
A common limitation of many general-purpose memory managers is that they cannot run within real-time
operating system (RTOS) environments typically used with digital signal processors (DSPs), because of
reentrancy issues, lack of mutual exclusion, or their non-determinism. Also, general-purpose memory
managers do not provide sufficient speed, flexibility, or efficiency and often cause the memory space to
become fragmented. Memory fragmentation is a serious problem because the time required to
de-fragment memory is not necessarily predictable and is consequently non-deterministic. This
application note describes the Very Small Memory Manager (VSMM), which addresses these memory
manager limitations and meets the critical need of Motorola StarCore® DSP customers for a small,
simple, efficient, flexible, fast, and deterministic memory manager within their real-time applications and
systems. Although the VSMM operates within an RTOS environment, an RTOS is not required.

1 Memory Manager Limitations
Whether you are using only static memory or dynamic allocation on a heap, you must proceed cautiously.
Programmers cannot afford to ignore the risks inherent in memory usage. This section describes these
risks in detail and discusses how the VSMM overcomes them.

1.1 Fragmentation
Fragmentation is a common and serious problem inherent in many memory managers. Often,
fragmentation cannot be corrected at the application level. Fragmentation results when tasks randomly
allocate and free arbitrarily sized amounts of contiguous memory (see Figure 1). If such a process
continues long enough, the free memory becomes so fragmented that there is insufficient contiguous
memory available to fill an allocation request. Then the system must reorganize the heap via garbage
collection before it can fill any new allocation requests. The routine to reform the free pool requires an
indeterminate amount of time, depending on the severity of the fragmentation.

The danger of fragmentation has been overestimated in academic experiments that focus on randomly
sized allocations. In practice, allocations tend to come in a limited number of sizes. A survey of several
UNIX applications revealed that 90 percent of allocations are covered by six sizes, and 99.9 percent of
allocations are covered by 141 sizes[3]. Therefore, the probability of finding a memory block that exactly
matches the size of any given request is far higher than estimated, given a random distribution of
allocation sizes. Despite this data, any fragmentation within a real-time system eventually requires
garbage collection for an indeterminate amount of time. This poses a problem for real-time systems
because a real-time system must be deterministic to meet real-time constraints.

To eliminate the potential for fragmentation completely, you can use heaps, which are partitions of
fixed-sized memory blocks that can be tuned at design time for the size of the requests to be made. Each
heap contains an array of blocks, and unused blocks can be linked together in a list. The heaps themselves
are declared as arrays. This mechanism avoids the overhead of a large header for each block, since size
information is fixed for each heap. The VSMM employs heaps to eliminate fragmentation.

Application Note

AN2345/D
Rev. 1, 9/2003

Real-Time Memory
Manager for StarCore
DSPs

by Joe Liccese

CONTENTS

1 Memory Manager
Limitations..................... 1

2 VSMM Basics 6
3 VSMM Distribution ... 114
4 Building Your

Application with
VSMM.......................... 15

5 VSMM Benchmarking.. 21
6 VSSM Functions 23
7 Building VSMM

Examples 1–3 26
8 VSMM Configuration

Source Listing.............. 28
9 References 32

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

2

Memory Manager Limitations

1.2 Deterministic Systems
Real-time systems are prolific within embedded environments. A real-time system must be deterministic,
that is, it must provide a required level of service in a bounded response time. Since most general memory
managers require some form of garbage collection, a process that is inherently non-deterministic,
real-time embedded systems are often unable to use these memory managers.

When memory becomes low in the traditional mark and sweep garbage-collection algorithm, the system
stops all user processes, locates the set of unreachable objects or memory blocks, and frees them. To
accomplish this task, it must examine every object reference, such as local variables and static structures.
Each referenced object is checked to determine whether it is already marked. If an object is not marked, it
is marked and all its references are processed; otherwise the system moves on to the next reference. When
this process is complete, any unmarked objects are deemed unreachable and can therefore be recycled.
This marking technique is superior to reference-counting schemes because it correctly detects groups of
dead objects that are referenced only by other dead objects. Figure 1 and Figure 2 show before and after
pictures of this process, respectively. Of course, the heap can become low on free space at any time, and
the time required to mark and sweep is proportional to the number of objects and references. The result is
a pattern in which the application periodically becomes unresponsive or stalls for a brief time. Such stalls
are unacceptable in real-time systems, even soft real-time systems.

Figure 1. Fragmented Memory Before Garbage Collection

Figure 2. Memory After Garbage Collection

One way to prevent fragmentation is to allocate pools of the same fixed-sized memory blocks so that a
careful implementation can have fixed execution times for allocating and freeing the blocks. More
general heap implementations always involve iterating through lists that can vary in size. The VSMM
eliminates fragmentation by using heaps that consist only of fixed-sized memory blocks. Moreover, all

A B C D E F G H I Free Space

1

2

1 2 2 1 1 1 12 2

Marked space

Unreachable space

A D E G H Free Space

1

2

1 1 1 1 1

Marked space

Unreachable space

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

3

Memory Manager Limitations

VSMM routines execute in a known and deterministic way; that is, each VSMM routine has a known and
bounded response time. Details on this response time can be found within the interface control document
(ICD) [6] of each VSMM module.

In the VSMM heap schema, freeing a memory block merely points the current block to the memory block
to which the global free list pointer is pointing. Then the global free list pointer is updated to point to the
starting address of the freed memory block, a very efficient and deterministic process (see Figure 3).
Notice that the free space is not contiguous. Rather, each free block points to the next free block within
the heap, and there are no unreachable blocks.

Figure 3. Heap with Fixed-Sized Memory Blocks

1.3 Reentrancy
Most embedded systems use interrupts, and many support multitasking or multi-threaded operations. In
such applications, the program control flow can change contexts at any time. When an interrupt occurs,
the current operation is put on hold, and another operation starts. If these operations share variables, you
must ensure that one routine does not corrupt the data of another. By carefully controlling how data is
shared, you create reentrant functions that allow multiple concurrent invocations but do not interfere with
each other. Reentrancy is a term to describe a module in which multiple processes can share the same
copy in memory. A reentrant module ensures that no instructions modify the contents of variable values
outside its context. A reentrant module must satisfy the following reentrancy rules:

1. An atomic operation is one that cannot be interrupted. Use all shared variables in an atomic way, unless
each is allocated to a statically declared specific instance of the function.

An instance is a path through the code. There is no reason a single function cannot be called from many
places. In a multitasking environment, it is possible that several copies of the function may execute
concurrently. The use of automatic variables—that is, local variables that are statically declared within
a module—ensures reentrancy since each call to this module has its own copy of these variables
created on the stack. Another option is to allocate memory dynamically so that each iteration uses a
unique data area.

2. Do not call non-reentrant functions.

Calling a non-reentrant routine effectively makes the routine that performed the call non-reentrant.

3. Do not use the hardware in a non-atomic way.

Hardware looks a lot like a variable. If more than a single I/O or hardware operation is required to
handle a device, reentrancy problems can result. To prevent reentrancy issues on shared hardware,

1

2

Marked space

Free space

1 2 2 1 1 2 1 1 1 2 2 2 2

FreeList Pointer

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4

Memory Manager Limitations

mutual exclusivity must be ensured. The following operation is atomic because nothing but a reset can
stop or interrupt the instruction:

move.1 d1, r0

Never assume that a compiler generates atomic code. For example, if we assume that the variable
gusiFooBar in the following instruction is global, this instruction may appear to be an atomic
instruction.

gusiFooBar += 1

However, the compiler may generate the following code, which is clearly not an atomic instruction and
therefore not reentrant:

move.w _gusiFooBar, d1
inc d1
move.w d1, _gusiFooBar

The best approach to ensuring reentrancy is to avoid the use of shared variables, but it is not always
possible to eliminate them in real-time systems. Usually, when shared variables are necessary, interrupts
are disabled until the shared variable is updated and then re-enabled. However, disabling interrupts
increases system latency, reducing the ability of the system to respond rapidly to external events. Another
approach to ensuring reentrancy is the use of a mutex, also referred to as a binary semaphore. Mutexes are
simple on-off state indicators whose processing is inherently atomic. Semaphores consume more
overhead than interrupt disabling, but they do not affect interrupt latencies.

Both of these reentrancy approaches can cause priority inversion. Priority inversion occurs when a
higher-priority task must wait on a lower-priority task to complete its use of a shared resource. In the
mutex approach, the task that owns a mutex retains control of its associated resource until the owner
determines that exclusive access is no longer needed. If another task with a higher priority attempts to
acquire the mutex, the kernel blocks the higher-priority task. In the interrupt disabling approach, a
higher-priority process is unable to interrupt a lower-priority process while interrupts are disabled,
forcing it to wait until the lower-priority process re-enables interrupts.

With the exception of two shared variables, all VSMM modules employ statically declared variables so
that each call has its own copy of these variables. To ensure reentrancy when either of the shared global
variables is updated, the VSMM can enable/disable interrupts or use a binary semaphore. The exact
method implemented depends on the critical method selected by the programmer. Refer to Section 3.6,
VSMM Critical Methods, on page 14 for details on the available VSMM critical methods. Since all
VSMM variables are either allocated to a specific instance or the enter/exit critical methods are used
when the shared variables are updated, all VSMM modules are reentrant.

1.4 Mutual Exclusion
While each process must have its own stack, it may or may not have its own heap, regardless of the heap
allocation scheme. If your allocation scheme has more than one heap, you must tune the size of a number
of heaps. A heap to be shared by many processes must be reentrant, which requires adding locks that may
slow down each allocation and deallocation. It may be necessary to allow one process to allocate a block
of memory that can be freed by another process, which is useful for passing inter-process messages.
When memory is passed between processes, it is important to ensure that the memory owner at each point
is well-defined. Two processes must not act as if they own a block of memory simultaneously. Otherwise,
there may be two calls to free the same memory block. Also, two processes must never attempt to manage

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5

Memory Manager Limitations

the same heap simultaneously. For example, if one process attempts to allocate a block of memory and
fails to update the global free list pointer before it is preempted by a process with a higher priority, the
global free pointer can easily become corrupt.

All memory managers have sections of code deemed critical, such as the update of the global free list
pointer or the memory control block (MCB). Critical sections are the sections of a program that are
vulnerable to undesirable interruption or corruption. To provide exclusivity to these sections, a locking
mechanism is needed. Mutual exclusion is the implementation of a locking mechanism to ensure that
only one process has access to a resource or critical section of code at any given time. The VSMM
guarantees mutual exclusion through the use of “critical methods,” which are associated with routines
used prior to entry into and exit from critical sections. Before entry into a critical section, these routines
can perform the following tasks:

• Save the current interrupt state and disable interrupts

• Change the interrupt priority level so that only processes with a specific priority are allowed to
generate and service interrupts

• Use a binary semaphore to ensure mutual exclusivity.

Upon exit from a from a critical section, these critical methods can re-enable interrupts or restore
interrupts to their previous saved state or unlock a binary semaphore.

As a result of ensuring mutual exclusivity of critical sections, priority inversion is possible. However,
since all VSMM critical sections are extremely short and execute rapidly, this issue is minor but one that
deserves attention.

1.5 Memory Leaks
Many objects, structures, or buffers exist for a period of time that does not match the invocation of any
one function. This is particularly true in event-driven programs, such as many embedded real-time
systems. One event may cause an item to be created, and that item remains in use until some other event
leads to its elimination. At a certain point in the code, you may be uncertain whether a particular block is
still needed. If you free this block of memory but continue to access it, say, via a second pointer to the
same memory, the program may function well until that particular block of memory is reallocated to
another part of the program. Then, two different parts of the program proceed to write over the shared
space. If you decide not to free the memory because it may still be in use, then there may not be another
opportunity to free it if all pointers to the block are out of scope or reassigned to point elsewhere. In this
case, the program logic is not affected, but if the piece of code that leaks memory is regularly visited, the
leak tends towards infinity as the execution time of the program increases.

Ultimately, the amount of physical memory determines how long a program can execute. On many
desktop applications, a small leak may be acceptable. For example, a compiler that leaks 100 bytes for
every 1,000 lines compiled can still successfully compile a 100,000 line file on a modern PC, since all
allocated memory is recovered on exit of the program. However, in many embedded systems in which
minimal memory is available, no upper limit on the life of the program is acceptable. Any memory leak is
an error to be rectified by correcting the logic of the application program. By monitoring the size of each
heap and confirming that the number of blocks in use ceases to grow after extended use, the programmer
can be confident that leaks are eliminated. While it is wise to size the heaps larger than the worst case
seen in testing, too much padding leads to wasted memory.

The VSMM is verified to contain zero memory leaks. However, this does not guarantee that your system
or application will not leak. The VSMM provides a query routine that reports the current statistics of a
heap. This routine can be very useful in determining whether your system contains any memory leaks.
For example, if you perform a query on each heap before the system exits, if any heap statistics indicate
memory blocks still in use, there are memory leaks within the system.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6

VSMM Basics

2 VSMM Basics
This section presents an overview of the VSMM requirements, and architecture. The VSMM allows an
application to obtain fixed-size memory blocks from a partition (heap) consisting of a contiguous area of
memory. All memory blocks within a heap must be of the same size, and each heap may have an integral
number of blocks. Allocation of a block of memory from a heap occurs in real time and is deterministic.

The VSMM allows multiple heaps, and the number of heaps is limited only by the amount of physical
memory available, allowing various sizes of memory blocks to be accessed by an application. Heaps can
be created and eliminated at run-time, and a memory block from one heap may be partitioned into smaller
block sizes. The VSMM can create heaps dynamically at run-time, providing heaps of varying block
sizes. The VSMM also allows heaps to be created from other heaps, partitioning the new heap into
smaller block sizes than those of the heap from which it was created.

2.1 VSMM Target System Properties
This section presents the features of the VSMM that define the capabilities of the VSMM architecture and
implementations based on this architecture, as follows:

• Compactness. Because of the extremely limited memory available to most DSPs, VSMM code space is
limited to no more than 2 KB. The maximum VSMM code size is approximately 1.5 KB with a
minimum code size of approximately 700 bytes.

• Speed. In the highly complex tasks that today’s DSPs execute; speed is essential. Typically, the more
efficiently an application executes on a DSP, more users are supported by the system, making the cost
less prohibitive. Therefore, all VSMM routines are geared toward optimal efficiency. There is no
maximum cycle requirement for a VSMM routine, but each routine is fully optimized to execute within
the least amount of cycles, and all routines must have a bounded response time.

• Efficiency. To attain the best use of available memory, VSMM overhead must be minimized. An
overhead of 32 bytes per heap and 16 bytes per memory block allocation is acceptable. The VSMM
requires only 24 bytes per heap and 8 bytes per memory block.

• Flexible operation. The VSMM routines not required by an application or system can be omitted from
a build. Additionally, the design is not restricted to a specific DSP or operating system (OS) but instead
is configurable based on the targeted DSP and operating system, including the RTOS.

• RTOS-compatible. The VSMM can operate within an RTOS environment, so its routines are reentrant
and deterministic, and they observe mutual exclusion during critical pointer updates. All critical
sections of code, that is, code requiring mutual exclusion, are kept short and efficient. The VSMM can
also operate efficiently and reliably within non-RTOS environments.

• Byte Alignment.The VSMM adheres to the Motorola StarCore DSP byte-alignment rules. Refer to [1]
for information on byte alignment requirements for Motorola StarCore devices.

• Fragmentation. The VSMM design results in no fragmentation of available memory. Garbage
collection is not implemented.

2.2 Memory Block Header
Each memory block within a heap contains an 8-byte header, referred to as the memory block header
(MBH). The MBH identifies the heap from which the block is allocated. The handle or address of each
heap is stored within the MBH when a block is allocated from the heap. The heap handle is the address of
the associated heap memory control block. See Figure 4 for an illustration of an allocated memory block
and its associated MBH. When a memory block is freed via the VSMMMemFree routine, the memory
block is returned to the heap indicated by the data within its associated MBH.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7

VSMM Basics

Figure 4. Heap MCB Following its Creation

2.3 Memory Control Blocks
Each heap requires its own 24-byte MCB that contains all required heap information. The MCB is
defined by the following code:

typedef struct
{

void *pvVSMMMemAddr;
void *pvVSMMMemFreeList;
INT32U uliVSMMMemBlkSize;
INT32U uliVSMMMemNBlks;
INT32U uliVSMMMemNFree;
INT32U uliVSMMMemHeapAddr;

} t_VSMM_MEM;

Table 1. MCB Contents Defined

MCB Variable Description

VSMMMemAddr A pointer to the base address of the heap

VSMMMemFreeList A pointer to the next available free memory block within the heap.

VSMMMemBlkSize The size of each block contained within this heap.

VSMMMemNBlks The number of blocks contained within this heap.

VSMMMemNFree The number of memory blocks within this heap that are still available.

VSMMMemHeapAddr Pointer to a parent heap. If the heap associated with this MCB was created directly
from free memory, the value is NULL; otherwise, if the heap was created from a
memory block associated with another heap, the value is this heap’s handle or
address.

0x140A8 0x180B0 0x1C0B8 0x0

0x
10

02
8

0x100A0

0x100A0

16384

4

4

(void *)0

MemAddr

FreeList

BlockSize

NBlocks

NFree

HeapPtr

BlockHeader. Indicates the heap
to which the block belongs

0x100A0 0x140A8 0x180B0 0x1C0B8

Heap Handle
0x10028

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8

VSMM Basics

When a heap is created, an MCB is removed from the free list and updated to reflect the characteristics of
the new heap. Each of the heap’s memory blocks is initialized so that it points to the next available
memory block within the heap. The last memory block within a heap contains a NULL. The header of the
first memory block is also initialized to the address of its heap (see Figure 4). Notice that the MCB
heapAddr element is set to NULL, indicating that this heap was created in free memory space and not
from a memory block of another heap.

When a heap is eliminated, the MCB is reinitialized and its free list pointer is set to the global free list
pointer. The global free list pointer is updated to point to this newly freed space.

When a memory block is allocated from a heap, the MCB global free list pointer is updated to point to the
next available memory block after the allocated space. When a memory block is freed, it is added back to
the head of the free list (see Figure 5). The MCB free list is then updated to point to this newly freed
memory block.

Figure 5. Memory Block Allocation

Figure 6 shows a memory block that is partitioned into another heap. The MCB heap handle is that of the
heap from which the block was allocated, and the MBH of the first memory block within this new heap is
initialized to this new heap handle. Figure 7 depicts the allocation of several memory blocks from the
two created heaps. Notice how each memory block header contains the heap handle of the heap from
which it was allocated. When each block is freed, it is returned to its respective heap, identified by this
handle. When the second heap is destroyed, its memory block is returned to the heap identified by its
MCB heap handle.

0x100A0

0x140A8

16384

4

3

(void *)0

Heap Handle
0x10028

0x180B0 0x1C0B8 0x0

0x
10

02
8

0x140A8 0x180B0 0x1C0B8

0x
10

02
8

Allocated Memory Block
MBH

0x100A0

Pointer to Memory Block

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

9

VSMM Basics

Figure 6. A Heap Created From a Memory Block of Another Heap

Figure 7. Multiple Memory Block Allocations from Two Unique Heaps

0x100A0

0x140A8

16384

4

3

(void *)0

Heap Handle
0x10028

0x180B0 0x1C0B8 0x0

0x
10

02
8

0x140A8 0x180B0 0x1C0B8

0x100A0

0x100A0

2048

8

8

0x10028

Heap Handle
0x10040

0x
10

02
8

0x100A0

0x100A0

0x180B0

2048

8

6

(void *)0

Heap Handle
0x10028

0x1C0B8 0x0

0x
10

02
8

0x180B0 0x1C0B8

0x100A0

0x110B0

2048

8

6

0x10028

Heap Handle
0x10040

0x
10

04
0

0x110B0

0x
10

02
8

0x140A8

0x
10

04
0

0x100A0

0x
10

04
0

0x108A8

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10

VSMM Basics

2.4 VSMM Global Objects
The VSMM uses two global objects to assist in managing each heap:

t_VSMM_MEM *pstVSMMMemFreeList;

t_VSMM_MEM astVSMMMemTbl[VSMM_MAX_MEM_PART];

The VSMMMemInit routine initializes each MCB within the VSMMMemTbl and sets the global
VSMMMemFreeList pointer to the first memory control block within this array. Each MCB
VSMMMemFreeList pointer is updated to the next free MCB within the VSMMMemTbl or to NULL if it
is the last MCB in the table. When a heap is destroyed, its associated MCB is inserted at the head of this
free list and the global VSMMMemFreeList pointer is updated. Figure 8 illustrates the global FreeList
pointer and MCB array following VSMM initialization with a maximum of three MCBs specified.
Mutual exclusion is ensured when these global variables are updated.

In addition to these two global objects, VSMM uses a global flag to enable or disable VSMM routine
parameter verification. This flag should be statically initialized and not updated at run-time because it has
no associated mutex (binary semaphore):

unsigned char gucVSMM_ARG_CHK_EN

If the global gucVSMM_ARG_CHK_EN contains a value greater than zero, each VSMM routine
requiring passed parameters validates these parameters. The final global used by the VSMM is declared
only if the critical method 2 option is specified within the header file: VSMM_cfg.h.1

unsigned long int guliDSPSR

The guliDSPSR global variable is used only by critical method 2 to store the DSP’s core status register,
which contains the current state of interrupts. When a critical area is exited, the value in the guliDSPSR is
evaluated, and the interrupts are restored to their previous state.

Figure 8. Global FreeList Pointer and MemTbl

Table 2. Global Objects for Managing Heaps

Variable Description

VSMMMemFreeList A pointer to the next available MCB,

VSMMMemTbl Array of free MCBs.

1 For details on the possible critical methods, refer to Section 3.6, VSMM Critical Methods, on page 14 or the VSMM
User’s Guide [4].

MemAddr

MemFreeList

MemBlkSize

MemNBlks

MemNFree

MemHeapAddr

MemAddr

MemFreeList

MemBlkSize

MemNBlks

MemNFree

MemHeapAddr

MemAddr

MemFreeList

MemBlkSize

MemNBlks

MemNFree

MemHeapAddr

VSMM_MAX_MEM_PART = 3

Global FreeList
Pointer

MemTbl[0] MemTbl[1] MemTbl[2]

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

11

VSMM Distribution

2.5 Data Control Block
The data control block (DCB) is a 28-byte VSMM object used by the VSMM query routine to store
specific information about a heap. The VSMM DCB is defined as follows:

typedef struct {
void *pvVSMMAddr;
void *pvVSMMFreeList;
INT32U uliVSMMBlkSize;
INT32U uliVSMMNBlks;
INT32U uliVSMMNFree;
INT32U uliVSMMNUsed;
INT32U uliVSMMHeapAddr;

} t_VSMM_MEM_DATA;

3 VSMM Distribution
The VSMM distribution code is an official release that is available to all Motorola customers via their
marketing representative and the Motorola website listed on the back of this document. It contains all the
necessary components to build an application using the VSMM routines within an RTOS or non-RTOS
environment running the StarCore MSC81xx family of DSPs. Table 4 lists the items supplied with
VSMM distribution. The remainder of this section discusses the components provided in this distribution.

Table 3. VSMM Data Control Block Definition

Variable Description

VSMMAddr A pointer to the base address of a heap.

VSMMFreeList A pointer to the next available free memory block within a heap.

VSMMBlkSize The size of each block contained within a heap.

VSMMNBlks The number of blocks contained within a heap.

VSMMNFree The number of memory blocks that are still available within a heap.

VSMMNUsed The number of memory blocks in use.

VSMMHeapAddr A pointer to a parent heap. If the heap associated with this MCB was created directly
from free memory, the value is NULL. Otherwise, if the heap was created from a
memory block associated with another heap, the value is this heap’s handle or
address.

Table 4. VSMM Released Items

Item Description Item Identification

VSMM Reference Manual VSMM_ReferenceManual.doc

VSMM User’s Guide VSMM_UsersGuide.doc

VSMM Interface Control Documents <routine>_ICD.doc
where <routine> is one of the following:
• Init
• Create
• AllocCreate
• Destroy
• Alloc
• Free
• Query

VSMM Executive Summary VSMMPresentation.ppt

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

12

VSMM Distribution

3.1 VSMM Documentation
The VSMM Reference Manual[5] describes the common symptoms of general memory managers and
presents a high-level overview of the VSMM architecture and a reference guide to the VSMM features. A
VSMM User’s Guide[4] provides additional information for tailoring and incorporating VSMM in your
applications. An Interface Control Document (ICD) is also provided for each VSMM routine. These
ICDs provide the following information on each routine:

• Function prototype. Function name and parameter list.

• Functional description. Brief summary of the primary function of each module.

• Interface. Lists all programmer-defined data types used by this module.

• Argument description. Lists arguments and briefly describes the data types defined within the interface
section.

• Design and implementation notes. Summarizes algorithms, handling methods, and implementation
issues.

• Performance. Describes code size, data size, and cycles required.

• Precision. Describes any precision limitations

3.2 VSMM Object Library
The primary component of the VSMM distribution is the VSMM object library,
VSMMLibrary1_3.elb. This library contains the entire suite of VSMM routines and was built using
Metrowerks® Codewarrior® v2.02 targeted for the Motorola StarCore DSPs. The library was built using
Level 3 optimization, which implements several general, target-independent optimizations. The output
from the target-independent optimizations is linear assembly code. The Codewarrior librarian grouped
these object files into a linkable library.

3.3 VSMM Configuration ‘C’ Source File
The VSMM ‘C’ source file, VSMM_cfg.c, is provided so that programmers can tailor VSMM to their
applications. Configurable parameters supported by the use of this file include:

• Enabling or disabling parameter verification within each VSMM routine. Setting the
gucVSMM_ARG_CHK_EN global constant to 1 enables parameter verification, which ensures that all

VSMM Object Library VSMMLibrary1_3.elb

VSMM Configuration Source File VSMM_cfg.c

VSMM Configuration Header File VSMM_cfg.h

VSMM DSP Setup File VSMM_dsp.h

VSMM General Header File VSMM.h

VSMM Master Include File VSMM_Includes.h

VSMM Enter Critical Method 2 Source VSMMEnterCritical.asm

VSMM Exit Critical Method 2 Source VSMMExitCritical.asm

VSMM Non-RTOS Example Archive VSMMExamplesCR1_3.zip

VSMM OSEck RTOS Example Archive VSMMExampleRTOS2.zip

Table 4. VSMM Released Items (Continued)

Item Description Item Identification

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

13

VSMM Distribution

parameters passed to a VSMM routine are within allowable range. Setting this global constant to 0
disables this feature, thus reducing the cycle overhead and code footprint of each VSMM routine.

• Critical entry and exit routines. Although the release provides several critical methods, you can add or
modify these on a per application basis. For details on the critical methods provided with this release,
see Section 3.6, VSMM Critical Methods, on page 14.

In addition to these configurable parameters, the VSMM_cfg.c source file also contains three global
VSMM declarations. Do not edit these declarations because VSMM execution may become
unpredictable. These global declarations must reside here to allow the additional configuration
capabilities described within the next section. These global declarations are:

• *gpstVSMMMemFreeList. A global pointer to a free list of memory partitions.

• gastVSMMMemTbl[VSMM_MAX_MEM_PART]. This is a global array of memory control blocks used
by VSMM. See the next section for details on the VSMM_MAX_MEM_PART constant.

• guliDSPSR. Storage for DSP status register contents. This global is declared only if Critical Method 2
is selected and used to store the contents of the DSP status register prior to entering a critical section.
The value stored within this global variable is tested when a critical section is exited to determine the
state to which the interrupts are to be set. If the interrupts are already disabled before a critical section
is entered, the interrupts remain disabled during the exit. Otherwise, interrupts are re-enabled.

3.4 VSMM Configuration Header File
The VSMM_cfg.h file is a standard ‘C’ header file to provide additional VSMM configuration
capabilities. Configurable items within this file include the following three constants:

• OSE_RTOS. Defining this constant to a value of 1 indicates to that VSMM that it is to be used in an
OSEck RTOS environment. This flag causes the alternate critical methods associated with methods 1
or 2 to be built in. These alternate methods use OSEck RTOS macros to enter and exit critical sections.

• VSMM_CRITICAL_METHOD. Specifies the desired critical method to be utilized for entering and
exiting critical sections.VSMM provides several default methods and allows user-defined methods.

• VSMM_MAX_MEM_PART. Specifies the maximum number of partitions allowed within your
application. The VSMM requires at least two partitions, also called heaps, and allows an indefinite
number of heaps, based only on the amount of physical memory available. Each heap requires 24 bytes
of overhead. See Section 8.1, Configuration Header File, VSMM_cfg.h, on page 28 for a listing of
VSMM_cfg.h.

3.5 VSMM Additional ‘C’ Header Files
Three additional ‘C’ header files provided with the VSMM release are as follows:

• VSMM_dsp.h. Defines DSP-specific constants such as data types and byte alignment macro.

• VSMM.h. Defines VSMM error codes, function prototyping, and VSMM data structure types.

• VSMM_Includes.h. A master include file for VSMM that contains all of the “includes” required by
the VSMM modules. The order of the includes within this file is important and should never be
modified.

Use caution when editing any of these header files because they are critical to VSMM operation.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

14

VSMM Distribution

3.6 VSMM Critical Methods
Many VSMM routines have critical sections, in which the program is vulnerable to undesirable
interruption or corruption and therefore requires interrupts to be disabled during execution of these
sections. The VSMM release provides several default critical methods associated with disabling and
re-enabling interrupts upon entry and exit of critical sections or the use of a binary semaphore, also
referred to as a spin-lock. Most of the VSMM critical methods are defined in the VSMM_cfg.c source
file.2 The exception is the enter and exit critical methods associated with critical method 2. The
VSMMEnterCritical.asm and VSMMExitCritical.asm assembly files provide the entry and
exit routines for critical method 2. These two files must be included in your application project file if you
have set the #define constant VSMM_CRITICAL_METHOD to a value of 2 within the VSMM_cfg.h
header file and the OSE_RTOS #define constant is defined as 0. A developer may also create his or her
own critical methods. The critical methods are as follows:

• Critical Method 1. Two available options are determined by the OSE_RTOS constant. Upon exit of a
critical section, both options always re-enable interrupts even if they are disabled before entry into the
critical section. If the OSE_RTOS constant is set to 1 within the VSMM_cfg.h header file, the OSEck
RTOS LOCK macro disables interrupts, and the OSEck RTOS RESTORE macro re-enables interrupts.
If OSE_RTOS is set to 0, the StarCore DSP assembly di instruction disables interrupts and the ei
instruction re-enables interrupts.

• Critical Method 2. Two available options are determined by the OSE_RTOS constant. Both options
save the current interrupt state before interrupts are disabled upon entry into critical sections and
restore the interrupts to their saved state when critical sections are exited. If the OSE_RTOS constant is
set to 1, the OSEck RTOS LOCK_SAVE macro stores the interrupt state and disables interrupts, and
the OSEck RTOS LOCK_RESTORE macro restores the saved interrupt state. If OSE_RTOS is set to
0, the critical method assembly routine in the VSMMEnterCritical.asm file: saves the interrupt
state into a global variable named: guliDSPSR and disables the interrupts. The assembly routine in the
VSMMExitCritical.asm file restores the interrupt state by testing the saved status register
interrupt bit within the guliDSPSR global variable, and, if the bit is cleared, re-enables the interrupts.
Otherwise, the interrupts remain disabled. Note that critical method 2 consumes the most cycles of all
the default methods provided.

• Critical Method 3. This method disables interrupts, adjusts the interrupt priority mask (IPM), and
re-enables interrupts when a critical section is entered. When a critical section is exited, interrupts are
disabled, the IPM is restored, and interrupts are re-enabled. This method is useful when you want to
allow higher-priority processes, such as an OS kernel, the ability to continue to generate and service
interrupts. It is extremely important that these higher-priority processes do not access any VSMM
routines since doing so could potentially interrupt one of these routines while it is within a critical
section. If you are using VSMM within an unmasked priority process, it is highly recommended that
you either use an alternate critical method or place an access function around the VSMM function call
to ensure mutual exclusivity.

• Critical Method 4. This method can be used only with the OSE Systems OSEck RTOS because it uses
the OSE spin-lock mechanism. This mechanism is a binary semaphore that can be shared across cores
on a DSP such as the MSC8102. To use this critical method, the VSMM_CRITICAL_METHOD
#define constant must be set to 4, and the OSE_RTOS #define constant must be set to 1. You must also
initialize a spin-lock for VSMM critical sections. Using OSEck, add the following code snippet to your
start handler 2 routine. If you are not using a start handler, simply add this code snippet to a module so
that it executes only once, for the life of the program and at program start-up.

2 See Section 8.2, Configuration ‘C’ Source File, VSMM_cfg.c, on page 29 for a listing of this file.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

15

Building Your Application with VSMM

#if ((VSMM_CRITICAL_METHOD == 4) && (OSE_RTOS > 0))
// allocate a spinlock for critical method & release same
bsp_spinlock_release((gpusiCMSpinLock = bsp_spinlock_alloc()));

#endif

Ensure that the OSEck bspspinlock.h header file is included in your module containing this code
snippet.

4 Building Your Application with VSMM
This section describes the steps necessary to include the VSMM functionality within your application,
and it concludes with examples. For additional details on the VSMM, refer to the VSMM Reference
Manual [5].

4.1 Initial Configuration
The first step to perform when using the VSMM is to gain an understanding of your application and its
memory requirements so that your application uses the available memory most efficiently. Section 3.3,
VSMM Configuration ‘C’ Source File, on page 12 describes the configurable VSMM parameters and the
files requiring modifications based on your criteria. Edit these files carefully and save them when done.
The minimum recommended modifications are to set the maximum number of partitions or heaps that
your system requires, keeping in mind that the VSMM requires at least two heaps and each heap requires
a minimum of two memory blocks.

Perform the following steps:

1. Set the maximum number of heaps by editing the VSMM_MAX_MEM_PART #define constant in the
VSMM_cfg.h header file.

Recall that the memory control block associated with each heap requires 24-bytes of memory.

2. In VSMM_cfg.h, specify the critical method for entering and exiting critical sections. Edit the
VSMM_CRTICAL_METHOD #define constant appropriately.

Of course, you can add your own critical methods and/or enable the OSE_RTOS #define constant to
use the OSEck RTOS critical method macros or spin-lock. To use the OSEck RTOS critical method
macros/spin-locks, edit the OSE_RTOS #define constant to a value of 1 or 0 if you do not wish to use
these macros. Refer to Section 7, Building VSMM Examples 1–3, on page 26 for a source listing of
VSMM_cfg.h.

3. Edit the VSMM_cfg.c configuration source file if you want to change the current VSMM argument
verification mode.

To enable VSMM argument verification, edit the gucVSMM_ARG_CHK_EN global variable to a
value of 1; to disable argument verification clear this variable to 0. Do not modify this global variable
at run time since a mutex is not assigned to it. You may also add your own critical methods within this
module or modify those that are here. Refer to Section 7, Building VSMM Examples 1–3, on page 26
for a source listing of VSMM_cfg.c.

4.2 Project Set-up
Your application must include the VSMM master include header file, VSMM_Includes.h. This
master header file contains all VSMM header files required to build your application with the VSMM
library. The order of the #includes within this file is important, so do not edit this file. Like all header
files, this file contains a mechanism to prevent multiple inclusions.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

16

Building Your Application with VSMM

Your application project must also include the VSMM_cfg.c source file. You are required to add the two
assembly files VSMMEnterCritical.asm and VSMMExitCritical.asm if you have elected to
use the default non-OSEck RTOS critical method 2 routines.

You must add a call to the VSMM routine VSMMMemInit() to your application at a point before any
VSMM routines are called. VSMMMemInit() must execute once within your system before your
application can use any of the VSMM features. After this initialization routine executes, VSMM is
available for use by your application.

4.3 Creating Heaps
Once VSMM is enabled, you can create any necessary memory partitions (heaps), from which all
allocations are performed. Before creating the heaps, you must decide whether to allocate specific
statically declared areas of memory from which the heaps are created (see Figure 9) or to use the system
heap space, as illustrated in Figure 10. If you chose to create heaps from several statically declared
memory areas, you must accurately define the size of these areas. If you opt to use the system heap area,
the system stack and system heap often share the same memory area, so the stack address runs up while
the heap runs down. It is essential to ensure that these two pointers never overlap.

Figure 9. Statically Declared Heap Areas

0 x 1 0 0 0 0 x 2 0 1 0 0 0 0 x 2 0 0 0 1 0 0 0

H e a p 0 H e a p 1 H e a p 2

0 x 1 0 0 0 0 x 2 0 1 0 0 0 0 x 2 0 0 0 1 0 0 0

H e a p 0 H e a p 1 H e a p 2

Heap0 Heap1 Heap2

0x1000 0x201000 0x20001000

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

17

Building Your Application with VSMM

Figure 10. System Stack and Heap Space

After identifying the memory block sizes an application requires, the worst-case allocation of these
blocks, and the location of the heaps, you are finally ready to allocate the heaps. It is not necessary to
allocate the heaps statically all at once. VSMM allows dynamic creation of heaps so that the programmer
can eliminate a heap with a memory block of one size and create another heap with a different memory
block size. In addition, VSMM allows programmers to partition a memory block of a heap, therefore
creating a second heap with memory blocks of a smaller size than the heap from which the block was
allocated. A heap cannot be eliminated until all of its associated memory blocks are freed.

To determine the memory usage the VSMM requires for your heaps, you must consider the overhead
associated with the VSMM. The overhead for each heap is 24 bytes for the MCB. Therefore, if you
defined the VSMM_MAX_MEM_PART #define constant to a value of five times the total memory for
the MCBs, 5 × 24-bytes equals 120 bytes.

By default, the memory area in which the MCB allocations occur extends from either your designated
system’s data space, if statically declared, or from the system stack space if locally declared. It does not
extend from the designated system heap space because the heap space is consumed only through dynamic
memory allocations. The overhead associated with each memory block is at least 8 bytes
(VSMM_MEMBLK_HDR_SIZE). However, if your block size is not 8-byte aligned, additional overhead
is added to ensure this alignment. BALIGN is a VSMM macro that returns an equivalent 8-byte aligned
block size based on the block size specified:

actual block size (ABS) = BALIGN(desired block size (in bytes))

Therefore to determine the total heap size, use the following algorithm:

 0x50000

0x70000

Stack Start

H eap Start

Free
H eap Used

Stack Used

0x50000

0x70000

Stac Start

H eap Start

0x500000
Stack Start

Heap Start
0x700000

Heap Used

Free

Stack Used

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

18

Building Your Application with VSMM

total heap size (THS) = number of blocks * (ABS + VSMM_MEMBLK_HDR_SIZE)

For example, suppose we are creating heaps for an application that requires at most:

• four 16 KB blocks or twenty 774 byte blocks

• or three 16 KB blocks and fifteen 774 byte blocks

• or two 16 KB blocks and ten 774 byte blocks

We create an initial heap of four 16 KB blocks from a specified memory area and then create a second
heap from a memory block of the first heap. We want to fit 20 × 774 blocks within this second heap, but
we recall that each memory block has an additional overhead of 8 bytes
(VSMM_MEMBLK_HDR_SIZE) plus any byte-alignment performed. We verify that we can fit 20 ×
774 blocks within a single 16 KB block, as follows:

ABS = BALIGN(774) = 776-bytes
THS = 20 * (776+ VSMM_MEMBLK_HDR_SIZE) = 15,680 or approximately 15.31 KB

Having verified that heap 2 can indeed be created from the heap 1 memory block, we create our heap
memory area from which heap 1 is to be created. Notice that in this example we are not using the system
heap area but rather a specified area of memory within the data space.

// Define Heap 1’s Memory Block Size
#define HEAP1_BLOCK_SIZE (BALIGN(16384)) // ABS = 16384

// Define Heap 2’s Memory Block Size
#define HEAP2_BLOCK_SIZE (BALIGN(774)) // ABS = 776

// Heap1[# blocks] [Actual Block Size + 8-byte Overhead]
unsigned char ucHeap1[4] [(HEAP1_BLOCK_SIZE + VSMM_MEMBLK_HDR_SIZE)];

With the memory area defined we can now create our heaps, as follows:

// VSMMMemCreate(HeapMCB, # blocks, actual block size, errorCode)
pstHeap1Ptr = VSMMMemCreate(ucHeap1, 4, HEAP1_BLOCK_SIZE, &ucErrCode);

// VSMMMemAllocCreate(HeapMCB, # blocks, actual block size, errorCode)
pstHeap2Ptr = VSMMMemAllocCreate(pstHeap1Ptr, 20, HEAP2_BLOCK_SIZE, &ucErrCode);

For an actual application, we would typically not create heap 2 until we need it, and we would destroy it
when it is no longer needed. However, for purposes of illustration, we create it here at the same time we
create heap 1. Notice that 16384 is already 8-byte aligned, so the ABS for this block size is 16384.

4.4 Allocating Memory
After the heaps are created, we begin allocating memory to them. We call the VSMMMemAlloc routine,
passing it a pointer to the heap MCB from which the block is to be allocated and a storage area for the
returned error code. It is good practice to validate that the allocation succeeded.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

19

Building Your Application with VSMM

// Allocate a Memory Block from Heap2
apucBlockPtrArray2[0] = (unsigned char *) VSMMMemAlloc(

pstHeap2Ptr,
&ucErrCode);

// Verify allocation was a success
if(ucErrCode != VSMM_NO_ERR)
{

printf("ERROR %d -- Unable to Allocate Block from Heap2\n",
ucErrCode);

asm(" debug");
}

Upon successful completion of this call, apucBlockPtrArray[0] points to the start of a memory block of
size 784 bytes, of which 776 bytes is available for use by the application with the remaining 8 bytes used
by VSMM to manage this block. Figure 5 on page 8 illustrates a memory block allocation.

4.5 Freeing Memory
Freeing a memory block is handled much like the standard C free call. We call the VSMMMemFree
routine, passing it the pointer to the memory block to be freed.

if((ucErrCode = VSMMMemFree(apucBlockPtrArray2[0])) != VSMM_NO_ERR)
{

printf("ERROR %d -- Unable to Free Memory Block \n",ucErrCode);
asm(" debug");

}

As with memory allocation, it is good practice to verify that the operation succeeded.

4.6 Eliminating Heaps
Heaps can be eliminated at run-time as long as all their memory blocks are freed. To eliminate a heap, we
call the VSMMMemDestroy routine, passing it a pointer to the MCB of the heap to be removed.
Remember to verify that the operation succeeded.

if((ucErrCode = VSMMMemDestroy(pstHeap2Ptr)) != VSMM_NO_ERR)
{

printf("ERROR %d -- Unable to Destroy Heap 2\n",ucErrCode);
asm(" debug");

}

4.7 Querying Heaps
To obtain information on a heap, we call the VSMMMemQuery routine and pass it a pointer to the MCB
of a specified heap and a pointer to a data control block. VSMMMemQuery returns a success status so
there is no need to perform a separate verification.

ucErrCode = VSMMMemQuery(pstHeap2Ptr, &stPartQ);

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

20

Building Your Application with VSMM

4.8 Examples
This section introduces four examples that illustrate the configuration and use of VSMM. Three of these
examples run within a non-RTOS environment on the Motorola MSC8101 Application Development
System (MSC8101ADS), and the fourth uses the OSEck RTOS. See Section 7 for instructions on how to
build, download, and execute these examples.

The following software and tools are required in order to build and run the three non-RTOS examples:

• PC running Windows 9x, NT, or Win2000 or Solaris Platform

• Metrowerks Codewarrior v2.02 targeted for Motorola StarCore DSPs

• VSMM Examples1_3.zip, an archive containing the necessary files to build each of the three
non-RTOS examples

• Motorola MSC8101ADS board and appropriate command converter and inter-connecting cable

The following software and tools are required in order to build and run the VSMM RTOS example:

• PC running Windows 9x, NT, or Win2000 or Solaris Platform

• Metrowerks Codewarrior v2.02 Targeted for Motorola StarCore DSPs

• VSMM ExampleRTOS2.zip, an archive containing the necessary files to build the RTOS example

• OSEck RTOS v3.1.0.6 or later and OSE Heap Manager v2.0.0.2 or later if you desire to compare the
OSE heap with that of the VSMM.

• Motorola MSC8101ADS board and appropriate command converter and inter-connecting cable.

Simply download and execute the supplied RTOS example without the need for the OSEck RTOS and
heap manager libraries. The VSMM examples follow:

• Example 1 demonstrates the creation of heaps from specified memory areas as well as from an
allocated memory block of another heap. It also demonstrates how to allocate memory blocks, write
data to these allocated blocks, free memory blocks, destroy heaps, and query heaps.

• Example 2 demonstrates many of the same features as Example 1 but uses the system heap space
instead of creating heaps from a specified statically declared memory area.

• Example 3 illustrates how to incorporate the two critical method 2 assembly files into an application
(refer to Section 3.6, VSMM Critical Methods, on page 14). The only difference between this example
and Example 1 is that the VSMM_CRITICAL_METHOD #define constant in VSMM_cfg.h is set to
2 and the VSMMEnterCritical.asm and VSMMExitCritical.asm critical method assembly
files are added to the example 3 project sources.

• Example RTOS shows how the VSMM operates within an RTOS environment and uses the spin-lock
critical methods. The RTOS is OSEck and the OSE heap manager targeted for the Motorola MSC8101
DSP. Because of OSE Systems licensing requirements, the OSEck and heap libraries are not supplied
as part of this example.To modify and rebuild this example, you must have the OSEck and heap
manager libraries installed on your system. Also, the Codewarrior project access paths and include file
paths that must be updated to reflect your specific OSE installation paths. In addition to the OSE
libraries, you must also use the OSE make utility to generate the appcon.c and appcon_asm.asm
files from the supplied appcon.con configuration file.

If you have access to the OSE libraries required by this example, you can switch the ExampleRTOS2
between the OSE heap manager and the VSMM, as follows:

• Define the preprocessor VSMM macro within the Codewarrior project to use VSMM.

• Remove the preprocessor VSMM macro definition to use the OSE heap manager.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

21

VSMM Benchmarking

The ExampleRTOS2 binary, ExampleRTOS2.eld, was built with the VSMM preprocessor macro
defined, so only VSMM is used for all memory allocations within the supplied executable. Download
ExampleRTOS2 without requiring a build, as follows:

1. Select Preferences from the Codewarrior IDE Edit menu.

2. From within the resulting window select Build Setting from under General.

3. Set the Build before running statement to Never.

4. Select OK to accept your changes and close this window.

5. Download the example by clicking on the Run Debug icon. Refer to Figure 11 on page 26 to learn the
location of this icon.

5 VSMM Benchmarking
This section describes the VSMM performance and memory requirements. Since the VSMM can be
tailored for a specific application, we used Metrowerks Codewarrior v2.02 Level 3 optimization to build a
simple application that exercises all VSMM functionality. Table 5 details the functionality exercised and
the associated cycle counts. The cycle counts were recorded via the MSC8101 EOnCE with the
application running on a Motorola MSC8101ADS board. The cycles reported for the VSMM in Table 5
are the results when the following are true:

• Argument verification is used

• gucVSMM_ARG_CHK_EN = 1

• Critical method 1, VSMM_CRITICAL_METHOD = 1

• The 20 cycles associated with the EOnCE overhead are included. These cycles are slightly higher if
critical method 2 or 3 is used, with critical method 2 resulting in the highest number of cycles. See
Table 9 for the total task cycle numbers with critical method 2 selected.

Table 6 shows the VSMM code space requirements to achieve the tested functionalities. The recorded
numbers are from the resulting MAP file with Level 3optimization applied. The VSMM code space size
shown in Table 6 is with argument verification enabled and critical method 1 selected. The worst case
code space requirement occurs when critical method 2 is used, which increases the code space size by 32
bytes to a total of 1,460 bytes.

Table 5. Memory Manager Task Cycles

Task VSMM Function VSMM Cycles

Memory initialization VSMMMemInit 30

Static heap creation VSMMMemCreate 147

Dynamic heap creation VSMMMemAllocCreate 220

Dynamic heap destruction VSMMMemDestroy 159

Memory allocation VSMMMemAlloc 71

Memory free VSMMMemFree 68

Memory query VSMMMemQuery 68

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

22

VSMM Benchmarking

Another important aspect of the VSMM is the overall memory efficiency. For this portion of our
benchmarking, we statically created two heaps of sufficient size to allocate thirty-two 230-byte buffers
and four 16 KB buffers. The number of memory blocks and their associated sizes were chosen because
they represent actual numbers used within the Motorola 3G Symbol Rate Real-Time Demo System.
Table 7 details the VSMM heap requirements to support these buffer allocations.

The overhead associated with the memory sizes noted in Table 7 is listed in Table 8. VSMM adds 8 bytes
to each allocated memory block (buffer), so if you allocate a memory block of 1,024 bytes within the
VSMM, the heap requires a memory block of at least 1,032 bytes.

The VSMM always performs an 8-byte alignment of the memory blocks, so when you create a heap with
block sizes of 230 bytes, the actual block sizes created are 232 bytes. Therefore, if you allocate a buffer of
230 bytes, the VSMM returns a buffer of 240 bytes (including 232 bytes plus the 8-byte overhead).
However, only 232 bytes of this returned buffer are available to your application. The VSMM uses the
remaining 8 bytes to define the memory block heap.

Table 9 presents the total cycles for each VSMM task when critical method 2 is used. As noted earlier,
critical method 2 is the most cycle intensive of the five predefined critical methods. Table 10 presents the
overall statistics for each VSMM module. The C module cycle numbers were collected with argument
verification enabled, critical method 1 defined, and Level 3 optimization applied. The VSMM requires a
minimum of two heaps, and each heap requires a minimum of two memory blocks. Therefore, the
minimum memory overhead is 24 bytes per heap plus 8 bytes per memory block (2 × 24) + (4 × 8) = 80
bytes.

Table 6. Code Space Requirements

Manager Code Space Requirements (Bytes)

VSMM 1,428

OSE-HM 2,352

Table 7. Heap Size Requirements

Heap VSMM Heap Size (Bytes)

230-byte partitions 7,704

16 KB partitions 65,592

Total Memory 73,296

Table 8. Associated Overhead

Type VSMM (Bytes) OSE-HM (Bytes)

Per heap 24 2,048

Per memory block 8 16

Table 9. VSMM Task Cycles With Critical Method 2 Enabled

Task VSMM Cycles

Memory initialization 30

Static heap creation 167

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

23

VSSM Functions

6 VSSM Functions
This section describes the VSMM functions.

6.1 VSMMMemInit()
Syntax void VSMMMemInit(void)

Description Initializes the VSMM supporting data structures and global variables.

Parameters None

Return Value None

Error Checks None

Example Usage VSMMMemInit();

6.2 VSMMMemCreate()
Syntax t_VSMM_MEM *VSMMMemCreate (void *pvAddr,

INT32U uliNBlks,
INT32U uliBlkSize,
INT8U *pucErr)

Description Creates a fixed-size memory partition (heap).

Parameters *pvAddr. A pointer to the starting address of the heap.

uliNBlks. The number of memory blocks to create within this heap.

Dynamic heap creation 250

Dynamic heap destruction 189

Memory allocation 81

Memory free 78

Memory query 78

Table 10. VSMM Module Statistics

Module Cycles Code Size (Bytes) Data Size (Bytes)

VSMMMemInit.c 30 128 0

VSMMMemCreate.c 147 308 0

VSMMMemAllocCreate.c 220 416 0

VSMMMemDestroy.c 159 240 0

VSMMMemAlloc.c 71 160 0

VSMMMemFree.c 68 128 0

VSMMMemQuery.c 68 144 0

VSMMEnterCritical.asm 31 18 0

VSMMExitCritical.asm 31 14 0

Table 9. VSMM Task Cycles With Critical Method 2 Enabled (Continued)

Task VSMM Cycles

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

24

VSSM Functions

uliBlkSize. The size, in bytes, of each memory block within this heap.

*pucErr. A pointer to an error message that is set by this function.

Return Value Address of a memory control block if the heap is created; otherwise (t_VSMM_MEM *)0

Error Checks VSMM_NO_ERR. If the heap is successfully created.

VSMM_MEM_INVALID_PART. No free partitions (heaps) available.

VSMM_MEM_INVALID_BLKS. The user has specified an invalid number of blocks (must be >= 2).

VSMM_MEM_INVALID_SIZE. The user has specified an invalid block size (must be greater than the
size of a pointer).

Example Usage pstHeap1Ptr = VSMMMemCreate(aucHeap1, 4, 16384, &ucErrCode);

6.3 VSMMMemAllocCreate()
Syntax t_VSMM_MEM *VSMMMemAllocCreate (

t_VSMM_MEM *pstPMem,
INT32U uliNBlks,
INT32U uliBlkSize,
INT8U *pucErr)

Description Allocates a memory block from the specified partition and, if successful, creates a fixed-sized memory
partition from the allocated memory block.

Parameters *pstPMem. A pointer to the memory control block from which the memory block allocation occurs.

uliNBlks. The number of memory blocks to create within this heap.

uliBlkSize. The size, in bytes, of each memory block within this heap.

*pucErr. A pointer to an error message that is set by this function.

Return Value Address of a memory control block if the heap is created; otherwise (t_VSMM_MEM *)0

Error Checks VSMM_NO_ERR if the heap is successfully created.

VSMM_MEM_INVALID_PART. No free partitions (heaps) available.

VSMM_MEM_INVALID_BLKS. The user specified an invalid number of blocks (must be >= 2).

VSMM_MEM_INVALID_SIZE. The user specified an invalid block size (must be greater than the size
of a pointer).

Example Usage pstHeap2Ptr = VSMMMemAllocCreate(pstHeap1Ptr, 4, 16384, &ucErrCode);

6.4 VSMMMemAlloc()
Syntax void *VSMMMemAlloc (t_VSMM_MEM *pstPMem,

INT8U *ucErr)

Description Allocates a memory block from the specified heap.

Parameters *pstPMem. A pointer to the MCB of the specified heap.

*pucErr. A pointer to an error message that is set by this function.

Return Value Address of a memory block if the allocation is successful; otherwise (void *)0

Error Checks VSMM_NO_ERR. If the memory block allocation is successful.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

25

VSSM Functions

VSMM_MEM_NO_FREE_BLKS. If there are no more free memory blocks, within this heap, to allocate
to the caller.

Example Usage apucBlockPtrArray2[0] = \
(unsigned char *) VSMMMemAlloc(pstHeap2Ptr, &ucErrCode);

6.5 VSMMMemFree()
Syntax INT8U VSMMMemFree (void *pvPBlk)

Description Determines heap of the specified memory block and returns the memory block to the identified heap.

Parameters *pvPBlk. A pointer to the memory block being freed.

Return Value VSMM_NO_ERR. If the memory block is successfully freed.

VSMM_MEM_FULL. If you are returning a memory block to an already FULL heap.

Error Checks VSMM_NO_ERR. If the memory block was successfully freed.

VSMM_MEM_FULL. If you are returning a memory block to an already FULL heap.

Example Usage ucErrCode = VSMMMemFree(apucBlockPtrArray2[0]);

6.6 VSMMMemDestroy()
Syntax INT8U VSMMMemDestroy (t_VSMM_MEM *pstPMem)

Description Removes a heap from the system and if the eliminated heap was created from a memory block belonging
to another heap, this memory block is freed as well.

Parameters *pstPMem. A pointer to the memory control block of the heap being destroyed.

Return Value VSMM_NO_ERR. If the memory block is successfully freed.

VSMM_MEM_INVALID_PART. Partition does not exist.

Error Checks VSMM_NO_ERR. If the memory block is successfully freed.

VSMM_MEM_INVALID_PART. Partition does not exist.

Example Usage ucErrCode = VSMMMemDestroy(pstHeap2Ptr);

6.7 VSMMMemQuery()
Syntax INT8U VSMMMemQuery (t_VSMM_MEM *pstPMem,

t_VSMM_MEM_DATA *pstPData)

Description Reports the state of the specified heap by dumping the contents of its associated memory control block.
Use this function to determine how many free memory blocks are still available, how many memory
blocks are in use, and whether this heap was created from a memory block of another heap.

Parameters *pstPMem. A pointer to the memory control block of the heap being queried.

*pstPData. A pointer to the structure to contain the information about the specified heap.

Return Value VSMM_NO_ERR. Always returned.

Error Checks None

Example Usage ucErrCode = VSMMMemQuery(pstHeap2Ptr, &stPartQ);

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

26

Building VSMM Examples 1–3

7 Building VSMM Examples 1–3
This section describes the Metrorwerks Codewarrior v2.02 project associated with building,
downloading, and debugging VSMM examples 1 through 3. To build each example, open the project file
entitled VSMMExamplesCR.mcp. If Metrowerks CodeWarrior v2.02 is properly installed on your
system, the project file illustrated in Figure 11 appears.

Figure 11. VSMM Example Project File Pane

Project Make Run Run
Properties

Icon
Debug

Icon
Icon Icon

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

27

Building VSMM Examples 1–3

Figure 12 shows the three targets within this project, Example1, Example2, and Critical Method 2.

Figure 12. VSMM Example Project Target Pane

Example1 is built as follows:

1. Select this target from the project target pane.

2. Edit the VSMM_cfg.h file within your project directory

3. Ensure that the VSMM_CRITICAL_METHOD #define constant is set to either 1 or 3.

4. Ensure that the OSE_RTOS #define constant is set to 0.

5. Save the changes and click the Make icon.

6. After the build completes, click on the Run Debug icon to download and execute the example.

Example2 is built as follows:

1. Select this target from the project target pane.

2. Edit the VSMM_cfg.h file within your project directory.

3. Ensure that the VSMM_CRITICAL_METHOD #define constant is set to either 1 or 3.

4. Ensure that the OSE_RTOS #define constant is set to 0.

5. Save your changes and then click on the Make icon.

6. After the build completes, click on the Run Debug icon to download and execute this example.

Critical Method 2 is built as follows:

1. Select this target from the project target pane.

2. Edit the VSMM_cfg.h file within your project directory.

3. Ensure that the VSMM_CRITICAL_METHOD #define constant is set to 2.

4. Ensure that the OSE_RTOS #define constant is set to 0.

5. Save your changes and then click the Make icon.

6. After the build completes, click on the Run Debug icon to download and execute this example.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

28

VSMM Configuration Source Listing

8 VSMM Configuration Source Listing
This section contains the source code for the VSMM configuration source files, which include the header
file, VSMM_cfg.h and the ‘C’ source file VSMM_cfg.c. These two files allow customization of
VSMM on an application-by-application basis. For details on customization, refer to the VSMM
Reference Manaual[5].

8.1 Configuration Header File, VSMM_cfg.h
/*
**
* File : VSMM_CFG.H
* Description: Memory Manager Configuration
**
*/

#ifndef VSMM_CFG_H
#define VSMM_CFG_H

/*
**
* CONFIGURATION
**
*/
// RTOS Defines
/* 1 = Used with OSEck RTOS; else 0 */
#define OSE_RTOS 0

// Maximum Number of MCBs to Create
/* Max. number of memory partitions; MUST be >= 2 */
#define VSMM_MAX_MEM_PART 5

// Critical Method of Choice
/* Specifies the Critical Method that will be utilized by VSMM */
#define VSMM_CRITICAL_METHOD 1

/*
**
* GLOBAL VARIABLES
**
*/

/* Enable (1) or Disable (0) argument checking */
extern unsigned char gucVSMM_ARG_CHK_EN;

/* Pointer to free list of memory partitions */
extern t_VSMM_MEM *gpstVSMMMemFreeList;

/* Storage for memory partition manager */
extern t_VSMM_MEM gastVSMMMemTbl[];

#if VSMM_CRITICAL_METHOD == 2
/* Storage for DSP status register */
extern unsigned long int guliDSPSR;
#endif

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

29

VSMM Configuration Source Listing

/*
**
* FUNCTION PROTOTYPES
**
*/
#if VSMM_CRITICAL_METHOD == 2 && !OSE_RTOS

void VSMM_ENTER_CRITICAL(void);
void VSMM_EXIT_CRITICAL(void);

#endif

#endif // end ifndef vsmm_cfg_h
// end vsmm_cfg.h

8.2 Configuration ‘C’ Source File, VSMM_cfg.c
/*
**
* File : VSMM_CFG.C
* Description: Memory Manager Configuration
**
*/

#include "VSMM_Includes.h"

/*
**
* CONFIGURATION
**
*/

#if ((VSMM_CRITICAL_METHOD == 4) && (OSE_RTOS > 0))
#include "bspspinlock.h"
extern unsigned short int *gpusiCMSpinLock;

#endif

// System Defines
unsigned char gucVSMM_ARG_CHK_EN = 1; /* Enable (1) or Disable (0)

argument checking */

/*
**
* GLOBAL VARIABLES
**
*/

/* Pointer to free list of memory partitions */
t_VSMM_MEM *gpstVSMMMemFreeList;

/* Storage for memory partition manager */
t_VSMM_MEM gastVSMMMemTbl[VSMM_MAX_MEM_PART];

#if VSMM_CRITICAL_METHOD == 2
/* Storage for DSP status register */
unsigned long int guliDSPSR;

#endif

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

30

VSMM Configuration Source Listing

/*
**
* Motorola MSC8101 (Big Model)
*
* Method 1: Disable/Enable interrupts using simple instructions. After * critical
section, interrupts will be enabled even if they were disabled * before entering the
critical section.
*
* Method 2: Disable/Enable interrupts by preserving the state of
* interrupts. Generally speaking you would store the state of the
* interrupt disable flag in the local variable ’guliDSPSR’ and then
* disable interrupts. You restore the interrupt disable state by testing
* the interrupt enable bit, in ’guliDSPSR’, and if clear re-enable
* interrupts; else leave interrupts disabled.
*
* Method 3: Disables interrupts, adjusts the Interrupt Priority Mask
* (IPM), and re-enables interrupts when entering a critical section. When
* exiting a critical section interrupts are disabled, the IPM restored,
* and interrupts re-enabled. This method is useful when you want
* higher-priority processes to continue to generate and service interrupts,
* i.e. an OS Kernel. Note that it is extremely important that these higher-
* prioritiy processes do not access any VSMM routines.
*
* Method 4: Utilizes an OSEck spin-lock (binary semaphore) to ensure
* mutual exclusivity. VSMM_CRITICAL_METHOD must be set to 4 and OSE_RTOS
* must be set to 1 to implement this method.
**
*/
#if VSMM_CRITICAL_METHOD == 1

#if OSE_RTOS > 0

void VSMM_ENTER_CRITICAL(void)
{

LOCK /* Disable interrupts */
}

void VSMM_EXIT_CRITICAL(void)
{

UNLOCK /* Enable interrupts */
}

#else
void VSMM_ENTER_CRITICAL(void)
{

asm (" di"); /* Disable interrupts */
}

void VSMM_EXIT_CRITICAL(void)
{

asm (" ei"); /* Enable interrupts */
}

#endif // end ose_rtos > 0

#endif // end vsmm_critical_method == 1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

31

VSMM Configuration Source Listing

#if VSMM_CRITICAL_METHOD == 2

#if OSE_RTOS > 0
void VSMM_ENTER_CRITICAL(void)
{
LOCK_SAVE /* Disable interrupts */
}

void VSMM_EXIT_CRITICAL(void)
{
LOCK_RESTORE /* Restore interrupts back to their prev state */
}

#endif // end ose_rtos > 0

#endif // end vsmm_critical_method == 2

#if VSMM_CRITICAL_METHOD == 3

// Disable all interrupts except those with a priority > 5.
void VSMM_ENTER_CRITICAL(void)
{
asm(" di");
asm(" bmclr #7<<5,SR.H");
asm(" bmset #5<<5,SR.H");
asm(" nop");
asm(" nop");
asm(" ei");
}

// Enable ALL Interrupts
void VSMM_EXIT_CRITICAL(void)
{
asm(" di");
asm(" bmclr #7<<5,SR.H");
asm(" nop");
asm(" nop");
asm(" ei");
}

#endif // end vsmm_critical_method == 3

// if critical method == 4 & OSE_RTOS == 1 then use spin-locks
#if ((VSMM_CRITICAL_METHOD == 4) && (OSE_RTOS > 0))
void VSMM_ENTER_CRITICAL(void)
{
bsp_spinlock_aquire(gpusiCMSpinLock);
}

void VSMM_EXIT_CRITICAL(void)
{
bsp_spinlock_release(gpusiCMSpinLock);
}
#endif // end vsmm_critical_method == 4

// end vsmm_cfg.c

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HOW TO REACH US:
USA / EUROPE / Locations Not Listed:

Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN:

Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:
http://motorola.com/semiconductors/

Information in this document is provided solely to enable system and software implementers to use
Motorola products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola
makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Motorola assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in Motorola data
sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola
products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. OnCE
and digital dna are trademarks of Motorola, Inc. All other product or service names are the property
of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

AN2345/D, Rev. 1

9 References
[1] Motorola SC100 Application Binary Interface Reference Manual, (MNSC100ABI/D).

[2] OSE for DSP Kernel Reference, (420e/OSE133-1R 1.1).

[3] Mark S. Johnstone and Paul R. Wilson. “The Memory Fragmentation Problem: Solved?.”
International Symposium on Memory Management, Vancouver, B.C., Canada, 1998.

[4] Very Small Memory Manager (VSMM) User’s Guide, Motorola, Rev. 1.4, 7/2002.

[5] Very Small Memory Manager (VSMM) Reference Manual, Motorola, Rev. 1.4, 7/2002.

[6] Very Small Memory Manager (VSMM) Interface Control Documents (ICD), Motorola.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	1 Memory Manager Limitations
	1.1 Fragmentation
	1.2 Deterministic Systems
	1.3 Reentrancy
	1.4 Mutual Exclusion
	1.5 Memory Leaks

	2 VSMM Basics
	2.1 VSMM Target System Properties
	2.2 Memory Block Header
	2.3 Memory Control Blocks
	2.4 VSMM Global Objects
	2.5 Data Control Block

	3 VSMM Distribution
	3.1 VSMM Documentation
	3.2 VSMM Object Library
	3.3 VSMM Configuration ‘C’ Source File
	3.4 VSMM Configuration Header File
	3.5 VSMM Additional ‘C’ Header Files
	3.6 VSMM Critical Methods

	4 Building Your Application with VSMM
	4.1 Initial Configuration
	4.2 Project Set-up
	4.3 Creating Heaps
	4.4 Allocating Memory
	4.5 Freeing Memory
	4.6 Eliminating Heaps
	4.7 Querying Heaps
	4.8 Examples

	5 VSMM Benchmarking
	6 VSSM Functions
	6.1 VSMMMemInit()
	6.2 VSMMMemCreate()
	6.3 VSMMMemAllocCreate()
	6.4 VSMMMemAlloc()
	6.5 VSMMMemFree()
	6.6 VSMMMemDestroy()
	6.7 VSMMMemQuery()

	7 Building VSMM Examples 1-3
	8 VSMM Configuration Source Listing
	8.1 Configuration Header File, VSMM_cfg.h
	8.2 Configuration ‘C’ Source File, VSMM_cfg.c

	9 References

