Freescale Semiconductor, Inc.

Application Note

ala

"y
MOTOROLA . .
AN2364/D irrreligence everpwharns d'[g; ta’ll d”a
Rev. 0, 10/2002

Using the Table Stepper
Motor TPU Function
(TSM) with the MPC500
Family

Glann Jackson This TPU Programming Note is intended to provide simple C interface routines to the table
TECD Applications ~ Stepper motor TPU function (TSM). The routines are targeted for the MPC500 family of
devices, but they should be easy to use with any device that hasa TPU.

1 Functional Overview

The Table Stepper Motor (TSM) function is just one of numerous useful functions with
pre-defined parameters available for the developer of TPU applications.These functions are
located in the TPU ROM and are designated by a unique function number. The function
number for the TSM is OxD. Details of this appnote will instruct the user on calling the
functions of the TSM and configuring these functions as needed.

The TSM function provides motor control to set the motor to adesired position (or step) inthe
360 degree arch of motion. A relative distance between the current position and the desired
position of the motor will determine the direction and amount of acceleration that the motor
will be engaged to reach the desired position in the shortest amount of time. The values of
acceleration are stored into atablein memory. Hence the name Table Stepper Motor function.

The TSM function provides the TPU with the capability to drive two-phase stepper motorsin
full- or half-step modes. The TPU can accelerate the motors, run them at constant speed (or
dew) and decelerate the motor independently of the CPU. The CPU need only initiaize the
function once, and then supply a desired position each time a move is required. The
acceleration/deceleration profile is freely configured by the user via a variable length table
that offers up to 96 step rates. The TPU can control up to eight motorsin full step mode or four
motorsin half step mode or a combination of both.

2 Detailed Description

The TSM function supports full- and half-step unipolar and bipolar drive of two-phase stepper
motors using two or four adjacent TPU channels. Given a move request by the CPU, the TPU
independently accelerates, dews, and decelerates the motor to the desired position thus
relieving the CPU of amost all the overhead associated with controlling the motor. The
current motor position is maintained by the TPU as a 16-bit parameter that can be read by the
CPU at any time.

The CPU requests amove by writing a 16-bit desired position value and issuing ahost service
reguest to the TPU. When the TPU has completed moving the motor to the desired position,

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Local Table Mode

it issues an interrupt request to the CPU - if the appropriate interrupt enable bit is set, then a CPU interrupt
will result, allowing optiona interrupt driven control.

The agorithm employed in the TPU re-evaluates the requested destination on every step, this means that
the CPU can change the desired position at any time during amovement and the TPU will adjust its strategy
to get to the new desired position as quickly as possible. e.g. if amotor is currently moving clockwise from
position A to position B at a given slew rate when the CPU writes a new desired position C, which is
counterclockwise from the current position, the TPU will immediately decelerate the motor, reverse
direction, accelerate, Slew and decel erate in the counterclockwise direction to reach position C.

The TSM generates the actual step patterns to drive the motor via synchronized output matches on two or
four channels. The step patterns generated are defined by the user. The TSM function operates on a master
channel and either one or three save channels. Except during initiaization, all TPU service activity and
CPU communication occurs on the master channel only. This keeps TPU loading to a minimum and hence
maximizes performance. The master channel is chosen by the user and the dave(s) are then defined one or
three channelsimmediately after the master in numeric order. For example, in two channel mode, if channel
5 was chosen as the master, channel 6 is the dave. In four channel mode, if channel 13 is chosen as the
master, then channels 14, 15 and O are the slaves. The choice of two or four channel mode is made via a
control bit on the master channel.

The TSM function uses the same user defined step period profile during acceleration and deceleration. The
user specifiesthis profile viaatable in parameter RAM. A 15-hit start period defines the period of the first
and last steps in any move i.e. the start/stop rate (pull in rate) of the motor. The acceleration profile is
programmed into atable of 8 bit constantsthat are used sequentialy to fractionally multiply the start period
during acceleration to obtain the ‘nth’ step period.

The user also specifies a slew period which defines the exact maximum running speed of the motor. When
accelerating, the TPU uses a new value from the acceleration table for each step until the calculated step
period (table parameter * start period / 256) is smaller than the slew period. When this point is reached, the
TPU switchesto the slew period. The TPU aso usesthe slew period if it reaches the end of the acce eration
table. The slew period parameter allows the terminal speed of the motor to be controlled independently of
the acceleration table length and content.

There are two acceleration table configurations available with the TSM function. These are referred to as
local table configuration and split table configuration. Each configuration has different merits and provides
different maximum table lengths. The actual table size is programmable by the user. Limits for the various
modes are explained below. Figure 2 illustrates these points.

2.1 Local Table Mode

Inlocd table configuration, the acceleration parameters are obtained from atable starting in the lower byte
of thefirst parameter of the first dave channel (the channel immediately after the master in numeric order).
Any channel can be amaster in local table configuration.

The maximum table size is 48 bytes. This is determined by the amount of contiguous parameter RAM
available, starting with parameter 0 of the first slave channel. The maximum number of step ratesis equal
to the table size plus 2 (start/stop and slew).

Note that the length of table isindependent of whether two or four channel mode is selected e.g. if channel
14 isthe master in atwo channel configuration, the PRAM of channel 0 can still be used to increase the table
size to 28 bytes (although channel 0 could not then run another TPU function). Channels 14 and 15 will be
the two motor driving channels.

2 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Split Table Mode

2.2 Split Table Mode

In split table configuration, the accel eration parameter table is split between the parameter RAM of theslave
channels and the contiguous block of parameter RAM in channels 14, 15, and 0O (see to figurel). Since all
dlave parameter RAM is used in this mode, the maximum table size is different for two and four channel
operating modes. When split table configuration is used to control multiple motors, the acceleration
parameters in the slave channels for each motor are unique. The parameters for channels 14, 15, and 0 are
shared by all motors. Since the start period and slew rate are independently programmable for each motor,
motors that share a partially common acceleration table can have different velocity profiles.

Sincethe parameter RAM of channels 14, 15 and 0 is used to form the upper part of the accel eration profile,
a special case exists if channel 13 is chosen as a master. This is caused by the fact that the sequential
channelsto 13 arein use. This case is handled as described below.

When operating in four-channel mode, split table configuration cannot be used with channel 11 or 12
programmed as the master channel unless the table length is equal or less than 32 or 16 bytes respectively.

2.2.1 Two-Channel Mode

In two-channel mode, split table configuration has the following effects:

When channel 13 is not the master channel, accel eration parameters 1 to 16 are obtained from the parameter
RAM of thefirst slave channel (immediately after the master channel), starting with acceleration parameter
1in the lower byte of parameter word O.

When channel 13 is the master channel, acceleration parameters 1 to 16 are obtained from the parameter
RAM of channel 2, starting with acceleration parameter 1 in the lower byte of parameter word 0.

- In both cases when the table size exceeds 16 parameters, the remainder is obtained from the contiguous
parameter RAM of channels 14, 15, and 0, starting in the lower byte of parameter word 0 of channel 14. In
this configuration the maximum table length including the 16 ‘local’ parameters is 64 bytes, giving 66 step
rates including start/stop and slew.

2.2.2 Four-Channel Mode

In four channel mode, split table configuration has the following effects:

When channel 13 is not the master channel, acceleration parameters 1 to 16 are obtained from the parameter
RAM of the first slave channel (immediately following the master channel), starting with acceleration
parameter 1 in the lower byte of parameter word 0. Acceleration parameters 17 to 32 are obtained from the
parameter RAM of the second dave (2 channels after the master), starting with acceleration parameter 17
in the lower byte of parameter word 0. Acceleration parameters 33 to 48 are obtained from the parameter
RAM of the third slave (3 channels after the master), starting with acceleration parameter 33 in the lower
byte of parameter word O.

When channel 13 is the master channel, acceleration parameters 1 to 16 are obtained from the parameter
RAM of channel 2, starting with acceleration parameter 1 in the lower byte of parameter word O.
Acceleration parameters 17 to 32 are obtained from the parameter RAM of channel 3, starting with
acceleration parameter 17 in the lower byte of parameter word 0. Acceleration parameters 33 to 48 are
obtained from the parameter RAM of channel 4, starting with acceleration parameter 33 in the lower byte
of parameter word O.

MOTOROLA Using the Table Stepper Motor TPU Function 3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
TSM Function Parameters Address Maps

In both cases when the table size exceeds 48 parameters the remainder is obtained from the contiguous
parameter RAM of channels 14, 15, and 0, starting in the lower byte of parameter O of channel 14. In this
configuration the maximum table length including the 48 ‘local’ parametersis 96 bytes, giving 98 step rates
including start/stop and slew.

3 Function Code Size

Total TPU function code size determines what combination of functions can fit into a given ROM or
emulation memory microcode space. TSM function code size is:

97 Hinstructions + 8 entries= 105 long words

4 TSM Function Structure

4.1 TSM Function Parameters Address Maps

This section provides detail ed descriptions of TSM function parameters stored in channel parameter RAM.
Table 1 shows TPU parameter RAM address mapping. In the diagrams, Y = M 111, where M isthe value of
the module mapping bit (MM) in the system integration module configuration register (Y = $7 or $F).

Table 1. TPU Parameter RAM Address Mapping

Nomber | adgress | O |t | 2 | 3 | 4| s | & |7
0 SYFFF## 00 02 04 06 08 0A 0C OE
1 SYFFF## 10 12 14 16 18 1A 1C 1E
2 SYFFF## 20 22 24 26 28 2A 2C 2E
3 SYFFF## 30 32 34 36 38 3A 3C 3E
4 SYFFF## 40 42 44 46 48 4A 4C 4E
5 SYFFF## 50 52 54 56 58 5A 5C 5E
6 SYFFF## 60 62 64 66 68 6A 6C 6E
7 SYFFF## 70 72 74 76 78 A 7C 7E
8 SYFFF## 80 82 84 86 88 8A 8C 8E
9 SYFFF## 90 92 94 96 98 9A 9C 9E
10 SYFFF## A0 A2 A4 A6 A8 AA AC AE
11 SYFFF## BO B2 B4 B6 B8 BA BC BE
12 SYFFF## (0] Cc2 C4 C6 Cc8 CA CcC CE
13 SYFFF## DO D2 D4 D6 D8 DA DC DE
14 SYFFF## EO E2 E4 E6 E8 EA EC EE
15 SYFFF## FO F2 F4 F6 F8 FA FC FE
4 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
TSM Function Parameters Address Maps

0 78 15
$YFFFWO DESIRED_POSITION

SYFFFWa | TABLESIZE | TABLE INDEX

serewo | cwmreemer |a

W = Channel Number

Parameter Write Access

Written by CPU

Written by TPU

7 | Written by CPU and TPU

1

Unused Parameters

Figure 1. Master Channel Parameter Assignment—All Modes

Figure 1 shows the parameter RAM assignment used by the TSM function for the various modes of
operation.

MOTOROLA Using the Table Stepper Motor TPU Function 5

For More Information On This Product,
Go to: www.freescale.com

78

Freescale Semiconductor, Inc.
TSM Function Parameters Address Maps

15

$YFFF(W+1)0 ACCEL_RATIO 2 ACCEL_RATIO_1

$YFFF(W+1)2 ACCEL_RATIO_4 ACCEL_RATIO_3

$YFFF(W+1)4 ACCEL_RATIO_6 ACCEL_RATIO_5

SYFFF(W+1)6 ACCEL_RATIO_8 ACCEL_RATIO_7

$YFFF(W+1)8 ACCEL_RATIO_10 ACCEL_RATIO_9

$YFFF(W+1)A ACCEL_RATIO_12 ACCEL_RATIO_11
$YFFF(W+1)C ACCEL_RATIO_14 ACCEL_RATIO_13
$YFFF(W+1)E ACCEL_RATIO_16 ACCEL_RATIO_15
$YFFF(W+2)0 ACCEL_RATIO_18 ACCEL_RATIO_17
$YFFF(W+2)2 ACCEL_RATIO_20 ACCEL_RATIO_19
$YFFF(W+2)4 ACCEL_RATIO_22 ACCEL_RATIO_21
$YFFF(W+2)6 ACCEL_RATIO_24 ACCEL_RATIO_23
$YFFF(W+2)8 ACCEL_RATIO_26 ACCEL_RATIO_25
$YFFF(W+2)A ACCEL_RATIO_28 ACCEL_RATIO_27
$YFFF(W+2)C ACCEL_RATIO_30 ACCEL_RATIO_29
$YFFF(W+2)E ACCEL_RATIO_32 ACCEL_RATIO_31
$YFFF(W+3)0 ACCEL_RATIO_34 ACCEL_RATIO_33
SYFFF(W+3)2 ACCEL_RATIO_36 ACCEL_RATIO_35
$YFFF(W+3)4 ACCEL_RATIO_38 ACCEL_RATIO_37
$YFFF(W+3)6 ACCEL_RATIO_40 ACCEL_RATIO_39
$YFFF(W+3)8 ACCEL_RATIO_42 ACCEL_RATIO_41
$YFFF(W+3)A ACCEL_RATIO_44 ACCEL_RATIO_43
$YFFF(W+3)C ACCEL_RATIO_46 ACCEL_RATIO_45
$YFFF(W+3)E ACCEL_RATIO_48 ACCEL_RATIO_47

W = Master Channel Number

Figure 2. Acceleration Parameter Table—Local Configuration.

Figure 2 shows the positions in memory held by the acceleration parameters for alocal configuration. The
only parameter RAM locations used here are the slave channel parameter RAMs. Figure 3 shows the
acceleration parameter address locations for a split table configuration in a two channel mode. The single
slave parameter channel and channels 14, 15, and 0 are shown in this table.

6 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

7

8

Freescale Semiconductor, Inc.
TSM Function Parameters Address Maps

15
$YFFF(W+1)0 ACCEL_RATIO_2 ACCEL_RATIO_1
$YFFF(W+1)2 ACCEL_RATIO_4 ACCEL_RATIO_3
$YFFF(W+1)4 ACCEL_RATIO_6 ACCEL_RATIO_5
$YFFF(W+1)6 ACCEL_RATIO_8 ACCEL_RATIO_7
$YFFF(W+1)8 ACCEL_RATIO_10 ACCEL_RATIO_9
SYFFF(W+1)A ACCEL_RATIO_12 ACCEL_RATIO_11
$YFFF(W+1)C ACCEL_RATIO_14 ACCEL_RATIO_13
$YFFF(W+1)E ACCEL_RATIO_16 ACCEL_RATIO_15

$YFFFEO ACCEL_RATIO_18 ACCEL_RATIO_17
$YFFFE2 ACCEL_RATIO_20 ACCEL_RATIO_19
Y, $YFFFE4 ACCEL_RATIO_22 ACCEL_RATIO_21
o SYFFFE6 ACCEL_RATIO_24 ACCEL_RATIO_23
% $YFFFES8 ACCEL_RATIO_26 ACCEL_RATIO_25
% $YFFFEA ACCEL_RATIO_28 ACCEL_RATIO_27
© $YFFFEC ACCEL_RATIO_30 ACCEL_RATIO_29
$YFFFEE ACCEL_RATIO_32 ACCEL_RATIO_31
$YFFFFO ACCEL_RATIO_34 ACCEL_RATIO_33
= $YFFFF2 ACCEL_RATIO_36 ACCEL_RATIO_35
o $YFFFF4 ACCEL_RATIO_38 ACCEL_RATIO_37
% $YFFFF6 ACCEL_RATIO_40 ACCEL_RATIO_39
% $YFFFF8 ACCEL_RATIO_42 ACCEL_RATIO_41
O $YFFFFA ACCEL_RATIO_44 ACCEL_RATIO_43
$YFFFFC ACCEL_RATIO_46 ACCEL_RATIO_45
$YFFFFE ACCEL_RATIO_48 ACCEL_RATIO_47
$YFFFOO0 ACCEL_RATIO_50 ACCEL_RATIO_49
$YFFF02 ACCEL_RATIO_52 ACCEL_RATIO_51
; $YFFFO4 ACCEL_RATIO_54 ACCEL_RATIO_53
% $YFFFO6 ACCEL_RATIO_56 ACCEL_RATIO_55
% $YFFFO8 ACCEL_RATIO_58 ACCEL_RATIO_57
O $YFFFOA ACCEL_RATIO_60 ACCEL_RATIO_59
$YFFFOC ACCEL_RATIO_62 ACCEL_RATIO_61
$YFFFOE ACCEL_RATIO_64 ACCEL_RATIO_63

W = Master channel number or one if channel 13 is master

Figure 3. Acceleration Parameter Table—Split Table Configuration (2-Channel Mode)

Figure 4 shows the acceleration parameter address locations for the split table configuration in the four
channel mode. This version will take the three dave parameter channels and channels 14, 15, and O for a
total of six parameter channels and 96 bytes and a total of 98 step rates when including start/stop and slew.

MOTOROLA Using the Table Stepper Motor TPU Function 7

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
TSM Function Parameters Address Maps

7 8 15

$YFFF(W+1)0 ACCEL RATIO 2 ACCEL_RATIO 1
SYFFF(W+1)2 ACCEL_RATIO 4 ACCEL_RATIO_ 3
SYFFF(W+1)4 ACCEL RATIO 6 ACCEL_RATIO 5
$YFFF(W+1)6 ACCEL_RATIO 8 ACCEL_RATIO 7
$YFFF(W+1)8 ACCEL RATIO 10 ACCEL_RATIO 9
$YFFF(W+1)A ACCEL_RATIO_12 ACCEL_RATIO_11
$YFFF(W+1)C ACCEL RATIO 14 ACCEL_RATIO 13
$YFFF(W+1)E ACCEL_RATIO 16 ACCEL_RATIO_15
$YFFF(W+2)0 ACCEL RATIO 18 ACCEL_RATIO 17
SYFFF(W+2)2 ACCEL_RATIO_20 ACCEL_RATIO_19
$YFFF(W+2)4 ACCEL RATIO 22 ACCEL_RATIO 21
$YFFF(W+2)6 ACCEL_RATIO 24 ACCEL_RATIO_23
$YFFF(W+2)8 ACCEL RATIO 26 ACCEL_RATIO 25
$YFFF(W+2)A ACCEL_RATIO 28 ACCEL_RATIO_27
$YFFF(W+2)C ACCEL_RATIO 30 ACCEL_RATIO 29
$YFFF(W+2)E ACCEL_RATIO_32 ACCEL_RATIO_31
$YFFF(W+3)0 ACCEL_RATIO 34 ACCEL_RATIO_33
SYFFF(W+3)2 ACCEL_RATIO 36 ACCEL_RATIO_35
$YFFF(W+3)4 ACCEL RATIO 38 ACCEL_RATIO 37
$YFFF(W+3)6 ACCEL_RATIO_40 ACCEL_RATIO_39
$YFFF(W+2)8 ACCEL RATIO 42 ACCEL_RATIO 41
SYFFF(W+3)A ACCEL_RATIO 44 ACCEL_RATIO_43
$YFFF(W+3)C ACCEL RATIO 46 ACCEL_RATIO 45
$YFFF(W+3)E ACCEL_RATIO 48 ACCEL_RATIO_47
$YFFFEO ACCEL RATIO 50 ACCEL RATIO 49

S, $YFFFE2 ACCEL RATIO 52 ACCEL_RATIO 51
1 $YFFFE4 ACCEL RATIO 54 ACCEL RATIO 53
Y $YFFFE6 ACCEL RATIO 56 ACCEL_RATIO 55
Z $YFFFES ACCEL RATIO 58 ACCEL RATIO 57
z $YFFFEA ACCEL RATIO 60 ACCEL_RATIO 59
$YFFFEC ACCEL RATIO 62 ACCEL RATIO 61
$YFFFEE ACCEL RATIO 64 ACCEL_RATIO 63

o $YFFFFO ACCEL RATIO 66 ACCEL RATIO 65
- SYFFFF2 ACCEL RATIO 68 ACCEL_RATIO 67
Y $YFFFF4 ACCEL RATIO 70 ACCEL RATIO 69
Z SYFFFF6 ACCEL RATIO 72 ACCEL_RATIO 71
5 SYFFFF8 ACCEL RATIO 74 ACCEL RATIO 73
$YFFFFA ACCEL RATIO 76 ACCEL RATIO 75
$YFFFFC ACCEL RATIO 78 ACCEL RATIO 77
$YFFFFE ACCEL RATIO 80 ACCEL RATIO 79
$YFFFO0 ACCEL RATIO 82 ACCEL RATIO 81

S $YFFF02 ACCEL RATIO 84 ACCEL_RATIO 83
W $YFFFO4 ACCEL RATIO 86 ACCEL RATIO 85
Z S$YFFF06 ACCEL RATIO 88 ACCEL_RATIO 87
< $YFFFO8 ACCEL RATIO 90 ACCEL RATIO 89
O $YFFFOA ACCEL RATIO 92 ACCEL_RATIO 91
$YFFFOC ACCEL RATIO 94 ACCEL RATIO 93
$YFFFOE ACCEL RATIO 96 ACCEL_RATIO 95

W = Master channel number or one if channel 13 is master

Figure 4. Acceleration Parameter Table—Split Table Configuration (4-Channel Mode)

8 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
TSM Function Parameters Address Maps

4.1.1 DESIRED_POSITION

This 16-bit parameter contains the desired position (destination) of the stepper motor. The CPU can write
DESIRED_POSITION at any time. If the motor is not already moving, then a host service request (HSR)
type %11 must be issued to the master channd to initiate the move. The range for DESIRED_POSITION
is $0000 to $FFFF.

4.1.2 CURRENT_POSITION

This 16-bit parameter is maintained by the TPU. It contains the current position of the stepper motor. The
parameter isincremented or decremented for each completed step depending on the direction of the step. In
this way CURRENT_POSITION tracks the movement of the motor. The motor stops when it has
decelerated to the start/stop rate and CURRENT_POSITION = DESIRED_POSITION.
CURRENT_POSITION is updated after the relevant step has completed, but the exact timing of the update
cannot be predicted due to the service scheme of the TPU. For this reason when CURRENT_POSITION is
read while the motor is moving, there can be an error of +/- 1 step. After the TPU has issued the interrupt
regquest at the end of the move, CURRENT_POSITION will be accurate.

CURRENT_POSITION should be initialized by the CPU as part of the function initialization.

4.1.3 TABLE_SIZE

This 8-bit parameter, initialized by the CPU, definesthe length of the acceleration table. The valid range for
TABLE_SIZE is1to maximum. Inlocal table configuration, maximum is 16 in two channel mode. In local
table configuration and four channel mode, the maximum is 48. In split table configuration, the maximum
is64intwo channel mode and 96 in four channel mode. Note that maximum will be reduced if a consecutive
channel, that would have been a slave parameter table channel, is programmed as another TSM master
channel or to run another TPU function. TABLE_SIZE should not be written while the motor is moving.

4.1.4 TABLE_INDEX

This 8-bit parameter is used by the TPU as a pointer into the accel eration parameter table. Update timing is
not specified for TABLE _INDEX and it isnot recommended for interpretation by the user. TABLE_INDEX
should be written to zero by the CPU during initialization and then never written again. Writing
TABLE_INDEX while the motor is running will result in indeterminate operation.

415 BIT_S

This bit flag is used internally by the TPU to track slew rate operation. Update timing is not specified for
BIT_Sanditisnot recommended for interpretation by the user. BIT_S should be written to zero by the CPU
during initialization and then never written again.

416 SLEW_PERIOD

This 15-bit parameter is written by the CPU. It determines the slew rate (maximum stepping speed) of the
stepper motor. The value programmed into SLEW_PERIOD determines the step period in TCR1 clocks
during the constant speed part of a move. The valid range for SLEW_PERIOD is from one to
START_PERIOD, although in practice the minimum sustainable SLEW_PERIOD will be determined by
TPU latency and motor characteristics. SLEW_PERIOD should not be changed while the motor is moving.

MOTOROLA Using the Table Stepper Motor TPU Function 9

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
TSM Function Parameters Address Maps

4.1.7 BIT_A

This control bit determines whether two or four TPU channels are used by the TSM function. If BIT_ A =0
then two channels are used (master plus one slave) and if BIT_A = 1, then four channels are used (master
plusthree slaves). BIT_A selection is determined by the mode of stepping and driving: full- or half-step and
unipolar or bipolar drive. The slave channels always follow the master channel in numeric order. If channel
1 is selected as master then channel 2 or channels 2, 3, 4 will be used by TSM as slaves. BIT_A must be
initialized by the CPU prior to issuing the first move request HSR. BIT_A should not be changed while the
function is running.

4.1.8 START_PERIOD

This 15-bit parameter is written by the CPU. It determines the start/stop rate (pull-in rate) of the stepper
motor. The value programmed into START _PERIOD determines the step period in TCR1 clocks during the
first and last steps of amove. The valueisalso used asthe base value in the cal culation to determine the step
periods in the accel eration/decel eration phases. The valid range for START_PERIOD is from 1 to $7FFF,
although in practice the minimum sustainable START_PERIOD is determined by TPU latency and motor
characteristics. START_PERIOD should not be changed while the motor is moving.

4.1.9 PIN_SEQUENCE

This 16-bit parameter, along with host sequence bit 1 (HSQ1) determinesthe step patternsthat are produced
on the two or four TPU pins during stepping. This parameter is initialized by the CPU to contain the
sequence of pin levelsrequired on the master TSM channel. To generate astep, PIN_SEQUENCE isrotated
left or right depending on step direction and the pin level that will result after the step match is determined
by the MSB of the new PIN_SEQUENCE. Example values for full-step two-channel mode and half-step
four-channel mode are $3333 and $EOEOQ respectively.

The pin responses of the 1 or 3 dave channelsare also determined by PIN_SEQUENCE. Given the sequence
of pin levels for one channel the sequence for the other channels can be derived by rotating the same
sequence either once or twice between each slave and using the resulting MSB. The choice of one or two
rotates of PIN_SEQUENCE between slaves is made with HSQL1.

The channel initialize host service request (HSR %01 or %10) issued to each of the TSM channels should
correspond to theinitial PIN_SEQUENCE value.

4.1.10 ACCEL_RATIO_1ACCEL_RATIO _N

These 8-bit parameters make up the acceleration parameter table and determine the step periods during
acceleration and deceleration phases. The CPU initializes these table parameters. The START_PERIOD
parameter is fractionally multiplied by successive table values to determine the step periods during
acceleration and deceleration. The step period obtained from ACCEL_RATIO_N isgiven by

STEP_PERIOD = (START_PERIOD * ACCEL_RATIO_N)/ 256

The resulting value is in TCR1 clocks. ACCEL_RATIO 1 has a valid range from $01 to $FF. These
parameters should not be changed while the motor is stepping.

10 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
TSM Function Parameters Address Maps

4.1.11 HSQO

Host sequence bit 0 on the master channel is used to select the type of acceleration parameter table. If HSQO
= 0, then the local table configuration is selected. If HSQO = 1, the split table configuration is selected.
HSQO should be initialized by the CPU prior to issuing the first move request HSR and should not be
changed while the motor is running.

4.1.12 HSQ1

Host sequence bit 1 on the master channdl is used to select the number of rotates of PIN_SEQUENCE
between slave channels. If HSQ1 = 0, then one rotate is performed. If HSQ1 = 1, then two rotates are
performed. HSQ1 should be initialized by the CPU prior to issuing the first move request HSR and should
not be changed while the motor is running.

5 Host Interface to TSM Function

This section provides information concerning the TPU host interface to the TSM function.Figure 5isaTPU
address map. Detailed TPU register diagramsfollow thefigure. In the diagrams, Y = M111, where M isthe
value of the module mapping bit (MM) in the system integration module configuration register (Y = 0x7 or
OxF).

Address 0 7 | 8 15
$YFFEOO TPU MODULE CONFIGURATION REGISTER (TPUMCR)
$YFFEO2 TEST CONFIGURATION REGISTER (TCR)
$YFFEO4 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)
$YFFEO6 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)
$YFFEO8 TPU INTERRUPT CONFIGURATION REGISTER (TICR)
$YFFEOA CHANNEL INTERRUPT ENABLE REGISTER (CIER)

$YFFEOC CHANNEL FUNCTION SELECTION REGISTER 0 (CFSRO)
$YFFEOE CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)
$YFFE10 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)
$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)

$YFFE14 HOST SEQUENCE REGISTER 0 (HSQRO)
$YFFE16 HOST SEQUENCE REGISTER 1 (HSQR1)
$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSSRO)
$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSSR1)
$YFFELC CHANNEL PRIORITY CHANNEL 0 (CPRO)
$YFFELE CHANNEL PRIORITY CHANNEL 1 (CPR1)
$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)
$YFFE22 LINK REGISTER (LR)

$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)
$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)

Figure 5. TPU Address Map

MOTOROLA Using the Table Stepper Motor TPU Function 11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
TSM Function Parameters Address Maps

CIER - Channel Interrupt Enable Register OxYFFEOA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
‘CH15CH14|CH13 CH12 | CH11| CH10| CH9 | CH8 | CH7| CH6| CH5| CH4 | CH3| CH2 | CH1| CHO

Table 2. CIER Bit Settings

CH Interrupt Enable
0 Channel interrupts disabled
1 Channel interrupts enabled
CFSR[0:3] - Channel Function Select Registers OxYFFEOC-O0xYFFEOE
OxYFFE10-OxYFFE12
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CFS(CH15, 11, 7, 3) CFS(CH14, 10,6, 2) CFS(CH13,9,5,1) CFS(CH12, 8, 4, 0)

CFg[3:0] -- Function Number (Assigned during microcode assembly).

HSQRJ[0:1] - Host Sequence Registers OxYFFE14--OxYFFE16
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CH15, 7 CH14, 6 CH13, 5 CH12, 4 CH11, 3 CH10, 2 CH9, 1 CHS, 0

CHI[15:0] Operating Mode -- Only Used For Master Channel
X0 Local Acceleration Table
X1 Split Acceleration Table
0X Rotate PIN_SEQUENCE once between slave channels
1X Rotate PIN_SEQUENCE twice between slave channels

Wheninitializing the Host Sequence Register bits, alogical “ OR” of the two bits per channel should be used
in code. The initialization function in the TSM API interface performs this activity.

12 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
TSM Function Parameters Address Maps

HSSR[0:1] - Host Service Request Registers OXYFFE18-0xYFFE1A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CH15,7 CH14, 6 CH13,5 CH12, 4 CH11, 3 CH10, 2 CH9, 1 CHS8, 0
CHI[15:0] Initialization

00 No host service (Reset Condition)

01 Initialize, Pin low

10 Initialize, Pin high

11 Move Request (master only)

The Host Service Request Registers control the changes on the pinsin states 01 and 10. The TSM function
startsit activity of moving the current position to the desired position when state 11 iswritten to the two bits
for the respective TSM master channel. After writing a state to the HSSR register, observing the value in
the bits will show a quick return back to state 00.

CPR[0:1] - Channel Priority Registers OXYFFE1C-OxYFFE1E
o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
‘ CH15,7| CH14,6 | CH13,5 CH12, 4 CH11,3 | CH10,2 CHo, 1 CH8, 0
CHI[15:0] Channel Priority
00 Disabled
01 Low
10 Middle
11 High

The priority for the TSM channels should be coordinated with other functionsin the TPU system.
CISR - Channel Interrupt Statue Register OxYFFE20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CH15 CH14| CH13| CH12 | CH11| CH10| CH9 | CH8 | CH7| CH6| CH5| CH4 | CH3| CH2 | CH1| CHO

CH Interrupt Status
0 Channel interrupt not asserted
1 Channel interrupt asserted
13 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
TSM Function Parameters Address Maps

6 Configuration of TSM Function

The CPU configures the TSM function as follows. For configuration of the overall operation of the TPU
module, such as prescaler selection etc., refer to the TPU reference manua (TPURM/AD). These are the
steps necessary to initialize and then run a TSM function with the channels of the TPU:

1. Theappropriate channel priority bits are cleared, disabling the master and slave TSM channels.

2. The TSM function number iswritten to the channel function select bits of both the master channel
and slave channels.

Theinterrupt control registers areinitialized if the function is to be interrupt driven.

An acceleration table is written by the CPU into TPU parameter RAM.

DESIRED_POSITION and CURRENT_POSITION are both initialized to the same value.
TABLE_SIZE iswritten to reflect acceleration table size and TABLE _INDEX iswritten to $00.

SLEW_PERIOD, START_PERIOD, BIT_S, and BIT_A are written with SLEW_PERIOD <
START_PERIOD and BIT_A determining two or four channel operation. BIT_S should be cleared
and never written too again.

8. PIN_SEQUENCE iswritten with avalue that will determine the channel pin responses as the
motor steps. Bit14 or 0 of PIN_SEQUENCE determines the pin state of the master channd after
the first step match depending on the direction of the first step.

9. The host sequence bits, HSQ[1:0] of the master channel are written to select the operating mode.

10. An HSR %01 or %10 isissued to each TSM channel to initialize the function and set the channel
pinto the desired initial output state. The HSR issued to the master channel should match the MSB
of PIN_SEQUENCE and the HSR issued to the slaves should match their corresponding bit in
PIN_SEQUENCE.

Example 1: four-channel mode with two rotates of PIN_SEQUENCE between channels:

If PIN_SEQUENCE = $EOEQ, then the following HSRs should be issued
Master HSR %10 (pin high)
Slavel HSR %01 (pinlow)
Slave2 HSR %01 (pinlow)
Slave3 HSR %10 (pin high)
Example 2: two-channel mode with one rotate of PIN_SEQUENCE between channels:

If PIN_SEQUENCE = $9999, then the following HSRs should be issued
Master HSR %10 (pin high)
Slavel HSR %10 (pin high)
11. Thechannel priority bits are written to enable the function and assign channel priority.
12. The TPU executes the selected initialization states.

After each channel has beeninitialized, the TPU clears the host service request bits and asserts an interrupt
request from that channel. If the channel interrupt enable bit is set then a CPU interrupt will result.

N o oA~

When all host service request bits have been cleared by the TPU and/or an interrupt request has been
generated from all the TSM channels, the CPU can assume that the motor is correctly initialized.

Once initialization is complete, the CPU controls the TSM function through the master channel only. The
CPU can now issue a move reguest to the TSM function in the following manner:

1. Writing the required motor position to DESIRED_POSITION.
2. Issuing a Move Request host service request to the master channel (HSR = %11).

14 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
void tpu_tsm_init

The TPU will then accelerate, slew, and decelerate the motor to the desired position, issuing an interrupt
reguest to the CPU when the move is complete. If the master channel interrupt enable bit is set, then a CPU
interrupt will result. The CPU can issue a move regquest in this manner at any time, even while the motor is
still moving. In this case the current step is completed and the TPU then adjusts its strategy to move the
motor to the new DESIRED_POSITION as quickly as possible, even if this involves decelerating and
reversing direction - see later examples.

7 TSM Routines

The following routines provide easy access, for the application developer, into the TSM function. Use of
these functions eliminate the need to directly control the TPU registers. There are eight functions added to
the application programming interface (API). Theroutines can befound inthetpu_tsm.handtpu_tsm.cfiles
which should beincluded in thelink file a ong with the top level development file(s). Thefirst four functions
are used at the top application program level to directly operate the TSM function. The four other TSM
functions provide utility sub-routine activities and data manipulation. The routines will be described in
order and are listed below:
» voidtpu_tsm_init(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority, INT16 start_position,
UINT16 table size index, UINT16 slew_period, UINT16 start_period, UINT16 pin_sequence,
UINT8 number_channels, UINT16 *table, UINT8 table_size);

e voidtpu_tsm _mov(struct TPU3_ tag *tpu, UINT8 channel, UINT16 position);
UINT16tpu tsm rd dp(struct TPU3_ tag *tpu, UINT8 channel);
 UINT16tpu tsm rd cp(struct TPU3 tag *tpu, UINT8 channdl);
 UINT16 tpu_tsm_mas chan_cier(int master_chan);
e voidtpu_tsm_int_lev(struct TPU3 tag *tpu, UINT8 level);
e inttpu_tsm_int_chk(struct TPU3 tag *tpu, UINT16 channel);
e voidtpu_tsm cisr_clr(struct TPU3 tag *tpu, UINT16 CISR_level);
void tpu_tsm_init(struct TPU3_tag *tpu, UINT8 channel, UINT8 priority, INT16 start_position, UINT16

table size index, UINT16 sdlew _period, UINT16 start period, UINT16 pin_sequence, UINTS8
number_channels, UINT16 *table, UINT8 table _size);

7.1 void tpu_tsm_init

Thisroutine is used to initialize the channels of the TPU for the TSM function. This function has 11 input
parameters. Do not let the large number scare one away from using this function. Each function will be
handled one at atime and will handle all of the initialization requirements of the TSM function.

e *tpu-- Thisisthe pointer to the TPU module chosen to run the TSM function. It is a structure of
type (name) TPU3_tag which is defined in m_tpu3.h.

e channel -- Thisisthe channel number of the primary TSM channel. The following channelswill be
initialized as the parameter table channels.

e priority -- Thisisthe priority level which is assigned to all channels used for this TSM function.
This parameter should be assigned avalue of: TPU_PRIORITY _HIGH,
TPU_PRIORITY_MIDDLE, or TPU_PRIORITY_LOW. The TPU prioritiesare defined in thefile
mpc500_utils.h.

15 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
void tpu_tsm_mov

e dart_position -- Thisis a 16-bit integer which establishesthe initia value for both the
DESIRED POSITION and the CURRENT_POSITION. Thisisefficient since both values need to
be set to the same value when the TSM function isinitialized.

» table_size index -- This parameter combines the table size and the table index valuesinto asingle
16-bit input. The eight bits for the table size is the number of bytes used in the parameter table
encoded into ahex ($) value. The table index is set in the last 8-bits of this parameter and must be
set to the value of zero.

» dew_period -- This parameter combines the slew period with the 1-bit "S" value. The slew period
value must be shifted |eft by one bit after encoding into ahex value. e.g. an original value of $2000
will be encoded as $4000.The least significant bit (bit #15, Big Endian) isthe"S" bit and must
always be written to zero (and only at initialization).

e dtart period -- This parameter combines the start period with the 1-bit "A" value. The start period
value must be shifted |eft by one bit after encoding into ahex value. e.g. an original value of $6800
will be encoded as $D000. The least significant bit (bit #15, big endian) isthe"A" bit. A value of 0
will initialize atwo channel TSM function and avalue of 1 will initialize a four channel function.
This value must not be changed after initialization.

e pin_sequence -- This parameter determines the step patterns that are output on two or four TPU
pins. Two channel and four channel example values are $3333 and $EOEO respectively.

* number_channels -- This parameter is used with the master channel designation to determine
which channels will be the parameter table channels for the TSM function. Either atwo or four
channel designation isvalid. The master channel isincluded in this number.

» *table-- Thisisthe pointer to the first parameter table channel. Thisis used to load the parameter
table for the TSM from memory into the TPU RAM.

» table_size-- This parameter provides a byte count limit when loading the parameter table.
The function does not return any values from initialization. Except for DESIRED_POSITION, the
parameters of this initialization function must not be changed while the TSM function is operating. After

initialization, the parameter table channelswill never be rewritten. Only the master channel will be accessed
for any future control commands of the TSM function.

7.2 void tpu_tsm_mov

This routine is the only control sent to the TSM function after initialization. Basically, this function will
designate where to move the stepper motor. This is accomplished with the following input parameters:

e *tpu-- Thisisthe pointer to the TPU module chosen to run the TSM function. It is a structure of
type (name) TPU3_tag which is defined in m_tpu3.h.
e channel -- Thisisthe channel number of the primary TSM master channel.
e position -- This parameter is the value of the new DESIRED_POSITION.
After the new DESIRED_POSITION iswritten to the internal register, a call is made which will move the
TSM until there is a match between the CURRENT_POSITION and the DESIRED_POSITION. Also, the
move function can be called at any time; even while the motor is stepping towards another value. The TSM

function will automatically take care of slowing the motor, reversing the direction (if necessary), and
accelerating towards the new DESIRED_POSITION as needed.

16 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
UINT16 tpu_tsm_rd_dp

7.3 UINT16 tpu_tsm_rd_dp

Thisroutine will read the value of the DESIRED_POSITION. Thisvalueisused for program control when
compared against some other value.

e *tpu-- Thisisthe pointer to the TPU module chosen to run the TSM function. It is a structure of
type (name) TPU3_tag which is defined in m_tpu3.h.

e channel -- Thisisthe channel number of the primary TSM master channel.
The value of the DESIRED_POSITION isreturned asa UINT16 function.

7.4 UINT16 tpu _tsm_rd _cp

Thisroutinewill read the value of the CURRENT_POSITION. Thisvalueisused for program control when
compared against some other value.

* *tpu-- Thisisthe pointer to the TPU module chosen to run the TSM function. It is a structure of
type (name) TPU3_tag which is defined in m_tpu3.h.

e channdl -- Thisisthe channel number of the primary TSM master channel.
The value of the CURRENT_POSITION isreturned as a UINT16 function.

7.5 UINT16 tpu_tsm_mas_chan_cier

This routine will return the UINT16 value of the CIER or CISR register encoding from the integer input of
the master channel. The basic function of this routine is to perform the integer to register hex value
conversion.

e master_chan -- Thisisthe channel number of the primary TSM master channel.

This routine only has one input since it basically performs a single utility task. This routine is associated
with the TSM function since it relates specifically to the master channel definition of the TSM.

7.6 void tpu_tsm_int_lev

This routine convertsthe chosen integer interrupt level value and appliesthis value to specific internal level
valuesin the ILBS and CIRL registers. The level is chosen for this particular TSM function initialization.
Thisroutine is optionally used if the application development uses an interrupt structure.

* *tpu-- Thisisthe pointer to the TPU module chosen to run the TSM function. It is a structure of
type (name) TPU3_tag which is defined in m_tpu3.h.

» levd -- Thisistheinteger level of range 0 to 31 which will be invoked when the
DESIRED_POSITION matches the CURRENT_POSITION.

Thevalue of ILBS and CIRL of the TPU TICR register is not returned but directly entered into the register
value. The devel oper does not need to worry about these details at this point of the program. The developer
only needs to choose an interrupt level that will coherently fit into the system application being devel oped.

17 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
INT tpu_tsm_int_chk

7.7 INT tpu_tsm_int_chk

This routine will read the value of the active interrupt channel in the CISR register. This value is compared
to the input channel to determine a match. A match confirms that the highest priority active interrupt is for
the specific TSM function.

e *tpu-- Thisisthe pointer to the TPU module chosen to run the TSM function. It is a structure of
type (name) TPU3_tag which is defined in m_tpu3.h.

e channel -- Thisisthe channel number of the primary TSM master channel. The 16-bit input value
is encoded to match the CISR value (see: tpu_tsm _mas_chan_cier()).

Theinteger value of TPU_TSM_TRUE or TPU_TSM_FAL SE is returned depending upon the result of the
compare.

7.8 void tpu_tsm_cisr_clr

Thisroutinewill clear the CISR register. Thiswill havethe effect of clearing all active interruptsinthe CISR
register.
e *tpu-- Thisisthe pointer to the TPU module chosen to run the TSM function. It is a structure of
type (name) TPU3_tag which is defined in m_tpu3.h.

e CISR_level -- Thisisthe channel number which should match the assigned interrupt level for the
TSM function. This currently serves no function. However, further development could clear a
specific channel instead of all channels of the CISR register.

Thisroutine is needed at the end of the initialization routine to cover interrupts which were activated during
initialization. An interrupt handling routine could take care of active interrupts before cancellation. Even if
interrupts are not used with the TPU, these interrupts should be cleared to reduce the danger of a spurious
interrupt being activated.

8 Performance and Use of TSM Function

8.1 Performance

Like all TPU functions, TSM function performance in an application is to some extent dependent upon the
service time (latency) of other active TPU channels. Thisis due to the operational nature of the scheduler.
When the TPU is driving a single stepper motor using TSM in two channel mode, and no other TPU
channelsare active, the minimum step period is 186 CPU clocks. Thisis approximately equivalent to 90,000
pulses per second at 16.77 MHz bus speed and 114,000 pulses per second at 20.97 MHz bus speed. In four-
channel mode, the equivalent figures are 234 CPU clocks, 71,000 pulses per second at 16.77 MHz bus and
89,000 pulses per second at 20.97 MHz. When more TPU functions are active, or multiple motors are
implemented, performance decreases - e.g. if two motorswere driven in two channel mode (four active TPU
channels) then the maximum pulse rate for each motor would be approximately half that given above.
However, worst-case latency in any TPU application can be closely estimated. To analyze the performance
of an application that appears to approach the limits of the TPU, use the guidelines given in the TPU
reference manual and the information in Table 3 below.

18 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Generating Step Patterns

Table 3. Table Stepper Motor Function—State Timing

State Number and Name | Max. CPU Clock Cycles RAM Accesses by TPU
S1--TSM_INIT_LO 6
S2 -- TSM_INIT_HI 6
S3 -- TSM_MOVE_REQ
2 channel mode 162 17
4 channel mode 210 17
Already stepping 6 1
S4 -- TSM_STEP_MATCH
2 channel mode 172 20
4 channel mode 220 20

8.2 Generating Step Patterns

The TSM function has been designed to provide as much flexibility as possiblein the generation of the step
patterns that drive the motor. Any value can be written into the PIN_SEQUENCE parameter and the choice
of one or two rotates of PIN_SEQUENCE between channelsincreasesthe flexibility further. Thisflexibility
may alow the TSM function to meet the needs of an unusual drive scheme. However, since the primary
purpose of the TSM function is to drive stepper motors in a conventional manner, it has been tested using
the two stepping schemes described bel ow:

In full step two-channel mode (see Figure 6) the PIN_SEQUENCE parameter should beinitialized to $3333
or a shifted version of this value such as $6666 or $9999. Master channel host sequence bit 1 should be
cleared to select one rotate of PIN_SEQUENCE between channels. The initial value of PIN_SEQUENCE
written to parameter RAM defines the starting point of the step sequence.

To generate astep, the PIN_SEQUENCE isrotated |eft or right once, depending on the motor direction. The
master channel pin level at the end of the step (i.e. when the next match occurs) is defined by the MSB of
therotated PIN_SEQUENCE. The new PIN_SEQUENCE vaueisstored in parameter RAM. The pin level
of the slave channel is obtained by further rotating a copy of the new PIN_SEQUENCE right once. The
value of the resulting M SB determines the dave pin level. Figure 6 shows the effective positions of the bits
that determine the pin levels of the master and slave channels.

During initialization, an HSR reguest is issued to each TSM channel to configure the initial pin level. The
HSR type issued to each channel should match the value of the corresponding channel bit in the initial
PIN_SEQUENCE. For example, if $3333 is written to PIN_SEQUENCE, then an HSR%01 should be
issued to the master channel (pin low) and an HSR%10 to the slave channel (pin high).

19 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Generating Step Patterns

DIRECTION OF ROTATION "A" —»

INITIAL PIN_SEQUENCE | 0 0‘1 1‘0 o|1 1|0 ol 1] 110 0|1 1| =$3333

PIN_SEQUENCE FOR FIRSTSTE 1] 0| 0| 1 |1 o [0 |1 [2]o]o]2 |1 |0 [0 1]

INITIAL L
CONDITION

I

STEP NUMBER| 1 2 3 4 5 6 7 8 9 10 ETC
1

-@—— DIRECTION OF ROTATION "B"

INITIAL PIN_SEQUENCE | 1 0|0 1|1 0|0 1 ‘1 ojo0|1]|1 0‘0 = $3333

PIN_SEQUENCE FOR FIRST STEP1 o|o 1|1 o‘o 1 ‘1 olol1]1 o‘o

INITIAL
CONDITION

11 1

STEPNUMBER | 1 2 3 4 5 6 7 8 9 10 ETC
1

SLAVE

Figure 6. Two-Channel Mode—Full Step Generation

In half-step four-channel mode (see Figure 7), the PIN_SEQUENCE parameter should be initialized to
$EOEOQ or a shifted version of thisvalue such as $C1C1 or $8383. Master channel host sequence bit 1 should
be set to select two rotates of PIN_SEQUENCE between channels. The initial value of PIN_SEQUENCE
written to parameter RAM defines the starting point of the step sequence.

To generate astep, the PIN_SEQUENCE isrotated left or right once, depending on the motor direction. The
master channel pin level at the end of the step (i.e. when the next match occurs) is defined by the MSB of
therotated PIN_SEQUENCE. The new PIN_SEQUENCE vaueis stored in parameter RAM. The pin level
of the first slave channel is obtained by further rotating a copy of the new PIN_SEQUENCE right twice.
The value of the resulting M SB determines dave 1 pin level. Similarly, the pin levels of the first and second
slaves are determined by the MSB after further right-rotating the copy of PIN_SEQUENCE two times and
four times, respectively. Figure 7 shows the effective positions of the bits that determine the pin levels of
the master and slave channels.

20 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Generating Step Patterns

During initialization an HSR request is issued to each TSM channel to configure the initial pin level. The
HSR type issued to each channel should match the value of the corresponding channel bit in the initia
PIN_SEQUENCE. For exampleif $EOEQ iswritten to PIN_SEQUENCE then an HSR%01 should be issued
to daves 1 and 2 (pin low) and an HSR%10 to the master and slave 3 (pin high)

21 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Generating Step Patterns

DIRECTION OF ROTATION "A"_

INITIAL PIN_SEQUENCE 1{1|1|0j0fj0|0]| 0|11

PIN_SEQUENCE FORFIRSTSTE O| 1{ 1|1 |0|0 |0 |O |[O]1|12|1|0|0O|0O]|O

INITIAL
conDITIONI

|
STEPNUMBEWO 1 23456 7 8 9 ETC

I
1 ~@—— DIRECTION OF ROTATION "B"

INITIAL PIN_SEQUENCE | 1 1| 1|0 |o 0 ‘ 0| o ‘ 1] 1 = $EOEO
PIN_SEQUENCE FOR FIRST STE O 1| 1|11 |0 0 |O 0 ‘0 111|100]|0]O
INITIAL
CONDITION!
il w
SLAVE 1 ! I I I l I _l
| [r— p——— —
|
I
STEPNUMBEI? 0 12 34 567 8 9ETC
1
Figure 7. Four-Channel Mode—Half-Step Generation
22 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Simple A -> B move request

9 TSM Positioning Algorithm

This section is designed to give an overview of the positioning algorithm employed by the TSM function.
It provides all the detail necessary to understand the normal function and use of the TSM. More detail on
the microcode operation is shown in the "C" coding examples at the end of this document.

9.1 Simple A ->B move request

When the CPU makes a move request, the TSM function first checksto see if the motor is stepping. If it is,
no further action is taken until the next step match is serviced. If the motor is not stepping,
DESIRED_POSITION ischecked against CURRENT_POSITION. If the two values are the same, no steps
are generated and an interrupt request is issued to the CPU. If CURRENT _POSITION does not equal
DESIRED_POSITION, the algorithm uses the following test to determine which direction to step the motor.

TEMP=DESIRED_POSITION - CURRENT_POSITION
If TEMP[MSB] =1, then step in direction B (rotate PIN_SEQUENCE left for step generation)
Else step in direction A (rotate PIN_SEQUENCE right for step generation)

The TSM function then generates steps in the required direction. The first step has a period equal to
START_PERIOD TCR1 clocks. After the first step, the function accelerates the motor using step periods
derived form the table and START_PERIOD. If the derived period is less than SLEW_PERIOD, then
SLEW_PERIOD isused instead of the table derived period. The function will continue to accelerate aslong
as there are sufficient steps left in the move to decelerate back to the start period before reaching
DESIRED_POSITION. Examples of this process for short moves are shown in Figure 8. Note that two
steps are taken with period equal to START_PERIOD at the end of each move. If the end of the acceleration
table is reached, the next and subsequent steps until deceleration are generated with period equal to
SLEW_PERIOD.

DESIRED_POSITION= DESIRED_POSITION= DESIRED_POSITION=
CURRENT_POSITION+1 A CURRENT_POSITION+2 CURRENT_POSITION+3

g L L | g Y DL O R I | g Y L R I

ES I Y I ES [Y I ES [Y I

< AT < od L e < A

=] I N s s

x 2 x 2 x 2

3, 11 I 1 stp 3 111 sep g [t [1 1 step

w —TT1 |>Number 2 t 11 |>Number w — 1 |>Number

1,2,3 45 6 1,.2,3 4 5 6 1,.2,3 4 5 6

[e I I [e R I [e D I
DESIRED_POSITION= DESIRED_POSITION= DESIRED_POSITION=
CURRENT_POSITION+4 A CURRENT_POSITION+5 A CURRENT_POSITION+6

sel Pt 56| 'L o110 sel 't o0

Q Qo Q

ES I Y B ES [T T O ES I Y T

Z 4 Z 4 Z 4

i [O T 3 N I o 5 I [

g 2 I:l I I & 2 |—|—| [g 2 (I

= N } [Step g 1 L | Step & 1 . Step

@ —t —# Number ¢ T T 1 3 Number @ —T—T—T—T—T9 Number

1.2,3 45 1,2,3 45 6 1,2,3 4.5 6
[L B I 1 [
Figure 8. Short Move Position Algorithm Examples—No mid_move change
23 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Changing DESIRED_POSITION in Mid-Move

9.2 Changing DESIRED POSITION in Mid-Move

Because DESIRED_POSITION is re-evaluated against CURRENT_POSITION after every step,
DESIRED_POSITION can be changed by the CPU at any time during a move. This feature is particularly
important for fast servo systems. A move request HSR should aways be issued when
DESIRED_POSITION is changed. There are four possible cases for a changed DESIRED_POSITION
value -- the TSM function responds differently in each case.

Casel: New DESIRED_POSITION isinthesamedirection asold DESIRED POSITION but further away.
See Figure 9a.

If the motor is slewing, this phase of the move is extended until it is time to decelerate to the new
DESIRED_POSITION.

If the motor has started to decelerate, the new DESIRED _POSITION may result in additional acceeration
and further slew phase.

Case 2: New DESIRED _POSITION isin the same direction as old DESIRED_POSITION but closer. See
Figure 9b.

If the motor is not closer to the new DESIRED_POSITION than the number of acceleration steps already
taken, the motor continues to accelerate and slew until it is time to decelerate to the new
DESIRED_POSITION.

If the motor is closer to the new DESIRED_POSITION than the number of acceleration steps already taken,
the motor immediately decel erates. This causes overshoot, the motor will subsequently reverse direction and
accelerate (if possible) to the new DESIRED_POSITION.

Case 3: New DESIRED_POSITION is in opposite direction to CURRENT_POSITION than old
DESIRED_POSITION. See Figure 9c.

The motor immediately decelerates, and when it reaches START _PERIOD, it reverses direction and
accelerates/s ews/decel erates to the new DESIRED_POSITION.

Case 4: New DESIRED_POSITION isthe same as CURRENT_POSITION. See Figure 9d.

If the last step had a period equal to START_PERIOD, then the function stops and issues an interrupt
request.

If the last step was not at the start/stop rate, the motor immediately decelerates. This causes overshoot, and
the motor will subsequently reverse direction and accelerate (if possible) to the new DESIRED_POSITION.

24 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Changing DESIRED_POSITION in Mid-Move

A) New_D_P same direction as Old_D_P but farther away —2 examples

Step Rate Step Rate

Is

=g co | go

old D P New__\D old D_P New D P

B) New_D_P same direction as Old_D_P but closer -- 2 examples

Step Rate Step Rate

C_D_P C

3
-—JE_I_I <~ ?%E%&P

o D\P

New D P Old_

P

New D P Old D_P

C) New_D_P opposite direction to Old_D_P D) New_D_P sameasC_D_P
Step Rate Step Rate
CDP CDP

R
. am J,:ll: g b
| e T-ll'ggt}j -

New D P Old D P New D P Old D_

KEY: C_P = CURRENT_POSITION; C_D_P = Change DESIRED_POSITION;
D_P = DESIRED_POSITION

Figure 9. The Effect of Changing DESIRED_POSITION During Mid-move

25 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Use of the SLEW_PERIOD Parameter

9.3 Use of the SLEW_PERIOD Parameter

The slew period parameter allows the minimum step period of the motor (and therefore its terminal speed)
to be specified exactly in TCR1 counts, independently of the values in the acceleration table and the value
of START_PERIOD. The SLEW_PERIOD parameter is used under two circumstances:

1. Theend of the acceleration table is reached.

2. The period vaue obtained from the fractional multiply of the START _PERIOD vaue by an
accel eration parameter (from thetable) islessthan SLEW_PERIOD. Thisalows SLEW_PERIOD
to be used to limit the maximum speed of a particular motor when multiple motors are sharing a
common acceleration table.

SLEW_PERIOD also allows amotor to make moves of the samelength at different speedswithout requiring
reprogramming of the acceleration table.

Note that SLEW_PERIOD should only be changed between moves and not while the motor is running.

9.4 Choosing Between the TSM Table Modes

The TPU has a limited amount parameter RAM for table data space and the unimplemented RAM *gaps
between channels complicate usage. The local and split table configuration options allow a programmer to
use the available space efficiently. Preferred table configuration depends upon how many motors are being
controlled and how many TPU channels are required for other functions. It is assumed that the application
requires the maximum possible number of acceleration steps. If this is not the case, then a better
arrangement may be possible.

10 Table Stepper Motor C Code Examples

There arethree program listingsthat will be exhibited to show the TSM architecture programming interface
(API). Thetwo API programs are used with the Motorola MPC500 header files and are 1) tpu_tsm.c and 2)
tpu_tsm.h. The third program is an example listing for the developer for their own application.

10.1 tpu_tsm.c

Thetpu_tsm.c program follows:

/* */

/* COWPILER Diab Data VERSI ON: 4. 3g */
/* AUTHOR: d enn Jackson */
/* */
/* H STORY */
/* REV AUTHOR DATE DESCRI PTI ON OF CHANGE */
/* e */
/* 1.0 G Jackson 30/ Jul /02 Initial version of function. */

IR AR R R R EEEEEEEEEEEEEEEEEEREEEEEEEE SRR EEEEEEEEEEERE SRR EEEEEY]

#include "tpu_tsmh"

#i ncl ude "npc500_util.h"

26 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
tpu_tsm.c

IR R AR R R EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEERY]

/* Begin TPU Initialization */

IR R R R EEEEEEEEREEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEERY]

J Rk R kR kR kR ok kKR kR kR kR kR Rk kR kR kR ko kR ko ko kR kR kR kR R Rk
FUNCTI ON D tpu_tsminit
PURPOSE : To initialize channels to run the TSM function.
INPUTS NOTES : This function has 13 paraneters:
*tpu - This is a pointer to the TPU3 nodule to use. It is of
type TPU3_tag which is defined in mtpu3.h
channel - This is the channel nunber of the primary TSM
channel . The next channels are used as the
paraneter table.
priority - This is the priority to assign to TSM channel s.
This paraneter should be assigned a val ue of:
TPU PRI ORI TY_HI GH, TPU_PRI ORI TY_M DDLE or
TPU_PRI ORI TY_LOW
start_position - This is the starting desired_position and current_position.
table_size - Initializes the nunber of bytes in the

accel eration table.

table_index - Initializes the table pointer to zero (start).
slew period - initializes the slew period and S.
start_period - initializes the start_period and A

pi n_sequence - initializes the pin_sequence.

nunber _channel s - nunber of channels used for this TSM
Two to four channels total, including the naster
channel and the paraneter table channels.
*table - pointer to the table beginning |ocation.
table_size - initialize the nunber of bytes in the table.
RETURNS NOTES : none
WARNI NG . The channel s nust be stopped before it is reconfigured. The
function di sables the channels but if they were currently
being serviced it would continue. The delay for assigning the
pram poi nter may to enough but depends on system | oadi ng.
Kok Rk kR kR kR R Rk Rk R R R kKK kR kR kR kK kK kK kK kK kK kK kK Rk Rk Rk Rk Rk ok k|
void tpu_tsminit(struct TPU3_tag *tpu, U NT8 channel, U NT8 priority,
INT16 start_position, U NT16 table_size_index,
U NT16 sl ew_period, U NT16 start_peri od,
U NT16 pi n_sequence, Ul NT8 nunber_channel s,
U NT16 *table, U NT8 table_size)

27 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

tpu_tsm.c
{
/* Declare variables for channel designations */

28

int master_channel;
int paranl_channel ;
i nt paran2_channel ;

int paranB_channel ;

Ul NT8 pchannel ;
Ul NT8 par am
U NT8 i;

/* Establish channels used for TSM function */

/* set channel values to other channels based upon the master */

/* if primary channel is 15 then secondary channel should be 0 */

mast er _channel channel ;

par aml_channel (channel + 1) & OxF;

paran_channel = (channel + 2) & OxF;

par an8_channel (channel + 3) & OxF;

/* di sabl e channels so they can be configured safely */

t pu_di sabl e(tpu, master_channel);

t pu_di sabl e(tpu, paranil_channel);

if (nunmber_channels > 2) { tpu_disable(tpu, paran2_channel); }

if (nunber_channels > 3) { tpu_disable(tpu, paranB_channel); }

/* select TSM function for nunmber of active channels */

/* TSMis function 0xD */

tpu_func(tpu, master_channel, TPU_FUNCTI ON_TSM ;

tpu_func(tpu, paraml_channel, TPU_FUNCTI ON_TSM;

if (nunmber_channels > 2) { tpu_func(tpu, paran2_channel, TPU_FUNCTI ON_TSM;
if (nunmber_channels > 3) { tpu_func(tpu, paranB_channel, TPU _FUNCTI ON_TSM;

/* disable interupts on channels so they can be configured safely */
tpu_interrupt_di sable(tpu, master_channel);

tpu_i nterrupt_disable(tpu, paraml_channel);

if (nunmber_channels > 2) { tpu_interrupt_disable(tpu, paran2_channel); }

if (nunber_channels > 3) { tpu_interrupt_disable(tpu, paranB8_channel); }

/* Initialize Parameter RAM */

Using the Table Stepper Motor TPU Function

For More Information On This Product,
Go to: www.freescale.com

}
}

MOTOROLA

Freescale Semiconductor, Inc.

tpu_tsm.c

pchannel = paranil_channel ;

param = O;

for (i=0; i<table_size; i++){
t pu- >PARM R[pchannel] [param+t+] = *t abl e++;
if (param == 8){
param = O;
pchannel ++;
if (pchannel == 16) pchannel = O0;
}

/* -initial DESIRED _POSI TI ON and CURRENT_POSITION will be the sane; */

/* -initialize TPU_TSM TABLE, slew period, start period, pin_sequence */

t pu- >PARM R[mast er _channel] [TPU_TSM DESI RED_PGCsSI Tl ON]
t pu- >PARM R[mast er _channel] [TPU_TSM_CURRENT_PGCSI Tl ON]

(I'NT16) (start_position);

(I'NT16) (start_position);

t pu- >PARM R[mast er _channel] [TPU_TSM TABLE] = (I NT16) (table_size_index);

t pu- >PARM R[mast er _channel] [TPU_TSM_SLEW PERI OD]

t pu- >PARM R[mast er _channel] [TPU_TSM _START_PERI OD]
t pu- >PARM R mast er _channel] [TPU_TSM Pl N_SEQUENCE]

1A AR R R R EEEEEEEEEEEEEEEEEEEEEEEEEEE SRRy

/*

Configure the Channels.

*/

IR R R AR EEE AR EEEEEEEEEEEEEEEEEEEE SRRy

29

= (I NT16) (slew period);

(I'NT16) (start_period);
(I NT16) (pin_sequence);

/* Configure the first channel as the prinmary channel and the follow ng */

/* channel as the secondary channel.

tpu_hsq(tpu, naster_channel, TPU_TSM LOCAL_ACC TBL |
t pu_hsq(tpu, paraml_channel, TPU_TSM LOCAL_ACC TBL |

i f (nunber _channels > 2) {

tpu_hsq(tpu, paran2_channel, TPU_TSM LOCAL_ACC TBL |

}

i f (nunber _channels > 3) {

tpu_hsq(tpu, paranB_channel, TPU_TSM LOCAL_ACC TBL |

}

/* Initialize both channels */
tpu_hsr(tpu, naster_channel, TPU TSMIN T _H);
tpu_hsr(tpu, paraml_channel, TPU TSMIN T_LO;

i f (nunber _channels > 2) {

*/
TPU_TSM ROTATE_ONCE) ;
TPU_TSM ROTATE_ONCE) ;

TPU_TSM ROTATE_ONCE) ;

TPU_TSM ROTATE_ONCE) ;

Using the Table Stepper Motor TPU Function

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

tpu_tsm.c

tpu_hsr(tpu, paran2_channel, TPU TSMINT_LO;
}

i f (nunber _channels > 3) {

t pu_hsr(tpu, paranB_channel, TPU TSMINT_LO;
}

/* Enabl e channels by assigning a priority to them */
/* Al Channels MJST have the sanme priority. */
t pu_enabl e(tpu, master_channel, priority);

t pu_enabl e(tpu, paraml_channel, priority);

t pu_enabl e(t pu, paran_channel, priority);

t pu_enabl e(tpu, paranB_channel, priority);

} /* End tpu_tsminit */

IR R EEY]

/* End of TPU Initialization */

IR AR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE LRy

/**/

/* Generate other tasks for the TSM function. */

IR R EE R EE RS EEEEEEEEEEEEEEEEEEEE SRRy

IR R EE AR EEEEEEEEREEREEEE R

FUNCTI ON : tpu_tsm.nov

PURPCOSE : To activate the nove and acceleration of the stepper notor.

I NPUTS NOTES : This function has 3 paraneters:

*tpu - This is a pointer to the TPU3 nodule to use. It is of

type TPU3_tag which is defined in mtpu3.h

channel - This is the nunber of the nmaster channel

position - The new desired position for the stepper notor.

GENERAL NOTES : The channel nust be a master channel for the TSM functi on.

can be nore than one master channel in the sane TPU. The

addi ti onal master channel (s) would be for another TSM functi on.

***/

void tpu_tsmnov(struct TPU3_tag *tpu, U NT8 channel, U NT16 position)
{

/* wite a new desired position into the TSM master channel */

t pu- >PARM R[channel] [TPU_TSM DESI RED PCSI TI ON] = position;

30 Using the Table Stepper Motor TPU Function

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.
tpu_tsm.c

/* lssue a nove request to the host service request (master channel: HSR=0x11) */
tpu_hsr(tpu, channel, TPU TSM HSR_MWV);
b

J Rk R kR kR kR ok kKR kR kR kR kR Rk kR kR kR ko kR ko ko kR kR kR kR R Rk
FUNCTI ON : tpu_tsmrd_dp
PURPCSE : To read the desired position.
I NPUTS NOTES : This function has 2 paraneters:

*tpu - This is a pointer to the TPU3 nodule to use. It is of

type TPU3_tag which is defined in mtpu3.h

channel - This is the nunber of the master channel
RETURN NOTES : desired position - The desired position is returned as a U NT16.
GENERAL NOTES : The channel nust be a master channel for the TSM function. The

read of the desired position can be used to drive the program

LEEEA R EEEREEEREERY

U NT16 tpu_tsmrd_dp(struct TPU3_tag *tpu, U NT8 channel)
{

/* read and return the desired position fromthe TSM naster channel */
return (tpu->PARM R[channel][TPU_TSM DESI RED _PCSI TI ON]) ;
H

J Rk R kR kR R Rk Kk Kk Rk kR kR Kk kR Rk kR kR kR kR Rk ko ko ko kR kR R R R R R Rk
FUNCTI ON : tpu_tsmrd_cp
PURPCSE : To read the current position.
I NPUTS NOTES : This function has 2 paraneters:

*tpu - This is a pointer to the TPU3 nodule to use. It is of

type TPU3_tag which is defined in mtpu3.h

channel - This is the nunber of the master channel
RETURN NOTES : current position - The desired position is returned as a U NT16.
GENERAL NOTES : The channel nust be a master channel for the TSM function. The

read of the current position can be used to drive the program

LEEEA R EE R EEEREEEREERY

U NT16 tpu_tsmrd_cp(struct TPU3_tag *tpu, U NT8 channel)
{

/* read and return the current position fromthe TSM naster channel */
return (tpu->PARM R[channel][TPU_TSM CURRENT_PGCSI TI ON]) ;
H

31 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
tpu_tsm.c

JRAEEE R KK R KKK KRR R AR R KK R R KRR AR R KRR KR A A KK
/* Generate Interrupt tasks for the TSMinterrupt. */
[R kR kR kR kR kR kR kK kK kK kK Rk kK kKR Rk Rk R Ak k[
JRAE R KA KRR KRR R AR KRR KRR KRRk R R KRR KRR R KRR AR IR AR R R AR H A KRR A KRR KK
FUNCTI ON D tpu_tsmint_lev
PURPCSE : To programthe level of interrupt fromthe TPU TSM function
I NPUTS NOTES : This function has 2 paraneters
*tpu - This is a pointer to the TPU3 nodule to use. It is of
type TPU3_tag which is defined in mtpu3.h
Il evel - The interrupt level (0 to 31).
GENERAL NOTES : Level must be in the range of 0 to 31

***/

void tpu_tsmint_lev(struct TPU3_tag *tpu, U NT8 |evel)

{
int remainder

if(level > 23) {
tpu->TICR B. I LBS = 0x11
remai nder = level - 24
tpu->TICR B. CI RL = renai nder

}

else if(level > 15) {
t pu->TICR B. I LBS = 0x10
remai nder = |evel - 16;
tpu->TICR B. CI RL = renni nder

}

else if(level >7) {
tpu->TICR B. I LBS = 0x01,;
remai nder = level - 8
tpu->TICR B. CI RL = renai nder

}

el se {
t pu->TICR. B. I LBS = 0x00
tpu->TICR B.CIRL = | evel

}

H

/***************~k~k~k******~k~k~k******~k~k~k***
FUNCTI ON : tpu_tsm.int_chk

PURPCOSE : Interrupt check for TSMinterrupt service request natch

INPUTS NOTES : This function has 3 paraneters

*tpu - This is a pointer to the TPU3 nodule to use. It is of

32 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

tpu_tsm.c
type TPU3_tag which is defined in mtpu3.h
channel - The nmaster channel.
RETURNS : Returns the value TRUE (1) or FALSE (0) as a Ul NT8.

GENERAL NOTES : Level must be incoded according to the SIPEND register.

LEEEA R EEREEEREERY

int tpu_tsmint_chk(struct TPU3_tag *tpu, U NT16 channel) {
/* Determine that TPU was the source */
/* Determine the tpu channel interrupt source */
int val;
if (tpu->Cl SR R == channel) {
val = TPU_TSM TRUE;
}
el se val = TPU_TSM FALSE;

return val;

/***

FUNCTI ON : tpu_tsmcisr_clr
PURPCSE : Interrupt clear for TSMcisr register.
I NPUTS NOTES : This function has 1 paraneter:
Il evel - The interrupt level (0 to 7) as encoded through the
32-bit SIPEND register.
GENERAL NOTES : Level nust be incoded according to the SIPEND register. This
level is 32-bits long (U NT32).

LEEEA R EE R EEEREEEREERY

void tpu_tsmcisr_clr(struct TPU3_tag *tpu, U NT16 Cl SR | evel) {
/* Wite a "1" to the active pending bit to reset it. */
/* Alogic bit-wise "OR' between the SIPEND and the */

/* level will clear the specific SIPEND |evel. */

/* Clear any existing TPU interrupts */
t pu->ClI SR. R = 0x0000;
/* tpu->CISR R & ~(1 << CISR level); */

IR R EE AR EEEREEEEREEREEEEE LR

FUNCTI ON : tpu_tsmmas_chan_cier
PURPCOSE : Convert master channel integer into CIER, Cl SR U NT16 val ue
I NPUTS NOTES : This function has 1 paraneter:

33 Using the Table Stepper Motor TPU Function

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

tpu_tsm.c

mast er _chan - The channel (0 to 15) to convert to encodedi ng

for the 16-bit TPU CIER, or CI SR register
GENERAL NOTES : master_chan integer input is returned as a U NT16 val ue
for the TPU ClIER and CI SR registers.

LEEEA R EEREEEREERY

U NT16 tpu_tsm mas_chan_cier(int master_chan) {
/* Convert integer input master channel to the */

/* TPU ClER or Cl SR encodi ng. */

Ul NT16 ci er_chan = 0x0000

if(master_chan == 0) { cier_chan = 0x0001; }
if(master_chan == 1) { cier_chan = 0x0002; }
if(master_chan == 2) { cier_chan = 0x0004; }
if(master_chan == 3) { cier_chan = 0x0008; }
if(master_chan == 4) { cier_chan = 0x0010; }
if(master_chan == 5) { cier_chan = 0x0020; }
if(master_chan == 6) { cier_chan = 0x0040; }
if(master_chan == 7) { cier_chan = 0x0080; }
if(master_chan == 8) { cier_chan = 0x0100; }
if(master_chan == 9) { cier_chan = 0x0200; }
if(master_chan == 10) { cier_chan = 0x0400; }
if(master_chan == 11) { cier_chan = 0x0800; }
i f(master_chan == 12) { cier_chan = 0x1000; }
if(master_chan == 13) { cier_chan = 0x2000; }
if(master_chan == 14) { cier_chan = 0x4000; }
i f(master_chan == 15) { cier_chan = 0x8000; }

return cier_chan

/***/

/* Modtorola reserves the right to make changes without further notice to any */

/* product herein to inprove reliability, function, or design. Mtorola does
/* not assume any liability arising out of the application or use of any

/* product, circuit, or software described herein; neither does it convey

*/
*/
*/

/* any license under its patent rights nor the rights of others. Mdtorola */

/* products are not designed, intended, or authorized for use as conponents

/* in systems intended for surgical inplant into the body, or other

/* applications intended to support life, or for any other application

34 Using the Table Stepper Motor TPU Function

For More Information On This Product,
Go to: www.freescale.com

*/
*/
*/

MOTOROLA

Freescale Semiconductor, Inc.
tpu_tsm.h

/* which the failure of the Mdtorola product could create a situation where */
/* personal injury or death may occur. Should Buyer purchase or use Mdtorola */
/* products for any such intended or unauthorized application, Buyer shall */
/* indemify and hold Mdtorola and its officers, enployees, subsidiaries, */
/* affiliates, and distributors harm ess against all clainms costs, danmages, */
/* and expenses, and reasonable attorney fees arising out of, directly or */
/* indirectly, any claimof personal injury or death associated with such */
/* uni ntended or unauthorized use, even if such claimalleges that Mdttorola */
/* was negligent regarding the design or manufacture of the part. Mdtorola */

/* and the Mdtorola | ogo* are registered trademarks of Mdtorola Ltd. */

IR R EREEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

10.2 tpu_tsm.h

IR RS R R EEEEEEEEEEEEEEREEY

/* FILE NAME: tpu_tsmh COPYRI GHT (c) MOTOROLA 2002 */
/* VERSION. 0.1 Al Rights Reserved */
/* */
/1 * DESCRI PTI ON: */
/* This file defines all of the registers and bit fields on the TPU3 */
/* Tabl e Stepper Mdtor (TSM function. */
/* */
/* AUTHOR: d enn Jackson */
/* COWI LER Diab Data VERSI ON: 4. 3g */
/* */
/* H STORY */
/* REV AUTHOR DATE DESCRI PTI ON OF CHANGE */
I % Ll . oy
/* 0.1 G Jackson 30/ Jul /02 Initial version of file for */
/* Spani sh Cak. */

/**/

#i ncl ude "m_tpu3. h"

#i fdef __ cplusplus
extern "C' {

#endi f

IR R R R R EEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEERY

/* Definition of terms and initial settings */

/***/

35 Using the Table Stepper Motor TPU Function

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.
tpu_tsm.h

/* Define the maxi mum paraneter table size */
| *#defi ne TABLE_X 3 Tabl e x val ue */
[*#define TABLE Y 8 Tabl e y val ue */

/* Define HSQ val ues */

#define TPU TSM LOCAL_ACC TBL 0x0
#define TPU TSM SPLI T_ACC TBL 0Ox1
#defi ne TPU_TSM ROTATE_ONCE 0x0
#defi ne TPU_TSM ROTATE_TW CE 0x2

/* Define HSR val ues */

#defi ne TPU_TSM NO _HOST 0x0
#define TPU TSM I NI T_LO Ox1
#define TPU TSMIN T_H 0x2
#defi ne TPU_TSM HSR_MOV 0x3

/* Define pin state */
#defi ne TPU_TSM PI N_H GH 0x8000
#define TPU_TSM PIN_LOW 0x0000

/* Define test result values */
#define TPU_TSM TRUE 1
#def i ne TPU_TSM FALSE 0

/* Define paranmeter RAM | ocations */
#define TPU_TSM DESI RED_POSI TI ON
#defi ne TPU_TSM CURRENT_POSI TI ON
#define TPU TSM TABLE

#defi ne TPU_TSM TABLE_SI ZE

#defi ne TPU_TSM TABLE_| NDEX

0
1
2
2
2
#def i ne TPU_TSM_SLEW PERI CD 3
#define TPU TSM S 3
#def i ne TPU_TSM START_PERI OD 4
#def i ne TPU_TSM A 4

5

#def i ne TPU_TSM Pl N_SEQUENCE

/* Define interrupt |evels */

/* Define the USIU. SIPEND | evel encodi ngs */
/*

#define TSM_ I NT_LEVELO 0x40000000

36 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

tpu_tsm.h

#def i
#def i
#def i
#def i
#def i
#def i
#def i
*/

ne

ne

ne

ne

ne

ne

ne

TSM I NT_LEVEL1 0x10000000

TSM | NT_LEVEL2 0x04000000

TSM_ | NT_LEVEL3 0x01000000

TSM | NT_LEVEL4 0x00400000

TSM I NT_LEVEL5 0x00100000

TSM_ | NT_LEVEL6 0x00040000

TSM I NT_LEVEL7 0x00010000

/* Define TPU.ClI SR interrupt channel encodings */

/*
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
*/

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

TSM_Cl SR_| NT_CHANNELO
TSM_Cl SR_I NT_CHANNEL1
TSM_CI SR_I NT_CHANNEL2
TSM_Cl SR_I NT_CHANNEL3
TSM_CI SR_| NT_CHANNEL4
TSM_CI SR_| NT_CHANNEL5
TSM_Cl SR_| NT_CHANNEL6
TSM_Cl SR_| NT_CHANNEL7
TSM_CI SR_| NT_CHANNELS
TSM_Cl SR_I NT_CHANNEL9
TSM_CI SR_| NT_CHANNEL10
TSM_Cl SR_I NT_CHANNEL11
TSM_Cl SR_I NT_CHANNEL12
TSM_Cl SR_I NT_CHANNEL13
TSM_Cl SR_| NT_CHANNEL 14
TSM_Cl SR_| NT_CHANNEL15

/* Prototype of functions */

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
0x0080
0x0100
0x0200
0x0400
0x0800
0x1000
0x2000
0x4000
0x8000

void tpu_tsminit(struct TPU3_tag *tpu, U NT8 channel, U NT8 priority,

INT16 start_position, U NT16 table_size_index,

U NT16 sl ew_ period, U NT16 start_peri od,

Ul NT16 pi n_sequence, U NT8 nunber_channel s,

U NT16 *table, U NT8 table_size);

void tpu_tsmnov(struct TPU3_tag *tpu, U NT8 channel, U NT16 position);

U NT16 tpu_tsmrd_dp(struct TPU3_tag *tpu, U NT8 channel);

U NT16 tpu_tsmrd_cp(struct TPU3_tag *tpu, U NT8 channel);

U NT16 tpu_tsm mas_chan_cier(int nmaster_chan);

37

Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.
tpu_tsm_exl.c

void tpu_tsmint_lev(struct TPU3_tag *tpu, U NT8 |evel);
int tpu_tsm.int_chk(struct TPU3_tag *tpu, U NT16 channel);
void tpu_tsmcisr_clr(struct TPU3_tag *tpu, U NT16 CI SR | evel);

#i fdef _ cplusplus

}
#endi f

10.3 tpu _tsm_exl.c

The developer should use this code as an example for calling the TPU TSM functions and incorporating

these callsinto afinal application.

IR AR R R R EREEEEEEEEEEEEEEEREEEEEEEEEEEEREEEEEREEEEEEEERE SRR EEEEEY]

/* FILE NAME: tpu_tsmexl.c COPYRI GHT (c¢) MOTOROLA 2002 */
/* VERSION:. 1.0 Al Rights Reserved */
/* */

/* DESCRI PTION: This sanple program shows a sinple exanple of a program */
/* that initializes the TSM function and updates a desired position */
/* varible fromthe CPU The position in the current position noves nobst */
/* efficiently to the new desired position. The table of byte variables */
/* establishes the rate of speed. Advancing through the next byte step in */
/* the table will accelerate the speed of the notor. (ie. Table Stepper */
/* Motor--TSM. */
/* The exanpl e uses the TPU A on a nmaster channel and up to three */
/* consecutive channels. The nmaster channel for this exanple is 0. Wth */
/* channels 1, 2, and 3 as the table paraneter channels. */
/* The programis targeted for the MPC555 but should work on any MPC500 */

/* device with a TPU. For other devices the setup routines will also need */

/* to be changed. */
/* */
/* H STORY ORI G NAL AUTHOR: Jeff Loeliger */
/* REV AUTHOR DATE DESCRI PTI ON OF CHANGE */
I % Ll . oy
/* 1.0 J. Loeliger 03/Aug/02 Initial version of function. */
/* 1.1 G Jackson 12/ Aug/ 02 Convert to TSM exanpl e. */

/**/

#i ncl ude "npc565. h" /* Define all of the MPC555 registers, this needs to */

/* changed if other MPC500 devices are used.

38 Using the Table Stepper Motor TPU Function

For More Information On This Product,
Go to: www.freescale.com

*/

MOTOROLA

Freescale Semiconductor, Inc.
tpu_tsm_exl.c

#i ncl ude "npc500. c" /* Configuration routines for MPC555 EVB, will need */

/* to be changed if other hardware is used. */
#i ncl ude "npc500_util.h" /* Uility routines for using MPC500 devices */
#include "tpu_tsmh" /* TPU TSM functions */

/* Prototypes for functions of exanple program */
void Ext_Isr(void);
void tpu_tsm.int_config(struct TPU3_tag *tpu, U NT8 channel, U NT8 |evel)

U NT32 tpu_tsmsip_int_lvli(int int_level);

/* Initialization paraneters -- redefine these paraneters for a */
/* second parallel TSMinitialization. */
U NT8 mas_channel = 13; /* master channel designation, changes once here. */
U NT8 int_level = 2 /* Set global interrupt |evel here. */
U NT8 num channel = 4; /* Number of channels. */
U NT8 tabl e_size = 24; /* Number of bytes/2 in the paraneter table. */

INT16 start_position = 0x0010; /* Initial value for desired_ & current_position */
U NT16 tabl e_siz_index = 0x1C00; /* Initial value for table size(1lC) and index(00) */
U NT8 flag = O; /* Interrupt test flag. */

struct TPU3_tag *tpua = &TPU_A; /* pointer for TPU routines */

void main ()

{

int x; /* Just an integer to hold a value */
U NT16 dp_val; /* Value of desired position for programcontrol. */

U NT16 cp_val; /* Value of current position for programcontrol. */

/* An exanple of a paraneter table is shown bel ow. Change this table */

/* to neet your requirements. Duplicate this table with another */
/* name for a second TSM function (third, etc.), if different. */
static U NT16 table[] = {OxF7FF, OxE7FO, OxD7EO, 0xC7DO

0xB7CO, OxA7BO, 0x97A0, 0x8790
0x7780, 0x6770, 0x5760, 0x4750
0x3740, 0x2730, 0x1720, OxOF10
OxOEOF, 0x0C0D, 0x0AOB, 0x0809
0x0607, 0x0405, 0x0203, 0x0001};

/* Hardware Setup -- nmachi ne settings (watchdog, timers, speed, etc.) */
set up_npc500(40) ; /*Setup device and progranm PLL to 40MHz*/
39 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
tpu_tsm_exl.c

/* Initialize Table Stepper Mdtor function wth: */
/* -l nput signal on TPU A, */
/* -mast er _channel = mas_channel */
/* -Schedul e as high priority in the TPU */
/* -Initial desired position of 0x0010, */
/* -Initial current position of 0x0010, */
/* -Tabl e Size of 0x18 (d24), Table Index of 0x00, */
/* -Slew Period of 0x2000 (shift to 0x4000), S =0, */
/* -Start Period of 0x6800 (shift to 0xD0O00O), A =1, */
/* -Pin Sequence of OxEOEO. */
/* -Nurber of channels = 4. */
/* -*table -- start address of paraneter table. */
/* -l oad_tabl e_size -- nunber of table bytes to load. */

tpu_tsminit(tpua, mas_channel, TPU PRIORITY_H GH, start_position,
tabl e_si z_i ndex, 0x4000, 0xD001, OxEOEO, num channel,

table, table_size);

/* Enable interrupts; set the interrupt level in the TPU CIER */

tpu_tsmint_config(tpua, mas_channel, int_Ievel);

/**/

/* Generate a new desired position. */

IR R EE R EEE AR EEEEEE SRR EEEEEE SRRy

/* Designate which tpu (A), the nmaster channel = mas_channel, */
/* and the new desired | ocation value (0x3000) */
/* NOTE: The Master Channel cannot change fromthe init designation! */

dp_val = 0x3000;

tpu_tsmnov(tpua, mas_channel, dp_val);

IR R EE AR EEE AR EEEEEEEEEEEEEEEEEEEE SRR LY

/* Make changes after an interrupt. */

/**/

while (!flag) { /* Interrupt routine will set this flag */
/* Do other productive work while waiting for nove to conplete */

X=8;

40 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
tpu_tsm_exl.c

b

/* Interrupt has occurred -- continue: */

/* Below are exanples of control logic used in a TSM function. */

/* Adapt this to your specific needs and controls. */
dp_val = tpu_tsmrd_dp(tpua, nmas_channel);
cp_val = tpu_tsmrd_cp(tpua, mas_channel);
if(dp_val =cp_val) { /* poll to see if current position has */

/* reached desired position. Set new position. */
/* When return frominterrupt, set a new desired |ocation */
if(cp_val > 2000) {
dp_val -= 0x1000;

tpu_tsm nov(tpua, mas_channel, dp_val);

}
el se {
dp_val += 0x0500;
tpu_tsmnov(tpua, mas_channel, dp_val);
}
}
whi | e(1){

/* Hold at end of program */
X=4;
b

} /* End of main */

IR R EE AR EEEEEEEEREEREEEEE R

FUNCTI ON : Ext_lsr

PURPCOSE : Interrupt call at interrupt request.

I NPUTS NOTES : This function has 0 paraneters:
*tpu - This is a pointer to the TPU3 nodule to use. It is of

type TPU3_tag which is defined in mtpu3.h

|l evel - The interrupt level (0 to 31).

GENERAL NOTES : This routine is org'ed at 0x500. Only level 2 is shown as an
exanpl e here.

***/

/* Belowis a Diab Data centric routine. Qther conpilers */

/* may require a different structure for an external */
/* interrupt service request. */
41 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
tpu_tsm_exl.c

void Ext_Isr()
{
U NT16 nmas_chan_ci sr;
mas_chan_cisr = tpu_tsm nmas_chan_ci er (mas_channel) ;
/* Check that the level of interrupt matches the TPU, TSM.*/
flag = (tpu_tsm.int_chk(tpua, mas_chan_cisr));
/* Force the clearance of the CISR register */

tpu_tsmcisr_clr(tpua, mas_chan_cisr);

J Rk R kR kR R Rk ko kR Rk kR kR kR Rk kR kR kR kR Rk kR ko ko kR kR kR kR R Rk
FUNCTI ON : tpu_tsmint_config
PURPCSE : Interrupt activities when TSMinterrupt request occurs.
I NPUTS NOTES : This function has 2 paraneters:
*tpu - This is a pointer to the TPU3 nodule to use. It is of
type TPU3_tag which is defined in mtpu3.h
channel - This is the nunber of the master channel
|l evel - The interrupt level (0 to 7).
GENERAL NOTES : Channel nust be a TSM naster channel. Level nust be in the
range of 0 to 31. The activities listed here are for purposes

of exanple and to use all of the functions once.

LR EEAEEE R EEEREEEREERY

void tpu_tsm.int_config(struct TPU3_tag *tpu, U NT8 channel, U NT8 |evel) {
/* Shut down CPU MSR interrupts */
Ul NT16 ci sr_chan;
U NT32 sipend_int_level;

asm (" mspr EID, r0O "); [/* MREE =0, MSRRRI] =1 */

cisr_chan = tpu_tsmmas_chan_ci er(channel);

sipend_int_level = tpu_tsmsip_int_lvl(level);

/* Clear current interrupt requests */
/* Force the clearance of the CISR register */

tpu_tsmcisr_clr(tpua, cisr_chan);

/* Configure the TPU Interrupt Configuration Register (TICR) */
/* CIRL=2, ILBS=0 for a level 2 interrupt. */

tpu_tsmint_lev(tpu, level);

42 Using the Table Stepper Motor TPU Function MOTOROLA

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
tpu_tsm_exl.c

/* Set interupt enable to master channel ClER = master channel */

tpu_i nterrupt _enabl e(tpu, channel);

/* Set the USIU nmask to accept a level 2 interrupt */
USI U. SI MASK. R = si pend_i nt _| evel

/* Force the clearance of the CISR register */

tpu_tsmcisr_clr(tpua, cisr_chan);

/* Set the CPU MSR to enable interrupts. EIE activates MSR{EE], MSRIRI] */
asm(" mtspr EIE, r3"); /* NOTE: r3 is a noot register */
H

R R T 2 it
FUNCTI ON : tpu_tsmsip_int_Iv
PURPCSE . Convert interrupt level integer into USIU SIPEND U NT32 val ue
I NPUTS NOTES : This function has 1 paraneter
level - The interrupt level (0 to 7) as encoded through the
32-bit SIPEND register
GENERAL NOTES : master_chan integer input is returned as a U NT16 val ue
for the TPU CIER and Cl SR regi sters.

LEEEE R EEEREEEREERY

U NT32 tpu_tsmsip_int_lvl(int int_level) {
/* Convert integer input interrupt level */

/* to the 32-bit SIPEND encoding. */

U NT32 sip_l evel = 0x00000000

if(int_level == 0) { sip_level = 0x40000000; }
if(int_level == 1) { sip_level = 0x10000000; }
if(int_level == 2) { sip_level = 0x04000000; }
if(int_level == 3) { sip_level = 0x01000000; }
if(int_level == 4) { sip_level = 0x00400000; }
if(int_level == 5) { sip_level = 0x00100000; }
if(int_level == 6) { sip_level = 0x00040000; }
if(int_level ==7) { sip_level = 0x00010000; }
return sip_level

}

43 Using the Table Stepper Motor TPU Function

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA

Freescale Semiconductor, Inc.

HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.

SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.

Silicon Harbour Centre, 2 Dai King Street

Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:
1-800-521-6274
HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use
Motorola products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein.
Motorola makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Motorola assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be provided in
Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated
for each customer application by customer’s technical experts. Motorola does not convey any
license under its patent rights nor the rights of others. Motorola products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which
the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was

negligent regarding the design or manufacture of the part.

@ MOTOROLA

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.
digital dna is a trademark of Motorola, Inc. All other product or service names are the property of
their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002

AN2364/D

For More Information On This Product,

Go to: www.freescale.com

	Using the Table Stepper Motor TPU Function (TSM) with the MPC500 Family
	1 Functional Overview
	2 Detailed Description
	2.1 Local Table Mode
	2.2 Split Table Mode
	2.2.1 Two-Channel Mode
	2.2.2 Four-Channel Mode

	3 Function Code Size
	4 TSM Function Structure
	4.1 TSM Function Parameters Address Maps
	Table�1. TPU Parameter RAM Address Mapping�
	Figure�1. Master Channel Parameter Assignment—All Modes
	Figure�2. Acceleration Parameter Table—Local Configuration.
	Figure�3. Acceleration Parameter Table—Split Table Configuration (2-Channel Mode)
	Figure�4. Acceleration Parameter Table—Split Table Configuration (4-Channel Mode)
	4.1.1 DESIRED_POSITION
	4.1.2 CURRENT_POSITION
	4.1.3 TABLE_SIZE
	4.1.4 TABLE_INDEX
	4.1.5 BIT_S
	4.1.6 SLEW_PERIOD
	4.1.7 BIT_A
	4.1.8 START_PERIOD
	4.1.9 PIN_SEQUENCE
	4.1.10 ACCEL_RATIO_1ACCEL_RATIO _N
	4.1.11 HSQ0
	4.1.12 HSQ1

	5 Host Interface to TSM Function
	Figure�5. TPU Address Map
	Table�2. CIER Bit Settings

	6 Configuration of TSM Function
	7 TSM Routines
	7.1 void tpu_tsm_init
	7.2 void tpu_tsm_mov
	7.3 UINT16 tpu_tsm_rd_dp
	7.4 UINT16 tpu_tsm_rd_cp
	7.5 UINT16 tpu_tsm_mas_chan_cier
	7.6 void tpu_tsm_int_lev
	7.7 INT tpu_tsm_int_chk
	7.8 void tpu_tsm_cisr_clr

	8 Performance and Use of TSM Function
	8.1 Performance
	Table�3. Table Stepper Motor Function—State Timing

	8.2 Generating Step Patterns
	Figure�6. Two-Channel Mode—Full Step Generation
	Figure�7. Four-Channel Mode—Half-Step Generation

	9 TSM Positioning Algorithm
	9.1 Simple A -> B move request
	Figure�8. Short Move Position Algorithm Examples—No mid_move change

	9.2 Changing DESIRED_POSITION in Mid-Move
	Figure�9. The Effect of Changing DESIRED_POSITION During Mid-move

	9.3 Use of the SLEW_PERIOD Parameter
	9.4 Choosing Between the TSM Table Modes

	10 Table Stepper Motor C Code Examples
	10.1 tpu_tsm.c
	10.2 tpu_tsm.h
	10.3 tpu_tsm_ex1.c

