
This application note is offered as a supplement to the MPC184 Security Co-Processor User’s
Manual, PCI Interface, to assist the user in understanding and creating descriptors in the event
the user has more specific requirements than those covered by the MPC184 device driver. This
application note will be more useful if the reader is already basically familiar with the
MPC184 architecture, as explained in the user’s manual. All descriptor and execution unit
references are shown in little endian format consistent with the PCI version of the MPC184
user’s manual.

The following topics are addressed:

Topic Page

Section 1, “Data Packet Descriptor Overview” 2

Section 2, “Descriptor Structure” 2

Section 3, “Descriptor Header” 3

Section 4, “Execution Unit Mode Data” 4

Section 5, “Descriptor Type Field” 14

Section 6, “Descriptor Length and Pointer Fields” 17

Section 7, “Descriptor Chaining” 19

Section 8, “Descriptor Classes” 20

Section 9, “Additional Examples” 24

Section 10, “SSLv3.1/TLS1.0 Processing” 34

Section 11, “Conclusion” 37

Application Note

AN2492/D
Rev. 0, 6/2003

MPC184 Descriptor
Programmer’s Guide—
PCI View

Geoff Waters
Security Applications

Michael Torla
Security Design

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

2 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Data Packet Descriptor Overview Data Packet Descriptor Overview

1 Data Packet Descriptor Overview
The MPC184 has bus mastering capability on either 32-bit PCI or the PowerQUICC 8xx bus to off-load data
movement and encryption operations from a host processor. As the system controller, the host processor
maintains a record of current secure sessions and the corresponding keys and contexts of those sessions.
Once the host has determined a security operation is required, it can either directly write keys, context, and
data to the MPC184 (MPC184 in target mode), or the host can create a ‘data packet descriptor’ to guide the
MPC184 through the security operation, with the MPC184 acting as a bus master. The descriptor can be
created in main memory, any memory local to the MPC184, including 8 Kbytes of on-chip gpRAM, or
written directly to the data packet descriptor buffer in the MPC184 crypto-channel.

2 Descriptor Structure
The MPC184 data packet descriptors are conceptually similar to descriptors used by most devices with
DMA capability. See Figure 1 for a conceptual data packet descriptor. The descriptors are fixed length
(64 bytes), and consist of sixteen 32-bit fields. Descriptors begin with a header, which describes the security
operation to be performed and the mode that the execution unit will be set to while performing the operation.

The header is followed by seven data length/data pointer pairs. Data length indicates the amount of
contiguous data to be transferred. This amount cannot exceed 32 Kbytes. The data pointer refers to the
address of the data which the MPC184 fetches. In this case, data is broadly interpreted to mean keys,
context, additional pointers, or the actual plain text to be permuted.

Figure 1 shows an example data packet descriptor.

31 0

Descriptor Header

R/W

Pointer 1

Length 2

Pointer 2

Length 3

Pointer 3

Length 4

Pointer 4

Length 5

Pointer 5

Length 6

Pointer 6

Length 7

Pointer 7

Next Descriptor Pointer

Figure 1. Example Data Packet Descriptor

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 3

Descriptor Header

3 Descriptor Header
Descriptors are created by the host to guide the MPC184 through required cryptographic operations. The
descriptor header defines the operations to be performed, the mode for each operation, and the ordering of
the inputs and outputs in the body of the descriptor. The MPC184 device drivers allow the host to create
proper headers for each cryptographic operation. Figure 2 shows the descriptor header.

Table 1 defines the header bits.

31 20 19 8 7 4 3 2 1 0

Field Op_0 Op_1 Desc_TYPE RSVD ST DN

Reset 0x0000_0000

R/W R/W

Addr Channel_1 0x02080, Channel_2 0x03080, Channel_3 0x04080, Channel_4 0x05080

Figure 2. Descriptor Header

Table 1. Header Bit Definitions

Bits Name Description

31:20 Op_0 Op_0 contains two sub fields, EU_Select and Mode_Data. Figure 3 shows the sub field
detail.
EU_SELECT[31:28]—Programs the channel to select a primary EU of a given type.
Table 2 lists the possible EU_SELECT values.
MODE_DATA[27:20]—Programs the primary EU mode data.
The mode data is specific to the chosen EU. This data is passed directly to bits 7:0 of the
specified EU mode register.

19:8 Op_1 Op_1 contains two sub fields, EU_Select and Mode_Data. Figure 3 shows the sub field
detail.
EU_SELECT[19:16]—Programs the channel to select a secondary EU of a given type.
Table 2 lists the possible EU_SELECT values.
MODE_DATA[15:8]—Programs the secondary EU mode data.
The mode data is specific to the chosen EU. This data is passed directly to bits 7:0 of the
specified EU mode register.
Note: The MDEU is the only valid secondary EU. Values for Op1 EU_SELECT other than
‘MDEU’ or ‘no secondary CHA selected’ will result in an ‘unrecognized header’ error
condition. Selecting MDEU for both primary and secondary EU will also create an error
condition.

7:4 Desc_Type Descriptor type—Each type of descriptor determines the following attributes for the
corresponding data length/pointer pairs: the direction of the data flow; which EU is
associated with the data; and which internal EU address is used.
Table 9 lists the valid types of descriptors.

3:2 — Reserved—set to zero

1 ST Snoop type—Selects which of the two types of available snoop modes applies to the
descriptor. See Figure 11 for a graphical representation of the snooping concept.
0 Snoop output data mode
1 Snoop input data mode
In ‘snoop input data mode,’ while the bus transaction to write data into the input FIFO of
the primary EU is in progress, the secondary EU (always MDEU) will snoop the same data
into its input FIFO.
In ‘snoop output data mode’, the secondary EU (always MDEU) will snoop data into its
input FIFO during the bus transaction to read data out of the output FIFO of the primary EU.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Execution Unit Mode Data Execution Unit Mode Data

Figure 3 shows the two sub fields of Op_x.

Op0 EU_SELECT values of ‘no primary EU selected’ or ‘reserved EU’ will result in an ‘unrecognized
header error’ condition during processing of the descriptor header. Also, the primary EU selected by the Op0
EU_SELECT field may only be DEU, AESU, or AFEU when a valid secondary EU is selected. For this
case, all other values of Op0 EU_SELECT will result in an ‘unrecognized header’ error condition. The full
range of permissible EU_Select values is shown in Table 2.

4 Execution Unit Mode Data
The MPC184 execution units are programmed via the descriptor header. The Mode_Data portion of Op_X
field in the descriptor header is written to bits 7:0 of the mode register in the execution unit selected by the
EU_Select field in Op_X. A complete explanation of the execution unit registers can be found in Chapter 5

0 DN DONE_NOTIFICATION_FLAG—Done Notification Flag
Setting this bit indicates whether to perform notification on completion of this descriptor.
The notification can take the form of an interrupt or modified header write back or both
depending on the state of the INTERRUPT_ENABLE and WRITEBACK_ENABLE control
bits in the crypto-channel configuration register.
0 Do not signal DONE on completion of this descriptor (unless globally programmed to do

so via the crypto-channel configuration register)
1 Signal DONE on completion of this descriptor
Note: The MPC184 can be programmed to perform DONE notification on completion of
each descriptor, completion of any descriptor, or completion of the final descriptor in a
chain. This bit provides for the second case.
When the crypto-channel is requesting a write of the descriptor header back to system
memory, the least significant byte (little endian) of the header will always read as set to
0xFF, and the remaining 24 bits will not be changed.

11 8 7 0

Op_x

EU_SELECT MODE_DATA

Figure 3. Op_x Sub Field

Table 2. EU_Select Values

Value EU Select

0000 No EU selected

0001 AFEU

0010 DEU

0011 MDEU

0100 RNG

0101 PKEU

0110 AESU

Others Reserved EU

Table 1. Header Bit Definitions (continued)

Bits Name Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 5

Execution Unit Mode Data

of the MPC184 Security Co-Processor User’s Manual, PCI Interface, however, the mode register for each
EU is provided in this section for convenience.

4.1 PKEU Mode Register
This register specifies the internal PKEU routine to be executed. For the root arithmetic routines, PKEU has
the capability to perform arithmetic operations on subsegments of the entire memory. This is particularly
useful for operations such as ECDH (elliptic curve Diffie-Hellman) key agreement computation. By using
regAsel and regBsel, for example, parameter memory A subsegment 2 can be multiplied into parameter
memory B subsegment 1. Figure 4 and Figure 5 detail two definitions.

Table 3 lists mode register routine definitions. Parameter memories are referred to for the base address, as
shown.

31 7 6 0

Field Reserved Mode

Reset 0 0

R/W R/W

Addr PKEU 0x10000

31 0

Field Reserved

Reset 0

R/W R/W

Addr PKEU 0x10004

Figure 4. PKEU Mode Register: Definition 1

31 7 6 4 3 0

Field Reserved Mode regsel

Reset 0 0 0

R/W R/W

Addr PKEU 0x10000

31 0

Field Reserved

Reset 0

R/W R/W

Addr PKEU 0x10004

Figure 5. PKEU Mode Register: Definition 2

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Execution Unit Mode Data Execution Unit Mode Data

4.2 DEU Mode Register
The DEU mode register contains 3 bits which are used to program the DEU, as shown in Figure 6. It also
reflects the value of burst size, which is loaded by the crypto-channel during normal operation with the
MPC184 as an initiator. Burst size is not relevant to target mode operations, where an external host pushes
and pulls data from the execution units.

The mode register is cleared when the DEU is reset or re-initialized. Setting a reserved mode bit will
generate a data error. If the mode register is modified during processing, a context error will be generated.

Table 3. Mode Register Routine Definitions

Routine Mode [6:4] Mode [3:2] Mode [1:0]

Reserved 000 00 00

Clear memory 000 0 01

Modular exponentiation 000 00 10

R2 mod N 000 00 11

RnRp mod N 000 01 00

Fp affine point multiplication 000 01 01

F2m affine point multiplication 000 01 10

Fp projective point multiplication 000 01 11

F2m projective point multiplication 000 10 00

Fp point addition 000 10 01

Fp point doubling 000 10 10

F2m point addition 000 10 11

F2m point doubling 000 11 00

F2m R2 CMD 000 11 01

F2m INV CMD 000 11 10

MOD INV CMD 000 11 11

Modular addition 001 regAsel 1

00 = A0
01 = A1
10 = A2
11 = A3

1 In this case, regAsel and regBsel refer to the specific segment of parameter memory A and B.

regBsel 1

00 = B0
01 = B1
10 = B2
11 = B3

Modular subtraction 010

Modular multiplication with single reduction 011

Modular multiplication with double reduction 100

Polynomial addition 101

Polynomial multiplication with single reduction 110

Polynomial multiplication with double reduction 111

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 7

Execution Unit Mode Data

Table 4 describes the DEU mode register signals.

4.3 AFEU Mode Register
The AFEU mode register contains 3 bits which are used to program the AFEU, as shown in Figure 7. It also
reflects the value of burst size, which is loaded by the crypto-channel during normal operation with the
MPC184 as an initiator. Burst size is not relevant to target mode operations, where an external host pushes
and pulls data from the execution units.

The mode register is cleared when the AFEU is reset or re-initialized. Setting a reserved mode bit will
generate a data error. If the mode register is modified during processing, a context error will be generated.

31 11 10 8 7 3 2 1 0

Field Reserved Burst Size Reserved CE TS ED

Reset 0 0 0 0 0 0

R/W R/W

Addr DEU 0x0A000

31 0

Field Reserved

Reset 0

R/W R/W

Addr DEU 0x0A004

Figure 6. DEU Mode Register

Table 4. DEU Mode Register Signals

Bits Signal Description

31:11 — Reserved

10:8 Burst size The MPC184 implements flow control to allow larger than FIFO sized blocks of data to be
processed with a single key/IV. The DEU signals to the crypto-channel that a ‘burst size’
amount of data is available to be pushed to or pulled from the FIFO.
Note: The inclusion of this field in the DEU mode register is to avoid confusing a user who
may read this register in debug mode. Burst size should not be written directly to the DEU.

7:3 — Reserved

2 CBC/ECB If set, DEU operates in cipher-block-chaining mode. If not set, DEU operates in electronic
codebook mode.
0 ECB mode
1 CBC mode

1 Triple/single
DES

If set, DEU operates the triple DES algorithm; if not set, DEU operates the single DES
algorithm.
0 Single DES
1 Triple DES

0 Encrypt/decrypt If set, DEU operates the encryption algorithm; if not set, DEU operates the decryption
algorithm.
0 Perform decryption
1 Perform encryption

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Execution Unit Mode Data Execution Unit Mode Data

4.3.1 Host-Provided Context via Prevent Permute
In the default mode of operation, the host provides the key and key size to the AFEU. The initial memory
values in the S-box are permuted with the key to create new S-box values, which are used to encrypt the
plaintext.

If the ‘prevent permute’ mode bit is set, the AFEU will not require a key. Rather, the host will write the
context to the AFEU and message processing will occur using the provided context. This mode is used to
resume processing of a message using the already permuted S-box. The context may be written through the
FIFO if the ‘context source’ mode bit is set.

4.3.2 Dump Context
This mode may be independently specified in addition to host-provided context mode. In this mode, once
message processing is complete and the output data is read, the AFEU will make the current context data
available for reads via the output FIFO.

NOTE
After the initial key permute to generate a context for an AFEU encrypted
session, all subsequent messages will re-use that context, such that it is
loaded, modified during the encryption, and unloaded, similar to the use of
a CBC initialization vector in DES operations. A new context is generated
(via key permute) according to a rekeying interval specified by the security
protocol. Context should never be loaded to encrypt a message if a key is
loaded and permuted at the same time.

31 11 10 8 7 3 2 1 0

Field Reserved Burst Size Reserved CS DC PP

Reset 0 0 0 0 0 0

R/W R/W

Addr AFEU 0x08000

31 0

Field Reserved

Reset 0

R/W R/W

Addr AFEU 0x08004

Figure 7. AFEU Mode Register

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 9

Execution Unit Mode Data

Table 5 describes the AFEU mode register signals.

4.4 MDEU Mode Register
The MDEU mode register, shown in Figure 8, contains 8 bits which are used to program the MDEU. It also
reflects the value of burst size, which is loaded by the crypto-channel during normal operation with the
MPC184 as an initiator. Burst size is not relevant to target mode operations, where an external host pushes
and pulls data from the execution units.

The mode register is cleared when the MDEU is reset or re-initialized. Setting a reserved mode bit will
generate a data error. If the mode register is modified during processing, a context error will be generated.

Table 5. AFEU Mode Register Signals

Bits Signal Description

31:11 — Reserved

10:8 Burst size The MPC184 implements flow control to allow larger than FIFO sized blocks of data to
be processed with a single key/context. The AFEU signals to the crypto-channel that a
‘burst size’ amount of data is available to be pushed to or pulled from the FIFO.
Note: The inclusion of this field in the AFEU mode register is to avoid confusing a user
who may read this register in debug mode. Burst size should not be written directly to
the AFEU.

7:3 — Reserved

2 Context source If set, this causes the context to be moved from the input FIFO into the S-box prior to
starting encryption/decryption. Otherwise, context should be directly written to the
context registers. Context source is only checked if the prevent permute bit is set.
0 Context not from FIFO
1 Context from input FIFO

1 Dump context If set, this causes the context to be moved from the S-box to the output FIFO following
assertion of AFEU’s done interrupt.
0 Do not dump context
1 After cipher, dump context

0 Prevent permute Normally, AFEU receives a key and uses that information to randomize the S-box. If
reusing a context from a previous descriptor or if in static assignment mode, this bit
should be set to prevent AFEU from reperforming this permutation step.
0 Perform S-box permutation
1 Do not permute

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Execution Unit Mode Data Execution Unit Mode Data

Figure 8 shows the MDEU mode register.

Table 6 describes the MDEU mode register signals.

31 11 10 8 7 6 5 4 3 2 1 0

Field Reserved Burst Size Cont -- INT HMAC PD ALG

Reset 0

R/W R/W

Addr MDEU 0x0C000

31 0

Field Reserved

Reset 0

R/W R/W

Addr MDEU 0x0C004

Figure 8. MDEU Mode Register

Table 6. MDEU Mode Register

Bits Signal Description

31:11 — Reserved

10:8 Burst size The MPC184 implements flow control to allow larger than FIFO sized blocks of data to be
processed with a single key/context. The MDEU signals to the crypto-channel that a ‘burst
size’ amount of data is available to be pushed to the FIFO.
Note: The inclusion of this field in the MDEU mode register is to avoid confusing a user
who may read this register in debug mode. Burst size should not be written directly to the
MDEU.

7 Cont Continue (Cont)—Used during HMAC/HASH processing when the data to be hashed is
spread across multiple descriptors.
0 Don’t Continue—operate the MDEU in auto completion mode
1 Preserve context to operate the MDEU in continuation mode

6:5 — Reserved

4 INT Initialization Bit (INT)—Cause an algorithm-specific initialization of the digest registers.
Most operations will require this bit to be set. Only static operations that are continuing from
a known intermediate hash value would not initialize the registers.
0 Do not initialize
1 Initialize the selected algorithm’s starting registers

3 HMAC Identifies the hash operation to execute:
0 Perform standard hash
1 Perform HMAC operation. This requires a key and key length information.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 11

Execution Unit Mode Data

4.4.1 Recommended Settings for MDEU Mode Register
The most common task likely to be executed via the MDEU is HMAC generation. HMACs are used to
provide message integrity within a number of security protocols, including IPSec and SSL/TLS. When the
HMAC is being generated by a single dynamic descriptor (the MDEU acting as sole or secondary EU), the
following mode register bit settings should be used:

Continue—Off

Initialize—On

HMAC—On

Autopad—On

When the HMAC is being generated for a message that is spread across a chain of static descriptors, the
following mode register bit settings should be used:

• First Descriptor:

Continue—On

Initialize—On

HMAC—On

Autopad—Off

• Middle Descriptor(s):

Continue—On

Initialize—Off

HMAC—Off

Autopad—Off

• Final Descriptor

Continue—Off

Initialize—Off

HMAC—On

Autopad—On

Additional information on descriptors can be found in Chapter 6 of the MPC184 Security Co-Processor
User’s Manual, PCI Interface.

2 PD If set, configures the MDEU to automatically pad partial message blocks.
0 Do not autopad
1 Perform automatic message padding whenever an incomplete message block is

detected

1:0 ALG Message digest algorithm selection
00 SHA-160 algorithm (full name for SHA-1)
01 SHA-256 algorithm
10 MD5 algorithm
11 Reserved

Table 6. MDEU Mode Register (continued)

Bits Signal Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

12 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Execution Unit Mode Data Execution Unit Mode Data

4.5 RNG Mode Register
The RNG mode register is used to control the RNG. One operational mode, randomizing, is defined. Writing
any other value than 0 to 7:0 results in a data error interrupt that is reflected in the RNG interrupt status
register. The mode register also reflects the value of burst size, which is loaded by the crypto-channel during
normal operation with the MPC184 as an initiator. Burst size is not relevant to target mode operations, where
an external host pushes and pulls data from the execution units.

The mode register is cleared when the RNG is reset or re-initialized. The RNG mode register is shown in
Figure 9.

Table 7 describes the RNG mode register signals.

4.6 AESU Mode Register
The AESU mode register contains 4 bits which are used to program the AESU. It also reflects the value of
burst size, which is loaded by the crypto-channel during normal operation with the MPC184 as an initiator.
Burst size is not relevant to target mode operations, where an external host pushes and pulls data from the
execution units.

The mode register is cleared when the AESU is reset or re-initialized. Setting a reserved mode bit will
generate a data error. If the mode register is modified during processing, a context error will be generated.
The AESU mode register is shown in Figure 10.

31 11 10 8 7 0

Field Reserved Burst Count Reserved

Reset 0

R/W R/W

Addr 0x0E000

31 0

Field Reserved

Reset 0

R/W R/W

Addr 0x0E004

Figure 9. RNG Mode Register

Table 7. RNG Mode Register Definitions

Bits Signal Description

31:11 — Reserved, must be set to zero.

10:8 Burst Count The MPC184 implements flow control to allow larger than FIFO sized blocks of data to be
processed with a single key/context. The RNG signals to the crypto-channel that a ‘burst
size’ amount of data is available to be pulled from the FIFO.
Note: The inclusion of this field in the RNG mode register is to avoid confusing a user who
may read this register in debug mode. Burst size should not be written directly to the RNG.

7:0 — Reserved

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 13

Execution Unit Mode Data

Table 8 describes the AESU mode register signals.

NOTE: Restore Decrypt Key
In most networking applications, the decryption of an AES protected
packet will be performed as a single operation. However, if circumstances
dictate that the decryption of a message should be split across multiple
descriptors, the AESU allows the user to save the decrypt key, and the
active AES context, to memory for later re-use. This saves the internal
AESU processing overhead associated with regenerating the decryption
key schedule (approximately 12 AESU clock cycles for the first block of
data to be decrypted).

The use of RDK is completely optional, as the input time of the preserved
decrypt key may exceed the approximate 12 cycles required to restore the
decrypt key for processing the first block.

31 11 10 8 7 4 3 2 1 0

Field Reserved Burst Size Reserved RDK CM ED

Reset 0

R/W R/W

Addr AESU 0x12000

Figure 10. AESU Mode Register

Table 8. AESU Mode Register Signals

Bits Signal Description

31:11 — Reserved

10:8 Burst size The MPC184 implements flow control to allow larger than FIFO sized blocks of data to be
processed with a single key/context. The AESU signals to the crypto-channel that a ’burst
size’ amount of data is available to be pushed to or pulled from the FIFO.
Note: The inclusion of this field in the AESU mode register is to avoid confusing a user who
may read this register in debug mode. Burst size should not be written directly to the AESU.

7:4 — Reserved

3 RDK Restore Decrypt Key (RDK)—Specifies that key data write will contain pre-expanded key
(decrypt mode only). See note on use of RDK bit.
0 Expand the user key prior to decrypting the first block
1 Do not expand the key. The expanded decryption key will be written following the

context switch.

2-1 CM Cipher Mode: Controls which cipher mode the AESU will use in processing:
00 ECB—Electronic codebook mode
01 CBC—Cipher block chaining mode
10 Reserved
11 CTR—Counter mode

0 Encrypt/Decrypt If set, AESU operates the encryption algorithm; if not set, AESU operates the decryption
algorithm.
0 Perform decryption
1 Perform encryption

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

14 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Descriptor Type Field Descriptor Type Field

To use RDK, the following procedure is recommended:

• The descriptor type used in decryption of the first portion of the
message is ‘0100—AESU Key Expand Output.’ The description mode
must be ‘Decrypt.’ See Chapter 4 in the MPC184 Security
Co-Processor User’s Manual, PCI Interface, for more information.
The descriptor will cause the MPC184 to write the contents of the
context and key registers (containing the expanded decrypt key) to
memory.

• To process the remainder of the message, use a ‘normal’ descriptor
type (descriptor type selected based on the need for simultaneous
HMAC generation, etc.), and set the ‘restore decrypt key’ mode bit.
Load the context registers and the expanded decrypt key with
previously saved key and context data from the first message. The key
size is written as before (16, 24, or 32 bytes).

5 Descriptor Type Field
The MPC184 accepts 13 fixed format descriptors. The descriptor type field in the descriptor header informs
the crypto-channel of the ordering of the inputs and outputs defined by the length/pointer pairs in the
descriptor body. The MPC190 (a previous Motorola security co-processor with mastering capability)
allowed the user to define (within limits) the order in which keys, context, and data were fetched by the
MPC190 prior to processing. The MPC184 descriptor type field advises the crypto-channel of the
predetermined ordering of keys, context, and null fields. The ordering of inputs and outputs in the
length/pointer pairs (as defined by descriptor type) is shown in Table 10.

Table 9 shows the permissible values for the descriptor type field in the descriptor header. Note that not all
descriptor types are operationally useful, some exist for test and debug reasons, and to provide flexibility in
dealing with evolving security standards. The cryptographic transforms required by most security protocols
use types 0001 and 0010.

Table 9. Descriptor Types

Value Descriptor Type Notes

0000 Reserved —

0001 common_nonsnoop_no_afeu Common, nonsnooping, non-PKEU, non-AFEU

0010 hmac_snoop_no_afeu Snooping, HMAC, non-AFEU

0011 non_hmac_snoop_no_afeu Snooping, non-HMAC, non-AFEU

0100 aseu_key expand_output Non-snooping, non HMAC, AESU, expanded key out

0101 common_nonsnoop_afeu Common, nonsnooping, AFEU

0110 hmac_snoop_afeu Snooping, HMAC, AFEU (no context out)

0111 non_hmac_snoop_afeu Snooping, non-HMAC, AFEU

1000 pkeu_mm PKEU-MM

1001 pkeu_ec PKEU-EC

1010 pkeu_static_ec_point PKEU static-EC point (completes operand loading
and executes)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 15

Descriptor Type Field

Table 10 shows how the length/pointer pairs should be used with the various descriptor types to load keys,
context, and data into the execution units, and how the required outputs should be unloaded. Note that some
outputs are optional.

5.1 Descriptor Type 0001
Descriptor type 0001 is used for a wide variety of functions, most of which do not require all the
length/pointer fields to be used. A few non-obvious uses of this descriptor type are highlighted in Table 11.

1011 pkeu_static_ec_parameter PKEU static-EC parameter (preloads EC operands)

1100 Reserved —

1101 Reserved —

1110 hmac_snoop_afeu_ key_in AFEU context out available

1111 hmac_snoop_afeu_ctx_in AFEU context out available

Table 10. Descriptor Length/Pointer Mapping

Descriptor
Type

L/P 1 L/P 2 L/P 3 L/P 4 L/P 5 L/P 6 L/P 7

0000 Null Null Null Null Null Null Null

0001 Null IV Key Data in Data out IV out MAC out

0010 HMAC key HMAC data Key IV Data in Data out HMAC/context
out

0011 MD Ctx in IV Key Data in Data out IV out MD/context out

0100 Null IV Key Data in Data out IV out Key out via FIFO

0101 Null IV in via
FIFO

Key Data in Data out IV out via
FIFO

MD/context out

0110 HMAC key HMAC data Key IV in via
FIFO

Data in Data out HMAC/context
out

0111 MD Ctx in IV in via
FIFO

Key Data in Data out IV out via
FIFO

MD/context out

1000 B A E N B out Null Null

1001 B A Key N B1 out Null Null

1010 A0 A1 A2 B1 out B2 out B3 out Null

1011 A3 B0 B1 Key N Null Null

1100 Null Null Null Null Null Null Null

1101 Null Null Null Null Null Null Null

1110 HMAC key HMAC data Key Data in Data out IV out via
FIFO

HMAC/context
out

1111 HMAC key HMAC data IV Data in Data out IV out via
FIFO

HMAC/context
out

Table 9. Descriptor Types (continued)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

16 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Descriptor Type Field Descriptor Type Field

For RNG operations, there is no key, context, or data to send in to the MPC184, so the only relevant pointer
is the one which causes random data to be written from the RNG output FIFO to memory.

For HMAC only operations, the HMAC key should be loaded, followed by the data. The HMAC itself is
written out via L/P 6. If an HMAC calculation is spread across multiple descriptors, all descriptors after the
first would need to load the MDEU context registers via L/P 2. This requires the first descriptor to output
the MDEU context or message digest, rather than an HMAC, with L/P 6.

Certain protocols do not rely on the HMAC function provided by the MDEU to generate MACs, or message
integrity check values.

5.2 Snoop Type Bit
As mentioned in Table 1, bit 1 controls the type of ‘snooping’ which must occur between the primary and
secondary EU. The rationale for ‘in-snooping’ vs. ‘out-snooping’ is found in security protocols which
perform both encryption and integrity checking, such IPSec. When transmitting an IPSec ESP packet, the
encapsulator must encrypt the packet payload, then calculate an HMAC over the header plus encrypted
payload. Because the MDEU cannot generate the HMAC without the output of the primary EU (the one
performing encryption, typically the DEU or AESU), the MDEU must ‘out-snoop.’

When receiving an IPSec packet, the decapsulator must calculate the HMAC over the encrypted portion of
the packet prior to decryption. This allows the MDEU to source its data from the input FIFO of the primary
EU, without waiting for the primary EU to finish its task.

Note that slightly different portions of an IPSec packet would pass through the primary and secondary EUs,
in both the in-snooping and out-snooping cases. These offsets are dealt with by providing different starting
pointers and byte lengths to the channel in the body of the descriptor.

An overview of the snooping concept is shown in Figure 11.

Table 11. Descriptor Type 0001 Length/Pointer Mapping

Descriptor
Type

L/P 1 L/P 2 L/P 3 L/P 4 L/P 5 L/P 6 L/P 7 Use

0001 Null Null Null Null Data out Null Null RNG only

0001 Null Ctx-in
(opt)

Null Data in Null Hash out Null Hash only

0001 Null Ctx-in
(opt)

HMAC
Key

Data in Null HMAC out Null HMAC only

0001 Null IV Key Data in Data out IV out MAC out Self integrity
checking
operations

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 17

Descriptor Length and Pointer Fields

Figure 11. Snooping

5.3 Done Notification Bit
The done notification bit in the MPC184 descriptor header acts as a manual override to the crypto-channel
configuration register’s NOTIFICATION_TYPE bit. The NOTIFICATION_TYPE bit determines whether
the MPC184 will advise the system (via interrupt or header writeback) that it is DONE with an operation
after every descriptor, or after a chain of descriptors. Setting the notification bit in the descriptor header is
unnecessary and redundant if NOTIFICATION_TYPE is set to ‘end-of-descriptor,’ but if set to
‘end-of-chain,’ the notification bit in the header can be quite useful as an intermediate notification.

The DONE notification can take the form of an interrupt or modified header writeback or both, depending
on the state of the INTERRUPT_ENABLE and WRITEBACK_ENABLE control bits in the crypto-channel
configuration register.

When the channel signals DONE via header writeback, the least significant byte (little endian) of the
original header (at its original location in system memory) will always read as set to 0xFF, and the remaining
24 bits will not be modified. MPC184-initiated PCI writes can occur only on 64-bit word boundaries, but
reads can occur on any byte boundary. Writing back a header read from a non-64-bit word boundary will
yield unpredictable results.

6 Descriptor Length and Pointer Fields
The length and pointer fields represent one of seven data length/pointer pairs. Each pair defines a block of
data in system memory. The length field gives the length of the block in bytes. The maximum allowable
number of bytes is 32 Kbytes. A value of zero loaded into the length field indicates that this length/pointer
pair should be skipped and processing continue with the next pair.

The pointer field contains the address, in PCI address space, of the first byte of the data block. Transfers
from the PCI bus with the pointer address set to zero will have the length value written to the EU, and no
data fetched from the PCI bus.

NOTE
Certain public key operations require information about data length, but
not the data itself. Figure 12 shows the descriptor length field.

In-Snooping Out-Snooping

In-FIFO

DEU

Out-FIFO

MDEU

In-FIFO In-FIFO

Out-FIFO

In-FIFO

MDEUDEU

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

18 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Descriptor Length and Pointer Fields Descriptor Length and Pointer Fields

Table 12 shows the descriptor length field mapping.

Figure 13 shows the descriptor pointer field.

Table 13 shows the descriptor pointer field mapping.

Following the length/pointer pairs is the next descriptor field, which contains the pointer to the next
descriptor in memory. On completion of processing of the current descriptor, this value, if non-zero, is used
to request a PCI burst read of the next-data-packet descriptor. This automatic load of the next descriptor is
referred to as descriptor chaining. Figure 14 displays the next descriptor pointer field.

31 16 15 0

Field Reserved Data Length Field

Reset 0

R/W R/W

Figure 12. Descriptor Length Field

Table 12. Descriptor Length Field Mapping

Bits Name Reset Value Description

31:16 — 0 Reserved, set to zero

15:0 Data field length 0 Note: The maximum length this field can be set to 32 Kbytes. Under host
control, a channel can be temporarily locked static, and ‘data only’
descriptors can be chained to fetch blocks larger than 32 Kbytes in
32-Kbyte sub-blocks without key/context switching, until the large original
block has been completely ciphered. Length fields also indicate the size of
items to be written back to memory on completion of security processing in
the MPC184.

31 0

Field Data Field X Pointer

Reset 0

R/W R/W

Figure 13. Descriptor Pointer Field

Table 13. Descriptor Pointer Field Mapping

Bits Name Reset Value Description

31:0 Data field pointer 0 The data pointer field contains the address, in PCI address space, of the
first byte of the data packet for either read or writeback. Transfers from the
PCI bus with pointer address set to zero will be skipped.

WARNING
MPC184-initiated PCI writes can occur only on 64-bit word
boundaries, but reads can occur on any byte boundary. Writing
back a header read from a non-64-bit word boundary will yield
unpredictable results.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 19

Descriptor Chaining

Table 14 describes the descriptor pointer field mapping.

7 Descriptor Chaining
Descriptor chaining provides a measure of decoupling between host CPU activities and the status of the
MPC184. Rather than waiting for the MPC184 to signal DONE, and arbitrating for the PCI bus in order to
write directly to the next-data-packet descriptor in the crypto-channel, the host can simply create new
descriptors in memory, and chain them to descriptors which have not yet been fetched by the MPC184 by
filling the next-data-packet field with the address of the newly created descriptor. Whether or not processing
continues automatically following next-descriptor fetch and whether or not an interrupt is generated
depends on the programming of the crypto-channel’s configuration register.

See Section 7.1.1, “Crypto-Channel Configuration Register (CCCR),” in the MPC184 Security
Co-Processor User’s Manual, PCI Interface, for additional information on how the MPC184 can be
programmed to signal and act on completion of a descriptor.

NOTE
It is possible to insert a descriptor into an existing chain; however, great
care must be taken when doing so.

Figure 15 shows a conceptual chain, or linked list, of descriptors.

31 0

Field Next Descriptor Pointer

Reset 0

R/W R/W

Figure 14. Next Descriptor Pointer Field

Table 14. Descriptor Pointer Field Mapping

Bits Name Reset Value Description

31:0 Next descriptor
pointer

0 The next descriptor pointer field contains the address, in PCI address
space, of the next descriptor to be fetched if descriptor chaining is
enabled.

WARNING
The next descriptor pointer address must be modulo-8
aligned if writeback is enabled as the method of DONE
notification.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

20 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Descriptor Classes Descriptor Classes

Figure 15. Chain of Descriptors

7.1 Null Fields
On occasion, a descriptor field may not be applicable to the requested service. With seven length/pointer
pairs, it is possible that not all descriptor fields will be required to load the required keys, context, and data.
(Some operations don’t require context, others may only need to fetch a small, contiguous block of data.)
Therefore, when processing data packet descriptors, the MPC184 will skip any pointer entirely that has an
associated length of zero.

8 Descriptor Classes
The MPC184 has two general classes of descriptors: static, which refers to a relatively unchanging usage of
MPC184 resources, and dynamic, which refers to a continually changing usage model.

8.1 Static Descriptors
Recall that the MPC184 has six execution units and four crypto-channels. The EUs can be statically
assigned, dedicating them to a particular crypto-channel. Certain combinations of EUs can be statically
assigned to the same crypto-channel to facilitate multi-operation security processes, such as IPSec ESP
mode. When the system traffic model permits its use, static assignment can offer significant performance
improvements over dynamic assignment by avoid key and context switching per packet.

Static descriptors split the operations to be performed during a security operation into separate descriptors.
The first descriptor is typically only used to set the EU mode, and load the key and context. The second (and

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

DPD–DES–CTX_CRYPT
LEN_CTXIN
PTR_CTXIN
LEN_KEY
PTR_KEY
LEN_DATAIN
PTR_DATAIN
LEN_DATAOUT
PTR_DATAOUT
LEN_CTXOUT
PTR_CTXOUT
nul length
nul pointer
nul length
nul pointer
PTR_NEXT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 21

Descriptor Classes

multiple subsequent) descriptor contains length/pointer pairs to the data to be permuted. Because the key
and context are unchanging over multiple packets (or descriptors), the series of short reads and writes
required to setup and tear down a session are avoided. This savings, along with the crypto-channel having
dedicated execution units, can represent a noticeable performance improvement.

Note that there is no mechanism for resetting an EU automatically when statically assigned, or when
assignment is changed from static to dynamic. Therefore, it is recommended that the drivers always reset
an EU just prior to removing a static assignment to it to prevent the previously used context from polluting
another encryption stream.

For example, statically assigning a DEU to a particular crypto-channel permits the DEU to retain context
between data packets. The following descriptors, listed in Table 15 through Table 17, support context
retention. Table 15 defines the first DPD_3DES_CBC_Encrypt descriptor in the static chain.

Table 16 defines the second (or N middle) DPD_3DES_CBC_Encrypt descriptor in the static chain. Note
that the IV and key are not loaded, as they remain in the DEU key and IV register.

Table 15. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt

Field Value/Type Description

Header 0x2070_0010 DPD_Type 0001_3DES_CBC_Encrypt

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Number of bytes of IV to be written to DEU IV register (always 8)

PTR_2 Pointer PCI address of IV

LEN_3 Length Number of bytes of key to be written to DEU key register (must be
16 or 24)

PTR_3 Pointer PCI address of key

LEN_4 Length Number of bytes to be ciphered

PTR_4 Pointer PCI address of data to be ciphered

LEN_5 Length Bytes to be written (should be equal to length of data-in)

PTR_5 Pointer PCI address where ciphered data is to be written

LEN_6 Nul Null

PTR_6 Nul Null

LEN_7 Nul Null

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

Table 16. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt

Field Value/Type Description

Header 0x2070_0010 DPD_Type 0001_3DES_CBC_Encrypt

LEN_1 Length Null

PTR_1 Pointer Null

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

22 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Descriptor Classes Descriptor Classes

Table 17 defines the final DPD_3DES_CBC_Encrypt descriptor in the static chain. Note that the IV and key
are not loaded, as they remain in the DEU key and IV register. The IV may be optionally unloaded at the
conclusion of the descriptor. On completion of this descriptor, the EU should be reset, and the EU should
be released via a write to the EU assignment control register in the controller.

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Null

PTR_3 Pointer Null

LEN_4 Length Number of bytes to be ciphered

PTR_4 Pointer PCI address of data to be ciphered

LEN_5 Length Bytes to be written (should be equal to length of data-in)

PTR_5 Pointer PCI address where ciphered data is to be written

LEN_6 Nul Null

PTR_6 Nul Null

LEN_7 Nul Null

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

Table 17. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt

Field Value/Type Description

Header 0x2070_0010 DPD_Type 0001_3DES_CBC_Encrypt

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Null

PTR_3 Pointer Null

LEN_4 Length Number of bytes to be ciphered

PTR_4 Pointer PCI address of data to be ciphered

LEN_5 Length Bytes to be written (should be equal to length of data-in)

PTR_5 Pointer PCI address where ciphered data is to be written

LEN_6 Length (Optional) Number of bytes of IV to be written to PCI memory space
(always 8)

PTR_6 Pointer (Optional) PCI address where IV is to be written

LEN_7 Nul Null

Table 16. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt (continued)

Field Value/Type Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 23

Descriptor Classes

8.2 Dynamic Descriptors
In a typical networking environment, packets from innumerable sessions arrive fairly randomly. The host
must determine which security association applies to the current packet and encrypt or decrypt without any
knowledge of the security association of the previous or next packet. This situation calls for the use of
dynamic descriptors.

When under dynamic assignment, an EU must be used under the assumption that a different crypto-channel
(with a different context) may have just used the EU and that another crypto-channel (with yet another
context) may use that EU immediately after the current crypto-channel has released the EU.

The descriptor shown in Table 18 completely sets up the DEU for an encryption operation; loads the keys,
context, and data; writes the permuted data back to memory; and (optionally) writes the altered context (IV)
back to memory. (This may be necessary when DES is operating in CBC mode.) On completion of the
descriptor, the DEU is automatically cleared and released.

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

Table 18. Representative Descriptor DPD_Type 0001_3DES_CBC_Encrypt

Field Value/Type Description

Header 0x2070_0010 DPD_Type 0001_3DES_CBC_Encrypt

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Number of bytes of IV to be written to DEU IV register (always 8)

PTR_2 Pointer PCI address of IV

LEN_3 Length Number of bytes of key to be written to DEU key register (must be
16 or 24)

PTR_3 Pointer PCI address of key

LEN_4 Length Number of bytes to be ciphered

PTR_4 Pointer PCI address of data to be ciphered

LEN_5 Length Bytes to be written (should be equal to length of data-in)

PTR_5 Pointer PCI address where ciphered data is to be written

LEN_6 Length (Optional) Number of bytes of IV to be written to PCI memory space
(always 8)

PTR_6 Pointer (Optional) PCI address where IV is to be written

LEN_7 Nul Null

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

Table 17. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt (continued)

Field Value/Type Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

24 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Additional Examples Additional Examples

Note that the descriptor header value is the same as the value used in the static assignment example. The
descriptor header does not determine static vs. dynamic assignment (this is a difference from the MPC190).
In the MPC184, static assignment is entirely controlled by the EU assignment control register in the
controller (see Chapter 8 in the MPC184 Security Co-Processor User’s Manual, PCI Interface, for more
information on the EUACR.) When an EU is statically assigned to a channel, it will use keys and context
from the current descriptor for the following descriptor, until the EU is reset and released from static
assignment. Releasing an EU, then resetting it, is not recommended, as any channel with an outstanding
request for an EU of the type being released could be dynamically assigned the EU before the previous key
and context was cleared by the reset. When a channel has been dynamically assigned an EU, the channel
will automatically reset the EU before releasing it for use by another channel.

9 Additional Examples
In the following sections are descriptor examples of some common cryptographic transforms. Also provided
are tables of derivative descriptor headers for closely related transforms.

9.1 Dynamically Assigned 3DES-HMAC-SHA-1 Decrypt
(Inbound IPSec ESP)

Table 19 shows a dynamic descriptor example of an inbound IPSec ESP transform.

Table 19. Representative Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1_Decrypt

Field Value/Type Description

Header 0x2063_1C22 DPD_Type 0010_3DES_CBC_HMAC_SHA-1_Decrypt

LEN_1 Length Number of bytes of HMAC key to be written to MDEU key register

PTR_1 Pointer PCI address of HMAC key

LEN_2 Length Number of bytes to be HMAC’d

PTR_2 Pointer PCI address of data to be HMAC’d

LEN_3 Length Number of bytes of key to be written to DEU key register (must be
16 or 24)

PTR_3 Pointer PCI address of key

LEN_4 Length Number of bytes of IV to be written to DEU IV register (always 8)

PTR_4 Pointer PCI address of IV

LEN_5 Length Number of bytes of ciphertext to be decrypted

PTR_5 Pointer PCI address of ciphertext to be decrypted

LEN_6 Length Number of bytes of plaintext to be written out to memory (should be
equal to length of data-in)

PTR_6 Pointer PCI address where plaintext is to be written

LEN_7 Length Number of bytes of HMAC to be written to PCI memory space
(always 20 for HMAC-SHA-1)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 25

Additional Examples

The descriptor header encodes the information required to select the DEU for Op_0, and the MDEU for
Op_1. The Op_0 mode data configured the DEU to operate in 3DES, CBC, decrypt mode. The Op_1 mode
data configured the MDEU to operate in HMAC-SHA-1 mode. Because all the data necessary to calculate
the HMAC in a single dynamic descriptor is available, initialize, and autopad are set, while continue is off.

The descriptor header also encodes the descriptor type 0010, which defines the input and output ordering
for ‘hmac_snoop_no_afeu.’ The HMAC key is loaded first, followed by the length and pointer to the data
over which the HMAC will be calculated. The 3DES key is loaded next, followed by the 3DES IV. The
number of bytes to be ciphered and starting address will be an offset of the number of bytes being HMAC’d.
The data to be decrypted and HMAC’d is only brought into the MPC184 a single time, with the DEU and
MDEU only reading the portion that matches the starting address and byte length in the length/pointer fields
corresponding to their data of interest.

Ciphertext is brought into the DEU input FIFO, with the MDEU in-snooping the portion of the data it has
been told to process. As the decryption continues, the plaintext fills the DEU output FIFO, and this data is
written back to system memory as needed. When the final byte of data to be HMAC’d has been processed
through the MDEU, the descriptor will cause the MDEU to write the HMAC to the indicated area in PCI
memory. The MPC184 will write the entire 20 bytes HMAC-SHA-1 to PCI memory, and the host will
compare the most significant 12 bytes of the HMAC generated by the MPC184 with the HMAC which was
received with the inbound packet. If the HMACs match, the packet integrity check passes.

The next descriptor pointer is optional, and if a next descriptor is indicated, that descriptor may be
completely unrelated to the operation performed by the descriptor shown in Table 19.

9.2 Dynamically Assigned 3DES-HMAC-SHA-1 Encrypt
(Outbound IPSec ESP)

Table 20 shows a dynamic descriptor example of an outbound IPSec ESP transform.

PTR_7 Pointer PCI address where HMAC is to be written

PTR_NEXT Pointer Pointer to next descriptor

Table 20. Representative Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1_Decrypt

Field Value/Type Description

Header 0x2073_1C20 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Encrypt

LEN_1 Length Number of bytes of HMAC key to be written to MDEU key register

PTR_1 Pointer PCI address of HMAC key

LEN_2 Length Number of bytes to be HMAC’d

PTR_2 Pointer PCI address of data to be HMAC’d

LEN_3 Length Number of bytes of key to be written to DEU key register (must be
16 or 24)

PTR_3 Pointer PCI address of key

Table 19. Representative Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1_Decrypt (continued)

Field Value/Type Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

26 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Additional Examples Additional Examples

The descriptor header encodes the information required to select the DEU for Op_0, and the MDEU for
Op_1. The Op_0 mode data configured the DEU to operate in 3DES, CBC, encrypt mode. The Op_1 mode
data configured the MDEU to operate in HMAC-SHA-1 mode. Because all the data necessary to calculate
the HMAC in a single dynamic descriptor is available, initialize, and autopad are set, while continue is off.

The descriptor header also encodes the descriptor type 0010, which defines the input and output ordering
for ‘hmac_snoop_no_afeu.’ The HMAC key is loaded first, followed by the length and pointer to the data
over which the HMAC will be calculated. The 3DES key is loaded next, followed by the 3DES IV. The
number of bytes to be encrypted and starting address will be an offset of the number of bytes being
HMAC’d. The data to be encrypted and HMAC’d is only brought into the MPC184 a single time, with the
DEU and MDEU only reading the portion that matches the starting address and byte length in the
length/pointer fields corresponding to their data of interest.

Plaintext is brought into the DEU input FIFO, with the MDEU out-snooping the portion of the data it has
been told to process. As the encryption continues, the ciphertext fills the DEU output FIFO, and this data is
written back to system memory as needed. When the final byte of data to be HMAC’d has been processed
through the MDEU, the descriptor will cause the MDEU to write the HMAC to the indicated area in PCI
memory. The MPC184 will write the entire 20 bytes HMAC-SHA-1 to PCI memory, and the host will
append the most significant 12 bytes of the HMAC generated by the MPC184 to the packet as the
authentication trailer. Common practice in IPSec ESP with 3DES-CBC is to use the last 8 bytes of the
ciphertext as the IV for the next packet. If this is the case, the host should copy the last 8 bytes of the
ciphertext to the Security Association database entry for this particular session before transmitting the
packet.

The next descriptor pointer is optional, and if a next descriptor is indicated, that descriptor may be
completely unrelated to the operation performed on the descriptor shown in Table 20.

9.3 Dynamically Assigned HMAC-MD-5 (Inbound/Outbound
IPSec AH)

Table 21 shows a dynamic descriptor example of an inbound/outbound IPSec AH transform.

LEN_4 Length Number of bytes of IV to be written to DEU IV register (always 8)

PTR_4 Pointer PCI address of IV

LEN_5 Length Number of bytes of plaintext to be encrypted

PTR_5 Pointer PCI address of plaintext to be encrypted

LEN_6 Length Number of bytes of ciphertext to be written out to memory (should be
equal to length of data-in)

PTR_6 Pointer PCI address where ciphertext is to be written

LEN_7 Length Number of bytes of HMAC to be written to PCI memory space
(always 20)

PTR_7 Pointer PCI address where HMAC is to be written

PTR_NEXT Pointer Pointer to next descriptor

Table 20. Representative Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1_Decrypt (continued)

Field Value/Type Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 27

Additional Examples

The descriptor header encodes the information required to select the MDEU for Op_0, and no EU for Op_1.
The Op_0 mode data configured the MDEU to operate in HMAC-MD-5 mode. Because all the data
necessary to calculate the HMAC in a single dynamic descriptor is available, initialize, and autopad are set,
while continue is off.

The descriptor header also encodes the descriptor type 0001, which defines the input and output ordering
for ‘common_nonsnoop_no_afeu.’ This is the descriptor type used for most operations which don’t require
a secondary EU. Following some null pointers, the HMAC key is loaded, followed by the length and pointer
to the data over which the HMAC will be calculated.

The data is brought into the MDEU input FIFO, and when the final byte of data to be HMAC’d has been
processed through the MDEU, the descriptor will cause the MDEU to write the HMAC to the indicated area
in PCI memory. The MPC184 will write the entire 16 bytes HMAC-MD-5 to PCI memory, and depending
on whether the packet is inbound or outbound, the host will either insert the most significant 12 bytes of the
HMAC generated by the MPC184 into the packet header (outbound) or compare the HMAC generated by
the MPC184 with the HMAC which was received with the inbound packet (obviously inbound). If the
HMACs match, the packet integrity check passes.

The next descriptor pointer is optional, and if a next descriptor is indicated, that descriptor may be
completely unrelated to the operation performed by the descriptor shown in Table 21.

Table 22 shows today’s most commonly used IPSec descriptor headers. In all the descriptor headers shown,
the MDEU performs auto padding.

Table 21. Representative Descriptor DPD_Type 0001_HMAC-MD-5

Field Value / Type Description

Header 0x31E0_0010 DPD_Type 0001_HMAC_MD-5

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Number of bytes of HMAC key to be written to MDEU key register

PTR_3 Pointer PCI address of HMAC key

LEN_4 Length Number of bytes of data to be written to MDEU input FIFO

PTR_4 Pointer PCI address of data

LEN_5 Length Null

PTR_5 Pointer Null

LEN_6 Length Number of bytes of HMAC to be written out to memory (always 16
MD-5)

PTR_6 Pointer PCI address where HMAC is to be written

LEN_7 Length Null

PTR_7 Pointer Null

PTR_NEXT Pointer Pointer to next descriptor

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

28 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Additional Examples Additional Examples

Table 23 shows today’s AES descriptors as they will be used for IPSec and SRTP. In all the descriptor
headers shown, the MDEU performs auto padding.

Table 22. Common IPSec Dynamic Descriptor Headers

Value/Type Description

0x2003_1E22 DPD_Type 0010_DES_ECB_HMAC_MD-5 Decrypt

0x2013_1E20 DPD_Type 0010_DES_ECB_HMAC_MD-5 Encrypt

0x2003_1C22 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Decrypt

0x2013_1C20 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Encrypt

0x2043_1E22 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Decrypt

0x2053_1E20 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Encrypt

0x2043_1C22 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Decrypt

0x2053_1C20 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Encrypt

0x2023_1E22 DPD_Type 0010_DES_CBC_HMAC_MD-5 Decrypt

0x2033_1E20 DPD_Type 0010_DES_CBC_HMAC_MD-5 Encrypt

0x2023_1C22 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Decrypt

0x2033_1C20 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Encrypt

0x2063_1E22 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Decrypt

0x2073_1E20 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Encrypt

0x2063_1C22 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt

0x2073_1C20 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Encrypt

0x31C0_0010 DPD_Type 0001_HMAC_SHA-1

0x31D0_0010 DPD_Type 0001_HMAC_SHA-256

0x31E0_0010 DPD_Type 0001_HMAC_MD-5

Table 23. Additional Multi-Op Dynamic Descriptor Headers

Value / Type Description

0x6083_1E22 DPD_Type 0010_AES_ECB_HMAC_MD-5 Decrypt

0x6093_1E20 DPD_Type 0010_AES_ECB_HMAC_MD-5 Encrypt

0x6083_1C22 DPD_Type 0010_AES_ECB_HMAC_SHA-1 Decrypt

0x6093_1C20 DPD_Type 0010_AES_ECB_HMAC_SHA-1 Encrypt

0x6083_1D22 DPD_Type 0010_AES_ECB_HMAC_SHA-256 Decrypt

0x6093_1D20 DPD_Type 0010_AES_ECB_HMAC_SHA-256 Encrypt

0x60A3_1E22 DPD_Type 0010_AES_CBC_HMAC_MD-5 Decrypt

0x60B3_1E20 DPD_Type 0010_AES_CBC_HMAC_MD-5 Encrypt

0x60A3_1C22 DPD_Type 0010_AES_CBC_HMAC_SHA-1 Decrypt

0x60B3_1C20 DPD_Type 0010_AES_CBC_HMAC_SHA-1 Encrypt

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 29

Additional Examples

9.4 Statically Assigned 3DES-HMAC-SHA-1 Decrypt (Inbound
IPSec ESP)

This example, shown in Table 24, is designed to contrast the dynamic descriptor shown in Table 19. For
whatever reason, the data to be decrypted and authenticated is not available in a single contiguous block, or
the total data size is larger than 32 Kbytes. The user must statically assign a DEU and MDEU to a channel
before launching this descriptor chain.

The first descriptor loads the appropriate keys and context, while the N middle descriptors continue
processing data. The final descriptor decrypts the final data, and allows the HMAC calculation to complete.

0x60A3_1D22 DPD_Type 0010_AES_CBC_HMAC_SHA-256 Decrypt

0x60B3_1D20 DPD_Type 0010_AES_CBC_HMAC_SHA-256 Encrypt

0x60E3_1E22 DPD_Type 0010_AES_CTR_HMAC_MD-5 Decrypt

0x60E3_1E20 DPD_Type 0010_AES_CTR_HMAC_MD-5 Encrypt

0x60E3_1C22 DPD_Type 0010_AES_CTR_HMAC_SHA-1 Decrypt

0x60E3_1C20 DPD_Type 0010_AES_CTR_HMAC_SHA-1 Encrypt

0x60E3_1D22 DPD_Type 0010_AES_CTR_HMAC_SHA-256 Decrypt

0x60E3_1D20 DPD_Type 0010_AES_CTR_HMAC_SHA-256 Encrypt

Table 24. Representative First Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1_Decrypt

Field Value / Type Description

Header 0x2063_9822 DPD_Type 0010_3DES_CBC_HMAC_SHA-1_Decrypt

LEN_1 Length Number of bytes of HMAC key to be written to MDEU key register

PTR_1 Pointer PCI address of HMAC key

LEN_2 Length Number of bytes to be hashed

PTR_2 Pointer PCI address of data to be hashed

LEN_3 Length Number of bytes of key to be written to DEU key register (must be
16 or 24)

PTR_3 Pointer PCI address of key

LEN_4 Length Number of bytes of IV to be written to DEU IV register (always 8)

PTR_4 Pointer PCI address of IV

LEN_5 Length Number of bytes to be ciphered

PTR_5 Pointer PCI address of data to be ciphered

LEN_6 Length Bytes to be written (should be equal to length of data-in)

PTR_6 Pointer PCI address where ciphered data is to be written

LEN_7 Nul Null

Table 23. Additional Multi-Op Dynamic Descriptor Headers (continued)

Value / Type Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

30 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Additional Examples Additional Examples

The first descriptor header encodes the information required to select the DEU for Op_0, and the MDEU
for Op_1. The Op_0 mode data configured the DEU to operate in 3DES, CBC, decrypt mode. The Op_1
mode data configured the MDEU to operate in SHA-1 mode. Because all the data necessary to calculate the
HMAC is not present, the first static descriptor is set to initialize, continue, and HMAC, while autopad is off.

The descriptor header also encodes the descriptor type 0010, which defines the input and output ordering
for ‘hmac_snoop_no_afeu.’ The HMAC key is loaded first, followed by the length and pointer to the data
over which the initial hash will be calculated. The 3DES key is loaded next, followed by the 3DES IV. The
number of bytes to be ciphered and starting address will be an offset of the number of bytes being hashed.
The data to be decrypted and hashed is only brought into the MPC184 a single time, with the DEU and
MDEU only reading the portion that matches the starting address and byte length in the length/pointer fields
corresponding to their data of interest.

Ciphertext is brought into the DEU input FIFO, with the MDEU snooping the portion of the data it has been
told to process. As the decryption continues, the plaintext fills the DEU output FIFO, and this data is written
back to system memory as needed. Because it has been told to expect more data (HMAC off, continue on),
the descriptor must not attempt to output the contents of the MDEU message digest register.

The next descriptor pointer should point to the descriptor shown in Table 25.

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

Table 25. Representative Middle Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1 Decrypt

Field Value/Type Description

Header 0x2063_8022 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 decrypt

LEN_1 Nul Null

PTR_1 Nul Null

LEN_2 Length Number of bytes to be Hashed

PTR_2 Pointer PCI address of data to be hashed

LEN_3 Nul Null

PTR_3 Nul Null

LEN_4 Nul Null

PTR_4 Nul Null

LEN_5 Length Number of bytes to be ciphered

PTR_5 Pointer PCI address of data to be ciphered

LEN_6 Length Bytes to be written (should be equal to Length of data-in)

PTR_6 Pointer PCI address where ciphered data is to be written

LEN_7 Nul Null

Table 24. Representative First Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1_Decrypt (continued)

Field Value / Type Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 31

Additional Examples

The middle descriptor header encodes the information required to select the DEU for Op_0, and the MDEU
for Op_1. The Op_0 mode data configured the DEU to operate in 3DES, CBC, decrypt mode. The Op_1
mode data configured the MDEU to operate in SHA-1 mode. Because all the data necessary to calculate the
HMAC is still not present, the middle static descriptor is set to continue, while initialize, HMAC, and
autopad are off.

The descriptor header also encodes the descriptor type 0010, which defines the input and output ordering
for ‘hmac_snoop_no_afeu.’ The HMAC key is already loaded, and does not need to be reloaded. The length
and pointer to the data over which the initial hash will be calculated must be provided for this descriptor.
The 3DES key and IV are already loaded, and need not be reloaded.

Ciphertext is brought into the DEU input FIFO, with the MDEU snooping the portion of the data it has been
told to process. As the decryption continues, the plaintext fills the DEU output FIFO, and this data is written
back to system memory as needed. Because it has been told to expect more data (HMAC off, continue on),
the descriptor must not attempt to output the contents of the MDEU message digest register.

The next descriptor pointer should point to the descriptor shown in Table 26.

PTR_7 Nul Null

PTR_NEXT Pointer Pointer to next descriptor

Table 26. Representative Final Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1 Decrypt

Field Value/Type Description

Header 0x2063_8C22 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 decrypt

LEN_1 Nul Null

PTR_1 Nul Null

LEN_2 Length Number of bytes to be hashed

PTR_2 Pointer PCI address of data to be hashed

LEN_3 Nul Null

PTR_3 Nul Null

LEN_4 Nul Null

PTR_4 Nul Null

LEN_5 Length Number of bytes to be ciphered

PTR_5 Pointer PCI address of data to be ciphered

LEN_6 Length Bytes to be written (should be equal to length of data-in)

PTR_6 Pointer PCI address where ciphered data is to be written

LEN_7 Nul Null

PTR_7 Nul Null

PTR_NEXT Nul Null

Table 25. Representative Middle Descriptor DPD_Type
0010_3DES_CBC_HMAC_SHA-1 Decrypt (continued)

Field Value/Type Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

32 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Additional Examples Additional Examples

The final descriptor header encodes the information required to select the DEU for Op_0, and the MDEU
for Op_1. The Op_0 mode data configured the DEU to operate in 3DES, CBC, decrypt mode. The Op_1
mode data configured the MDEU to operate in SHA-1 mode. Because the final data necessary to calculate
the HMAC is now present, the final static descriptor is set to HMAC and autopad, while continue and
initialize are off.

The descriptor header also encodes the descriptor type 0010, which defines the input and output ordering
for ‘hmac_snoop_no_afeu.’ The HMAC key is already loaded, and doesn’t need to be reloaded. The length
and pointer to the data over which the initial hash will be calculated must be provided for this descriptor.
The 3DES key and IV are already loaded, and need not be reloaded.

Ciphertext is brought into the DEU input FIFO, with the MDEU snooping the portion of the data it has been
told to process. As the decryption continues, the plaintext fills the DEU output FIFO, and this data is written
back to system memory as needed. Because it has been told it has the final data for HMAC calculation
(HMAC on, continue off), the descriptor must output the contents of the MDEU message digest register to
the indicated address in system memory. The MPC184 will write the entire 20-byte HMAC-SHA-1 to PCI
memory, and depending on the security protocol in question, the host will compare the most significant
x bytes of the HMAC generated by the MPC184 with the HMAC sent with the packet.

The next descriptor pointer should be null, as the channel should not fetch another descriptor until the EUs
have been reset. The static assignment of the current EUs need not end, if the channel is expected to need
the same EUs to operate on a similar static chain belonging to a difference secure session.

Table 27 shows today’s most commonly used IPSec descriptor headers. In all the descriptor headers shown,
the MDEU performs auto padding for the final data block, as needed.

Table 27. Common IPSec Static Descriptor Headers

Value/Type Description

0x2003_9A22 DPD_Type 0010_DES_ECB_HMAC_MD-5 Decrypt First

0x2003_8222 DPD_Type 0010_DES_ECB_HMAC_MD-5 Decrypt Middle

0x2003_8E22 DPD_Type 0010_DES_ECB_HMAC_MD-5 Decrypt Last

0x2013_9A22 DPD_Type 0010_DES_ECB_HMAC_MD-5 Encrypt First

0x2013_8220 DPD_Type 0010_DES_ECB_HMAC_MD-5 Encrypt Middle

0x2013_8E20 DPD_Type 0010_DES_ECB_HMAC_MD-5 Encrypt Last

0x2003_9822 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Decrypt First

0x2003_8022 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Decrypt Middle

0x2003_8C22 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Decrypt Last

0x2013_9820 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Encrypt First

0x2013_8020 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Encrypt Middle

0x2013_8C20 DPD_Type 0010_DES_ECB_HMAC_SHA-1 Encrypt Last

0x2043_9A22 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Decrypt First

0x2043_8222 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Decrypt Middle

0x2043_8E22 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Decrypt Last

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 33

Additional Examples

0x2053_9A22 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Encrypt First

0x2053_8220 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Encrypt Middle

0x2053_8E20 DPD_Type 0010_3DES_ECB_HMAC_MD-5 Encrypt Last

0x2043_9822 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Decrypt First

0x2043_8022 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Decrypt Middle

0x2043_8C22 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Decrypt Last

0x2053_9820 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Encrypt First

0x2053_8020 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Encrypt Middle

0x2053_8C20 DPD_Type 0010_3DES_ECB_HMAC_SHA-1 Encrypt Last

0x2023_9A22 DPD_Type 0010_DES_CBC_HMAC_MD-5 Decrypt First

0x2023_8222 DPD_Type 0010_DES_CBC_HMAC_MD-5 Decrypt Middle

0x2023_8E22 DPD_Type 0010_DES_CBC_HMAC_MD-5 Decrypt Last

0x2033_9A22 DPD_Type 0010_DES_CBC_HMAC_MD-5 Encrypt First

0x2033_8220 DPD_Type 0010_DES_CBC_HMAC_MD-5 Encrypt Middle

0x2033_8E20 DPD_Type 0010_DES_CBC_HMAC_MD-5 Encrypt Last

0x2023_9822 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Decrypt First

0x2023_8022 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Decrypt Middle

0x2023_8C22 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Decrypt Last

0x2033_9820 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Encrypt First

0x2033_8020 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Encrypt Middle

0x2033_8C20 DPD_Type 0010_DES_CBC_HMAC_SHA-1 Encrypt Last

0x2063_9A22 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Decrypt First

0x2063_8222 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Decrypt Middle

0x2063_8E22 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Decrypt Last

0x2073_9A22 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Encrypt First

0x2073_8220 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Encrypt Middle

0x2073_8E20 DPD_Type 0010_3DES_CBC_HMAC_MD-5 Encrypt Last

0x2063_9822 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt First

0x2063_8022 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt Middle

0x2063_8C22 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt Last

0x2073_9820 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Encrypt First

0x2073_8020 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Encrypt Middle

0x2073_8C20 DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Encrypt Last

Table 27. Common IPSec Static Descriptor Headers (continued)

Value/Type Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

34 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

SSLv3.1/TLS1.0 Processing SSLv3.1/TLS1.0 Processing

10 SSLv3.1/TLS1.0 Processing
The MPC184 is capable of assisting in SSL record layer processing, however, for SSL v3.0 and earlier, this
support is limited to acceleration of the encryption only. The MDEU does not calculate the version of
HMAC required by early versions of SSL. SSLv3.1 and TLSv1.0 use the same HMAC version as IPSec
(specified in RFC2104), which the MPC184 MDEU supports, allowing it to off-load both bulk encryption
and authentication from the host processor.

SSLv3.1 and TLSv1.0 (henceforth, referred to as TLS) record layer encryption/decryption is more
complicated for hardware than IPSec, due to the order of operations mandated in the protocol. TLS performs
the HMAC function first, then attaches the HMAC (which is variable size) to the end of the payload data.
The payload data, HMAC, and any padding added after the HMAC are then encrypted. Parallel encryption
and authentication of TLS records cannot be performed using the MPC184 snooping mechanisms which
works for IPSec.

Performing TLS record layer encryption and authentication with the MPC184 requires two descriptors. For
outbound records, one descriptor is used to calculate the HMAC, and a second is used to encrypt the record,
HMAC, and padding. For inbound records, the first descriptor decrypts the record, while the second
descriptor is used to recalculate the HMAC for validation by the host. With some planning, the user may
create the outbound descriptors and launch them as a chain, leaving the MPC194 to complete the full
HMAC/encrypt operation before signaling DONE. Placing the output from descriptor 1 into the MPC184
on-chip gpRAM, then fetching that data is input for descriptor 2 can provide additional bus bandwidth
savings, and improved system performance. It is anticipated that for inbound records, the MPC184 will
signal DONE after decryption, so that the host can determine the location of the HMAC before setting up
the HMAC validation descriptor.

The following sections provide examples and explanations covering TLS outbound and inbound processing
using dynamic assignment.

10.1 Outbound TLS Descriptor 1
The first descriptor performs the HMAC of the record header and the record payload, as shown in Table 28.
In the example shown, the HMAC is generated using the MD-5 algorithm.

Table 28. Outbound TLS Descriptor 1

Field Value/Type Description

Header 0x31E0_0010 DPD_Type 0001_HMAC_MD-5

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Number of bytes of HMAC key to be written to MDEU key register

PTR_3 Pointer PCI address of HMAC key

LEN_4 Length Number of bytes of data to be written to MDEU input FIFO

PTR_4 Pointer PCI address of data

LEN_5 Length Null

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 35

SSLv3.1/TLS1.0 Processing

The primary EU is the MDEU, with its mode bits set to cause the MDEU to initialize its context registers,
perform autopadding if the data size is not evenly divisible by 512 bits, and calculate an HMAC-MD-5. The
descriptor header doesn’t designate a secondary EU, so the setting of the snoop type bit is ignored.

At the conclusion of outbound TLS descriptor 1, the crypto-channel has calculated the HMAC, placed it in
memory, and has reset and released the MDEU.

10.2 Outbound TLS Descriptor 2
The second descriptor performs the encryption of the record, HMAC, pad length, and any padding generated
to disguise the size of the TLS record, as shown in Table 29.

PTR_5 Pointer Null

LEN_6 Length Number of bytes of HMAC to be written out to memory (always 16
MD-5)

PTR_6 Pointer PCI address where HMAC is to be written

LEN_7 Length Null

PTR_7 Pointer Null

PTR_NEXT Pointer Pointer to next descriptor

Table 29. Outbound TLS Descriptor 2

Field Value/Type Description

Type 0101 common_nonsnoop_afeu 0x1000_0010 AFEU, new key, don’t dump context, perform permute

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Length of ARC-4 key

PTR_3 Pointer Pointer to ARC-4 Key

LEN_4 Length Length of data to be read and permuted

PTR_4 Pointer Pointer to data in memory

LEN_5 Length Length of data to be written after permutation

PTR_5 Pointer Pointer to memory buffer for write back

LEN_6 Length Null

PTR_6 Pointer Null

LEN_7 Length Null

PTR_7 Pointer Null

PTR_NEXT Pointer Null or pointer to unrelated next descriptor

Table 28. Outbound TLS Descriptor 1 (continued)

Field Value/Type Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

36 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

SSLv3.1/TLS1.0 Processing SSLv3.1/TLS1.0 Processing

Not surprisingly, inbound TLS processing reverses the order of operations of outbound processing.

10.3 Inbound TLS Descriptor 1
The first descriptor performs the decryption of the record, HMAC, pad length, and any padding generated
to disguise the size of the TLS record, as shown in Table 30.

Note that ARC-4 does not have a concept of encrypt vs. decrypt. As a stream cipher, ARC-4 generates a key
stream which is XOR’d with the input data. If the input data is plaintext, the output is ciphertext. If the input
data is ciphertext (which was previously XOR’d with the same key), the result is plaintext.

The primary EU is the AFEU, with its mode bits set to cause the AFEU to load the key and initialize the
AFEU S-box for data permutation.

The descriptor header doesn’t designate a secondary EU, so the setting of the snoop type bit is ignored.

At the conclusion of inbound TLS descriptor 1, the AFEU has decrypted the TLS record so that the payload
and HMAC are readable. The negotiation of the TLS session should provide the receiver with enough
information about the session parameters (hash algorithm for HMAC, whether padding is in use) to create
inbound descriptors 2 along with descriptor 1. If so, the next descriptor pointer field should point to
descriptor 2.

Alternatively, the MPC184 could signal DONE at the conclusion of inbound descriptor 1 to allow the host
to inspect the decrypted record, and generate the descriptor necessary to validate the HMAC. If this is the
case, inbound descriptor 2 does not need to be linked to inbound descriptor 1, and could even be processed
by a different crypto-channel.

Table 30. Inbound TLS Descriptor 1

Field Value/Type Description

Type 0101 common_nonsnoop_afeu 0x1000_0010 AFEU, new key, don’t dump context, perform permute

LEN_1 Length Place holder

PTR_1 Pointer Place holder

LEN_2 Length Place holder

PTR_2 Pointer Place holder

LEN_3 Length Length of ARC-4 key

PTR_3 Pointer Pointer to ARC-4 Key

LEN_4 Length Length of data to be read and permuted

PTR_4 Pointer Pointer to data in memory

LEN_5 Length Length of data to be written after permutation

PTR_5 Pointer Pointer to memory buffer for writeback

LEN_6 Length Null

PTR_6 Pointer Null

LEN_7 Length Null

PTR_7 Pointer Null

PTR_NEXT Pointer Null or pointer to unrelated next descriptor

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 37

Conclusion

10.4 Inbound TLS Descriptor 2
The second descriptor performs the HMAC of the record header and the record payload. In the example
shown in Table 31, the HMAC is generated using the MD-5 algorithm.

The primary EU is the MDEU, with its mode bits set to cause the MDEU to initialize its context registers,
perform autopadding if the data size is not evenly divisible by 512 bits, and calculate an HMAC-MD-5.

The descriptor header does not designate a secondary EU, so the setting of the snoop type bit is ignored.

At the conclusion of inbound TLS Descriptor 2, the crypto-channel has calculated the HMAC, placed it in
memory, and has reset and released the MDEU. The host can compare the HMAC generated by inbound
TLS descriptor 2 with the HMAC that came as part of the record. If the HMACs match, the record is known
to have arrived unmodified, and can be passed to the application layer.

The next descriptor pointer field can also be null, or point to an unrelated dynamic descriptor.

11 Conclusion
The MPC184 device driver will generate most of the descriptors described in this application note; however,
the drivers are general purpose in structure, and may provide more options than certain applications require.
By providing the user with greater detail and specific examples of descriptor programming, the user may
choose to implement an application-specific minimal driver with higher performance and a smaller memory
footprint.

Table 31. Inbound TLS Descriptor 2

Field Value/Type Description

Type 0001 common_nonsnoop_non_ afeu 0x31E0_0010 MDEU, HMAC, MD-5, autopad

LEN_1 Length Null

PTR_1 Pointer Null

LEN_2 Length Null

PTR_2 Pointer Null

LEN_3 Length Length of MD-5 key

PTR_3 Pointer Pointer to MD-5 key

LEN_4 Length Length of data to be read and permuted

PTR_4 Pointer Pointer to data in memory

LEN_5 Length Null

PTR_5 Pointer Null

LEN_6 Length Length of HMAC to be written to memory (16 bytes for
MD-5)

PTR_6 Pointer Pointer to memory location for HMAC write (must be
modulo-8)

LEN_7 Length Null

PTR_7 Pointer Null

PTR_NEXT Pointer Null or pointer to unrelated next descriptor

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

38 MPC184 Descriptor Programmer’s Guide— PCI View MOTOROLA

Conclusion Conclusion

THIS PAGE INTENTIONALLY LEFT BLANK

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MPC184 Descriptor Programmer’s Guide— PCI View 39

Conclusion

THIS PAGE INTENTIONALLY LEFT BLANK

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2492/D

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-480-768-2130
(800) 521-6274

JAPAN:

Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre, 2 Dai King Street
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

(800) 521-6274

HOME PAGE:

www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use

Motorola products. There are no express or implied copyright licenses granted hereunder to design

or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein.

Motorola makes no warranty, representation or guarantee regarding the suitability of its products

for any particular purpose, nor does Motorola assume any liability arising out of the application or

use of any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be provided in

Motorola data sheets and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals” must be validated

for each customer application by customer’s technical experts. Motorola does not convey any

license under its patent rights nor the rights of others. Motorola products are not designed,

intended, or authorized for use as components in systems intended for surgical implant into the

body, or other applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or death may

occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized

application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,

affiliates, and distributors harmless against all claims, costs, damages, and expenses, and

reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

associated with such unintended or unauthorized use, even if such claim alleges that Motorola was

negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.
digital dna is a trademark of Motorola, Inc. All other product or service names are the property of
their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	1 Data Packet Descriptor Overview
	2 Descriptor Structure
	Figure�1. Example Data Packet Descriptor

	3 Descriptor Header
	Figure�2. Descriptor Header
	Table�1. Header Bit Definitions�
	Figure�3. Op_x Sub Field
	Table�2. EU_Select Values

	4 Execution Unit Mode Data
	4.1 PKEU Mode Register
	Figure�4. PKEU Mode Register: Definition 1
	Figure�5. PKEU Mode Register: Definition 2
	Table�3. Mode Register Routine Definitions�

	4.2 DEU Mode Register
	Figure�6. DEU Mode Register
	Table�4. DEU Mode Register Signals�

	4.3 AFEU Mode Register
	4.3.1 Host-Provided Context via Prevent Permute
	4.3.2 Dump Context
	Figure�7. AFEU Mode Register
	Table�5. AFEU Mode Register Signals

	4.4 MDEU Mode Register
	Figure�8. MDEU Mode Register
	Table�6. MDEU Mode Register�
	4.4.1 Recommended Settings for MDEU Mode Register

	4.5 RNG Mode Register
	Figure�9. RNG Mode Register
	Table�7. RNG Mode Register Definitions

	4.6 AESU Mode Register
	Figure�10. AESU Mode Register
	Table�8. AESU Mode Register Signals�

	5 Descriptor Type Field
	Table�9. Descriptor Types�
	Table�10. Descriptor Length/Pointer Mapping
	5.1 Descriptor Type 0001
	Table�11. Descriptor Type 0001 Length/Pointer Mapping�

	5.2 Snoop Type Bit
	Figure�11. Snooping

	5.3 Done Notification Bit

	6 Descriptor Length and Pointer Fields
	Figure�12. Descriptor Length Field
	Table�12. Descriptor Length Field Mapping
	Figure�13. Descriptor Pointer Field
	Table�13. Descriptor Pointer Field Mapping
	Figure�14. Next Descriptor Pointer Field
	Table�14. Descriptor Pointer Field Mapping

	7 Descriptor Chaining
	Figure�15. Chain of Descriptors
	7.1 Null Fields

	8 Descriptor Classes
	8.1 Static Descriptors
	Table�15. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt�
	Table�16. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt�
	Table�17. Actual Descriptor DPD_Type 0001_3DES_CBC_Encrypt�

	8.2 Dynamic Descriptors
	Table�18. Representative Descriptor DPD_Type 0001_3DES_CBC_Encrypt�

	9 Additional Examples
	9.1 Dynamically Assigned 3DES-HMAC-SHA-1 Decrypt (Inbound IPSec ESP)
	Table�19. Representative Descriptor DPD_Type 0010_3DES_CBC_HMAC_SHA-1_Decrypt�

	9.2 Dynamically Assigned 3DES-HMAC-SHA-1 Encrypt (Outbound IPSec ESP)
	Table�20. Representative Descriptor DPD_Type 0010_3DES_CBC_HMAC_SHA-1_Decrypt�

	9.3 Dynamically Assigned HMAC-MD-5 (Inbound/Outbound IPSec AH)
	Table�21. Representative Descriptor DPD_Type 0001_HMAC-MD-5�
	Table�22. Common IPSec Dynamic Descriptor Headers�
	Table�23. Additional Multi-Op Dynamic Descriptor Headers�

	9.4 Statically Assigned 3DES-HMAC-SHA-1 Decrypt (Inbound IPSec ESP)
	Table�24. Representative First Descriptor DPD_Type 0010_3DES_CBC_HMAC_SHA-1_Decrypt�
	Table�25. Representative Middle Descriptor DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt�
	Table�26. Representative Final Descriptor DPD_Type 0010_3DES_CBC_HMAC_SHA-1 Decrypt�
	Table�27. Common IPSec Static Descriptor Headers�

	10 SSLv3.1/TLS1.0 Processing
	10.1 Outbound TLS Descriptor 1
	Table�28. Outbound TLS Descriptor 1�

	10.2 Outbound TLS Descriptor 2
	Table�29. Outbound TLS Descriptor 2�

	10.3 Inbound TLS Descriptor 1
	Table�30. Inbound TLS Descriptor 1�

	10.4 Inbound TLS Descriptor 2
	Table�31. Inbound TLS Descriptor 2�

	11 Conclusion

