
CodeWarrior is a registered trademark of Metrowerks, Inc., a wholly owned subsidiary of Motorola, Inc.
This product incorporates SuperFlash technology licensed from SST.

© Motorola, Inc., 2003

AN2575/D
9/2003

MC68HC908EY16 ESCI
LIN Drivers

Application Note

By: Wolfgang Bihlmayr
Motorola, Munich

and Peter Topping
Motorola, East Kilbride

Introduction

Reliable communication via the asynchronous LIN1 protocol requires an MCU
with a bus clock accurate enough to avoid errors. MCUs that use clocks based
on crystal or ceramic resonators easily provide very accurate bus clocks. The
LIN protocol was designed to also allow more cost-effective solutions. MCUs
with on-chip oscillators can be successfully used, even though the on-chip
oscillators have accuracy poorer than a crystal’s by several orders of
magnitude.

The most significant change from normal UART timing is the increase of the
usual 10-bit break to 13 bits. This allows an MCU with an inaccurate clock (up
to ±14%) to reliably distinguish a break from a data byte containing eight zeros
(nine including the start bit). Following this break, the protocol specifies the
inclusion of a synchronization byte whose data is always $55. This field
includes five falling (recessive to dominant) edges that can be used as a
reference for clock and/or baud rate adjustments.

The MC68HC908EY16 is a high-performance MCU suitable for use in a low-
cost LIN slave node. It can be used with or without an external crystal. To
enable use without a crystal or any other external clock component, it
incorporates an internal clock generator (ICG). The ICG can be programmed
to any frequency from 307.2 kHz to 32 MHz in increments of 307.2 kHz. As with
all HC08 MCUs, the bus frequency is one-quarter of this clock frequency. The
use of the ICG reduces cost and eliminates the need for pins dedicated to clock
circuitry. Not putting the clock on external pins also greatly reduces electro-
magnetic emissions — see application note AN2344/D: HC908EY16 EMI
Radiated Emissions Results. (This document and other helpful documents are
listed in the References section.)

1. Local Interconnect Network, see the References section.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

2 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

NOTE: With the exception of mask set errata documents, if any other Motorola
document contains information that conflicts with the information in the data
sheet, the data sheet should be considered to have the most current and
correct data.

The downside of using the ICG is that the frequency is not as accurate as that
of a crystal or resonator. Parametric spreads during manufacture result in an
overall untrimmed accuracy of ±25% from the specified nominal reference
frequency of 307.2 kHz. In many applications, this is acceptable and no
trimming is necessary. For LIN, however, greater accuracy is required. This
application note describes a method of achieving the required performance.

MC68HC908EY16 Enhancements for LIN

The MC68HC908EY16 includes an ESCI (enhanced serial communications
interface) module that incorporates three enhancements specifically for LIN
(compared with the standard SCI used on many other HC08 MCUs).

• The recognition of a 13-bit break

• A fractional-divide baud rate prescaler that allows fine adjustment of the
baud rate

• An arbiter counter that has 10 bits (9 bits plus an overflow bit) and can
be used as a mini-timer to measure break and bit times

The ICG incorporates a digitally controlled oscillator (DCO) whose operation is
fully described in application note AN2498/D: Initial trimming of the
MC68HC908 ICG. The DCO uses registers DDIV and DSTG that are managed
by the ICG hardware to make automatic corrections to the frequency of the
clock. The actual output frequency is determined by the user via the ICGTR
and ICGMR registers. The output frequency is set with the multiplier register,
ICGMR. This register is set to 21 ($15) at reset, giving a default clock frequency
of 6.4512 MHz ±25% (21 times 307.2 kHz). The user can change this value as
required. In this application, a value of 64 is used to give a nominal bus
frequency of 4.9152 MHz.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
Baud Rate Requirements for LIN

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 3

Baud Rate Requirements for LIN

The clock accuracy required for a LIN node using a crystal or ceramic resonator
is ±1.5%. Although slave-to-slave communications tighten this requirement, it
is so easily met by a crystal that this rarely causes a problem. The requirements
for a node using an internal oscillator are more complex. The LIN baud rate
requirements are summarized in Table 1. Slave-to-slave communication using
the LIN protocol requires that no two nodes may differ by more than ±2%.
Halving the individual requirement to ±1% is the simplest way of achieving this
level of accuracy. Doing this is necessary if there are two or more similar nodes
using internal clocks. If there is only one of this type of node, the better
accuracy of the other nodes may render ±1% unnecessarily tight.

Two separate trimming operations are required to meet these requirements. To
meet the ±14% accuracy required to reliably recognize the break signal, pre-
trimming the ICG frequency is necessary. To achieve the more precise ±1% or
±2% requirement for LIN communication, a further adjustment is required.
These adjustments are covered in the next two sections.

ICG Trimming

The untrimmed internal oscillator on the MC68HC908EY16 is only accurate to
about ±25%. Therefore, initial trimming is required to adjust the oscillator
frequency near enough to the target frequency to allow recognition of a LIN
break symbol. Normally, this initial trimming would be done during production
of the application PCB. Then the trim value for the specific device would be
stored in the nonvolatile memory of the MCU. Each time the MC68HC908EY16
is powered up, the stored trim value would be copied from nonvolatile memory
into the working trim register to adjust the internal oscillator frequency. Most
production programming tools support trimming, but the exact implementation
varies from one tool to another. Because of that, refer to the documentation for
your programmer for more information.

Table 1. LIN Baud Rate Requirements

Sync. Status Requirement Accuracy Condition

Before
synchronization

Break recognition ±14%(1) Master clock accuracy assumed
to be within ±0.5% of nominal

After synchronization
(master-slave)

LIN messaging with the master ±2%

Relative to the master’s clock
After synchronization

(inc. slave-slave)
LIN messaging with the master

and other slaves
±1%

1. The pre-synchronization accuracy in rev. 1.3 is ±15%, but this will be tightened to 14% in future revisions.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

4 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

One method of initially trimming the ICG is fully described in AN2498/D (see
the References section). This trimming would usually be done only on power-
up with a value that is stored in FLASH and loaded into the ICGTR register.
This value can be either embedded into the code (as shown in the software
listing) or stored in a pre-defined FLASH location and transferred to ICGTR on
power-up. With this pre-trimming done on an MC68HC908EY16, the frequency
is guaranteed to be within ±7% for 4.5 to 5.5 V VDD and –40°C to +85°C (±10%
for the full automotive temperature range). This is well within the ±14%
requirement to enable the MCU to recognize the 13-bit break.

The trimming adjustment involves measuring the actual bus frequency with the
use of an external pulse of known length. Then, the trim register is adjusted by
the number that gives the required correction. (Note that changing its value by
1 causes a frequency change of ~0.195%.) In the case of AN2498/D, the
external pulse is 1024 µs between successive rising edges. The number of
4915.2-kHz bus cycles that would occur in this period is given by:

cnt1024 = (64 × 307.2 kHz × 1024 µs) ÷ 4 ÷ 1000 = 5033

The adjustment to the ICGTR is made using the following equation where
delta0 is the actual number of counts (measured by timer A channel 0) between
successive rising edges of the external 1024 µs signal.

ICGTR = ICGTR + (512 × (delta0 – 5033)) ÷ 5033

Independent of how the initial trimming is done, the improved accuracy
achieved by this initial ICG pre-trimming allows the break to be recognized. It
is, however, not sufficiently accurate to meet the ±2% specification required to
guarantee reliable LIN communication. Adjustment to within ±1% can be
achieved using the LIN message itself because the synchronization byte of $55
immediately following the break has been incorporated for this purpose.
Because the baud rate is always known, the time between edges within this
byte can be used to measure the precise bit-time relative to the actual clock
frequency. In particular, the time between two successive negative edges
yields a known reference of two bit-times. The use of the same edge for the
start and finish of the measurement eliminates inaccuracies due to asymmetry
between rising and falling edges. The negative edge is preferred because it is
generated by a dominant, active-low logic level. This is more accurate than the
use of positive edges which are generated by pullup resistors.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
ESCI Prescaler Baud Rate Adjustment

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 5

ESCI Prescaler Baud Rate Adjustment

One possible method of adjusting the baud rate would be to use the timing
information derived from the LIN message to re-trim the ICG. However, the
DCO can take several hundred microseconds to settle after an adjustment.
Thus, it is not always fast enough to facilitate the reception of the message
whose synchronization byte is being used. With this method, that message
could be missed, although the following message would be recognized. To
adjust the receiving baud rate fast enough to respond to the message whose
synchronization byte is being used, the MC68HC908EY16 incorporates a
fractional divide prescaler. This prescaler is additional to the standard SCI
prescaler. It allows a division ratio of 1 (bypassed by default) or 2 to 8 31/32
programmable in increments of 1/32.

Adjustment of this prescaler could be carried out by using data derived from a
timer channel connected to the ESCI Rx pin. With the MC68HC908EY16, the
use of this additional resource is not necessary because the ESCI includes a
small timer in the form of its arbiter counter. This is a 9-bit counter with a tenth
bit to indicate that an overflow has occurred. The arbiter counter/timer has two
modes of operation:

• Measurement of the break signal — This requires counting from a
negative edge to the following positive edge. This mode is not used here
because break recognition is guaranteed by the initial ICG trimming.

• Measurement of time between two successive negative edges — This
is intended for bit-time measurement. It is the mode used here.

Figure 1. ESCI Baud-Rate Prescalers

FRACTIONAL DIVIDE
PRESCALER — FD

÷1 OR 2 8.96875
(BYPASSED OR
2 31/32

÷4

÷2

÷4

÷1, 3, 4, or 13

SCI BAUD RATE
PRESCALER — BPD

BAUD RATE
DIVIDER — BD

÷16÷1, 2, 4, ..128 fTx

fRx

9-BIT ARBITER COUNTER

ESCI Rx

ACLK = 1

ACLK = 0

ESCI
CLOCK

(BUS OR
4 × BUS) 8)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

6 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

Figure 1 shows all the division ratios within the ESCI and its arbiter counter.
The input clock to the arbiter counter is selected according to the mode being
used. In the bit-time measuring mode being used here, the ACLK bit in the
arbiter control register (SCIACTL) is 0 and the arbiter counter is clocked at one-
quarter of the ESCI input clock. This input clock is selectable in CONFIG2 to
be either the bus clock or the CGMXCLK clock, which is bus × 4. In the
MC68HC908EY16 LIN drivers, the bus clock — in this case 4.9152 MHz — is
used. BPD is fixed at 2 (÷4) and BD is fixed at 1 (÷2) for LIN communications
at 9600 baud (see the technical data sheet MC68HC908EY16/D). In the
equations below, FD is the fractional divide prescaler ratio.

In two bit-times, the arbiter counter counts 2 × tBit × fBus ÷ 4
where tBit is in microseconds and fBus is in MHz.

Therefore tBit = 2 × count ÷ fBus

The required bit-time (1÷baud rate)=64×BPD×BD×FD÷ fBus=128×FD÷ fBus
(see the technical data sheet MC68HC908EY16/D).

The bit-times are equal when 2 × count = 128 × FD;
i.e., when FD = count ÷ 64.

The ESCI fractional divide prescaler register (SCPSC) is programmed in two
parts as shown in Table 2. The top three bits (PDS) constitute an integral divide
ratio of 1 to 8. (1 is a special case where the prescaler is bypassed and the
bottom five bits are ignored.) The divide ratio is one larger than the value in the
top three bits of the register, and this must be taken into account when writing
to SCPSC.

Table 2. Fractional Divide Prescaler Register (SCPSC)

7 6 5 4 3 2 1 0

PDS PSSB (not used if PDS = 0)

PDS

0
1
2
3
.
.
7

PD = PDS + 1

1 (bypass)
2
3
4
.
.
8

PSSB

0
1
2
3
.
.

31

PDFA = PSSB ÷ 32

0
1/32
2/32
3/32

.

.
31/32

Example: If SCPSC = 0×73 (01110011), PDS = 3 and PSSB = 19 so FD = 4 19/32
(in decimal, SCPSC is 115 so FD = 1 + 115/32 = 4 19/32)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
ESCI Prescaler Baud Rate Adjustment

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 7

The bottom five bits (PSSB) contain the fractional part in increments of 1/32.
Because the integral part is five places to the left, the whole byte can be
considered as 32 times the divide ratio. The only complication is the offset of 1
in the top three bits. Because of this, the overall fractional divide prescaler
divide ratio, FD, is 1 + SCPSC ÷ 32. The integral part of the divide ratio
(PDS + 1) is referred to as PD in the MC68HC908EY16 data sheet and the
fractional part (PSSB ÷ 32) as PDFA, so the relationships are:

FD = PD + PDFA = 1 + PDS + PSSB ÷ 32 = 1 + SCPSC ÷ 32

As shown above, FD = count ÷ 64 therefore:

SCPSC = 32 × ((count ÷ 64) – 1) = count ÷ 2 – $20

From this equation, it can be seen that the arbiter count value should be divided
by two and $20 subtracted from it to get the value which should be loaded into
the SCPSC register. The code shown below has been extracted from the LIN
driver software to illustrate how this can be done.

if(LIN_SCIACTL & LIN_SCIA_AFIN) // arbiter count finished ?
{
 if(LIN_CfgConst.LIN_BaudRate == 0) // 19200 baud
 {
 LIN_SCPSC = LIN_SCIADAT - 0x20; // count - 32
 }
 else if(LIN_CfgConst.LIN_BaudRate==1) // 9600 baud
 {
 LIN_SCPSC = (((LIN_SCIACTL&0x03)<<7)|LIN_SCIADAT>>1) - 0x20; // count/2 – 32
 }
}

The code includes the option of using 19,200 baud. This is simpler because
there is no need to shift the value before adding $20. Because there is no room
for the ninth bit (it will be zero anyway), it is not used. For 9600 baud, however,
the ninth bit is relevant so the count value first has to be divided by two. This is
done by shifting the ninth bit (from SCIACTL) up to bit 7 and ORing this with the
shifted down (divided by two) value of the other eight bits (from SCIADAT). The
least significant bit is discarded. After $20 is added, this gives the data required
for the SCPSC register.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

8 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

Hardware

The LINkits LIN evaluation board described in AN2573/D1 is used for this
application. A 2 × 16 character LCD has been added using the same interface
as that described in AN2498/D. The complete circuit diagram used here is
shown in Figure 2. Apart from the MCU and the MC33399, only a 5-volt
regulator (in this case an LT1121) is required to implement the simple LIN
node. This chip count could be further reduced by using the LIN system base
chip (SBC), MC33689, because this chip incorporates a LIN physical interface
and a voltage regulator. The other components required are the LCD module
and a few resistors and decoupling capacitors (not shown).

Figure 2. Circuit Diagram of ESCI Baud-Rate Adjustment Application

1. See the References section for a list of helpful documents, including the application notes
cited here.

5 VLT1121

27 kΩ

EN

Tx

Rx

2

4

1

9

23

24

B5

E0/Tx

E1/Rx

D1

VDD
VDDA
VREFHIRQ

MC68HC908EY16

A5 20

28
29
30

INHVSup

LIN

WAKE
GND

MC33399

LIN

7 8

6

3

2

100 kΩ

17

35

16
SELECT

VSS
VSSA
VREFL

27
26
25

18VBat

100 kΩ

RESET

5 V

47 kΩ

RESET 0.1 µF

13

5 V

47 kΩ

ICGTR/ICGMR

A6
C0
C1

B2
B1
B0

C2

19
22
21

12
14
18

8
MCLK

D0
15

A2 A3
1 32

TRIM ADJUST

47 kΩ

47 kΩ

5 V

MC74HC4040Q12 C1

11 8

10 4-MHz

7

OSC
8

5 V

D411

D5
D6
D7

RS
R/W
E

12
13
14

4
5
6

2 × 16 CHARACTER
DOT-MATRIX
LCD MODULE

VDD V0 VSS

2 3 1

10 kΩ
LCD

CONTRAST

1416

VDD

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
Hardware

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 9

To supply the required calibration pulse to the MC68HC908EY16’s PTD0 timer
pin, some extra circuitry built onto a plug-in top board is used. The LINkits
evaluation boards incorporate two 20-pin connectors using roughly the same
pinout on all the boards. This allows the design of a top board that can be used
on any LINkits board. In this case, a 4-MHz oscillator has been fitted to the top
board. Its output is divided by an MC74HC4040 12-stage ripple counter to give
the required 976.5625-kHz signal (1024 µs period).

The format of the LCD displayed data is shown below. The top line shows the
current value of ICGTR in decimal and hexadecimal. (The hexadecimal value
is in brackets.) The “t” indicates that ICGTR is being displayed. (This display
can be changed to ICGMR if PTD1 is held low. In that case the “t” would be
replaced with an “m.”) The actual bus frequency is displayed on the top line.
MCLK is enabled on PTC2 as an external check of this frequency. At the right-
hand end of the top line, the integral part (PD) of the current value of the
fractional divide prescaler is shown.

The bottom line of the display shows the data from a sample LIN message (see
AN2264/D listed in the References section). The two-digit temperature is
displayed on the LCD if it is correctly received. However, a default display of
“**” is shown if the LIN function LIN_MsgStatus() does not recognize the
presence of the message. (This happens if the baud rate of the MCU is not
accurate enough for the LIN protocol to function correctly.) This data is followed
by the bus frequency. It is expressed as a percentage of the nominal frequency
that would be expected using the current value of ICGMR. The 16 most recent
measurements of the external pulse are stored in an array. The displayed
percentage is the average of these values (shown with a resolution of 0.1%).
The next number on the bottom line is the internally calculated baud rate of the
ESCI. The baud rate will change when the bus frequency is changed (ICGTR
is modified). It soon readjusts to 9600 baud (within +150/–20 baud) as the ESCI
fractional divide prescaler register values are automatically adjusted by the LIN
drivers. At the right-hand end of the bottom line, the fractional part (PSSB) of
the current value of the fractional divide prescaler is shown.

128(t80) 4915 3
42 100.0 9600 31

TEMPERATURE

VALUE

REGISTER
INDICATOR

HEX fBus PD
ICGTR

% fnom BAUD RATE PSSB

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

10 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

In addition to the reset button, two buttons (trim and adjust) are also included,
as shown in Figure 2. They perform the same functions as those described in
AN2498/D (see References). Pressing the trim button causes a trim
calculation and adjustment to take place. This function is debounced so that
only a single trim takes place even if the button is held down. The adjust button
can be used to manually change the value of ICGTR. It decrements this
register and does so repeatedly if it is held down. If, when the adjust button is
pressed, the trim button is also pressed, ICGTR is incremented. The software
incorporates an interlock so that the buttons can be released in either order
without causing an inadvertent trim operation that would corrupt the
deliberately modified value in ICGTR. If PTD1 is held low using the jumper
shown, ICGMR is displayed instead of ICGTR and the incrementing and
decrementing functions of the buttons are applied to ICGMR instead of ICGTR.
This arrangement allows any value of either register to be achieved and, if
desired, a trim operation performed from that configuration. However, for the
purposes of demonstrating the baud rate adjustment, only a single trim is
required and the value of ICGMR should not be changed from its initially
programmed value of 64.

Software

The software for the ESCI baud rate adjustment demonstration application was
written and debugged using the LINkits evaluation PCB and the Metrowerks’
CodeWarrior development environment with a P&E Multilink interface. The
application incorporates the Motorola LIN drivers (1.3) whose baud rate
adjustment method is described in this application note.

The main software flow chart is Figure 3. After the CONFIG and port registers
have been initialized, ICGMR is given the value 64. This gives the nominal bus
speed of 4.9152 MHz. The LIN drivers are configured (in file slave.cfg) for
9600 baud. The time base module is programmed with its maximum divide
ratio of 4,194,304 to give a slow (4 Hz) repetition rate through the loop. This
was done because the LCD is written to at this rate and there is no reason to
update it at a rate faster than the changing digits can be read. Timer A channel
0 is then set up to measure the time between successive rising edges of the
external reference signal coming from the MC74HC4040. The display module
and the LIN drivers are then initialized and interrupts enabled.

The main loop is timed by polling the time base module’s interrupt/overflow
flag. The buttons on bits 2 and 3 of port A are then read to determine whether
a trim operation or register adjustment is being requested. This is handled by
the function Read_buttons and incorporates a simple debounce and interlock
using the flag bounce. This flag prevents multiple trims from occurring if the trim
button is held down. It also prevents a trim if both buttons are pressed to
increment ICGTR or ICGMR and are then released in such a way that the trim
button is held down after the adjust button has been released.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
Software

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 11

The LIN message is then read using function Read_LINtemp(). This is similar
to the code used in AN2264/D (see References) and the format of the
message is described in detail there. In this application, the message is only
being used to indicate whether the baud rate is accurate enough for the LIN
protocol to function correctly. Because of the low repetition rate through the
main loop, the buffer may be read less often than the arrival rate of the
message on the LIN bus. This is why a LIN_MsgStatus(0x0A) return of
LIN_MSG_OVERRUN is regarded as normal, along with LIN_OK.

The main loop then performs the calculation of the constant cnt1024. This is a
constant for a given value of ICGMR (5033 for an ICGMR of 64 in this
application) but is calculated each time around the loop in case ICGMR has
been changed using the adjust button. This is followed by the two functions
Format_line1() and Format_line2(), which convert the various numbers that
must be displayed into the ASCII format required for the LCD module. Adding
0x30 is all that is required for the decimal numbers. The array ASCIIconv[16] is
used to convert hexadecimal digits. The averaging calculations for the bottom
line display are performed within Format_line2().

The last function performed within the loop is actually writing the data for
display to the LCD module using the function Display_Data(data, mode). This
function in turn uses functions LCD_busy(), Write_Nibble(data), and
Clock_LCD(). Write_Nibble(data) is required because of the somewhat
inconvenient choice of port lines used to drive the LCD. (They were chosen to
be consistent with AN2498/D).

The interrupt service routine TimerA() uses channel 0 as an input capture to
read the number of timer counts between successive rising edges of the
external timing reference. The difference between the current value and the
previous value is calculated. Then that delta is put into the array of 16 values
that are used for the average frequency display.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

12 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

Figure 3. Flow Chart of Main Software Loop

START

INITIALIZE CONFIG, PORTS, TBM,

YES

TBIF FLAG SET
?

TIMER A, AND ICG MULTIPLIER

NO

INITIALIZE LIN DRIVERS AND THE
LCD MODULE.

ENABLE INTERRUPTS.

CLEAR TIMEBASE INTERRUPT FLAG
TOGGLE “TICK” LED

NO

ADJUST BUTTON
?

YES

NO

TRIM BUTTON
?

YES

YES

LIN MESSAGE OKAY
?

NO

ADJUST ICGTR OR
ICGMR

TRIM ICG

DISPLAY **

READ AND DISPLAY LIN DATA

CALCULATE CONSTANT cnt1024

FORMAT DATA AND UPDATE
LCD MODULE

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
Alternative Strategies

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 13

Alternative Strategies

1. In the current implementation, FD reverts back to 4 before the reception
of each message. As an alternative, it would be possible to retain the
adjusted value of FD and change it only when required (e.g., due to
temperature change causing a drift in the ICG frequency). To do this
without risk of getting stuck on an incorrect value, the range of FD should
be limited to ±14% of its nominal value (i.e., if the nominal is 4., the
acceptable FD range is between 3 14/32 and 4 18/32).

2. To incorporate other bus frequencies and baud rates, leave BPD at 1
and select the most appropriate values of BD and nominal FD to suit the
required combination.

Let R = bus clock ÷ (64 × baud rate), divide R by 2N so that 2<R÷2N<4

Then BD = N and FDnom = R ÷ 2N

Calculate x = (R ÷ 2N – 2) ÷ 32 to nearest integer to get
FDnom = PS + 1 = 2 x/32

When the arbiter count is being transferred to SCPCS, it should be
shifted to the right N times.

3. If the methods described in 1 and 2 above are both used, FD should be
limited to the following values:

SCPSCmin = INT (0.86 × (SCPSCnom + 32) – 32)

SCPSCmax = INT (1.14 × (SCPSCnom + 32) – 32)

4. Avoid uncontrolled overflow of the arbiter counter. Although the overflow
bit can be used as a tenth bit, it is safer to limit the maximum acceptable
count to 511 (nine bits) and leave the overflow bit for use as an indication
of an error. The maximum count = 1.1 × nominal fBus ÷ 2 × baud rate. At
9600 baud, this gives a count of 458 at a bus clock of 8 MHz. This is
acceptable, but is near the limit. Therefore, the use of lower baud rates
necessarily implies the use of lower bus speeds.

References

[1] LIN Protocol Specification, Version 1.3, 12 December 2002.

[2] AN2498/D, Initial trimming of the MC68HC908 ICG.

[3] MC68HC908EY16/D, MC68HC908EY16 Technical Data Sheet.

[4] AN2264/D, LIN Node Temperature Display.

[5] AN2344/D, HC908EY16 EMI Radiated Emissions Results.

[6] AN2573/D, LINkits LIN Evaluation Boards.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

14 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

Software Listing

/**

* (c) MOTOROLA Inc. 2003 all rights reserved. *

* *

* *

* MC68HC908EY16 ESCI baud rate trimming demonstration program. *

* == *

* *

* Originator: P. Topping *

* Date: 22nd June 2003 *

* Revision: 1.0 *

* Function: LCD display of the ESCI prescaller settings which are *

* automatically adjusted by the LIN drivers (1.3), The *

* code includes the ability to adjust or trim the ICG to *

* force changes to the fractional divide prescaler value. *

* The hardware is based in the EY16 "LINkits" eval.board. *

* *

**/

#pragma DATA_SEG SHORT _DATA_ZEROPAGE

/**

*

* Header file includes

*

**/

#include "HC08EY16.h"

#include <linapi.h>

/**

*

* Function prototypes

*

**/

void Initialise_Display (void);

void Display_Data (unsigned char, unsigned char);

void Write_Nibble (unsigned char);

void Clock_LCD (void);

unsigned char LCD_busy (void);

void Read_buttons (void);

void Format_line1 (void);

void Format_line2 (void);

void Read_LINtemp (void);

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
Software Listing

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 15

/**

*

* Global variables

*

**/

unsigned char LIN_data[2];

unsigned char error_count = 3;

unsigned char ASCIIconv[] = {48,49,50,51,52,53,54,55,56,57,65,66,67,68,69,70};

unsigned char Line1[] = "---(---) ---- -";

unsigned char Line2[] = "-- ---.- ---- --";

unsigned char Power_of2 [8] = {1, 2, 4, 8, 16, 32, 64, 128};

unsigned char Prescaler [8] = {1, 3, 4, 13};

unsigned char count;

unsigned char tick;

unsigned char bounce;

unsigned char bpoint;

int delta_buffer[16];

int tcount0;

int delta0;

long thousand = 1000;

long cnt1024;

int bus_freq;

unsigned char PD;

unsigned char tmpSCPSC;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

16 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

/**

*

* Function name: Main

* Originator: P. Topping

* Date: 21th March 2003

* Function: Initialise CONFIG registers, ICGMR, Ports and Timers.

* Initialise LCD module & LIN drivers and enable interrupts.

* Pace a slow loop (~4Hz for a 4MHz bus) using the timebase

* module. Within this loop the keys are read, the LIN buffer

* is read and the LCD module is updated. If requested by

* pressing the PTA2 key, a trimming operation is performed.

* ICGTR or ICGMR are incremented or decremented (according to

* the level of PTA2) once per loop if the PTA3 key is pressed

* PTD1 selects ICGTR or ICGMR for display and inc./dec.

*

**/

void main (void)

{

 CONFIG1 = 0x01; /* dissable COP */

 CONFIG2 = 0x45; /* slow clock for TBM */

 ICGMR = 64; /* ICG nominal 15.9744 MHz */

 DDRA = 0x70; /* port A 5-6, port B 0-2 */

 DDRB = 0x27; /* and port C 0-1 for LCD */

 DDRC = 0x83; /* port B bit 5 for LPI */

 PTB = 0x20; /* enable MC33399 LPI */

 TBCR = 0x00; /* divide by 2**22: ~4Hz @ */

 TBCR = 0x02; /* 4MHz bus & enable TBM */

 TASC = 0x30; /* reset timer A */

 TASC0 = 0x44; /* IC TAch0 - rising edges */

 TASC = 0x00; /* and start timer A */

 Initialise_Display(); /* initialise LCD module */

 asm cli; /* enable interrupts */

 LIN_Init(); /* initialise LIN drivers */

while (1)

{

 if (TBCR & 0x80) /* is TBM flag set? */

 {

 TBCR |= 0x08; /* yes, clear it */

 tick++;

 if (tick & 0x01) /* check bit 0 of tick */

 {

 PTA |= 0x10; /* tick LED (PTA4) off */

 }

 else

 {

 PTA &= ~(0x10); /* tick LED (PTA4) on */

 }

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
Software Listing

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 17

 Read_buttons(); /* read buttons on A2 & A3 */

 Read_LINtemp(); /* check for LIN message */

 cnt1024 = (ICGMR * 307.2 * 256) / 1000; /* constant for this ICGMR */

 Format_line1(); /* data for LCD line 1 */

 Format_line2(); /* data for LCD line 2 */

 Display_Data(0x80, 0x00); /* DDRAM address to line 1 */

 for (count = 0; count < 16; count++)

 {

 Display_Data(Line1[count], 0x01); /* and write LCD line 1 */

 }

 Display_Data(0xC0, 0x00); /* DDRAM address to line 2 */

 for (count = 0; count < 16; count++)

 {

 Display_Data(Line2[count], 0x01); /* and write LCD line 2 */

 }

 }

}

}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

18 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

/**
*
* Function name: Read_buttons
* Originator: P. Topping
* Date: 26th March 2003
* Function: PTA3 PTA2 PTD1 PTA2 & 3 are low if their key is pressed
* 1 1 x no key function (release debounce lock)
* 1 0 x calculate trim and adjust ICGTR
* 0 1 0 decrement multiplier register ICGMR
* 0 1 1 decrement trim register ICGTR
* 0 0 0 increment multiplier register ICGMR
* 0 0 1 increment trim register ICGTR
*
**/

void Read_buttons (void)
{
 if ((PTA & 0x08) == 0) /* PTA3 key pressed ? */
 {
 if ((PTA & 0x04) == 0) /* yes, PTA2 key pressed ? */
 {
 if (PTD & 0x02) /* yes, check PTD1 */
 {
 ICGTR += 1; /* inc. trim if high */
 }
 else
 {
 ICGMR += 1; /* or multiplier if low */
 }
 }
 else /* PTA3 but not PTA2 */
 {
 if (PTD & 0x02) /* check PTD1 */
 {
 ICGTR -= 1; /* decrement trim if high */
 }
 else
 {
 ICGMR -= 1; /* or multiplier if low */
 }
 }
 bounce = 1; /* inhibit trimming */
 }
 else /* PTA3 key not pressed */
 {
 if (((PTA & 0x04) == 0) && (bounce == 0)) /* PTA2 key pressed ? */
 {
 ICGTR += (512*(delta0-cnt1024))/cnt1024; /* yes, trim */
 bounce = 1; /* and inhibit repeat */
 }
 else if ((PTA & 0x04) != 0) /* neither pressed so */
 {
 bounce = 0; /* re-enable trimming */
 }
 }
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
Software Listing

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 19

/**

*

* Function name: Format_line1

* Originator: P. Topping

* Date: 26th March 2003

* Function: Format display of ICGTR (or ICGMR) in decimal and hex

* and bus frequency in kilohertz (blanking a leading zero).

* PTD1 selects between the display of ICGTR or ICGMR

*

**/

void Format_line1 (void)

{

int remain;

 if (PTD & 0x02) /* check PTD1 */

 {

 remain = ICGTR; /* high so display ICGTR */

 Line1[4] = 0x74; /* "t" */

 }

 else
 {
 remain = ICGMR; /* low so display ICGMR */
 Line1[4] = 0x6D; /* "m" */
 }
 Line1[5] = ASCIIconv [remain/16]; /* upper nibble in HEX */
 Line1[6] = ASCIIconv [remain & 0x0F]; /* lower nibble in HEX */
 for (count = 3; count != 0; count--)
 {
 Line1[count-1] = (remain%10) + 0x30; /* display also in decimal */
 remain = remain/10;
 }
 if (Line1[0] == 0x30) { Line1[0] = 0x20; } /* leading 0 becomes space */

 bus_freq = (delta0*thousand)/1024; /* calc. freq. from delta */
 remain = bus_freq;
 for (count = 12; count >= 8; count--)
 {
 Line1[count] = (remain%10) + 0x30; /* display frequency */
 remain = remain/10;
 }
 if (Line1[8] == 0x30) { Line1[8] = 0x20; } /* leading 0 becomes space */

 if (SCPSC != 0x60) tmpSCPSC = SCPSC;
 PD = 1 + tmpSCPSC/32; /* ESCI prescaller reg. */
 Line1[15] = PD + 0x30; /* upper three bits (+1) */
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

20 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

/**
*
* Function name: Format_line2
* Originator: P. Topping
* Date: 26th March 2003
* Function: Format display of average frequency as a percentage of the
* nominal frequency (0.1% resolution) and baud rate.
* (the LIN temperature display is added by Read_LINtemp())
*
**/

void Format_line2 (void)
{
int remain;
long total;
volatile unsigned char BPD;
volatile unsigned char BD;
unsigned char PDFA;

 total = 0;
 for (count = 0; count < 16; count++)
 {
 total += delta_buffer[count]; /* sum 16 deltas */
 }
 remain = (thousand * total)/16/cnt1024; /* average as % of nominal */
 Line2[7] = (remain%10) + 0x30; /* display tenths */
 for (count = 3; count != 0; count--)
 {
 remain = remain/10;
 Line2[count+2] = (remain%10) + 0x30; /* and percentage */
 }
 if (Line2[3] == 0x30) { Line2[3] = 0x20; } /* leading 0 becomes space */
 PDFA = tmpSCPSC & 0x1F; /* ESCI pre. lower 5 bits */
 remain = PDFA; /* ESCI pre. lower 5 bits */
 Line2[15] = (remain%10) + 0x30; /* display PSSB in decimal */
 remain = remain/10;
 Line2[14] = remain + 0x30;
 if (Line2[14] == 0x30) Line2[14] = 0x20; /* leading 0 becomes space */

 BPD = Prescaler [(SCBR/16) & 3];
 BD = Power_of2 [(SCBR & 7)];
 remain = (bus_freq * thousand)/(2 * BPD * BD * (PD*32 + PDFA));
 for (count = 12; count >= 8; count--)
 {
 Line2[count] = (remain%10) + 0x30; /* display baud rate */
 remain = remain/10;
 }
 if (Line2[8] == 0x30) { Line2[8] = 0x20; } /* leading 0 becomes space */
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
Software Listing

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 21

/**

*

* Function name: Read_LINtemp

* Originator: P. Topping

* Date: 26th March 2003

* Function: Check for LIN message, if there decode and put temperature

* into display array, if not enter **

*

**/

void Read_LINtemp (void)

{

unsigned char bits;

unsigned char units;

unsigned char tens;

unsigned char negative;

 bits = LIN_MsgStatus (0x0A);

 if ((bits != LIN_OK) && (bits != LIN_MSG_OVERRUN)) /* has there been */

 { /* an ID 0A message ? */

 if (error_count < 5) /* no, error counter */

 { /* already 5 ? */

 error_count ++; /* no, inc. error counter */

 }

 }

 else

 {

 error_count = 0; /* yes, new data available */

 }

 if (error_count > 4) /* data in last second ? */

 { /* (needs approx 4MHz bus) */

 Line2[2] = 0x20; /* no, display "** " */

 Line2[0] = 0xA5; /* to signify no valid */

 Line2[1] = 0xA5; /* LIN data available */

 }

 else /* yes, data available */

 {

 LIN_GetMsg (0x0A, LIN_data); /* read sensor message */

 bits = LIN_data[0]; /* and extract temp. byte */

 if (bits < 60) /* negative ? */

 {

 bits = 60 - bits; /* yes,convert to positive */

 negative = 1; /* but remember it wasn't */

 }

 else

 {

 bits = bits - 60; /* no, remove offset and */

 negative = 0; /* clear negative flag */

 }

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

22 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

 bits = bits/2; /* lose LS bit */

 tens = bits/10; /* find tens digit */

 units = bits%10; /* and units digit */

 Line2[1] = units + 0x30; /* units digit */

 Line2[0] = 0x20; /* clear tens digit */

 Line2[2] = 0x20; /* and "-" */

 if (tens != 0) /* tens digit zero ? */

 {

 Line2[0] = tens + 0x30; /* no, display it */

 if (negative) /* negative ? */

 {

 Line2[2] = 0xB0; /* yes display "-" */

 }

 }

 else if (negative) /* tens zero, negative ? */

 {

 Line2[0] = 0xB0; /* yes, put "-" in tens */

 }

 }

}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
Software Listing

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 23

/**

Function Name : Display_Data

Engineer : C. Culshaw

Date : 06/09/02

Parameters : data - byte to be written to display

 : regsel - RS (0 = command mode, 1 = data mode)

**/

void Display_Data (unsigned char data, unsigned char regsel)

{

 while (LCD_busy() == 0x01); /* read LCD busy status */

 if (regsel == 1)

 {

 PTB |= 0x04; /* data, RS high */

 }

 else

 {

 PTB &= ~(0x04); /* command, RS low */

 }

 Write_Nibble (data/16); /* MS nibble */

 Clock_LCD(); /* clock display */

 Write_Nibble (data & 0x0F); /* LS nibble */

 Clock_LCD(); /* clock display */

}

/**

*

* Function name: Write_Nibble

* Originator: P. Topping

* Date: 21st March 2003

* Parameters: nibble - 4-bit data to be written to display

*

**/

void Write_Nibble (unsigned char nibble)

{

 PTA = (PTA & 0x9F) | nibble * 0x20; /* format bits for LCD */

 PTC = (PTC & 0xFC) | nibble / 4; /* interface */

}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

24 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

/**

*

* Function name: LCD_busy

* Originator: P. Topping

* Date: 10th February 2003

*

**/

unsigned char LCD_busy (void)

{

 unsigned char busy;

 unsigned char wait;

 DDRA &= ~(0x60); /* make LCD data pins MCU */

 DDRC &= ~(0x03); /* inputs */

 PTB &= ~(0x04); /* RS low */

 PTB |= 0x02; /* RW high */

 PTB |= 0x01; /* E high */

 busy = (PTC & 0x02); /* check busy output */

 PTB &= ~(0x01); /* E low */

 Clock_LCD(); /* clock second nibble */

 PTB &= ~(0x02); /* RW low */

 DDRC |= 0x03; /* put LCD data pins back */

 DDRA |= 0x60; /* to MCU outputs */

 wait = 0; while (wait++ < 10); /* wait ? */

 return (busy);

}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
Software Listing

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 25

/**
*
* Function name: Clock_LCD
* Originator: P. Topping
* Date: 10th February 2003
*
**/

void Clock_LCD (void)
{
 PTB |= 0x01; /* E high */
 asm NOP; /* slow down for > 8MHz */
 asm NOP;
 PTB &= ~(0x01); /* E low */
}

/**
*
* Function name: Initialise_Display
* Originator: P. Topping
* Date: 10th February 2003
*
**/

void Initialise_Display (void)
{

PTB &= ~(0x06); /* RW and RS low */
count = 0;

while (count < 8)
{
 if (TBCR & 0x80) /* is TBM flag set? */
 {
 TBCR |= 0x08; /* yes, clear it */

 switch (count)
 {
 case 1:
 Write_Nibble (0x03); /* Function set (8 bits) */
 Clock_LCD(); /* and clock */
 break;
 case 2:
 Clock_LCD(); /* wait and clock again */
 break;
 case 3:
 Clock_LCD(); /* and again */
 break;
 case 4:
 Write_Nibble (0x02); /* Function set 4 bit mode */
 Clock_LCD();
 break;
 case 5:
 Display_Data (0x28, 0x00); /* 2 line display */
 break;
 case 6:
 Display_Data (0x08, 0x00); /* display off */
 break;
 case 7:
 Display_Data (0x0C, 0x00); /* display on */
 PTB |= 0x04; /* RS high */
 break;
 }
 count++;
 }
}
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

26 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

/**
*
* Function name: TimerA0
* Originator: P. Topping
* Date: 19rd March 2002
* Function: Timer A, channel 0 interrupt service routine
* Read timer, subtract from previous value and save delta
* in global "delta0" and in 16 result array "delta_buffer[]"
*
**/

#pragma TRAP_PROC

void TimerA0 (void)
{
 unsigned char thigh;
 int tcount;

 TASC0 &= ~(0x80); /* clear interrupt flag */
 thigh = TACH0H; /* read high byte first */
 tcount = ((thigh*256) + TACH0L); /* update counter */
 delta0 = tcount - tcount0; /* calculate delta */
 tcount0 = tcount; /* save timer value */

 delta_buffer[bpoint & 0x0F] = delta0; /* put delta into buffer */
 bpoint++; /* of 16 for averaging */
}

/**
* Function: LIN_Command
*
* Description: User call-back. Called by the driver after transmission or
* reception of the Master Request Command Frame (ID: 0x3C).
*
**/

void LIN_Command()
{
 while(1)
 {
 }
}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
HC08EY16.h

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 27

HC08EY16.h

/***
 HC08EY16.H
 Register definitions for the 908EY16

 P. Topping 24-01-02
***/

#define PTA *((volatile unsigned char *)0x0000)
#define PTB *((volatile unsigned char *)0x0001)
#define PTC *((volatile unsigned char *)0x0002)
#define PTD *((volatile unsigned char *)0x0003)
#define PTE *((volatile unsigned char *)0x0008)

#define DDRA *((volatile unsigned char *)0x0004)
#define DDRB *((volatile unsigned char *)0x0005)
#define DDRC *((volatile unsigned char *)0x0006)
#define DDRD *((volatile unsigned char *)0x0007)
#define DDRE *((volatile unsigned char *)0x000A)

#define SCBR *((volatile unsigned char *)0x0016)
#define SCPSC *((volatile unsigned char *)0x0017)

#define CONFIG1 *((volatile unsigned char *)0x001F)
#define CONFIG2 *((volatile unsigned char *)0x001E)

#define TBCR *((volatile unsigned char *)0x001C)

#define TASC *((volatile unsigned char *)0x0020)
#define TACNTH *((volatile unsigned char *)0x0021)
#define TACNTL *((volatile unsigned char *)0x0022)
#define TAMODH *((volatile unsigned char *)0x0023)
#define TAMODL *((volatile unsigned char *)0x0024)
#define TASC0 *((volatile unsigned char *)0x0025)
#define TACH0H *((volatile unsigned char *)0x0026)
#define TACH0L *((volatile unsigned char *)0x0027)
#define TASC1 *((volatile unsigned char *)0x0028)
#define TACH1H *((volatile unsigned char *)0x0029)
#define TACH1L *((volatile unsigned char *)0x002A)

#define TBSC *((volatile unsigned char *)0x002B)
#define TBCNTH *((volatile unsigned char *)0x002C)
#define TBCNTL *((volatile unsigned char *)0x002D)
#define TBMODH *((volatile unsigned char *)0x002E)
#define TBMODL *((volatile unsigned char *)0x002F)
#define TBSC0 *((volatile unsigned char *)0x0030)
#define TBCH0H *((volatile unsigned char *)0x0031)
#define TBCH0L *((volatile unsigned char *)0x0032)
#define TBSC1 *((volatile unsigned char *)0x0033)
#define TBCH1H *((volatile unsigned char *)0x0034)
#define TBCH1L *((volatile unsigned char *)0x0035)

#define ICGCR *((volatile unsigned char *)0x0036)
#define ICGMR *((volatile unsigned char *)0x0037)
#define ICGTR *((volatile unsigned char *)0x0038)

#define DDIV *((volatile unsigned char *)0x0039)
#define DSTG *((volatile unsigned char *)0x003A)

#define VECTF (void(*const)()) /* Vector table function specifier */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

28 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

vector.c

#define VECTOR_C
/**
*
* Copyright (C) 2001 Motorola, Inc.
*
* Functions: Vectors table for LIN08 Drivers with Motorola API
*
* Description: Vector table and node's startup for HC08.
* The users can add their own vectors into the table,
* but they should not replace LIN Drivers vectors.
*
* Notes:
*
**/

#if defined(HC08) /* for HC08 */

#if defined(HC08EY16)
extern void LIN_ISR_SCI_Receive(); /* ESCI receive ISR */
extern void LIN_ISR_SCI_Error(); /* ESCI error ISR */
extern void TimerA0(); /* Timer Module A Channel 0 ISR */
extern void TimerA1(); /* Timer Module A Channel 1 ISR */
// extern void TimerB(); /* Timer Module B Overflow ISR */
// extern void BREAK_Command(); /* SWI ISR */
#endif /* defined(HC08EY16) */

/**
 NODE STARTUP
 By default compiler startup routine is called.
 User is able to replace this by any other routine.
**/

#if defined(HICROSS08)
#define Node_Startup _Startup
extern void _Startup(); /* HiCross compiler startup routine declaration */
#endif /* defined(HICROSS08) */

/**
 INTERRUPT VECTORS TABLE
 User is able to add another ISR into this table instead NULL pointer.
**/

#if !defined(NULL)
#define NULL (0)
#endif /* !defined(NULL) */

#undef LIN_VECTF

#if defined(HICROSS08)
#define LIN_VECTF (void (*const) ())
#pragma CONST_SEG VECTORS_DATA /* vectors segment declaration */
void (* const _vectab[])() =
#endif /* defined(HICROSS08) */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
vector.c

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 29

#if defined(HC08EY16)

/***/
/* */
/* HC08EY16 */
/* */
/* These vectors are appropriate for the 2L31N mask set of the */
/* MC68HC908EY16 and all subsequent versions. */
/* */
/* Older mask sets, e.g. 0L38H, 1L38H, 0L31N and 1L31N had a fault */
/* in their interrupt vector table and hence in the priorities. */
/* For these older mask sets the order of the SCI vectors was: */
/* */
/* SCI_Error_ISR, // 0xFFE6 ESCI error */
/* SCI_Transmit_ISR, // 0xFFE8 ESCI transmit */
/* SCI_Receive_ISR, // 0xFFEA ESCI receive */
/* */
/* All other vectors are unchanged. */
/* */
/***/

{
 LIN_VECTF NULL, /* 0xFFDC Timebase */
 LIN_VECTF NULL, /* 0xFFDE SPI transmit */
 LIN_VECTF NULL, /* 0xFFE0 SPI receive */
 LIN_VECTF NULL, /* 0xFFE2 ADC */
 LIN_VECTF NULL, /* 0xFFE4 Keyboard */

#if defined(MASTER) /* (used for Master node only)*/
 LIN_VECTF LIN_ISR_SCI_Transmit, /* 0xFFE6 ESCI transmit */
#endif /* defined(MASTER) */
#if defined(SLAVE)
 LIN_VECTF NULL, /* 0xFFE6 ESCI transmit */
#endif /* defined(SLAVE) */
 LIN_VECTF LIN_ISR_SCI_Receive, /* 0xFFE8 ESCI receive */
 LIN_VECTF LIN_ISR_SCI_Error, /* 0xFFEA ESCI error */

 LIN_VECTF NULL, /* 0xFFEC TIMER B overflow */
 LIN_VECTF NULL, /* 0xFFEE TIMER B channel 1 */
 LIN_VECTF NULL, /* 0xFFF0 TIMER B channel 0 */
 LIN_VECTF NULL, /* 0xFFF2 TIMER A overflow */
 LIN_VECTF NULL, /* 0xFFF4 TIMER A channel 1 */
 TimerA0, /* 0xFFF6 TIMER A channel 0 */
 LIN_VECTF NULL, /* 0xFFF8 CMIREQ */
 LIN_VECTF NULL, /* 0xFFFA IRQ */
// LIN_VECTF BREAK_Command, /* 0xFFFC SWI */
 LIN_VECTF NULL, /* 0xFFFC SWI */
 LIN_VECTF Node_Startup /* 0xFFFE RESET */
};

#endif /* defined(HC08EY16) */

#if defined(HICROSS08)
#pragma CONST_SEG DEFAULT
#endif /* defined(HICROSS08) */

#endif /* defined(HC08) */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D

30 MC68HC908EY16 ESCI LIN Drivers MOTOROLA

slave.cfg

#ifndef LINCFG_H
#define LINCFG_H

/**
*
* Copyright (C) 2001 Motorola, Inc.
*
* Functions: LIN Driver static configuration file for LIN08 Slave sample
* with Motorola API
*
* Notes:
*
**/

#if defined (HC08)

/* This definition configures the ESCI Prescaler divide ratio */

#define LIN_SCIPRESCALER 0x60u /* divide by 4 */

/* This definition configures the LIN bus baud rate. This value */
/* shall be set according to target MCU SCI register usage. */
/* HC08EY16: the 8-bit SCBR value will be masked by 0x37. */
/* The following numbers assume that the ESCI prescaller = 4 */

/* Selects 9600 baud for a nominal 2.4576 MHz clock (ICGMR=32) */
//#define LIN_BAUDRATE 0x00u

/* Selects 9600 baud for a nominal 4.9152 MHz clock (ICGMR=64) */
#define LIN_BAUDRATE 0x01u

/* Enable ESCI (fractional divide prescaler) baudrate synch. */

#define LIN_SYNC_SLAVE

/* The following numbers assume that the ESCI prescaller = 1 */

/* Selects 9600 baud rate if using a 4.9152MHz crystal */
//#define LIN_BAUDRATE 0x03u

/* Selects 9600 baud rate if using a 9.8304MHz crystal */
//#define LIN_BAUDRATE 0x04u

/* Selects 9600 baud rate if using an 8.000MHz crystal */
//#define LIN_BAUDRATE 0x30u

/* Selects 9600 baud rate if using a 16.000MHz crystal */
//#define LIN_BAUDRATE 0x31u

/* Selects 9600 baud rate if using a 32.000MHz crystal */
//#define LIN_BAUDRATE 0x32u

/* This definition sets the number of user-defined time clocks
 (LIN_IdleClock service calls), recognized as "no-bus-activity"
 condition. This number shall not be greater than 0xFFFF. */

#define LIN_IDLETIMEOUT 500u

#endif /* defined (HC08) */

#endif /* !define (LINCFG_H) */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2575/D
slave.id

MOTOROLA MC68HC908EY16 ESCI LIN Drivers 31

slave.id

#ifndef LINMSGID_H
#define LINMSGID_H
/**
*
* Copyright (C) 2001 Motorola, Inc.
*
* Functions: Message Identifier configuration for LIN08 Slave sample
* with Motorola API
*
*
* Notes:
*
**/

#define LIN_MSG_0A LIN_RECEIVE

/* this string is not necessary - just as an example */

#define LIN_MSG_0A_LEN 2 /* standard length */

#endif /* defined(LINMSGID_H)*/

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

AN2575/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	Introduction
	MC68HC908EY16 Enhancements for LIN
	Baud Rate Requirements for LIN
	ICG Trimming
	ESCI Prescaler Baud Rate Adjustment
	Hardware
	Software
	Alternative Strategies
	References
	Software Listing
	HC08EY16.h
	vector.c
	slave.cfg
	slave.id

