
The Motorola StarCore® MSC8102 device supports booting from the time-division multiplexing (TDM)
interface in which a boot master downloads program and data to one or more MSC8102 devices. This
application note discusses the steps in the bootloader program:

• detect the selected boot mode
• synchronize to the boot master TDM signals
• initialize the TDM
• begin the block transfer protocol.

This document also provides example boot master code that uses the MSC8101 to boot the MSC8102
from the TDM module.

1 Detecting Boot Mode
The MSC8102 operating mode is configured by the external boot mode BM[0–2] pins, which are sampled
on the rising edge of PORESET. As part of the reset configuration sequence, the logic states of these pins
are copied to the BM field in the SIU Module Configuration Register (SIUMCR). The bootloader
program checks this field to determine the boot mode. If SIUMCR[7–9]:BM = 010, the MSC8102 device
is configured to boot through the TDM interface. The bootloader program jumps to the TDM boot section
in the ROM.

2 Synchronizing the Boot Signals
An MSC8102 TDM boot system consists of a boot master and one or more slave MSC8102 devices. The
boot master generates the clock and frame sync signals for both the receive and transmit. The MSC8102
device must determine the frame parameters so that it can initialize the number of channels and the size
of each channel in the TDM. The MSC8102 TDM adaptation machine synchronizes with the boot master
frame sync signal to determine these frame parameters. Figure 1 shows an example TDM boot system.

The bootloader program enables the TDM adaptation machine and waits for a receive frame sync to
arrive. It checks the number of bits between the last back-to-back receive frame sync events. This check
is repeated until the number of bits is stable 16 times. The same frame sync detection and procedure
occurs for the transmit frame sync. The adaptation machine is disabled after the frames are determined to
be stable. Figure 2 shows the flow diagram of the synchronization procedure.

A TDM frame has an even number of channels, and the channel size can be an even number of bits up to
256 bits. For example:

• When there are 8 bits in a frame, each of the two channels is 4 bits wide.
• When there are 16 bits in a frame, each of the two channels is 8 bits wide.

Application Note

AN2442/D
Rev. 0, 1/2003

Booting the MSC8102
Device Through TDM

by Barbara Johnson

CONTENTS

1 Detecting Boot Mode..... 1
2 Synchronizing the Boot

Signals 1
3 Initializing the TDM 3
4 Perform the Block

Transfer of Code
and Data 5

4.1 Block Transfer
Message....................... 5

4.2 Block Transfer
Acknowledge Message 8

5 Example Boot Master
Code............................. 10

5.1 Initialize the Boot
Mode.......................... 10

5.2 Initialize the TDM
Pins 11

5.3 Initialize the
Transmit and Receive
Buffers 13

5.4 Configure the Buffer
Descriptors................ 14

5.5 Initialize the MCC
Parameters 15

5.6 Configure the Serial
Interface 17

5.7 Enable the TDM........ 18

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

2

Synchronizing the Boot Signals

• When there are 32 bits in a frame, each of the four channels is 8 bits wide .

• When there are 193 bits in a frame, each of the 24 channels is 8 bits wide. This frame is a T1 frame
that consists of 192 data bits in addition to a framing bit.

Figure 1. TDM Boot System

MSC8102

TDM-C0

CHIP_ID = n1

TDM-Cn1

Boot Master

TDM-C0

TDM-Cn1
Rx Data

Tx Data

TDM-Cn2

TDM-Cn3

Tx Clock

Rx Clock

Tx Sync

Rx Sync

MSC8102

TDM-C0

Chip ID =n2

TDM-Cn2

MSC8102

TDM-C0

Chip ID =n3

TDM-Cn3

TDM3TSYN

TDM3RDAT

TDM3TDAT

TDM3TCLK

TDM3RCLK

TDM3RSYN

TDM3TCLK

TDM3RCLK

TDM3TSYN

TDM3RSYN

TDM3RDAT

TDM3TDAT

TDM3TCLK

TDM3RCLK

TDM3RCLK

TDM3RSYN

TDM3RDAT

TDM3TDAT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

3

Initializing the TDM

The TDM3 Receive Frame Parameters Register (TDM3RFP) and the TDM3 Transmit Frame Parameters
Register (TDM3TFP) are configured according to the detected frame size. The TDM3RFP[8–15]:RNCF
and TDM3TFP[8–15]:TNCF are updated with the number of channels in the TDM frame. The
TDM3RFP[26–29]:RCS and TDM3TFP[26–29]:TCS fields are updated with the channel size.

Figure 2. Adaptation Machine Flow Diagram

3 Initializing the TDM
After the TDM ynchronizes with the boot master TDM clock and frame sync signals, the MSC8102
device can initialize the TDM interface. The bootloader program configures only TDM3. TDM[0–2] are
not used. Since TDM3 is the only TDM employed in the boot process, signal sharing with other TDM
modules is disabled. The receive and transmit sections are independent, with separate clock and frame
sync. There is one receive data link and one transmit data link, as shown in Table 1.

Table 1. Receive and Transmit Sections

Transmit Receive

Transmit frame sync, TDM3TSYN Receive frame sync, TDM3RSYN

Transmit clock, TDM3TCLK Receive clock, TDM3RCLK

Transmit data, TDM3TDAT Receive data, TDM3RDAT

Adaptation Machine

New
Frame Sync?

Get Number of Bits in the Frame

Number of Bits
=

Y

N

Y

N

Enabled

Current = 0
Counter = 16

 Current?
Decrement Counter

Counter=0?
N

Current = Number of Bits

End Synchronization

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4

Initializing the TDM

The receive frame sync is active on logic ‘1.’ Both the receive frame sync and the receive data are
sampled on the rising edge of the receive clock. The receive frame sync occurs one cycle before the first
bit of the receive data is sampled. Figure 3 shows the relative timing of the receive section of the TDM.
The transmit frame sync is active on logic ‘1.’ The transmit frame sync is sampled on the rising edge of
the transmit clock. The transmit data is driven out on the falling edge of the clock. The transmit frame
sync occurs one-half cycle before the first bit of the transmit data is driven out. Figure 4 shows the
relative timing of the transmit section of the TDM.

Figure 3. Receive Frame

Figure 4. Transmit Frame

The boot master transmits messages to one or more slave MSC8102 devices on TDM channel 0. Each
slave MSC8102 device transmits back on a different TDM channel with a value that equals its CHIP_ID
value. For example, the boot master transmits a block of data on channel 0. The MSC8102 device with
CHIP_ID = 1 transmits back an acknowledge message on channel 1. The CHIP_ID[0–3] pins are sampled
on the rising edge of PORESET. Since the boot master transmits messages on channel 0, the MSC8102
receive channel 0 is enabled. The other channels remain disabled. Also, the MSC8102 transmit channel
CHIP_ID is enabled since this channel is used to transmit messages back to the boot master device. In
this example, the MSC8102 is configured to have a CHIP_ID = 3, so transmit channel 3 is active. These
channels are activated in the TDM3 Receive Channel Parameter Register (TDM3RCPR_n) and the
TDM3 Transmit Channel Parameter Register (TDM3TCPR_n).

 Data sampled
Sync sampled

TDMxRCLK

TDM0RSYN

TDM0RDAT

Channel number

One Cycle Sync Delay

DO D1 D2 D3 D4 D5 D6 D7 DnDn DO Dn DO D1 D2 D3

Channel N Channel 0 Channel N Channel 0

TDMxTCLK

TDMxTSYN

TDMxTDAT

Channel number

Half Cycle Sync Delay

 Data driven
Sync sampled

D0

Channel N Channel 0 Channel 1 Channel N Channel 0

D1 Dn D0 D1 Dn D0 D1 Dn D0 D1 DnDn

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5

Perform the Block Transfer of Code and Data

4 Perform the Block Transfer of Code and Data
The boot master device writes blocks of code and data into the memory of one or more MSC8102
devices. The MSC8102 implements a block transfer protocol to ensure that the boot master sends the
message to the target MSC8102 device and writes the code to the specified memory location. The block
transfer protocol also ensures correct message transmission by performing cyclic redundancy check
(CRC). The block transfer protocol implements the exchange of data and control code using two types of
messages: a block transfer message (BTM) and a block transfer acknowledge (BTAM) message.

4.1 Block Transfer Message
A BTM contains blocks of code or data that are written to the MSC8102 memory (see Table 2).

The code shown on the left side of Figure 5 is broadcast to all MSC8102 devices connected to the boot
master via TDM. The code writes 1024 bytes of 0xAA and 512 bytes of 0x99 to memory locations
0x1010000 and 0x2010200, respectively. This code must be formatted as a BTM so that the boot master
can transmit it to the slave MSC8102 device via TDM. The BTMs of each set of code are shown on the
right side of Figure 5. The first four bytes consist of the preamble to indicate the start of the message.
Notice that 0x11 is the first byte sent. The next byte contains a value of 0xFF to indicate that the message
is being broadcast to all MSC8102 devices. The next byte contains a value of 0x00 to indicate that this is
the first message in the sequence. The next byte contains a value of 0x00 to indicate that this message is
not the last message in the sequence. The next three bytes contain a value of 0x000400 to indicate the size
of the payload (1024 bytes) that convert to a size of 0x400 bytes. The next four bytes indicate the

Table 2. Block Transfer Message Structure

Block Transfer Message
Description

Size (Bytes) Name Value

4 PRM 0x44332211 Preamble. Indicates the start of the message. The first byte
sent is 0x11.

1 DCID CHIP_ID or 0xFF Destination CHIP_ID. Identifies the target MSC8102 slave
device to accept this message. DCID = 0xFF broadcasts the
BTM to all MSC8102 devices connected to the boot master.

1 SN 0x00 to 0xFF Sequence Number modulo 256. Indicates the sequence
number of the BTM. The boot master generates a unique SN
for every BTM sent in a TDM boot session.

1 EB 0x00 or 0xFF End Block. EB = 0xFF indicates the last BTM. After the last
message, all SC140 cores jump to address 0x0 of their M1
memory.

3 PLDS 0 to 224 Payload Size. Indicates the size in bytes. PLDS must be
divisible by 2.

4 DA Destination Address. Indicates the destination address for the
payload in the slave MSC8102 memory. For valid addresses,
refer to the SC140 core internal memory map chapter in the
MSC8102 Reference Manual. Addresses
0x01076E00–0x01076FFF are reserved and cannot be used.

2 HCRC CRC-16 of PRM, DCID, SN, EB, PLDS and DA. The HCRC
field is a 16-bit CRC represented by x16 + x15 + x2 + 1.

Up to 224 PLD Payload. Specifies the data to be written to the destination
address (DA).

2 CRC CRC-16 of PLD. The CRC field is a 16-bit CRC represented by
x16 + x15 + x2 + 1.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6

Perform the Block Transfer of Code and Data

destination address of 0x01010000. Again, the least significant byte of the address is sent first. The next
two bytes are the result of the CRC-16 calculation of the header fields, which is 0xA199. The next 1024
bytes are the payload, which consists of 0xAA. Finally, the last two bytes contain the result of the
CRC-16 calculation of the payload, which is 0x8781. Note that when the CRC-16 of the header is
received with no error but the CRC-16 of the payload is received with error, corrupt data is written to the
MSC8102 slave memory. The second BTM with sequence number 0x01 is generated the same way. This
code writes 512 bytes of 0x99 to the destination address 0x02010200. The other five BTMs are for the
MSC8102 with CHIP_ID = 3. Figure 6 shows the code that is written to the MSC8102 memory. The
BTM sequence number, 0x02, is also shown on the right

Figure 5. Broadcast Messages

boot_broadcast
dcb $11
dcb $22
dcb $33
dcb $44
dcb $ff
dcb $00
dcb $00
dcb $00
dcb $04
dcb $00
dcb $00
dcb $00
dcb $01
dcb $01
dcb $99
dcb $a1
dcb $aa
dcb $aa
....
dcb $aa
dcb $81
dcb $87

boot_broadcast_1
dcb $11
dcb $22
dcb $33
dcb $44
dcb $ff
dcb $01
dcb $00
dcb $00
dcb $02
dcb $00
dcb $00
dcb $02
dcb $01
dcb $02
dcb $75
dcb $96
dcb $99
dcb $99
....
dcb $99
dcb $6a
dcb $3c

org p:$01010000
bsc 1024,$aa

org p:$02010200
bsc 512,$99

BTM #1

BTM #2

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7

Perform the Block Transfer of Code and Data

Figure 6. Messages for CHIP_ID = 3

boot_send
 dcb $11
 dcb $22
 dcb $33
 dcb $44
 dcb $03
 dcb $02
 dcb $00
 dcb $14
 dcb $00
 dcb $00
 dcb $00
 dcb $00
 dcb $0c
 dcb $02
 dcb $54
 dcb $29
 dcb $90
 dcb $c0
 dcb $c0
 dcb $69
 dcb $3d
 dcb $80
 dcb $20
 dcb $00
 dcb $80
 dcb $00
 dcb $90
 dcb $c0
 dcb $41
 dcb $95
 dcb $90
 dcb $c0
 dcb $9f
 dcb $78
 dcb $90
 dcb $c0
 dcb $d9
 dcb $c2

 org p:$020c0000
 nop
 move.l emr,d1
 move.l #$8000,r5
 nop
 move.l d1,(r5)
 nop
 wait
 nop

 org p:$02100000
 nop
 move.l emr,d1
 move.l #$8000,r5
 nop
 move.l d1,(r5)
 nop
 wait
 nop

 org p:$02140000
 nop
 move.l emr,d1
 move.l #$8000,r5
 nop
 move.l d1,(r5)
 nop
 wait
 nop

 org p:$01000000
 nop
 move.l emr,d1
 move.l #$8000,r5
 nop
 move.l d1,(r5)
 nop
 wait
 nop

 org p:$0
 nop
 move.l emr,d1
 move.l #$8000,r5
 nop
 move.l d1,(r5)
 nop
 debug
 nop
 nop
 nop

BTM #3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8

Perform the Block Transfer of Code and Data

4.2 Block Transfer Acknowledge Message
The BTAM is the message that the slave MSC8102 sends back to the boot master. It contains information
about the previously received BTM (see Table 3).

The MSC8102 slave device implements a logic layer protocol to receive data and ensure correct
transmission from the boot master device. Figure 7 shows the flow diagram of the logic layer protocol,
which works as follows:

1. The MSC8102 synchronizes with the preamble (PRM) field of the BTM.

2. If there is an error in the CRC-16 of the header (HCRC), then return to step 1. Otherwise, continue to
the next step.

3. If the destination CHIP_ID (DCID) is equal to the MSC8102 CHIP_ID or if it is equal to 0xFF for a
broadcast message, then the payload data (PLD) is written to the destination address (DA). Other-
wise, return to step 1.

4. If the CRC-16 of the payload (CRC) contains no error, the MSC8102 device sends a BTAM with its
CHIP_ID in the SCID field and the receive sequence number (RN). Otherwise, continue to the next
step.

5. If the expected sequence number of the next message (RN) is equal to the sequence number of the
current message (SN), then the MSC8102 device sends a BTAM with an RN and SCID with its
CHIP_ID. Otherwise, the RN is incremented and the MSC8102 device sends a BTAM with the
updated RN and SCID with its CHIP_ID.

6. If the end block (EB) flag has a value of 0xFF, the TDM boot session ends. Otherwise, return to step
1 to continue with the next BTM.

Table 3. Block Transfer Acknowledge Message Structure

Block Transfer Message
Description

Size (Bytes) Name Value

2 APRM 0x6655 Preamble. Indicates the start of the acknowledge message.
First byte sent is 0x55.

1 SCID CHIP_ID Source CHIP_ID. Identifies the target MSC8102 slave device
that accepted the BTM.

1 RN 0x00 to 0xFF Receive Sequence Number modulo 256. Indicates the
expected sequence number to receive next.

2 ACRC CRC-16 of APRM, SCID and RN. EB = 0xFF indicates the
last BTM. After the last message, all SC140 cores jump to
address 0x0 of their M1 memory.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

9

Perform the Block Transfer of Code and Data

Figure 7. MSC8102 Logic Layer Protocol

Figure 8 shows the BTAMs sent from the MSC8102 to the boot master device. The MSC8102 device
with a CHIP_ID value of 3 transmits these BTAMs on channel 3. The boot master receives the BTAMs in
the receive buffer for channel 3. The first two bytes of each BTAM are the preamble, which has a fixed
value of 0x5566. The next byte is the source CHIP_ID (SCID), which is 0x03 to indicate the device
CHIP_ID. The next byte is the receive sequence number (RN). After the MSC8102 device receives the
first BTM from the boot master and determines that the CRC is error-free, it sends the first BTAM with
RN = 0x01 and SCID = 0x03. The RN field indicates the sequence number of the next BTM the
MSC8102 device is to receive. The RN value is initialized to zero at the start of the TDM boot session. In
this case, the next BTM has SN = 0x01. The last two bytes of the BTAM represents the CRC-16 of the
preamble, source CHIP_ID, and receive sequence number. Since the boot master has sent seven BTMs
(SN = 0x00 through 0x06), the last BTAM contains RN = 0x07.

Sync to PRM of BTM

HCRC
no error?

DCID=CHIP_ID
or 0xFF?

Write PLD data to DA

CRC
no error?

RN = SN?

Send BTAM with RN
and SCID with my CHIP_ID

Increment RN

Send BTAM with RN
and SCID with my CHIP_ID

Send BTAM with RN
and SCID with my CHIP_ID

EB = 0xFF?

End TDM Boot Session

N

Y

N

Y

N

Y

N

Y

N

Y

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10

Example Boot Master Code

Figure 8. Acknowledge Messages

The boot master device works in either the handshake mode or the non-handshake mode. The handshake
mode implements a stop and wait technique in which the boot master waits for the BTAM message after
sending the BTM. If the boot master does not receive a BTAM within a 32-frame time period, it resends
the BTM and waits for a BTAM again. This method should be used to ensure proper operation. In the
non-handshake mode, the boot master device does not wait for the BTAM messages. Instead, the BTM
messages are sent in sequence without any wait time. The MSC8102 device returns the BTAM messages,
but their correctness is not guaranteed.

5 Example Boot Master Code
This section illustrates how to boot the MSC8102 device from the TDM module using the
MSC8102ADS. The on-board MSC8101 is configured as the boot master, and the slave MSC8102 device
CHIP_ID is set to 3. The MSC8101 Multichannel Controller 1 (MCC1) performs the TDM
communication. The MSC8101 and MSC8102 are clocked with 66 MHz and 41.6 MHz oscillators,
respectively. Note that other devices with a TDM interface can be used as the boot master.

5.1 Initialize the Boot Mode
The boot mode selection and initialization proceeds as follows:

1. Assign the BTMD[0–2] field a value of 0b010 to boot from the TDM by writing a value of 0xFA to
Board Control/Status Register 3 (BCSR3).

The values written to BCSR3 BTMD[0–2] drive the boot mode BM[0–2] pins during the
power-on-reset sequence.

2. Select the reset configuration mode and configuration source by writing a value of 0x07 to Board
Control/Status Register 2 (BCSR2).

This step clears the RSTCNF and CNFGS fields so that the Hard Reset Configuration Word (HRCW)
is written through the system bus. It also sets the MSC8102 as the configuration master. In this
example, the HRCW is programmed from the on-board Flash EPROM. The values written to
BCSR2[RSTCNF] and BCSR2[CNFGS] drive the RSTCONF and CNFGS pins during the
power-on-reset sequence.

3. Initiate the power-on-reset sequence by writing a value of 0x7F to the Board Control/Status Register
1 (BCSR1).

This step clears the RECONF field to assert the PORESET signal. Writing 0xFF to BCSR1 negates
the PORESET signal.

After the power-on-reset sequence, the MSC8102 executes the TDM bootloader program in ROM. The
boot master is now ready to send messages to the slave MSC8102 device. Example 1 shows how to
initialize the boot mode. The example code in this application note uses the macros write_l, write_w, and
write_b to move long word, word, and byte-sized data to a register.

5566030130E3
5566030270E2
55660303B122
55660304F0E0
556603053120
556603067121
55660307B0E1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

11

Example Boot Master Code

Example 1. Initialize the Boot Mode
; ---
; Initialize MSC8102 boot mode
;
; MSC8101 - 66 MHz oscillator
; MSC8102 - 41.6 MHz oscillator
;
; MSC8102ADS switch settings
; SW4[1:4] = OFF OFF ON OFF
; SW6[1:8] = ON OFF OFF ON ON ON OFF OFF
; JP5 open
; ---
; Set MSC8102 boot from TDM
write_l #$FA000000,BCSR3

; Get HCW from system bus
write_l #$07000000,BCSR2

; Assert /PORESET
write_l #$7F000000,BCSR1

; Negate /PORESET
write_l #$FF000000,BCSR1

; Wait ~15ms
move.l #$C0000,d0
jsr delay

5.2 Initialize the TDM Pins
The MSC8101 boot master generates the TDM clock and frame sync signals that are input to the
MSC8102. Figure 9 shows the pin connections. The output of the baud-rate generator BRG5O connects
to the MSC8102 receive and transmit clock pins, TDM3RCLK and TDM3TCLK. It also connects to the
MSC8101 receive and transmit clock pins L1RCLK and L1TCLK. The CMX Clock Route Register
(CMXSI1CR) selects CLK1 and CLK2 as the receive and transmit clocks. BRG5O is also the source of the
frame sync signals. It connects to the timer input TIN2 pin. The timer divides the TIN2 input frequency to
generate the frame sync pulse on TOUT2 for every 32 clock cycles on TIN2. TOUT2 connects to the
MSC8102 receive and transmit frame sync pins, TDM3RSYN and TDM3TSYN. TOUT2 also connects to
the MSC8101 frame sync pin, L1RSYN.

Finally, the MSC8101 receive and transmit data pins L1TCLK and L1RCLK connect to the MSC8102
receive and transmit data pins TDM3RDAT and TDM3TDAT. Example 2 shows the pin configuration
code.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

12

Example Boot Master Code

Figure 9. TDM Pin Connection

Example 2. Configure TDM Pins
; ---
; Pin Configuration
; PC31 - CLK1
; PC30 - CLK2
; PC29 - TIN2
; PC28 - TOUT2_B
; PC27 - BRG5O
; ---
; Configure TDM pins
write_l #$03c00000,PPARA
write_l #$03c00000,PSORA
write_l #$00000000,PDIRA

write_l #$00000fff,PPARB
write_l #$00000fff,PSORB
write_l #$00000000,PDIRB

; Configure Timer and BRG pins
write_l #$0000001f,PPARC
write_l #$00000008,PSORC
write_l #$00000018,PDIRC

; ---
; Configure the clock and frame sync
; ---
; TDM clock ~ 446kHz
write_l #$00010048,BRGC5

; Generate TDM frame sync (32 clocks per frame)
write_l #$10000000,TGCR1
write_w #$000E,TMR2
write_w #$001f,TRR2

; ---
; TDMA1 Rx clock - CLK1
; TDMA1 Tx clock - CLK2
; ---
write_b #$00,CMXSI1CR

BRG5O
TIN2

L1RCLK
L1TCLK

TOUT2
L1RSYN

L1TXD
L1RXD

MSC8101 MSC8102

TDM3RCLK
TDM3TCLK

TDM3RSYN
TDM3TSYN

TDM3RDAT
TDM3TDAT

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

13

Example Boot Master Code

5.3 Initialize the Transmit and Receive Buffers
The example discussed in this section uses one buffer for each channel so that there are four transmit
buffers and four receive buffers. Each buffer holds 0x1000 bytes of data. These buffers are located at the
addresses shown in Table 4.

Since the boot master transmits messages to the slave MSC8102 devices on channel 0, the transmit buffer
for channel 0 is initialized with the message to send. Transmit buffers for channels 1–3 and receive
buffers for channels 0–3 and the interrupt queues are cleared as shown in Example 3.

Example 3. Set up the Tx and Rx Buffers
; ---
; Clear Tx buffer channels 1–3 and
; Rx buffers channels 0–3
; Tx buffer channel 0 is initialized with
; message to send
; Clear Tx and Rx interrupt queue tables
; ---
 move.l #$00011000,r0
 move.l #$00050000,r1
 move.l #$0,d0
 move.l #$0,d1
 jsr set_block
set_block
 move.2l d0:d1,(r0)+
 cmpeqa r0,r1
 bf set_block
 rts

Data to be sent to the MSC8102 device is written into transmit buffer channel 0 as shown in Example 4.
The first 0x1000 bytes of the buffer are filled with a value of 0x2211. Since this data does not contain the
required 0x44332211 preamble, the MSC8102 does not process this data as valid data. The included file
boot_broadcast.iasm contains the preamble and message that is broadcast to all MSC8102
devices in the boot system. The contents of this file are shown in Figure 5 on page 6. The other included
file boot_send_chipid_3.iasm contains the preamble and message that is sent only to the
MSC8102 device with CHIP_ID = 3. The contents of this file are shown in Figure 6 on page 7.

Example 4. Initialize the Tx Buffer Channel 0
;--
; Initialize the Tx buffer
;--
org p:$10000
 bsc 1000,$2211
 include "boot_broadcast.iasm"
 include "boot_send_chipid_3.iasm"
 bsc 4096,$00

Table 4. Buffer Addresses

Address Channel Address Channel

0x10000 Transmit buffer channel 0 0x20000 Receive buffer channel 0

0x11000 Transmit buffer channel 1 0x21000 Receive buffer channel 1

0x12000 Transmit buffer channel 2 0x22000 Receive buffer channel 2

0x13000 Transmit buffer channel 3 0x23000 Receive buffer channel 3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

14

Example Boot Master Code

5.4 Configure the Buffer Descriptors
The buffer descriptors contain the control and status information for the buffers, buffer location, and
buffer data length. The code to configure the buffer descriptors is shown in Example 5. This code sets the
receive buffers as empty and sets the transmit buffers as ready for transmission. It also writes the buffer
length of 0x1000 bytes and memory locations of each buffer into the buffer descriptors.

Example 5. Configure the Buffer Descriptors
; ---
; Configure Rx Buffer Descriptors
; Rx Buffer Channel 0 = 0x02020000
; Rx Buffer Channel 1 = 0x02021000
; Rx Buffer Channel 2 = 0x02022000
; Rx Buffer Channel 3 = 0x02023000
; ---
 move.l#$0,r0
 move.l#RNUM_CH,d0
 move.l #RBUFF_DL,d1
 move.l #RBUFF_BASE_ADD,d2
 move.l #$b000,d3

_loop_rbd
; Set Empty, Wrap bits in RxBD
 move.w d3,(r0)+

 ; Set data length
 move.w d1,(r0)+

 ; Set Rx buffer base address
 move.l d2,(r0)+
 ; Repeat for other channels
 add d1,d2,d2
 deceq d0
 bf _loop_rbd
; ---
; Configure Tx Buffer Descriptors
; Tx Buffer 0 = 0x02010000
; Tx Buffer 1 = 0x02011000
; Tx Buffer 2 = 0x02012000
; Tx Buffer 3 = 0x02013000
; ---
 move.l #TNUM_CH,d0
 move.l #TBUFF_DL,d1
 move.l #TBUFF_BASE_ADD,d2

_loop_tbd
; Set Ready, Wrap bits in TxBD
 move.w d3,(r0)+

 ; Set data length
 move.w d1,(r0)+

 ; Set Tx buffer base address
 move.l d2,(r0)+

 ; Repeat for other channels
 add d1,d2,d2
 deceq d0
 bf _loop_tbd

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

15

Example Boot Master Code

5.5 Initialize the MCC Parameters
MCC initialization consists of several steps as described here. The initialization code is shown in
Example 6.

1. Initialize the MCC parameters to their reset state.

This step issues the INIT RX AND TX PARAMS command to the Communications Processor
Command Register (CPCR) to initialize the MCC1 parameters to their reset values. Since the
command initializes 32 consecutive channels, the command is issued only once to initialize the four
channels used in this example.

2. Initialize the MCC global parameters.

This step initializes the MCC1 parameters that are common to all channels.:
— The base address of the buffer descriptors MCCBASE_CNFG is set to location 0x02000000.

— The base address of the transmit interrupt queue TINTBASE_CNFG is set to location
0x02078000.

— The base address of the receive interrupt queue RINTBASE0_CNFG is set to location
0x02070000. Interrupt queues 1 to 3 are not used. Also, this example does not use a superchannel
table.

— The base address of the channel extra parameters XTRABASE_CNFG is set to 0x3800.

3. Initialize the MCC channel extra parameters.

Each channel uses 8 bytes of extra parameters placed in the dual-port memory at offset
XTRABASE_CNFG + (8 × channel number). This step sets the channel receive and transmit buffer
descriptor tables relative to MCCBASE_CNFG. For example, the receive buffer descriptor base
address RBASE for channel 0 is located at MCCBASE_CNFG + 8 × 0 = 0x02000000. The receive
buffer descriptor base address RBASE for channel 1 is located at MCCBASE_CNFG + 8 × 1=
0x02000008. The base transmit buffer descriptor base address TBASE is calculated the same way.

4. Initialize the MCC channel-specific parameters.

Each channel uses 64 bytes of channel-specific parameters placed in the dual-port memory at offset
64 × channel number. This example assumes transparent operation, so the channel-specific
parameters for transparent channels are used.
— TSTATE and RSTATE provide transaction parameters associated with SDMA channel accesses

and start the transmit and receive channel, respectively. This example selects the local bus SDMA
to handle transfers to and from the data buffers, buffer descriptors, and interrupt queues.

— The interrupt mask INTMSK parameter enables underrun, busy, transmit buffer, and receive
buffer events to be written to the interrupt queue when the events occur.

— The channel mode CHAMR parameter sets the channels to operate in transparent mode and
activates the channels.

5. Initialize the MCC control and event registers.

This step programs the MCC1 Configuration Register (MCCF1) to map the MCC1 channels to
TDMA1. It also enables receive and transmit interrupts.

Example 6. Initialize the MCC Parameters
; ---
; Issue Init Parameters command
; ---
write_l #$1f810000,CPCR
_loop_cpcr
 move.l (CPCR),d0
 nop
 bmtstc #$0001,d0.h

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

16

Example Boot Master Code

 nop
 bf _loop_cpcr

; ---
; Set up MCC Global Parameters
; ---
 write_l #MCCBASE_CNFG,MCC1_MCCBASE ; Pointer to BD tables in DPRAM
 write_w #$0,MCC1_STATE ; Reserved
 write_w #MCC1_MRBLR_CNFG,MCC1_MRBLR ; Max rx buffer size
 write_w #$0,MCC1_GRFTHR ; Use only for HDLC
 write_w #$0,MCC1_GRFCNT ; Use only for HDLC
 write_l #$0,MCC1_RINTTMP ; Used by the CP
 write_l #$0,MCC1_DATA0 ; Used by the CP
 write_l #$0,MCC1_DATA1 ; Used by the CP
 write_l #TINTBASE_CNFG,MCC1_TINTBASE ; Tx interrupt queue base address
 write_l #TINTBASE_CNFG,MCC1_TINTPTR ; Must point to TINTBASE
 write_l #$0,MCC1_TINTTMP ; Clear before enabling interrupts
 write_w #$0,MCC1_SCTBASE ; Superchannel table - not used
 write_w #XTRBASE_CNFG,MCC1_XTRABASE ; Extra paramter base address
 write_w #0,MCC1_C_MASK16 ; CRC-16
 write_l #$0,MCC1_RINTTMP0 ; Clear before enabling interrupts
 write_l #$0,MCC1_RINTTMP1 ; Clear before enabling interrupts
 write_l #$0,MCC1_RINTTMP2 ; Clear before enabling interrupts
 write_l #$0,MCC1_RINTTMP3 ; Clear before enabling interrupts

 write_l #RINTBASE0_CNFG,MCC1_RINTBASE0 ; Rx interr queue 0 base addr
 write_l #RINTBASE0_CNFG,MCC1_RINTPTR0 ; Must point to RINTBASE0
 write_l #RINTBASE1_CNFG,MCC1_RINTBASE1 ; Rx interr queue 1 base addr

write_l #RINTBASE1_CNFG,MCC1_RINTPTR1 ; Must point to RINTBASE1
 write_l #RINTBASE2_CNFG,MCC1_RINTBASE2 ; Rx interr queue 2 base addr

write_l #RINTBASE2_CNFG,MCC1_RINTPTR2 ; Must point to RINTBASE2
 write_l #RINTBASE3_CNFG,MCC1_RINTBASE3 ; Rx interr queue 3 base addr
 write_l #RINTBASE3_CNFG,MCC1_RINTPTR3 ; Must point to RINTBASE3

; ---
; Set up Channel Extra Parameters
; RxBD Ch 0 RBASE = MCCBASE + 8 * 0
; RxBD Ch 1 RBASE = MCCBASE + 8 * 1
; RxBD Ch 2 RBASE = MCCBASE + 8 * 2
; RxBD Ch 3 RBASE = MCCBASE + 8 * 3
; TxBD Ch 0 TBASE = MCCBASE + 8 * 4
; TxBD Ch 1 TBASE = MCCBASE + 8 * 5
; TxBD Ch 2 TBASE = MCCBASE + 8 * 6
; TxBD Ch 3 TBASE = MCCBASE + 8 * 7
; ---
 move.l #RNUM_CH,d1
 move.l #$8,d2
 clr d0
_loop_extra_param
 move.l #(DPRAM1+XTRBASE_CNFG),d3
 imac d0,d2,d3
 move.l d3,r0
 add d0,d1,d4
 move.w d4,(r0)+
 move.w d4,(r0)+
 move.w d0,(r0)+
 move.w d0,(r0)+
 cmpeq d0,d1
 inc d0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

17

Example Boot Master Code

 bf _loop_extra_param

; --
; Set up Channel-Specific Parameters Transparent
; --
 move.l #DPRAM1,r0
 move.l #RNUM_CH,d0

_loop_specific_param
 write_l #$1b800000,(r0)+ ; TSTATE
 write_l #$10000207,(r0)+ ; ZISTATE
 write_l #$ffffffff,(r0)+ ; ZIDATA0
 write_l #$ffffffff,(r0)+ ; ZIDATA1
 write_w #$0000,(r0)+ ; TxBD flag
 write_w #$0000,(r0)+ ; TBDCNT
 write_l #$00000000,(r0)+ ; TBPTR
 write_w #$0303,(r0)+ ; INTMSK
 write_w #$7600,(r0)+ ; CHAMR
 adda #$4,r0 ; Reserved
 write_l #$1b800000,(r0)+ ; RSTATE
 write_l #$50ffffe0,(r0)+ ; ZDSTATE
 write_l #$ffffffff,(r0)+ ; ZDDATA0
 write_l #$ffffffff,(r0)+ ; ZDDATA1
 adda #$8,r0 ; Read-only
 write_w #MCC1_MRBLR_CNFG,(r0)+ ; MRBLR
 write_w #$5555,(r0)+
 adda #$4,r0 ; Next channel
 deceq d0
 bf _loop_specific_param

; ---
; Set up MCC Control Registers
; ---
; Connect to TDMA ports to MCC1
; MCC1 enable RINT0 and TINT interrupts
; MCC2 is not active
 write_b #$0,MCCF1
 write_b #$0,MCCF2
 write_w #$4004,MCCM1
 write_w #$0000,MCCM2

; Clear the MCC event registers
 write_w #$ffff,MCCE1
 write_w #$ffff,MCCE2

5.6 Configure the Serial Interface
Serial interface 1 (SI1) is programmed to connect to the TDMA1 channels. The SI1 Mode Register
(SI1AMR) programs the first bank of the SI RAM for TDMA1 and sets TDMA1 to operate in normal
mode. It also configures a 1-bit delay between the receive frame sync and the first bit of the receive
frame. The frame sync is active on logic ‘1’ and is sampled on the rising edge. Transmit data is driven out
on the falling edge, and receive data is sampled on the rising edge of the clock. These frame parameters
are set to meet the MSC8102 TDM frame parameter requirements.

The SI1 RAM entries define how the MCC1 data are routed on the TDMA. The transmit and receive SI1
RAM start at offsets of 0x12000 and 0x12400 from the dual-port memory, respectively. Since this
example uses four 8-bit channels per frame, the receive SI RAM is programmed to route four bytes of

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

18

Example Boot Master Code

data on TDMA1 to MCC1 channels 0 through 3. Similarly, the transmit SI RAM is programmed to route
four bytes data from MCC1 channels 0 through 3 on TDMA1. The SI1 configuration code is shown in
Example 7.

Example 7. Configure the SI
; ---
; Rx and Tx sync 1-bit delay
; Sync active on "1"
; Tx data on falling edge
; Rx data on rising edge
; Sync sampled on rising edge
; ---
write_w #$0159,SI1AMR

; ---
; Configure the SI RAM
; Entry 0: $8002 - Ch 0, 1 byte
; Entry 1: $8022 - Ch 1, 1 byte
; Entry 2: $8042 - Ch 2, 1 byte
; Entry 3: $8063 - Ch 3, 1 byte
; ---
 move.l #SI1TxRAM,r0
 move.l #SI1TxRAM+$800,r1
 clr d0
 clr d1
 jsr set_block

 move.l #SI1RxRAM,r0
 move.l #SI1TxRAM,r1
 move.l #$00008002,d0
 move.l #$00000020,d1
 move.l #$00008062,d2

_loop_si

5.7 Enable the TDM
The last step of the boot process enables the MCC1 interrupts and enables TDMA1 to begin transmitting
and receiving data (see Example 8). A short delay occurs before the system enters Debug mode. At this
point, the BTAMs from the MSC8102 can be checked in the receive buffer for channel 3 at memory
location 0x230000. The receive data may be compared to the expected BTAMs described in Figure 8.

Example 8. Enable the TDM
; Enable MCC1 and MCC2 interrupts
 write_l #$0C000000,SIMR_L

; ---
; Enable TDMA1
; ---
write_b #$01,SI1GMR
move.l #$C0000,d0
jsr delay
 debug

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

19

Example Boot Master Code

NOTES:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2442/D

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour
Centre, 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use

Motorola products. There are no express or implied copyright licenses granted hereunder to design

or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola

makes no warranty, representation or guarantee regarding the suitability of its products for any

particular purpose, nor does Motorola assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters which may be provided in Motorola data

sheets and/or specifications can and do vary in different applications and actual performance may

vary over time. All operating parameters, including “Typicals” must be validated for each customer

application by customer’s technical experts. Motorola does not convey any license under its patent

rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other applications intended to

support or sustain life, or for any other application in which the failure of the Motorola product could

create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola

products for any such unintended or unauthorized application, Buyer shall indemnify and hold

Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or

indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,

even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna
is a trademark and StarCore is a registered trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative
Action Employer.

© Motorola, Inc. 2003

NOTES:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	1 Detecting Boot Mode
	2 Synchronizing the Boot Signals
	3 Initializing the TDM
	4 Perform the Block Transfer of Code and Data
	4.1 Block Transfer Message
	4.2 Block Transfer Acknowledge Message

	5 Example Boot Master Code
	5.1 Initialize the Boot Mode
	5.2 Initialize the TDM Pins
	5.3 Initialize the Transmit and Receive Buffers
	5.4 Configure the Buffer Descriptors
	5.5 Initialize the MCC Parameters
	5.6 Configure the Serial Interface
	5.7 Enable the TDM

