

The purpose of this application note is to demonstrate how easy it is to develop

C code for an HCS08, using Metrowerks CodeWarrior®. A simple application is
used in order to explain the techniques in developing an HCS08 application
with CodeWarrior.

An important difference between the HC08 and the HCS08 is the inclusion of a
suite of on-board hardware debugging facilities, designed to be used via the
BDC (background debug controller). Code is debugged using the HCS08 BDM
(background debug mode) pod, along with one of the demonstration/evaluation
boards with an MC9S08GB60 device. The BDM pod used in the application is
a P&E USB ML 12 (except where stated). Since BDM is an in-circuit debug
methodology, the hardware could be the real application rather than a
demo/evaluation board.

During the MC9S08GB60 launch, two boards (manufactured by Axiom) were
made available: a low-cost demo board, and a more comprehensive evaluation
board with LCD.

Although the document refers to the MC9S08GB60, the concepts apply to all
the HCS08 devices, with the appropriate substitutions (for device name,
header file names, etc.).

If CodeWarrior version 3 (or higher) is not installed, refer to Metrowerks
HCS08 CodeWarrior Development Tools on page 34.

If you are using Metrowerks CodeWarrior and/or HCS08 for the first time, and
you are unsure about writing C code in this environment, refer to CodeWarrior
C and HCS08 on page 37, for a quick introduction to how the device specific
features are used in the Metrowerks C programming language.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

2 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

Contents

Overview. 1
Contents . 2
HCS08 Demonstration and Evaluation Boards. 3
Introduction . 3

What is an HCS08?. 4
Background debug mode . 5
HCS08 serial monitor . 6
BDM or monitor mode? . 6

Developing an Application with CodeWarrior . 6
Description of hardware used . 7
Creating a new project CodeWarrior . 8
Connecting the hardware . 15
Adding files to the project . 22
Illuminate LED2 if SW2 is pressed . 25
Use PWM to flash LED . 28
Add interrupt on SW1 . 29
Set clock frequency . 31

Metrowerks HCS08 CodeWarrior Development Tools . 34
Metrowerks CodeWarrior . 34
Additional HC(S)08 help included with CodeWarrior. 34
Metrowerks . 34
Metrowerks CodeWarrior for HC(S)08 . 35

CodeWarrior C and HCS08 . 37
Data types . 38
What a project consists of . 38
Using CodeWarrior device definitions . 39
Device file (MC9S08GB60.c) . 40
Header file (MC9S08GB60.h) . 40
Register and bit definitions . 40
How device registers and bits are used . 41
How device registers are defined and used . 42
How device register bit(s) are defined / used . 43
Register names used with multiple peripherals . 45

Frequently Asked Questions. 46
Where can I get the most up to date documentation. 46
Device and/or target isn't supported by Metrowerks . 46
USB BDM doesn't work with Metrowerks HC08 Codewarrior v3.0 46
Tips on using a parallel BDM pod? . 46
P&E parallel Multilink BDM & laptop . 47
Monitor mode is not working? . 47
How do I reprogram the HCS08 monitor? . 47
How can I program small batches of HCS08 devices without tying up a PC? 47
Code in FLASH only works when BDM is powered? . 47
Debugger not showing the source code of main.c? . 48
How do I set a breakpoint in the debugger? . 49
Debugging does not seem to use the hardware/select in-circuit debug 50
How can I see the assembler code generated for C statements?. 50
What are all the interrupt vector numbers for the MC9S08GB60? 51
Where are header files located? . 51
Should I use bit fields or masks for bit manipulation? . 51
How does the compiler use page 0? . 51
How can I force a variable to reside in page 0? . 52
How do I disable the watchdog? . 52
Problems with variable, structure, or type definition? . 52
How do I add interrupt handlers? . 53
How can I use the assembler within C? . 54
How are interrupt vectors redirected? . 54
How do I use masks? . 54
How do I set the compiler options? . 55
Big Endian or Little Endian? . 56
Is Linux/Unix support available? . 57

References . 58
Trademarks .61

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
HCS08 Demonstration and Evaluation Boards

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 3

HCS08 Demonstration and Evaluation Boards

At the time of writing of this application note, the two Motorola HCS08 boards
shown below are available for the HCS08. Both use the MC9S08GB60.

CAUTION: The version of Codewarrior supplied may not support your chosen
device or connection method; check Metrowerks website for relevant
service packs (see FAQs).

Using BDM cables: see FAQ for advice on using and how to update driver.

Introduction

The aim of this application note is to help the first time user of HCS08 and
Metrowerks CodeWarrior C to be able to:

• understand the major differences between BDM and monitor mode

M68DEMO908GB60
Demonstration Board

M68EVB908GB60
MC9S08GB60 Evaluation Board

(EVB)

• DB9 Serial Cable

• Documentation (CD)

• Metrowerks CodeWarrior for
HC08 and HCS08

• Manual

• Batteries

• DB9 Serial Cable

• Support CD

• Metrowerks CodeWarrior for
HC08 and HCS08

• Manuals

• Power supply

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

4 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

• create a project using CodeWarrior

• understand how to create and add files to a project

• connect the hardware (demo or evaluation board) via monitor mode or
BDM

• run the code in the hardware

• add code to illuminate LED according to a switch and step through code
observing its operation

• add interrupt handlers to a program

• initialize and use the PWM to flash an LED with 25:75 duty cycle and
inverse depending upon a switch

• configure the FLL and on-board crystal for maximum performance.

In addition, the reader is provided with:

• an explanation of how Metrowerks defines HCS08 devices and how the
device registers are used with C

• answers to commonly asked questions

• pointers and references to further information

• exercises in creating code.

As the exercises are not intended to be a lesson in typing, the appropriate files
are included within the zip file AN2616SW.zip. The files main.c and
M68DEMO908GB60.h are contained in the relevant sub directory within the zip
file, and can simply be dragged from the zip file into the Sources directory of
the CodeWarrior project at the appropriate point. For example, the directory 2.4
within the zip file contains the correct files for section 2.4. Alternatively, the
code can be copied from an electronic copy (pdf) of the application note, and
pasted into the relevant file using the CodeWarrior editor.

What is an HCS08? The HCS08 is Motorola’s latest range of 8-bit low-power, high-performance
microcontrollers based on the HC08 core. The major differences from the
HC08 are as follows.

• Core bus speed increased from 8 MHz to 20 MHz

• Hardware Background Debug Controller (BDC) and On-chip Debug
Module (DBG), providing an additional two breakpoints in addition to the
single breakpoint capability of the HC08, for improved debug and
FLASH programming support

• Additional addressing modes for improved stack usage resulting in
improved code density and performance

NOTE: Instruction cycle timings have changed on some instructions/addressing
modes due to design requirements to enable higher frequency operation and
care should be exercised with time critical code that was used on an HC08.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Introduction

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 5

The following block diagram shows the major elements of the MC9S08GB60.

Background debug
mode

Background debug mode (BDM) is a term used to refer to a mode of operation
of the HCS08 where an in-circuit debugging technique is used. To use BDM,
an interface typically referred to as a “BDM pod” is used to connect an external
debugger, such as Metrowerks HCS08 True-Time Simulator and Real-Time
Debugger, running on a PC, to the device being debugged.

A major advantage of Motorola’s BDM is its single pin operation, which allows
all other pins to be used for the application (unlike, for example, JTAG, which
requires four pins to operate).

The functional components of an HCS08 that provide this debugging capability
are the BDC and DBG sections of the core.

PTD3/TPM2CH0
PTD4/TPM2CH1
PTD5/TPM2CH2
PTD6/TPM2CH3

PTC1/RxD2
PTC0/TxD2

VSS

VDD

PTE3/MISO
PTE2/SS

PTA7/KBIP7–

PTE0/TxD1
PTE1/RxD1

PTD2/TPM1CH2
PTD1/TPM1CH1
PTD0/TPM1CH0

PTC7
PTC6
PTC5
PTC4
PTC3/SCL
PTC2/SDA

PO
RT

 A
PO

RT
 C

PO
RT

 D
P

O
R

T
E

8-BIT KEYBOARD
INTERRUPT MODULE (KBI)

IIC MODULE (IIC)

SERIAL PERIPHERAL
 INTERFACE MODULE (SPI)

USER FLASH

USER RAM
(GB60 = 4096 BYTES)

DEBUG
MODULE (DBG)

(GB60 = 61,268 BYTES)

HCS08 CORE

CPU

BDC

INT

3-CHANNEL TIMER/PWM
MODULE (TPM1)

PTB7/AD7–

PO
RT

 B

PTE5/SPSCK
PTE4/MOSI

PTE6
PTE7

INTERFACE MODULE (SCI2)

HCS08 SYSTEM CONTROL

RESETS AND INTERRUPTS
MODES OF OPERATION
POWER MANAGEMENT

VOLTAGE
REGULATOR

RTI

SERIAL COMMUNICATIONS

COP

IRQ LVD

INTERNAL BUS

LOW-POWER OSCILLATOR

INTERNAL CLOCK
GENERATOR (ICG)

 RESET

VSSAD

VDDAD

VREFH
VREFL

ANALOG-TO-DIGITAL
CONVERTER (ATD)

INTERFACE MODULE (SCI1)
SERIAL COMMUNICATIONS

5-CHANNEL TIMER/PWM
MODULE (TPM2)

P
O

R
T

F

PTF7–PTF0

PTD7/TPM2CH4

8

PTA0/KBIP0

8

PTB0/AD0

8

PTG3
PTG2/EXTAL

PTG0/BKGD/MS
PTG1/XTAL

P
O

R
T

G

PTG4

PTG6
PTG7

PTG5

(GB32 = 32,768 BYTES)

(GB32 = 2048 BYTES)

IRQ

10-BIT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

6 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

• Background Debug Controller (BDC) — the module that controls access
to the HCS08 core

• DeBuG module (DBG) — essentially a dual breakpoint controller and
8-word (16-bit) FIFO trace buffer

HCS08 serial
monitor

As the HCS08 does not have a ROM-resident monitor like the HC08, Motorola
has written a monitor; this is programmed into the HCS08 device and occupies
about 1K of FLASH memory. The monitor enables debugging of an HCS08
through one of the on-board serial modules (SCI1) and provides a seamless
integration with the CodeWarrior tools, providing almost all the functionality of
BDM, albeit slightly slower.

NOTE: The HCS08 monitor is not the same as or compatible with the HC08 monitor
commonly referred to as MON08.

BDM or monitor
mode?

This application note was written with the use of a BDM pod (USB version), and
verified using the HCS08 serial monitor mode and parallel BDM. Differences in
operation between BDM and monitor mode are discussed, where appropriate.

The major advantages of using BDM over HCS08 serial monitor mode are as
follows.

• Only one pin of the target device is used

• BDM does not use any peripherals

• BDM does not use any RAM or FLASH

• BDM cannot be locked out due to interrupts being disabled

• BDM can operate at any processor speed

• BDM can re-sync if processor speed changes during debug

• Device programming times are faster

Developing an Application with CodeWarrior

This section develops a simple application which illustrates the development
process involved in using CodeWarrior.

The application uses the M68DEMO908GB60 board, and its five LEDs and four
switches. When the complete application is built, the code will:

• initialize peripherals

• set up interrupt handler

• configure a PWM waveform

• turn off all LEDs

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 7

• pulse LED5 with 75% duty cycle off; set LED3 on

• set the processor speed with the FLL

and will then loop indefinitely around code which will:

• cause an interrupt if SW1 is pressed:
– The Interrupt handler will set LED1 (and latch it) according to state

of switch SW4: i.e. ON if switch is pressed; otherwise it will be
switched OFF

• set or clear LED2 according to the state of switch SW2:
– Pressing switch SW2 will set LED2, releasing SW2 will clear LED2

• check the state of switch SW4 when switch SW3 is pressed, and
set/clear LED3 and LED4 accordingly:
– If SW4 is pressed

– set LED4, clear LED3 and Pulse LED5 with 75% duty cycle on
– Otherwise

– set LED3, clear LED4 and Pulse LED5 with 75% duty cycle off

This application will be developed incrementally, showing the steps involved in
creating the application and explaining the steps taken.

NOTE: Because of the differences between the demo board and the evaluation board,
the buzzer on the evaluation board is used as an audible alternative to LED5
output on the demo board.

Description of
hardware used

The MC9S08GB60 evaluation board (M68EVB908GB60) or the low-cost demo
board (M68DEMO908GB60) may be used. The application chosen for the
demonstration will work on either board; however, setting up the boards to
enable the switches, LEDs, and monitor mode will be different.

Setting up the demo
board

To use the demo board with this application note, the LEDs and switches must
be suitably configured as follows.

• The five jumpers on LED_EN must be installed to enable the LEDs

• To enable HCS08 serial monitor mode, the serial port SCI transmit and
receive must be connected to the DB9 header, and power applied to the
RS232 driver; this is accomplished by installing jumpers 1, 2 and 3 on
COM_EN

Setting up the
evaluation board

To use the evaluation board with this application note, the LEDs and switches
must be suitably configured as follows.

• The USER-ENABLES dip switch 2 should be set ON; this connects the
switches SW[1:4] on the evaluation board to PORTA[4:7]

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

8 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

• The USER-ENABLES dip switches 5,6,7 and 8 should be set ON; this
connects the LEDs on the evaluation board to PORTF[0:3]

• The COM_SW dip switch 8 should be set to ON; this enables the
on-board buzzer

• To enable HCS08 serial monitor mode, the serial port SCI receive must
be connected to the DB9 header via the RS232 driver; this is
accomplished by setting switch 1 of COM_EN ON

Creating a new
project CodeWarrior

This section discusses the project types that can be created within
CodeWarrior.

CodeWarrior has a project wizard that guides you through the process of
creating a project.

1. Create a new project by selecting “New…” from the File menu:

either of which will invoke the project creation dialog box shown below.

Or by pressing
the New button:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 9

When creating a new project, the project wizard presents four main options:

2. Select “HC(S)08 New Project Wizard”.

3. Select button to set the “Location”. This allows you to select the
parent directory for the project:

Empty Project Creates the very minimum of files required, essentially
just creating the project file.

HC(S)08 Board
Support
Stationary

Provided as a quick start to use one of the demo boards,
provides some skeleton code (or demo), and can be
used to get accustomed quickly to CodeWarrior and a
board.

HC(S)08 New
Project Wizard

Used to choose the appropriate device on which to base
the project, and is the most commonly used wizard.

HC08 Stationary Provides the HC08 board support of the previous
CodeWarrior for the HC08 and is not used for HCS08
devices or board.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

10 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

4. Once the root directory for the project has been located, enter the
directory to be created (for example, “Project Directory”, as shown in the
diagram above).

5. Select , and the new project directory / file name will be
displayed.

6. In the “Project name:” field, you may enter the name of the project file to
be created (by default it will be the same as the directory name):

7. Select . A popup will appear which lists the possible devices:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 11

8. Select your desired device (MC9S08GB60 in this example), and press

, which will bring up the language dialog box:

9. Select C and press . This will bring up the processor expert
dialog box:

As this application note is about using C with the HCS08 and CodeWarrior,
“Processor Expert” is not selected. If you wish to use “Processor Expert”, refer
to the online help (and examples) before proceeding; otherwise:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

12 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

10. Select , and the PC-lint option will appear:

11. Unless you have purchased PC-lint and wish to use it, select “No” and

press , and the floating point support dialog box will appear:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 13

12. As the application will not use floating point support, select “None” and

press . The memory model selection will appear:

13. Select “Small” and press . The connection dialog will appear:

By selecting “P&E Full Chip Simulation”, “P&E Hardware Debugging” and
“Motorola Serial Monitor”, it will be possible to use either simulation, the serial
monitor within the HCS08 FLASH, or BDM to debug code.

NOTE: There is no code overhead as a result of choosing multiple connection
methods.

Enabling all the likely connection methods makes switching between the
different targets easier. For example, initially the development could use the
simulator and swap to the HCS08 serial monitor or BDM method as required.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

14 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

The supported target devices are listed in the following table.

Project creation is now complete!

CodeWarrior
generated project

Once the project wizard has finished, a project, including a skeleton
application, has been created. The project window will look something like:

Details of the files and directories are discussed in section “4. CodeWarrior C
and HCS08”.

Target Comment

P&E Full Chip
Simulation

P&E FCS This option allows the on-chip peripherals to be emulated
and software simulation of the peripherals.

P&E Hardware
Debugging

P&E ICD This option enables connection to the device via P&E
hardware for HC08 and other P&E hardware such as USB
HCS08/HCS12 Multilink.

Motorola Serial
Monitor

Monitor This option connects to the HCS08 device through the
monitor ROM within the HCS08 device.

BDM HCS08 BDM Legacy support only — not recommended for use
(supports parallel BDM Multilink only).

Superseded by P&E Hardware Debugging. Will be
removed in future versions of CodeWarrior.

Hitex Refer to manufacturer’s detail.

Lauterbauch Refer to manufacturer’s detail.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 15

Initial code The new project wizard creates enough code to actually load into a board and
run/debug, the main program (main.c) being:

Connecting the
hardware

The preferred method of connecting the target device is via a BDM pod, but a
standard RS232 serial connection to the monitor of the HCS08 can also be
used.

The following sections discuss the BDM and HCS08 serial monitor connection.

Background debug
mode (BDM)

To set up: connect the BDM pod to the PC with the appropriate cable supplied
with the pod (for example, parallel cable, USB cable), connect the BDM pod to
the target board, paying particular attention to ensure correct alignment of pin
1 of the BDM cable with the BDM connector on the board. Refer to the
appropriate BDM and board for additional help.

Selecting a BDM The BDM on the HCS08 evolved from the BDM used on the HCS12 (BDM
Version 4).

The preferred method of connecting to an S08 device for code development or
debugging is using one of the following BDM interfaces:

• M68MULTILINK12 (P&E BDM Multilink)

• M68MULTILINKS08 (NOT the similarly named M68MULTILINK08)

• P&E USB ML12 / P&E USB HCS08/HCS12 MULTILINK

• P&E Cyclone Pro

NOTE: M68MULTILINK08 and M68MULTILINKS08 are NOT the same. The
M68MULTILINK08 is a MON08 interface for use with HC08 devices; the
M68MULTILINKS08 is a BDM pod for HCS08 that is also compatible with HC12
and HCS12.

HCS08 serial monitor
mode

To set up: connect the serial cable to the PC, and connect the other end to SCI1
on the target board. Refer to the appropriate board manual for additional help.

The HCS08 devices supplied with the demo and evaluation boards are pre-
programmed with the HCS08 serial monitor. Refer to Motorola application note

#include <hidef.h> /* for EnableInterrupts macro */
#include <MC9S08GB60.h> /* include peripheral declarations */

void main(void) {
 EnableInterrupts; /* enable interrupts */
 /* include your code here */
 for(;;) {
 __RESET_WATCHDOG(); /* kicks the dog */
 } /* loop forever */
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

16 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

“AN2140/D — Serial Monitor for MC9S08GB/GT” for a full description of its
capability.

Running the code The next two sub-sections discuss the use of HCS08 serial monitor mode or
BDM as the method of connecting to the target device on either the evaluation
or demo board. There are several differences in the dialog boxes and in the
progression through the target connection; these differences are detailed in the
following sections.

Using monitor If you are using BDM, skip this section; go directly to Using BDM on page 17.

1. From the target connection pull-down, ensure that “Monitor” is selected:

2. Enable monitor mode on the target. (For the demo and evaluation
boards, press switch 4, whilst applying power, or whilst pressing the
reset switch on the evaluation board).

3. Select Debug (). This compiles and links the code, and invokes the
True-Time simulator and Real-Time debugger (the HCS08 debugger).
The debugger will then proceed to try to establish connection with the
target device, by trying all the baud rates:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 17

If the debugger fails to communicate with the device after going through all
possible baud rates, a window suggesting possible causes will pop up:

Power the board off and then on again (holding down switch SW4), and press

the button. Communication should now be established.

Once communications have been established between the debugger and the
device, the debugger will pop up a few dialog windows as it prepares the
device, ready for debugging; the first dialog box is the monitor preload:

This will be followed by the FLASH erase/programming and the monitor post
load commands.

Skip the next section; go directly to Debugging — communications
established on page 20.

Using BDM 1. From the target connection pull-down, ensure that “P&E ICD” is
selected:

2. Select Debug (). This compiles and links the code, and invokes the
True-Time simulator and Real-Time debugger (the HCS08 debugger).
As this is the first time the code has been run, the debugger does not

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

18 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

know which BDM device is to be used to connect to the target, so it pops
up a dialog box for configuration (defaulting to use LPT1):

CodeWarrior knows the CPU Type is an HCS08, because that is the project
type we created.

The debugger will list the pods it can see on the pull-down list. If the pod being
used is not shown, ensure it is connected correctly, then press the “Refresh
List” button. The pod should now appear on the list.

Ensure the relevant pod is highlighted; in this example, P&E USB ML 12 is
being used:

3. Select .

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 19

The BDM firmware version will be checked, and, if the pod has old firmware, a
dialog box will appear, allowing it to be upgraded:

Next, a dialog pops up asking to erase and program FLASH:

Select , and a dialog pops up showing the reprogramming of the
pod:

Select .

NOTE: This will occur only with BDM pods that have old firmware. Once upgraded,
the prompt will not recur for a pod that has been updated (unless
CodeWarrior is updated and new code is available).

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

20 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

4. Select to proceed. Another window pops up showing the
erasure and programming of the FLASH:

At this point, the code has been programmed in the device, and the debugger
shows the following windows.

Debugging —
communications
established

Once communication (BDM or Monitor) has been established with the device,
the debugger will show its debug window:

NOTE: If the debugger does not erase the FLASH, it is almost certainly operating in
simulation mode. Refer to the Frequently Asked Questions section for
information on how to select the relevant in-circuit debug mode.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 21

Apart from a few exceptions, debugging will be the same whether the monitor
or BDM is used. The notable difference is that, when debugging using the
HCS08 serial monitor, loss of communication between the debugger and the
device is possible due to the fact that the monitor is code within the FLASH,
interrupt driven and susceptible to errors in the user code, for example,
disabling interrupts or user code runaway.

The monitor is in protected FLASH but, if it is erased, it will have to be
reprogrammed. Refer to Frequently Asked Questions for more information on
reprogramming the monitor.

Buttons of interest from the debugger window are:

At this point, running the application will appear to have no effect, as there is
no code that actually does anything. The following sections add code that can
be run, and that performs real functions.

NOTE: For a detailed discussion of the HCS08 on-chip debug features using the
CodeWarrior interface, refer to application note, “AN2596 — Using the HCS08
family On-Chip Debug System.”

RUN

Run code from current pc location until either
halted or reset

STEP INTO Execute one C statement; enter into functions

STEP OVER Execute one C statement or complete function

STEP OUT Execute remaining C statements in function

Assembly Step Step one assembly language instruction

HALT Stop the executing program

RESET Hardware reset

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

22 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

Adding files to the
project

Multiple files can be added to a project to allow a program to be split into logical
sections for easier development. As an example, a header file defining the
switches and LEDs for the demo and evaluation boards will be added to the
project to demonstrate the process.

Header file for demo
board

A small header file is created to give more meaningful names to the LEDs and
switches on the demo board for use in the application. Another benefit of using
an application specific header file is that code will be easier to modify for
different devices or applications, if meaningful names are used rather than the
port or pin names; for example, in a real application, LED2 may be the STOP
LED.

NOTE: The header will work with the demo board and the evaluation board, as only a
subset of the evaluation board is used.

Add a file to a project In order to add a new file to a project, the file must exist; therefore, a new file
must be created. To do this:

1. From the File menu, select “New…”:

The new dialog window will appear:

or press the New
button:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 23

2. Select the “File” tab. There will be one option — create a file:

3. A dialog box will appear. Select button, navigate to the Sources
directory within the project directory, and enter the name of the file to
create (for example, M68DEMO908GB60.h):

4. Select . This will create an empty text file in the appropriate
directory and bring up a text editor window for the file:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

24 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

5. Enter the following text into the file:

6. After entering the text, select the close window (). This will bring up
the save dialog:

7. Press to save the changes made to the file.

Add file to project 1. To add the header file to the project, select the desired directory (for
example, “Sources”) in the project manager and press the right mouse
button. The following dialog will appear:

/* File: M68DEMO908GB60.h*/

/* include peripheral declarations */
#include <MC9S08GB60.h>

/*define value for led's when on and off*/
#define ON 0
#define OFF 1

/*define value for switches when up (not pressed) and down (pressed)*/
#define UP 1
#define DOWN 0

/*define led's*/
#define LED1 PTFD_PTFD0
#define LED2 PTFD_PTFD1
#define LED3 PTFD_PTFD2
#define LED4 PTFD_PTFD3
#define LED5 PTFD_PTFD4

/*define switches*/
#define SW1 PTAD_PTAD4
#define SW2 PTAD_PTAD5
#define SW3 PTAD_PTAD6
#define SW4 PTAD_PTAD7

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 25

2. Select “Add Files…”. This will pop up the file dialog window, which is
used to locate the file:

Select to add the file to the project and associate it with the “Sources”
folder:

A popup will appear showing a list of available targets that the file can be added
to. Select all:

Illuminate LED2 if
SW2 is pressed

Let’s add some code to light up LED2 if SW2 is pressed. Double-click on
“main.c” in the project manager to invoke the editor.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

26 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

First, add an include statement to use our header file for the demo board:

Next, configure PORTF for output (LEDs) and PORTD for input (switches):

Code to turn on LED2 depending upon the state of SW2 would be:

To edit the main.c file, simply double-click on the file name within the project
window; this will invoke the file editor. By adding this code within the main
program, as illustrated below, LED2 will be turned on for as long as SW2 is
pressed. The resulting program is:

#include "M68DEMO908GB60.h"

 PTADD = 0; //initialize as input (Data Direction Register)
 PTAPE = 0xf0; //Pullups on upper 4 bits

 /*initialize bits 0-3 of Port F as outputs (connected to led's)*/
 PTFDD = 0x0f;
 LED1 = OFF;
 LED2 = OFF;
 LED3 = OFF;
 LED4 = OFF;
 LED5 = OFF;

LED2 = SW2;

#include <hidef.h> /* for EnableInterrupts macro */
#include <MC9S08GB60.h> /* include peripheral declarations */

#include "M68DEMO908GB60.h"

void main(void) {
 EnableInterrupts; /* enable interrupts */
 /* include your code here */

 PTADD = 0; //initialize as input (Data Direction Register)
 PTAPE = 0xf0; //Pullups on upper 4 bits

 /*initialize bits 0-3 of Port F as outputs (connected to led's)*/
 PTFDD = 0x0f;
 LED1 = OFF;
 LED2 = OFF;
 LED3 = OFF;
 LED4 = OFF;
 LED5 = OFF;

 for(;;) {
 __RESET_WATCHDOG(); /* kicks the dog */

 LED2 = SW2;

 } /* loop forever */
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 27

Run the code • In CodeWarrior, press the Debug button (). This compiles the
program and produces an executable file, which invokes the debugger.
The debugger erases the FLASH and downloads the code to the device.

• In the debugger, press the RUN button (); the application will run.

• The running application can be confirmed by pressing SW2 and seeing
LED2 light.

• Press the STOP button (); LED2 will maintain its state prior to the
stop being pressed.

• Press the STEP OVER button () to advance the code; the debugger
will advance one C instruction with each press.

• With the debugger pointing to the statement LED=SW2, press SW2 and

press the STEP OVER button () once; LED2 will be turned on.

• Press the RUN button () to restart the program; this will cause LED2
to be on when SW2 is pressed

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

28 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

Use PWM to flash
LED

Adding the following code to the program will configure the PWM and will flash
LED5 (or buzzer on evaluation board), using LED3 and LED4 to indicate the
duty cycle selected by switch SW4, when changed by the operation of switch
SW3.

#include <hidef.h> /* for EnableInterrupts macro */
#include <MC9S08GB60.h> /* include peripheral declarations */
#include "M68DEMO908GB60.h"

#define PRESCALAR 7
#define MODULUS 32768
#define DUTY75 (MODULUS-(MODULUS/4))
#define DUTY25 (MODULUS/4)

void main(void) {
 EnableInterrupts; /* enable interrupts */
 /* include your code here */

 PTADD = 0; //initialize as input (Data Direction Register)
 PTAPE = 0xf0; //Pullups on upper 4 bits

 /*initialize bits 0-3 of Port F as outputs (connected to led's)*/
 PTFDD = 0x0f;
 LED1 = OFF;
 LED2 = OFF;
 LED3 = OFF;
 LED4 = OFF;
 LED5 = OFF;

 /*Initialize timer TPM1 channel, assumes not touched since reset!*/
 TPM1SC_CLKSA = 1;/*Select BUS clock*/
 TPM1SC_CLKSB = 0;
 TPM1SC_PS = PRESCALAR;/*clock source divided by prescalar*/
 TPM1MOD = MODULUS;/*set Counter modulus*/
 /*configure PWM mode and pulse*/
 TPM1C0SC_MS0B = 1; /*MS0B=1, MS0A=0; << Edge align PWM*/
 TPM1C0SC_ELS0A = 1; /*Select low as true*/

 TPM1C0V = DUTY25;/*select final divider (duty cycle)*/
 LED4 = ON;

 for(;;) {
 __RESET_WATCHDOG(); /* kicks the dog */
 LED2 = SW2;

 if(SW3==DOWN){
 /*Switch pressed*/
 if(SW4==DOWN){/**/
 TPM1C0V = DUTY75;/**/
 LED3 = ON;/**/
 LED4 = OFF;/**/
 }else{
 TPM1C0V = DUTY25;/**/
 LED3 = OFF;/**/
 LED4 = ON;/**/
 }
 }

 } /* loop forever */
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 29

Invoke the debugger • In CodeWarrior, press the Debug button (). This compiles the
program and produces an executable file, which invokes the debugger.
The debugger erases the FLASH and downloads the code to the device.

• In the debugger, press the RUN button (); the application will run.

• LED3 will be illuminated and LED5 (or buzzer on evaluation board) will
be pulsed.

• Pressing SW3 whilst holding down SW4 will turn off LED3, light LED4,
and change the duty cycle of LED5 (buzzer).

• Pressing SW3 will revert to LED3 illuminated, and the duty cycle of LED5
(buzzer) will revert back to the original duty cycle.

• LED2 will still function according to the state of SW2.

Add interrupt on
SW1

CodeWarrior supports several ways of incorporating interrupts. Refer to the
Frequently Asked Questions section for a discussion of other methods.

As the vector for the keyboard interrupt is 22, add a macro to define Vkeyboard
in the header file M68DEMO908GB60.h:

The method chosen is the interrupt keyword with vector number. This method
has the advantage that the interrupt routine is self-declaring, and only one file
is involved in its declaration:

The code to initialize the interrupts is:

#define Vkeyboard 22

interrupt Vkeyboard void intSW1(){
 LED1 = SW4;
 KBISC_KBACK = 1;/*acknowledge interrupt*/
}

 KBIPE_KBIPE4 = 1;
 KBISC_KBIE = 1;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

30 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

Add this code to the main program:

NOTE: Do not forget to add the #define statement to the header file
M68DEMO908GB60.h.

#include <hidef.h> /* for EnableInterrupts macro */
#include <MC9S08GB60.h> /* include peripheral declarations */
#include "M68DEMO908GB60.h"

#define PRESCALAR 7
#define MODULUS 32768
#define DUTY75 (MODULUS-(MODULUS/4))
#define DUTY25 (MODULUS/4)

interrupt Vkeyboard void intSW1(){
 LED1 = SW4;
 KBISC_KBACK = 1;/*acknowledge interrupt*/
}

void main(void) {
 EnableInterrupts; /* enable interrupts */
 /* include your code here */

 PTADD = 0; //initialize as input (Data Direction Register)
 PTAPE = 0xf0; //Pullups on upper 4 bits

 /*initialize bits 0-3 of Port F as outputs (connected to led's)*/
 PTFDD = 0x0f;
 LED1 = OFF;
 LED2 = OFF;
 LED3 = OFF;
 LED4 = OFF;
 LED5 = OFF;

 /*Initialize timer TPM1 channel, assumes not touched since reset!*/
 TPM1SC_CLKSA = 1;/*Select BUS clock*/
 TPM1SC_CLKSB = 0;
 TPM1SC_PS = PRESCALAR;/*clock source divided by prescalar*/
 TPM1MOD = MODULUS;/*set Counter modulus*/
 /*configure PWM mode and pulse*/
 TPM1C0SC_MS0B = 1; /*MS0B=1, MS0A=0; << Edge align PWM*/
 TPM1C0SC_ELS0A = 1; /*Select low as true*/

 TPM1C0V = DUTY25;/*select final divider (duty cycle)*/
 LED4 = ON;

 KBIPE_KBIPE4 = 1;
 KBISC_KBIE = 1;

 for(;;) {
 __RESET_WATCHDOG(); /* kicks the dog */
 LED2 = SW2;

 if(SW3==DOWN){
 /*Switch pressed*/
 if(SW4==DOWN){/**/
 TPM1C0V = DUTY75;/**/
 LED3 = ON;/**/
 LED4 = OFF;/**/
 }else{
 TPM1C0V = DUTY25;/**/
 LED3 = OFF;/**/
 LED4 = ON;/**/
 }
 }

 } /* loop forever */
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 31

Invoke the debugger • In CodeWarrior, press the Debug button (). This compiles the
program and produces an executable file, which invokes the debugger.
The debugger erases the FLASH and downloads the code to the device.

• In the debugger, press RUN (); the application will run.

• Pressing SW1 will cause an interrupt, which will read SW4 and set LED1
accordingly.

• LED2, LED3, LED4 and LED5 (buzzer) will still function as before.

Set clock frequency

CAUTION: An important consideration in setting the FLL is that, if the HCS08 serial monitor
is being used for debugging, then changing the processor speed from that set
by the monitor will cause CodeWarrior to lose control of the device, unless the
SCI speed is also adjusted to take account of the change in processing speed.
BDM operation is unaffected by changes in processor speed, as it either has a
separate fixed frequency clock (as MC9S08GB60), or the BDM pod has the
ability to re synchronize in the event of the device changing frequency.

The Internal Clock Generator (ICG) used within the MC9S08GB60 has an FLL
that allows a frequency higher than the reference source (for example, crystal
or internal oscillator) to be generated. This enables the processor frequency to
be optimized in terms of power consumption and performance.

The demo board includes a 32.768 kHz crystal, while the evaluation board has
a 4 MHz crystal on board. The crystals allow the device to operate at a
maximum frequency of 18.87 MHz for the demo board (32.768 kHz) and
20 MHz for the evaluation board (4 MHz).

The formula for calculating the bus frequency is:

Bus frequency = ((fIRG ÷ 7) × P × N ÷ R) ÷ 2

Where

• P = 1 or 64 (high or low frequency range)

• N[0:7] = {4, 6, 8, 10, 12, 14, 16, or 18}

• R[0:7] = 1, 2, 4, 8, 16, 32, 64, or 128

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

32 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

Code to configure the clock in C would be:

The “while” loop ensures that the external clock has been selected
(ICGS1_ERCS) and that the FLL has locked to the desired frequency
(ICGS1_LOCK).

The final program is:

 /*configure Internal Clock Generator [ICG]*/
 /*MFD[]={4,6,8,10,12,14,16,18}*/
 ICGC2_MFD = 7; /*32KHz crystal, demo board.
 For 4MHz crystal (eval board):
 ICGC2_MFD = 3
 */

 ICGC2_RFD = 0; /* RFD[]={1,2,4,8,16,32,64,128}*/

 ICGC1 = 0b00111000; /*32KHz crystal, demo board.
 For 4MHz crystal (eval board):
 ICGC1 = 0b01111000;
 */

 while((ICGS1_LOCK==0)||(ICGS1_ERCS==0)){
 /*Ensure COP doesn't reset device whilst waiting for clock lock*/
 __RESET_WATCHDOG(); /* kicks the dog */
 }
 ICGC2_LOCRE = 1; /*enable reset if clock fails*/

#include <hidef.h> /* for EnableInterrupts macro */
#include <MC9S08GB60.h> /* include peripheral declarations */
#include "M68DEMO908GB60.h"

#define PRESCALAR 7
#define MODULUS 32768
#define DUTY75 (MODULUS-(MODULUS/4))
#define DUTY25 (MODULUS/4)

interrupt Vkeyboard void intSW1(){
 LED1 = SW4;
 KBISC_KBACK = 1;/*acknowledge interrupt*/
}

void main(void) {
 EnableInterrupts; /* enable interrupts */
 /* include your code here */

 PTADD = 0; //initialize as input (Data Direction Register)
 PTAPE = 0xf0; //Pullups on upper 4 bits

 /*initialize bits 0-3 of Port F as outputs (connected to led's)*/
 PTFDD = 0x0f;
 LED1 = OFF;
 LED2 = OFF;
 LED3 = OFF;
 LED4 = OFF;
 LED5 = OFF;

 /*Initialize timer TPM1 channel, assumes not touched since reset!*/
 TPM1SC_CLKSA = 1;/*Select BUS clock*/
 TPM1SC_CLKSB = 0;
 TPM1SC_PS = PRESCALAR;/*clock source divided by prescalar*/
 TPM1MOD = MODULUS;/*set Counter modulus*/
 /*configure PWM mode and pulse*/
 TPM1C0SC_MS0B = 1; /*MS0B=1, MS0A=0; << Edge align PWM*/
 TPM1C0SC_ELS0A = 1; /*Select low as true*/

 TPM1C0V = DUTY25;/*select final divider (duty cycle)*/
 LED4 = ON;

 KBIPE_KBIPE4 = 1;
 KBISC_KBIE = 1;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Developing an Application with CodeWarrior

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 33

NOTE: It is important to set the RANGE, REFS and CLKS in the ICGC1 register
together as a single byte store (for example, STA or MOV instruction), and not
by read-modify-write instructions (BSET or BCLR), as attempting to set these
bits individually may result in the clock mode being locked after the first write to
the ICGC1 register.

For more information on setting system clock, refer to the relevant data sheet
and to Application Note “AN2494 — Configuring the System and Peripheral
Clocks in the MC9S08GB/GT “.

Application complete The program will operate in exactly the same manner as in the previous
section. The only noticeable difference will be the frequency of LED5 (buzzer
in the case of the evaluation board), as the bus speed of the device has been
set to the maximum using the on-board crystals.

 /*configure Internal Clock Generator [ICG]*/
 /*MFD[]={4,6,8,10,12,14,16,18}*/
 ICGC2_MFD = 7; /*32KHz crystal, demo board.
 For 4MHz crystal (eval board):
 ICGC2_MFD = 3
 */

 ICGC2_RFD = 0; /* RFD[]={1,2,4,8,16,32,64,128}*/

 ICGC1 = 0b00111000; /*32KHz crystal, demo board.
 For 4MHz crystal (eval board):
 ICGC1 = 0b01111000;
 */

 while((ICGS1_LOCK==0)||(ICGS1_ERCS==0)){
 /*Ensure COP doesn't reset device whilst waiting for clock lock*/
 __RESET_WATCHDOG(); /* kicks the dog */
 }
 ICGC2_LOCRE = 1; /*enable reset if clock fails*/

 for(;;) {
 __RESET_WATCHDOG(); /* kicks the dog */
 LED2 = SW2;

 if(SW3==DOWN){
 /*Switch pressed*/
 if(SW4==DOWN){/**/
 TPM1C0V = DUTY75;/**/
 LED3 = ON;/**/
 LED4 = OFF;/**/
 }else{
 TPM1C0V = DUTY25;/**/
 LED3 = OFF;/**/
 LED4 = ON;/**/
 }
 }

 } /* loop forever */
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

34 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

Metrowerks HCS08 CodeWarrior Development Tools

Metrowerks
CodeWarrior

Additional HC(S)08
help included with
CodeWarrior

After CodeWarrior has been installed, assuming a “typical” or a “full” installation
was performed), there will be some HC(S)08 specific documentation that will
assist in fine-tuning your application.

The default location of Metrowerks CodeWarrior is:

• C:\Program Files\Metrowerks\CodeWarrior CW08_V3.0

Directories and files of interest:

• Release_Notes\HC08\CW_Tools\HC08
– This directory contains release notes for various sections of

CodeWarrior, for example, linker, compiler, etc.

• CodeWarrior Help
– This directory contains the generic CodeWarrior and is target

independent.

• CodeWarrior Manuals
– In this directory, the documentation is available as either on-screen

help or standalone pdfs and are held within the relevant sub-
directories.
– hc08_manuals.pdf
– HC08_Processor_Expert_User_Guide.pdf
– Manual_Assembler_HC08.pdf
– Manual_Compiler_HC08.pdf
– Manual_Engine_HC08.pdf
– Manual_ICD_HCS08.pdf
– Manual_Mon08.pdf
– Manual_True-Time_Simulator_HC08.pdf

Metrowerks Metrowerks produces an integrated development environment (IDE) for the
HC08 and HCS08. To obtain the best from the HCS08, the latest version
should be used. The HC08 version will generate code that will work on an
HC08, but it will not use any of the additional addressing modes on a couple of
instructions; this can have a significant impact on both code size and
performance.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Metrowerks HCS08 CodeWarrior Development Tools

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 35

Metrowerks offers a free version of the Metrowerks HCS08 IDE, which is
initially limited to 1K of code generated from C. Upon registering the compiler,
a license will be provided which will allow the compiler to generate up to 4K of
code.

Metrowerks have other licenses which will allow 32K or 64K of code, upon
payment of the relevant license fee.

More information about the Metrowerks HC(S)08 CodeWarrior development
Studio is available from the following website.

http://www.metrowerks.com/MW/Develop/Embedded/HC08/Default.htm

Metrowerks
CodeWarrior for
HC(S)08

CodeWarrior is an integrated development environment that provides a
graphical user interface (GUI) to code development. Code is developed as a
project where all the files, configuration information, and debugging information
(for example, hardware) required to generate/debug a program are stored.

CodeWarrior includes a project manager (Project window) which lists all the
files required to compile the code and invoke the various development activities
such as editing, compiling, or running and debugging the application using the
simulator or actual hardware.

What’s on the CD Opening the CD in Windows Explorer will result in something like the following:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

36 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

System requirements
for CodeWarrior

Metrowerks CodeWarrior is compatible with the following Microsoft products.

• Windows 98 (including SE)

• Windows ME

• Windows XP

• Windows NT 4

• Windows 2000

NOTE: Some versions of Windows may require installation of appropriate patches or
service packs.

NOTE: There may be additional restrictions on supported operating systems, due to
debugging support; for example, USB Multilink requires Windows 2000 or XP,
and is not supported with other versions of Windows.

Installing CodeWarrior On inserting the CD into a Windows PC, the CodeWarrior installer will normally
start automatically. (If this is not the case, locate the install.exe file on the CD
and invoke it). Follow the on-screen instructions and refer to the booklet
supplied with the CD for more help. (For the web download version, a “quick
start” document is available on the web.)

CodeWarrior license By default, Metrowerks installs a code size limited version of CodeWarrior,
which is limited to generating runable code of up to 1K byte in size. By
registering, you can obtain a license file from CodeWarrior Metrowerks by
E-mail that will remove the code size limit on the assembler and linker; the C
compiler code generator limit will be increased from 1K to 4K. (Registration is
free; a valid E-mail address is required in order to send the license details.)

A 30-day evaluation license to the Standard or Professional Edition with an
unlimited code size can be requested during the registration process; refer to
the welcome text file included on the CD for details of how to request this.

NOTE: A registered version of CodeWarrior will have a 4K code size limit for C and an
unlimited code size assembler.

CodeWarrior updates The boards and devices supported by Metrowerks CodeWarrior will be those
available when released. There may be patches available for CodeWarrior to
support newer boards and/or devices; check Metrowerks web support if the
board or device is not supported by your version of CodeWarrior:

http://www.metrowerks.com/MW/download/default.asp

CodeWarrior
“projects”

A “project” is simply a file (for example, M68DEMO908GB60_Demo1.mcp) that
contains all the information required to compile and debug an application.
Information in the project file typically includes:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
CodeWarrior C and HCS08

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 37

• Directory location for sources, binaries, and other files

• Compiler settings for each source file

• Debugging details

CodeWarrior normally places the files within the directory of the project file or
subdirectories; for example:

CodeWarrior C and HCS08

This section explains how the HCS08 devices are defined within CodeWarrior
C, and how they are used.

In order to be able to write C code, for HCS08 devices, that utilizes the
hardware, it is necessary to define the registers of the modules and their
absolute addresses. Metrowerks provides the register definitions and address
space mapping for each device within two files: the device header file and the
device definition file.

The device header file (MC9S08GB60.h) contains data declarations and
definitions used to reference the device registers. Registers are allocated and
mapped into the device’s address space in the device definition file
(MC9S08GB60.c), using the definitions from the header file.

A program normally consists of the device definition/mapping file
(MC9S08GB60.c), the user code (for example, main.c), and a startup file
(startup.c), which initializes the runtime environment. The startup code, device
and header files are normally included automatically within the project by the
“CodeWarrior project wizard”, along with a default main program (main.c).

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

38 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

To access peripherals in a device, ensure that the device declaration file
(MC9S08GB60.h) is included within the source file; for example:

Data types CodeWarrior C for the HCS08 supports all the normal C types. Also, the types
byte (1 byte), word (2 bytes), dword (4 bytes), and dlong (8 bytes) are defined
unsigned as follows:

What a project
consists of

A newly created project looks like:

with the following files and directories created automatically:

#include <MC9S08GB60.h>

int mycode(){

}

/* Types definition */
typedef unsigned char byte;
typedef unsigned int word;
typedef unsigned long dword;
typedef unsigned long dlong[2];

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
CodeWarrior C and HCS08

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 39

• readme.txt
– Initially contains a brief overview of the project structure, details of

on-line help, and how to contact Metrowerks

• Sources/
– Contains the users source code, sample main.c provided by wizard

with project creation

• Startup Code/
– Start.c - C/C++ startup code which initializes the C library and

invokes the user code (main function)

• Prm/
– burner.bbl - details of how to generate the required S-Record for the

debugger
– *.prm - details of how to link code/data segments
– *.map - generated by the linker

• Libs/
– Required library files (ANSI library)
– Device header and device file

• Debugger Project File/
– Contains an *.ini file for the debugger — essentially a project file for

the debugger

• Debugger Cmd Files/
– Contains sub-folders for each target connection method, along with

command files

Using CodeWarrior
device definitions

This section describes the method used by Metrowerks CodeWarrior in
defining device registers, the mapping of these registers to memory, and how
to use this information within a program.

All examples within this section refer to the MC9S08GB60. Substitute the
appropriate device as required.

The names given to the device registers and bit names within the registers are
defined by the device definition files. The two files associated with the
MC9S08GB60 are:

• MC9S08GB60.c <- device file

• MC9S08GB60.h <- device definition/mapping file

To fully understand programming a particular device, it is essential to have the
correct data sheet for the device, for example, the MC9S08GB60 Data Sheet
(MC9S08GB60/D).

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

40 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

Device file
(MC9S08GB60.c)

This file defines ALL registers within the device. All registers are named as per
the register names in the relevant data sheet:

Where <register> is the name (in capital letters) of the register, as defined in
the relevant data book (for example, MC9S08GB/D). All registers are defined
as structure types, where the structure name is the same as the register name
with STR appended. For example:

_KBIPE is the actual register. The structures are defined in the header file.

NOTE: For simplicity, the following examples will use the macro definitions of the
registers.

Header file
(MC9S08GB60.h)

This file makes available the register definitions for any file that requires access
to the registers. It also maps the registers into the device’s memory map.

The header file contains macros that allow the register to be referenced without
the underscore. For example:

All registers can be referred to by their real definition, in this case “_KBIPE” or
via a macro, in this case “KBIPE”.

Register and bit
definitions

The header files supplied with CodeWarrior facilitate access to register bits
through structures and do not include mask-based access to the register bits.

The following example shows the definition of the DBGC register utilizing a
structure.

volatile <register>STR _<register>;

volatile KBIPESTR _KBIPE;

#define KBIPE _KBIPE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
CodeWarrior C and HCS08

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 41

The “:1” is used to indicate that a single bit is required and CodeWarrior C
compiler will pack together into a single byte.

To access RWB would require the following code.

To access RWB using the Metrowerks predefined macros would require the
following code.

The Metrowerks CodeWarrior C Compiler will generate bit set/clear instructions
for page 0 registers and memory; otherwise, it will generate bit mask operations
(| =, & =) for other addresses. Using bit structures with HCS08 for I/O registers
residing in page 0 is very efficient, requiring a single instruction for set, clear
and test/branch.

How device
registers and bits
are used

To use a register, simply use its name as defined within the data sheet; for
example:

• TPM2C0SC

To reference a bit within a register, concatenate the register name and the bit
name with an underscore between. For example:

• TPM2C0SC_MS0B

NOTE: Register and bit names MUST be in capital letters.

/*** DBGC - Debug Control Register ***/
typedef union {
 byte Byte;
 struct {
 byte RWBEN :1; /* Enable R/W for Comparator B */
 byte RWB :1; /* R/W Comparison Value for Comparator B */
 byte RWAEN :1; /* Enable R/W for Comparator A */
 byte RWA :1; /* R/W Comparison Value for Comparator A */
 byte BRKEN :1; /* Break Enable */
 byte TAG :1; /* Tag/Force Select */
 byte ARM :1; /* Arm Control */
 byte DBGEN :1; /* Debug Module Enable */
 } Bits;
} DBGCSTR;
extern volatile DBGCSTR _DBGC @0x00001816;

DBGC.Bits.RWB = 1; /*Set RWB bit of DBGC */
DBGC.Bits.RWB = 0; /*Clear RWB bit of DBGC */

DBGC_RWB = 1; /*Set RWB bit of DBGC */
DBGC_RWB = 0; /*Clear RWB bit of DBGC */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

42 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

How device
registers are defined
and used

In order to be able to program a device, it is necessary to understand the
relationship between the device definition/mapping file and the device header
file, and the register definitions contained within these files.

For example, the register TPM2C0SC:

As a letter “O” was typed instead of a zero, the variable is undefined and so
appears in black lettering.

After correcting, the register name appears in light blue:

To determine the definition of the variable TPM2C0SC, place the cursor over
the variable name and right-click the mouse. A popup will appear, which will
include an option to go to the variable declaration “Go to macro declaration of
TPM2C0SC”:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
CodeWarrior C and HCS08

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 43

This will bring up a window showing the section of code that defines the
variable:

As can be seen in the example above, the variable is actually a macro definition
to a structure element “Byte” of the variable _TPM2C0SC. The variable
_TPM2C0SC is, in fact, defined as being a structure of type TPMC0SCSTR
and at absolute address $0065, as shown in the figure above. The definition of
structure TPMC0SCSTR is:

Summary: From the example of TPM2C0SC, it can be seen that the way registers are
defined within CodeWarrior is:

A register, as defined in a data sheet (for example, TPM2C0SC), is a macro
that refers to a byte within a structure, and is mapped to the relevant address
for the device in question.

Metrowerks CodeWarrior header files for HCS08 use bit structures as opposed
to masks. All code will utilize the CodeWarrior structures.

How device register
bit(s) are defined /
used

The method used for defining register bits follows a similar method as used for
the actual registers, except that, in the case of register bits, it is necessary to
specify both the register name and the bit name as defined in the data sheet,
for example, MS0B and TPM2C0SC both need to be specified. The way in
which the bit name and register name are used is to concatenate their names
together with an underscore between; for example:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

44 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

• TPM2C0SC_MS0B

The definition of the bit can be found by right-clicking on the appropriate
variables. For example:

The definition of _TPM2C0SC:

Definition of type TPM2C0SCSTR is a structure:

Now MS0B is one bit of a byte in the structure Bits of the structure
TPM2C0SCTR, so we can use:

• _TPM2C0SC.Bits.MS0B

or

• TPM2C0SC.Bits.MS0B

To reference it, alternatively, we can use one of the predefined macros:

• TPM2C0SC_MS0B

Both examples refer to the Mode select B of TPM channel 0.

Summary: A register bit is defined by a macro as being its register and bit name
concatenated together with an underscore between the register and bit names.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
CodeWarrior C and HCS08

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 45

Register names
used with multiple
peripherals

Some devices have multiple peripherals; for example, the MC9S08GB60 has
two SCIs. It may be necessary to check the naming of the peripherals in the
device and header files but, in general, they should be defined as per the data
sheet.

For example, the MC9S08GB60 has multiple timers (timer 1 and timer 2), which
have multiple channels (three on timer 1 and five on timer 2). As an example,
the status channel for a channel is defined as:

TPMxCnSC

– CHnF - flag
– CHnIE - interrupt enable
– MSnB - mode select B
– MSnA - mode select A
– ELSnB:ELSnA - Edge/Level select bits

Where

– x = the timer
– n = the channel

Therefore, to reference the flag bit of channel 2 on timer 1, the macro defined
in the header file is:

TPM1C2SC_CH2F

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

46 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

Frequently Asked Questions

This section identifies the main issues that a newcomer to CodeWarrior may
experience, and explains how to proceed.

Where can I get the
most up to date
documentation

The most up to date documentation for Codewarrior is available on Metrowerks
web site. For the HC08 it can be found at:

http://www.metrowerks.com/MW/Support/dev_resources/HC08.htm

Device and/or target
isn't supported by
Metrowerks

Check Metrowerks for availability of patches to support device and/or target.

http://www.metrowerks.com/MW/download/default.asp

In the “Updates and Patches” section, select “Codewarrior for Motorola HC08”,
press “select”, and a list of available patches will appear. Download the
appropriate patch and install (a reboot of the PC will be required).

USB BDM doesn't
work with
Metrowerks HC08
Codewarrior v3.0

Codewarrior version 3.0 was shipped before P&E USB BDM was available. To
add USB BDM functionality it is necessary to install a service pack. The service
pack is available from Metrowerks site at:

ftp://ftp.metrowerks.com/pub/updates/
CWHC08/HC08V3_0_USB_MULTILINK_SP.exe

Tips on using a
parallel BDM pod?

General suggestions for successfully using a Multilink BDM connector.

• Upgrade to the latest version of CodeWarrior

• Ensure that the BDM pod is using the latest firmware
(http://www.pemicro.com)

• Ensure that the parallel port BDM hardware is at the latest revision. With
the exception of Rev.A, all Multilinks can be upgraded to latest spec
(currently Rev.D) (http://www.pemicro.com)

• Ensure that the parallel port is configured as a standard port in
computer’s BIOS. The BIOS settings for the Parallel port should be SPP,
Normal, Standard, Output Only, Unidirectional or AT. Try to avoid ECP,
EPP or PS/2 Bidirectional

• Limit the BDM cable length between MultiLink and target

• Do not protect the FLASH during code development and debugging

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Frequently Asked Questions

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 47

P&E parallel
Multilink BDM &
laptop

Some laptops ship with a 3v parallel port and may not work reliably with the
P&E parallel Multilink BDM. To overcome this the Multilink should be powered
by an external 5v supply. Connect an external 5v center negative power supply
to the optional power jack of the P&E Multilink BDM.

Monitor mode is not
working?

There are several ways this can occur:

• Monitor erased
– reprogram

• Clock speed is incorrectly assumed within monitor
– reprogram device with different clock setup
– change crystal to 32.768 kHz or 4 MHz, according to version of

monitor in device

Other than changing the crystal, a BDM will be required to reprogram the
monitor code or alter the device’s clock frequency used by the monitor.

How do I reprogram
the HCS08 monitor?

If the HCS08 monitor is erased or corrupted, it will be necessary to download
the HCS08 monitor code to the device utilizing a BDM; there is no other way.

Refer to application note “AN2140/D — Serial Monitor for MC9S08GB/GT” for
a description of the monitor and the Metrowerks project files required for re-
programming the monitor.

How can I program
small batches of
HCS08 devices
without tying up a
PC?

An HCS08 can be programmed only using the serial monitor mode or BDM.
P&E make a BDM pod that can be connected to the PC via usb, parallel or
ethernet, which can also be used as a standalone programmer. Refer to P&E's
web site for product details and ordering information on the CYCLONE PRO

http://www.pemicro.com/products/68hc08/mon08/cyclone_pro/cyclone_pro.html

Code in FLASH only
works when BDM is
powered?

Disconnect the BDM pod, as it is interfering with the devices normal operation.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

48 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

Debugger not
showing the source
code of main.c?

To show the source code for main.c in the debugger, simply right-click over the
source code window:

and select “Open Source File”. A dialog box will pop up, allowing selection of
the correct source file (for example, main.c):

After selecting the correct file, the source window will appear:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Frequently Asked Questions

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 49

How do I set a
breakpoint in the
debugger?

To set a break point whilst in the debugger, select some text where the break
point is required, or hold the mouse over the relevant code and press the right
mouse button. A popup dialog box will appear; the first option is to set a break
point:

The break point will be shown in the source window with a red arrow:

To remove a breakpoint, simply select (or place the mouse over) the break
point you wish to remove and right click the mouse.

A popup dialog will appear, the first option being to delete the break point:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

50 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

Debugging does not
seem to use the
hardware/select in-
circuit debug

The most likely reason for this is that the debugger is using the simulator or the
wrong hardware. A may be caused by the debugger not finding a BDM pod
when it started and it defaulted to the software simulator.

Ensure the correct target is set.

To set in-circuit debug/programming whilst in “Full Chip Simulation” mode,
select “In-Circuit Debug/Programming” via the PEDebug pull-down menu:

The debugger will revert to the stage after it was invoked from the project
manager and should erase and reprogram the device.

How can I see the
assembler code
generated for C
statements?

When reviewing C code in order to optimize, it is helpful to see exactly what
code is generated by the compiler for a C statement. The easiest way to do this
is to highlight the relevant C code:

Next, drag the C code to the assembler window (hold the mouse down over the
selected text, move the cursor over the assembler window, and release) and
the assembly language statements for the C code will be highlighted:

NOTE: Due to the optimization performed by the compiler, some code may not be
highlighted.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Frequently Asked Questions

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 51

What are all the
interrupt vector
numbers for the
MC9S08GB60?

The following define statements include ALL the interrupt vectors of the
MC9S08GB60.

Where are header
files located?

Basically, there are two types of header files used within C:

• System - placed within angled brackets (< and >)

• User - placed within double quotes (")

System header files are located within the Metrowerks CodeWarrior
directories; for the HCS08, they are located in the directory “CodeWarrior
CW08_V3.0\lib\HC08c\include”.

User header files are normally located within a sub-directory of the project
directory (for example, Sources or headers). User headers are made available
to the user by adding them to the project.

Should I use bit
fields or masks for
bit manipulation?

Metrowerks CodeWarrior will use bit field instructions (bit set, clear,
test/branch) for bit field data or simple mask operations on data within page 0.

For memory other than page 0, the compiler translates bit field operations to bit
mask operations.

How does the
compiler use
page 0?

Most registers are defined within page 0, and the compiler will utilize direct
addressing wherever possible when using the peripheral registers. The linker
files generated for a device do not use page 0 by default (unless the device only
has RAM in page 0). The default will allocate variables in extended memory.

#define Vreset 0
#define Vswi 1
#define Virq 2
#define Vlvd 3
#define Vicg 4
#define Vtpm1ch0 5
#define Vtpm1ch1 6
#define Vtpm1ch2 7
#define Vtpm1ovf 8
#define Vtpm2ch0 9
#define Vtpm2ch1 10
#define Vtpm2ch2 11
#define Vtpm2ch3 12
#define Vtpm2ch4 13
#define Vtpm2ovf 14
#define Vspi 15
#define Vsci1err 16
#define Vsci1rx 17
#define Vsci1tx 18
#define Vsci2err 19
#define Vsci2rx 20
#define Vsci2tx 21
#define Vkeyboard 22
#define Vatd 23
#define Viic 24
#define Vrti 25

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

52 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

How can I force a
variable to reside in
page 0?

To instruct the linker to allocate storage for variables in page 0, enclose the
declarations within the following #pragma statements in the file where the
variable is declared (for example, main.c):

For example:

The first #pragma statement instructs the compiler to allocate data from this
point on in the short segment (page 0), MY_ZEROPAGE is the default data
segment used within the linker file.

The second #pragma statement instructs the compiler to return to the default
data section for allocation of subsequent variables.

NOTE: Segment names assume default project and linker configuration used.

How do I disable the
watchdog?

It may be necessary to disable the watchdog whilst debugging code, or an
application may not require it.

To disable the watchdog, simply clear the COPE bit in the SOPT register as
follows:

Problems with
variable, structure,
or type definition?

Occasionally, CodeWarrior will not have the correct definition for a variable, a
structure type or a macro definition, for example. This may be due to
CodeWarrior’s cached definition; it can normally be rectified by clearing all
object code from a project and rebuilding:

#pragma DATA_SEG __SHORT_SEG MY_ZEROPAGE
/*Page 0 data declarations go here*/
#pragma DATA_SEG DEFAULT

#pragma DATA_SEG __SHORT_SEG MY_ZEROPAGE
byte p0i, p0j;
#pragma DATA_SEG DEFAULT

SOPT_COPE = 0;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Frequently Asked Questions

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 53

How do I add
interrupt handlers?

CodeWarrior supports a number of ways of incorporating interrupts, the most
common methods being

• Use a #pragma TRAP_PROC prior to the interrupt routine and add to the
vector table in the linker.prm file. For example:

or

• Use the keyword “interrupt” and add to the vector table in the linker.prm
file. For example:

and:

#pragma TRAP_PROC
void intSW1(void){

}

interrupt void intSW1(void){

}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

54 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

• Add the vector table entry to the linker.prm file. For example:

• Use the keyword “interrupt” and specify the interrupt vector number in
the definition of the interrupt routine. This does not require any
modification to the linker.prm file. For example:

This method has the advantage of defining an interrupt handler and its vector
in a single file, removing the need to maintain two files.

How can I use the
assembler within C?

Refer to section “High Level Online Assembler for Motorola HC08” in the
document “Manual_Compiler_HC08.pdf” included with CodeWarrior.

How are interrupt
vectors redirected?

The serial monitor implements a redirection of the vector table in an
unprotected area of FLASH; this is discussed in the HCS08 serial monitor
documentation.

How do I use
masks?

A mask-based definition for a register would look something like:

To access RWB would require the following code:

NOTE: CodeWarrior header files implement structures, NOT bit masks. If you wish to
use bit masks, thet must be defined manually.

VECTOR ADDRESS 0xFFD2 intSW1

interrupt 22 void intSW1(void){

}

/*** DBGC - Debug Control Register ***/
extern volatile byte _DBGC @0x00001816;
#define RWBEN 0x01; /* Enable R/W for Comparator B */
#define RWB 0x02; /* R/W Comparison Value for Comparator B */
#define RWAEN 0x04; /* Enable R/W for Comparator A */
#define RWA 0x08; /* R/W Comparison Value for Comparator A */
#define BRKEN 0x10; /* Break Enable */
#define TAG 0x20; /* Tag/Force Select */
#define ARM 0x40; /* Arm Control */
#define DBGEN 0x80; /* Debug Module Enable */

DBGC = DBGC | RWB; /*Set RWB bit of DBGC */
DBGC = DBGC & ~RWB; /*Clear RWB bit of DBGC */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Frequently Asked Questions

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 55

How do I set the
compiler options?

In order to set compiler options, select “Settings” from the Edit menu:

A dialog box will appear, allowing access to the compiler options, either by
simply entering them as command line arguments:

or by using one of the sub-option windows; for example, “Smart sliders”:

This provides a graphical front end to the selection of the compiler switches.

Or press the
Settings button:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

56 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

Big Endian or Little
Endian?

The Endianness of a processor refers to the order in which it stores multiple
byte values in memory. Big Endian processors store the most significant byte
at the lowest address, whereas Little Endian processors store the least
significant byte at the lowest address. This can cause issues if it is not taken
into account.

For a more thorough discussion of Endianness refer to:

http://www.wikipedia.org/wiki/Endianness

The HCS08 (like all 68HCxx) is a Big Endian processor.

Endianness is also used to express the order of bits within a byte, and is
typically used within serial communications. Serial communications may
expect data least significant bit (Little Endian) or most significant bit (Big
Endian) first. RS232 expects bits to be sent in Little Endian format. The SCI on
an HCS08 transmits data in Little Endian format; the SPI on an HCS08 is
selectable as Big Endian or Little Endian. An example of a Big Endian serial
protocol is MIL-STD-1553B, where data transmissions are most significant bit
first.

NOTE: If connecting external peripherals, check the Endianness to ensure
compatibility.

Check core and
compiler for Big
Endianness

The following piece of code checks the processor and compiler for Big
Endianness.

First, create a union/structure to allow word or byte access to a union/structure
for a 16-bit integer:

Next, define required variables, one using the union/structure, an error counter,
and a byte pointer:

// Declare union to access word as word or two bytes
typedef union {
 word w;
 struct {
 byte h;
 byte l;
 } bytes;
} TEMP;

TEMP t; //declare temporary variable using union
byte err; //error count
byte *p; //pointer to access bytes within word

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Frequently Asked Questions

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 57

Clear the error count, and set the word so that the upper and lower bytes are
unique:

Check using pointers to access the individual bytes of the word in the correct
order:

Check that, using union/structure, access to the individual bytes of the word is
correct:

The results should be 0.

Is Linux/Unix
support available?

Cosmic supports Linux, Solaris and HP/UX as well as supporting Windows:

 err=0; //clear error count
 t.w = 0x55aa; //set word so high byte and low byte are different

 p=(byte *)&t.w; //set pointer to address of word
 if(t.bytes.h!=*p)err|=1; //should be pointing to the high byte
 p++; //increment pointer to next byte
 if(t.bytes.l!=*p)err|=2; //should be pointing to the low byte

 if(t.bytes.h!=0x55)err|=4; //check high byte accessed as structure
 if(t.bytes.l!=0xaa)err|=8; //check low byte accessed as structure

Platform Part No Description

Linux CLXH08 C Cross Compiler, Assembler, Linker and IDEA
package targeting Motorola’s 68HC08
microcontroller

SUN Solaris CSSH08 C Cross Compiler, Assembler, Linker and IDEA
package targeting Motorola’s 68HC08
microcontroller

SUN Solaris ZSSH08SIM ZAP Debugger Simulator for 68HC08

HP-UX CHPH08 C Cross Compiler, Assembler, Linker and IDEA
package targeting Motorola’s 68HC08
microcontroller

HP-UX ZHPH08SIM ZAP Debugger Simulator for 68HC08

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

58 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

References

The following publications may be of interest. They are available on Motorola’s
web site at:

http://www.motorola.com/

AN1752/D Data Structures for 8-Bit Microcontrollers

AN1837/D Non-Volatile Memory Technology Overview

AN2093/D Creating Efficient C Code for the MC68HC08

AN2111/D A Coding Standard for HCS08 Assembly Language

AN2140/D Serial Monitor for MC9S08GB/GT

AN2342/D Opto Isolation Circuits For In Circuit Debugging of
68HC9(S)12 and 68HC908 Microcontrollers

AN2438/D ADC Definitions and Specifications

AN2493/D AN2493/D: MC9S08GB/GT Low Power Modes

AN2494/D Configuring the System and Peripheral Clocks in the
MC9S08GB/GT

AN2496/D Calibrating the MC9S08GB/GT Internal Clock
Generator (ICG)

AN2497/D HCS08 Background Debug Mode versus HC08
Monitor Mode

M68EVB908GB60 Development board for Motorola MC9S08GB60

M68DEMO908GB60 Demonstration Board for Motorola MC9S08GB60

MC9S08GB60/D MC9S08GB60, MC9S08GT60, MC9S08GB32,
MC9S08GT32 Data Sheet

HCS08RMv1/D HCS08 Family Reference Manual

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
References

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 59

MOTOROLA SOFTWARE LICENSE AGREEMENT

This is a legal agreement between you (either as an individual or as an
authorized representative of your employer) and Motorola, Inc. (“Motorola”). It
concerns your rights to use this file and any accompanying written materials
(the “Software”). In consideration for Motorola allowing you to access the
Software, you are agreeing to be bound by the terms of this Agreement. If you
do not agree to all of the terms of this Agreement, do not download the
Software. If you change your mind later, stop using the Software and delete all
copies of the Software in your possession or control. Any copies of the
Software that you have already distributed, where permitted, and do not
destroy will continue to be governed by this Agreement. Your prior use will also
continue to be governed by this Agreement.

LICENSE GRANT. Motorola grants to you, free of charge, the non-exclusive,
non-transferable right (1) to use the Software, (2) to reproduce the Software,
(3) to prepare derivative works of the Software, (4) to distribute the Software
and derivative works thereof in source (human-readable) form and object
(machine-readable) form, and (5) to sublicense to others the right to use the
distributed Software. If you violate any of the terms or restrictions of this
Agreement, Motorola may immediately terminate this Agreement, and require
that you stop using and delete all copies of the Software in your possession or
control.

COPYRIGHT. The Software is licensed to you, not sold. Motorola owns the
Software, and United States copyright laws and international treaty provisions
protect the Software. Therefore, you must treat the Software like any other
copyrighted material (for example, a book or musical recording). You may not
use or copy the Software for any other purpose than what is described in this
Agreement. Except as expressly provided herein, Motorola does not grant to
you any express or implied rights under any Motorola or third party patents,
copyrights, trademarks, or trade secrets. Additionally, you must reproduce and
apply any copyright or other proprietary rights notices included on or embedded
in the Software to any copies or derivative works made thereof, in whole or in
part, if any.

SUPPORT. Motorola is NOT obligated to provide any support, upgrades or
new releases of the Software. If you wish, you may contact Motorola and report
problems and provide suggestions regarding the Software. Motorola has no
obligation whatsoever to respond in any way to such a problem report or
suggestion. Motorola may make changes to the Software at any time, without
any obligation to notify or provide updated versions of the Software to you.

NO WARRANTY. TO THE MAXIMUM EXTENT PERMITTED BY LAW,
MOTOROLA EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE
SOFTWARE. THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616

60 Getting Started with HCS08 and CodeWarrior Using C MOTOROLA

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. YOU ASSUME THE ENTIRE RISK ARISING OUT OF THE
USE OR PERFORMANCE OF THE SOFTWARE, OR ANY SYSTEMS YOU
DESIGN USING THE SOFTWARE (IF ANY). NOTHING IN THIS
AGREEMENT MAY BE CONSTRUED AS A WARRANTY OR
REPRESENTATION BY MOTOROLA THAT THE SOFTWARE OR ANY
DERIVATIVE WORK DEVELOPED WITH OR INCORPORATING THE
SOFTWARE WILL BE FREE FROM INFRINGEMENT OF THE
INTELLECTUAL PROPERTY RIGHTS OF THIRD PARTIES.

INDEMNITY. You agree to fully defend and indemnify Motorola from any and
all claims, liabilities, and costs (including reasonable attorney’s fees) related to
(1) your use (including your sublicensee’s use, if permitted) of the Software or
(2) your violation of the terms and conditions of this Agreement.

LIMITATION OF LIABILITY. IN NO EVENT WILL MOTOROLA BE LIABLE,
WHETHER IN CONTRACT, TORT, OR OTHERWISE, FOR ANY
INCIDENTAL, SPECIAL, INDIRECT, CONSEQUENTIAL OR PUNITIVE
DAMAGES, INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR ANY
LOSS OF USE, LOSS OF TIME, INCONVENIENCE, COMMERCIAL LOSS,
OR LOST PROFITS, SAVINGS, OR REVENUES TO THE FULL EXTENT
SUCH MAY BE DISCLAIMED BY LAW.

COMPLIANCE WITH LAWS; EXPORT RESTRICTIONS. You must use the
Software in accordance with all applicable U.S. laws, regulations and statutes.
You agree that neither you nor your licensees (if any) intend to or will, directly
or indirectly, export or transmit the Software to any country in violation of U.S.
export restrictions.

GOVERNMENT USE. Use of the Software and any corresponding
documentation, if any, is provided with RESTRICTED RIGHTS. Use,
duplication or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 or subparagraphs (c)(l) and (2) of the
Commercial Computer Software--Restricted Rights at 48 CFR 52.227-19, as
applicable. Manufacturer is Motorola, Inc., 6501 William Cannon Drive West,
Austin, TX, 78735.

HIGH RISK ACTIVITIES. You acknowledge that the Software is not fault
tolerant and is not designed, manufactured or intended by Motorola for
incorporation into products intended for use or resale in on-line control
equipment in hazardous, dangerous to life or potentially life-threatening
environments requiring fail-safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic
control, direct life support machines or weapons systems, in which the failure
of products could lead directly to death, personal injury or severe physical or
environmental damage (“High Risk Activities”). You specifically represent and

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2616
Trademarks

MOTOROLA Getting Started with HCS08 and CodeWarrior Using C 61

warrant that you will not use the Software or any derivative work of the Software
for High Risk Activities.

CHOICE OF LAW; VENUE; LIMITATIONS. You agree that the statutes and
laws of the United States and the State of Texas, USA, without regard to
conflicts of laws principles, will apply to all matters relating to this Agreement or
the Software, and you agree that any litigation will be subject to the exclusive
jurisdiction of the state or federal courts in Texas, USA. You agree that
regardless of any statute or law to the contrary, any claim or cause of action
arising out of or related to this Agreement or the Software must be filed within
one (1) year after such claim or cause of action arose or be forever barred.

PRODUCT LABELING. You are not authorized to use any Motorola
trademarks, brand names, or logos.

ENTIRE AGREEMENT. This Agreement constitutes the entire agreement
between you and Motorola regarding the subject matter of this Agreement, and
supersedes all prior communications, negotiations, understandings,
agreements or representations, either written or oral, if any. This Agreement
may only be amended in written form, executed by you and Motorola.

SEVERABILITY. If any provision of this Agreement is held for any reason to be
invalid or unenforceable, then the remaining provisions of this Agreement will
be unimpaired and, unless a modification or replacement of the invalid or
unenforceable provision is further held to deprive you or Motorola of a material
benefit, in which case the Agreement will immediately terminate, the invalid or
unenforceable provision will be replaced with a provision that is valid and
enforceable and that comes closest to the intention underlying the invalid or
unenforceable provision.

NO WAIVER. The waiver by Motorola of any breach of any provision of this
Agreement will not operate or be construed as a waiver of any other or a
subsequent breach of the same or a different provision.

Trademarks

• Motorola and the Motorola logo are registered trademarks
of Motorola, Inc.

• Microsoft, Windows, and Windows NT are registered trademarks of
Microsoft Corporation in the U.S. and other countries.

• UNIX is a registered trademark of Open Group in the US and other
countries.

• P&E is a trademark of P&E Microcomputer Systems, Inc.

• CodeWarrior® is a registered trademark of MetroWerks, a wholly owned
subsidiary of Motorola, Inc.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334

HOME PAGE:
http://motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2004

AN2616

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	Overview
	Contents
	HCS08 Demonstration and Evaluation Boards
	Introduction
	What is an HCS08?
	Background debug mode
	HCS08 serial monitor
	BDM or monitor mode?

	Developing an Application with CodeWarrior
	Description of hardware used
	Setting up the demo board
	Setting up the evaluation board

	Creating a new project CodeWarrior
	CodeWarrior generated project
	Initial code

	Connecting the hardware
	Background debug mode (BDM)
	Selecting a BDM
	HCS08 serial monitor mode
	Running the code
	Using monitor
	Using BDM
	Debugging - communications established

	Adding files to the project
	Header file for demo board
	Add a file to a project
	Add file to project

	Illuminate LED2 if SW2 is pressed
	Run the code

	Use PWM to flash LED
	Invoke the debugger

	Add interrupt on SW1
	Invoke the debugger

	Set clock frequency
	Application complete

	Metrowerks HCS08 CodeWarrior Development Tools
	Metrowerks CodeWarrior
	Additional HC(S)08 help included with CodeWarrior
	Metrowerks
	Metrowerks CodeWarrior for HC(S)08
	What’s on the CD
	System requirements for CodeWarrior
	Installing CodeWarrior
	CodeWarrior license
	CodeWarrior updates
	CodeWarrior “projects”

	CodeWarrior C and HCS08
	Data types
	What a project consists of
	Using CodeWarrior device definitions
	Device file (MC9S08GB60.c)
	Header file (MC9S08GB60.h)
	Register and bit definitions
	How device registers and bits are used
	How device registers are defined and used
	Summary:

	How device register bit(s) are defined / used
	Register names used with multiple peripherals

	Frequently Asked Questions
	Where can I get the most up to date documentation
	Device and/or target isn't supported by Metrowerks
	USB BDM doesn't work with Metrowerks HC08 Codewarrior v3.0
	Tips on using a parallel BDM pod?
	P&E parallel Multilink BDM & laptop
	Monitor mode is not working?
	How do I reprogram the HCS08 monitor?
	How can I program small batches of HCS08 devices without tying up a PC?
	Code in FLASH only works when BDM is powered?
	Debugger not showing the source code of main.c?
	How do I set a breakpoint in the debugger?
	Debugging does not seem to use the hardware/select in- circuit debug
	How can I see the assembler code generated for C statements?
	What are all the interrupt vector numbers for the MC9S08GB60?
	Where are header files located?
	Should I use bit fields or masks for bit manipulation?
	How does the compiler use page 0?
	How can I force a variable to reside in page 0?
	How do I disable the watchdog?
	Problems with variable, structure, or type definition?
	How do I add interrupt handlers?
	How can I use the assembler within C?
	How are interrupt vectors redirected?
	How do I use masks?
	How do I set the compiler options?
	Big Endian or Little Endian?
	Check core and compiler for Big Endianness

	Is Linux/Unix support available?

	References
	Trademarks

