
This application note describes how to implement a dual full-duplex Fast Ethernet driver on the
MSC8101ADS board. It examines the on-board Ethernet transceiver configuration and the fast
communication controller (FCC) Ethernet configuration on the MSC8101. It considers different ways to
optimize these configurations and illustrates them with an example MSC8101 data processing set-up that
yields high performance in terms of Ethernet link bandwidth. Example code provided with this
application note is reusable and can be rapidly integrated into projects or a real-time operating system
(RTOS) board software package (BSP).

1 IEEE 802.3 Ethernet Basics
Ethernet is the most widely used local area network (LAN) technology and is specified in the IEEE 802.3
standard. An Ethernet LAN can use different media: coaxial cable, unshielded twisted pair copper wires,
radio frequencies, fiber, and so on. These Ethernet LAN can work at different frequencies, such as 10
Mbps, 100 Mbps, 1 Gpbs, and even 10 Gbps/s. Operating on the LAN are computers, terminal
equipment, and other devices that interconnect the LAN between them on a hub or switch. Devices
connect to the medium and compete for access using a carrier sense multiple access with collision
detection (CSMA/CD) protocol. The Ethernet frame is structured as follows:

• 7-byte preamble of alternating ones and zeros.
• Start frame delimiter (SFD) that marks the beginning of the frame.
• 48-bit destination address and 48-bit source address.
• Ethernet type IEEE 802.3-length field that signifies the protocol.
• Length field that specifies the length of the data portion of the frame. For Ethernet and IEEE 802.3

frames to exist on the same LAN, the length field must be unique on the Ethernet. This requirement
limits the length of the data portion of the frame to 1,500 bytes and therefore the total frame length to
1,518 bytes.

• Data (46–1500 bytes).
• Four-byte frame-check sequence (FCS), which is the standard 32-bit CCITT-cyclic reduncancy check

(CRC) polynomial used in many protocols.

Figure 1. Ethernet Frame Format

Preamble
Start Frame

Delimiter
Destination

Address
Source
Address

Type
Length Data

Frame Check
Sequence

Frame Length is 64–1,581 Bytes

7 Bytes 1 Byte 6 Bytes 6 Bytes 2 Bytes 46–1500 Bytes 4 Bytes

Application Note

AN2333/D
Rev. 0, 10/2002

Maximizing the
Performance of Two
Fast Ethernet Links on
MSC8101 FCCs

by Philippe Chartier

CONTENTS

1 IEEE 802.3 Ethernet
Basics............................. 1

1.1 Ethernet Transceiver... 2
1.2 Media Independent

Interface (MII)............. 3
1.3 MSC810ADS FCCs

Running Ethernet 4
1.4 Control and Data path 4
2 Two FCCs Project 5
2.1 Hardware Set-up 5
2.2 Software Modules........ 7
2.3 Software Configuration

Options 9
3 Performance 10
3.1 Accesses to MSC8101

Internal SRAM........... 10
3.2 Buffers 11
3.3 Buffer Descriptors..... 12
3.4 Interrupt Service

Routine 12
3.5 FCC Interrupt

Handler 13
3.6 Timer and Statistics... 14
4 Results and

Conclusions 14
5 CPM Performance

Tool.............................. 15
6 Related Reading 18

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

2

IEEE 802.3 Ethernet Basics

1.1 Ethernet Transceiver
In most systems, the Ethernet medium is accessed from the controller through an Ethernet transceiver.
This section discusses how the Ethernet transceiver on the MSC8101ADS is configured and also
describes the bus interface between this transceiver and the MSC8101.

The MSC8101ADS uses the LXT970 Ethernet transceiver to access a 10/100 Base-T Ethernet port that
ends with a standard RJ-45 Ethernet jack. The main features of this Ethernet transceiver are as follows:

• IEEE 802.3 compliant.

• 10 Base-T and 100 Base-TX using a single RJ-45 connection.

• Support for auto negotiation

• Media-independent interface (MII) with extended register capability.

• 100Base-FX fiber optic capable.

• Standard CSMA/CD or full-duplex operation.

• Configurable via MII serial port or external control pins.

• Configurable for DTE or switch applications.

• Integrated LED drivers.

The Ethernet transceiver hardware configuration pins determine the default behavior of the transceiver
when it is connected to a line. These pins also provide the transceiver with a 5-bit MII address. The
MSC8101 device interconnects through two pins, MDC and MDIO, that provide a bidirectional serial bus
to access the device registers for configuration. Several Ethernet transceivers can share the MDC and
MDIO serial interface signals as long as they have different MII addresses. Also, Ethernet transceivers
from the same manufacturers have in common the base subset of registers, facilitating their control
software design.1 Table 1 shows the transceiver registers and bits that must be configured.

1 For details, see the Intel® data sheet for the LXT970/970A Fast Ethernet transceiver, which is available at
http://www.intel.com under Networking and Communications Design Components.

Table 1. Main Transceiver Registers

Register Bits

Register 0: Control
Register

0.15 Reset chip
0.14 Enable Loopback
0.13 Set Link Speed Selection
0.12 Auto-Negotiation Mode Enable
0.09 Restart Auto-Negotiation Process
0.08 Set Link Duplex Mode

Register 1: Status Register 1.2 Get Link Status (Up/Down)

Register 4:
Auto-Negotiation
Advertisement Register

4.8 100BASE-TX full-duplex capable
4.7 100BASE-TX half-duplex capable
4.6 10BASE-T full-duplex capable
4.5 10BASE-T half-duplex capable
4.4:0 Selector Field - <00001> = IEEE 802.3

Register 20: Chip Status
Register

20.12 Get Duplex Mode
0.11 Get Speed

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

3

IEEE 802.3 Ethernet Basics

1.2 Media Independent Interface (MII)
There are different interconnect bus formats for interfacing Ethernet controllers and transceivers, such as
MII, reduced media independent interface (RMII), and serial media independent interface (SMII). The
MSC8101 FCCs use the MII bus format. Table 2 and Table 3 show the MII device pinout for FCC2 and
FCC1. The parentheses delineate the pinout of the MSC8101ADS board.

Table 2. FCC2 MII Device Pinout and Board Pinout

Port Line Function Set Direction Function

Port C28 (D04) CLK4/TX_CLK In FCC2 Tx Ethernet

Port B31 (C01) TX_ER Out FCC2 Tx Ethernet

Port B29 (C03) TX_EN Out FCC2 Tx Ethernet

Port B22 (C10) TXD0 Out FCC2 Tx Ethernet

Port B23 (C09) TXD1 Out FCC2 Tx Ethernet

Port B24 (C08) TXD2 Out FCC2 Tx Ethernet

Port B25 (C07) TXD3 Out FCC2 Tx Ethernet

Port C29 (D03) CLK3/RX_CLK In FCC2 Rx Ethernet

Port B28 (C04) RX_ER In FCC2 Rx Ethernet

Port B30 (C02) RX_EN In FCC2 Rx Ethernet

Port B21 (C11) RXD0 In FCC2 Rx Ethernet

Port B20 (C12) RXD1 In FCC2 Rx Ethernet

Port B19 (C13) RXD2 In FCC2 Rx Ethernet

Port B18 (C14) RXD3 In FCC2 Rx Ethernet

Port B26 (C06) CRS In FCC2 Control Ethernet

Port B27 (C05) COL In FCC2 Control Ethernet

Port C12 (D20) MDIO In/Out PHY2 Management

Port C13 (D19) MDC Out PHY2 Management

Table 3. FCC1 MII Device Pinout and Board Pinout

Port Line Function Set Direction Function

Port D01 (PC31) CLK2/TX_CLK In FCC1 Tx Ethernet

Port B03 (PA29) TX_ER Out FCC1 Tx Ethernet

Port B04 (PA28) TX_EN Out FCC1 Tx Ethernet

Port B14 (PA21) TXD0 Out FCC1 Tx Ethernet

Port B13 (PA20) TXD1 Out FCC1 Tx Ethernet

Port B12 (PA19) TXD2 Out FCC1 Tx Ethernet

Port B11 (PA18) TXD3 Out FCC1 Tx Ethernet

Port D02 (PC30) CLK1/RX_CLK In FCC1 Rx Ethernet

Port B06 (PA26) RX_ER In FCC1 Rx Ethernet

Port B05 (PA27) RX_EN In FCC1 Rx Ethernet

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4

IEEE 802.3 Ethernet Basics

1.3 MSC810ADS FCCs Running Ethernet
The MSC8101 communications processor module (CPM) includes two fast communication controllers
(FCCs) that can operate in Ethernet mode up to 100Mbits/s. Key features of these FCCs, which make it
easy for the SC140 core to handle the Ethernet payload traffic, are as follows:2

• MII

• MAC layer functions of fast Ethernet and IEEE 802.3x

• Framing functions

• Full collision support

• Bit rates up to 100 MBPS

• Multi-buffer data structure

• CRC generation

• Logical. 64-bin group address hash table plus broadcast address checking

• Promiscuous mode

• Special RMON counters for monitoring network statistics.3 This set of counters monitor the receive
side of the FCC in Ethernet mode. They provide an approximate measure of the incoming network
traffic without the need to implement software counters.

1.4 Control and Data path
The block diagram shown in Figure 2 gives an overview of the different control and data flows of
MSC8101-based systems for Ethernet operation.

Port B15 (PA17) RXD0 In FCC1 Rx Ethernet

Port B16 (PA16) RXD1 In FCC1 Rx Ethernet

Port B17 (PA15) RXD2 In FCC1 Rx Ethernet

Port B18 (PA14) RXD3 In FCC1 Rx Ethernet

Port B02 (PA30) CRS In FCC1 Control Ethernet

Port B01 (PA31) COL In FCC1 Control Ethernet

Port C12 (D20) MDIO In/Out PHY1 Management

Port C13 (D19) MDC Out PHY1 Management

2 For details on the MSC8101 FCCs, consult the MSC8101 Reference Manual (MSC8101RM/D).
3 For details on RMON counters, consult the chapter on FCC Fast Ethernet Controllers in the MSC8101 Reference

Manual (MSC8101RM/D).

Table 3. FCC1 MII Device Pinout and Board Pinout (Continued)

Port Line Function Set Direction Function

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5

2FCCs Project

Figure 2. Control and Data Paths

2 2FCCs Project
This section describes the hardware set-up and the software modules of the 2FCCs project.

2.1 Hardware Set-up
There are two example hardware configurations for the 2FCCs project. The first uses two MSC8101ADS
boards, so FCC1 is not available and must be disabled in the software project configuration file. The
second set-up involves both an MSC8101ADS and an E1 communication (ECOM) board, which is a
peripheral extension board designed to connect to the MPC8260ADS.4 FCC1 uses the ECOM on-board
Ethernet transceiver.

2.1.1 Two-MSC8101ADS Set-up
As Figure 3 shows, the two-MSC8101ADS set-up is defined as follows:

• Crystal = 16,384 MHz; MODCLK40 (yielding SC140 core/CPM/60x-compatible system bus speeds of
196/98/39 MHz). All switches are set to the factory defaults.

• Two PCs with suitable ports (PCI or parallel) for JTAG probes to download, tune, and debug the
software.

• A JTAG probe for the MSC8101ADS (Macraigor Systems LLC’s OCDemon™ Wiggler)5

• One twisted Ethernet cable or one Ethernet switch and two straight Ethernet cables

4 Documentation on the ECOM board is available on the Motorola web site listed on the back of this document. Consult
the MPC8260 product information.

5 Visit http://www.ocdemon.net/.

Ethernet Link

Ethernet
Transceiver
and Analog

Clock Generation
for Transmit and

Receive

Modulation and
Demodulation

of Ethernet
Frames

Collision
Management

Control
Registers

MSC8101

CPM FCCx

CPM GPIO

SIU SIC and PIC SC140 Core

Internal SRAM

CPM DPRAM

Interrupt
Generation

Data Framing
and Deframing

Transceiver
Control

Interrupt Transport

Initialization and
Control Parameters

Buffer

Transmit and
Receive Buffers

Interrupt
Management

Buffer
Management

Data Fabric

FCCx

Transceiver
Initialization

Descriptors

Initialization

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6

2FCCs Project

Figure 3. Set-up Using Two MSC8101ADS Boards

2.1.2 MSC8101ADS and ECOM Set-up
The MSC8101ADS-ECOM set-up is preferable to the two-MSC8101ADS set-up because it allows the
MSC8101 device to handle two fast Ethernet connections over both FCC1 and FCC2 simultaneously. The
MSC8101ADS-ECOM set-up is the one that is used for the 2FCC project described in this application
note.

Note: The ECOM can also be replaced by a second ADS with the same board interconnections.
However, a small piece of code is required for the second ADS to enable the Ethernet
transceiver and disable the local GPIO. The code can be downloaded from a PC or run directly
from the on-board Flash memory.

Figure 4. Set-up Using an MSC8101ADS and an ECOM Board

MSC8101ADS

FCC2 PHY2

MSC8101ADS

PHY2 FCC2

Ethernet Link

MCW MCW

JTAG
Link

JTAG
Link

NOTE: The Ethernet link is
Twisted Ethernet Cable

or Straight Ethernet Cables.

Ethernet
Switch

NOTE: The Ethernet link is
Twisted Ethernet Cable

or Straight Ethernet Cables.

Ethernet
Switch

MSC8101ADS

FCC2 PHY2

JTAG
Link

FCC1

ECOM

PHY1
Ethernet Link

MII Connection

MCW

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7

2FCCs Project

2.2 Software Modules

This section describes the 2FCCs software project, which is available as a zip file. When this file is
expanded, all the project files are located in a folder tree, as Figure 5 shows.

Figure 5. Control and Data Paths

Table 4. Control and Data Paths

FCC1 on MSC8101ADS PHY1 (for FCC1) on ECOM

Signal Pin Pin Location (1) Signal Pin Pin Location (1)

MII TX_ER PA29 B3 FETHTXER PA29 B3

MII RX_DV PA27 B5 FETHRXDV PA27 B5

MII TX_EN PA28 B4 FETHTXEN PA28 B4

MII RX_ER PA26 B6 FETHRXER PA26 B6

MII COL PA31 B1 FETHCOL PA31 B1

MII CRS PA30 B2 FETHCRS PA30 B2

NBL TXD3 PA21 B11 FETHTXD3 PA21 B11

NBL TXD2 PA20 B12 FETHTXD2 PA20 B12

NBL TXD1 PA19 B13 FETHTXD1 PA19 B13

NBL TXD0 PA18 B14 FETHTXD0 PA18 B14

NBL RXD0 PA17 B15 FETHRXD1 PA17 B15

NBL RXD1 PA16 B16 FETHTXD0 PA16 B16

NBL RXD2 PA15 B17 FETHRXD0 PA15 B17

NBL RXD3 PA14 B18 FETHRXD1 PA14 B18

CLK2 PC30 D2 FETHRXD2 PC20 D12

CLK1 PC31 D1 FETHRXD3 PC21 D11

PC13 PC13 D19 FETHTXCK PC10 D22

PC12 PC12 D20 FETHRXCK PC09 D23

HRESET HRESET C10 (P1) RSTBRD HRESET C10 (P1)

GND GND B01–B03 (P1) GND GND B01–B03 (P1)

3.3V 3.3V A[20–24] (P1) 3.3V 3.3V A[20–24] (P1)

5.0V 5.0V A[26–32] (P1) 5.0V 5.0V A[26–32] (P1)

Root folder
MCW IDE specific project
Executable, memory map and linker
README.txt & Application note

Source folder
MSC8101ADS board support
Ethernet Transceiver driver
FCC1 running Ethernet Init.
FCC2 running Ethernet Init.

Runtime FCCs driver
Init FCCs driver
Interrupt controller
Main project file
Payload creation
Standard Includes files

Timer driver for statistics

2FCCs_DATA

BIN
DOC
SRC

BOARD_SUPPORT

ENET_PHY

FCC1_ENET

FCC2_ENET

FCCs_DRV
FCCs_INIT
INT_CRL
MAIN
PAYLOAD
STD_INCLUDES
TIMER

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8

2FCCs Project

The 2FCCs project was developed using Metrowerks® CodeWarrior® 1.5 for Windows. However, it is
compiler independent and therefore runs on any suitable IDE. Moreover, the project is host-independent
and can run on a PC or on Solaris, Linux, and so on. When the project is compiled, it should generate
neither errors nor warnings. The executable file can be downloaded and run on the MSC8101ADS, where
it can enter Debug mode and run step-by-step.

2.2.1 Board Initialization
Before the executable image is downloaded, the MSC8101ADS must be initialized via a command script
in the BIN directory. This script disables the watchdog timer and configures the memory controller,
enabling memory accesses. Then the 2FCCs binary image is downloaded into the MSC8101ADS
memory. In the example discussed here, it is downloaded into the MSC8101 internal SRAM. Then the
SC140 core executes the bootstrap code (provided by the compiler) until the start of the main function. At
this point, the program starts by setting all the parallel ports to act as GPIO inputs, resetting the CPM, and
initializing the interrupt controller.

The payloads are dummy Ethernet frames, which contain source and destination MAC addresses, frame
length, and random payload. The frame size is determined at compile time, and the FCCs transmit it over
the Ethernet link.

2.2.2 Ethernet Transceiver (PHY) Initialization
PHY initialization is performed twice, one for each Ethernet transceiver, as follows:

1. Two CPM GPIO signals are configured to act as MDC and MDIO signals.

In this set-up the MDC and MDIO signals are common for the two Ethernet transceivers.

2. According to the input parameters, the code configures each FCC for 10 or 100 Mbps speed, half- or
full-duplex operation, or auto-negotiation mode.

3. As output, the link status is returned and, if relevant, the results of the auto-negotiation.

2.2.3 FCC Driver Initialization
FCC driver initialization is performed twice, once for each FCC. This process configures the FCC to
work in Ethernet mode by programming the following parameters:

1. Configure the external CPM to act as an Ethernet modem.

2. Configure the General FCC Mode Registers (GFMRx), which define all options common to the FCC,
regardless of the protocol and select the channel protocol mode.

In this case, the Ethernet protocol is selected: GFMRx[Mode2] = 1100).

3. Set the FCC clock route.

Tx and Rx clocks are provided by the Ethernet transceivers and internally routed to the correct FCC.

4. Enable RMON frame counters for statistics and throughput calculation.

5. Specify the events on which the FCCs trigger an interrupt.

6. Connect the FCC interrupt handler to the interrupt controller.

7. Initialize and allocate buffers and buffer descriptor memory.

The code configures the FCC to work in Promiscuous mode, but the mode may need to be changed if the
code is reused.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

9

2FCCs Project

2.2.4 Interrupt controller
The interrupt controller used here is basic, but it performs all the required tasks: context saving, interrupt
source determination, interrupt handler address match plus execution, and context restoring. Before the
MSC8101 device enters normal run-time mode, the interrupt controller configures the MSC8101
programmable interrupt controller (PIC) and SIU-CPM interrupt controller (SIC) to handle both edge and
triggered interrupts. The interrupt controller features a C switch to use either complete or reduced context
saving/restoring. The reduced context switching requires fewer cycles, but also requires interrupt
handlers to use a reduced set of SC140 registers. You can write the interrupt handlers in assembly
language or use compiler options to do so.

As Figure 4 shows, interrupts are generated by FCCs and then transmitted to the SIC, which manages
priorities for serial DMA (SDMA) and CPM peripherals. Then the (PIC) manages the interrupt.6 At last,
the interrupt arrives at the SC140 core.

2.2.5 FCC Driver/Interrupt Handler
The FCC interrupt handler is a short function that first determines the type of the interrupt (received or
transmitted frame/buffer, frame discarded, and so on). Its decision logic section depends on the
application. In our application, it simply receives and sends frames without any treatment. In other
applications, this decision logic might handle buffer management or other tasks. Frame management
occurs through the buffer descriptors (BDs), which indicate the buffer to transmit, the received frame, and
so on. The interrupt handler acknowledges an interrupt by setting to the appropriate bits to a value of 1.
The BD is a memory space to which both the FCC driver and the CPM FCC have access. This memory
space can be mapped to a C structure for convenience. A BD contains a set of information on each
transmit and receive buffer, such as status (16 bits to set attributes), size (in bytes), and address (pointer to
the start of the buffer).

In conjunction with the interrupt controller, there is a C switch to use either complete or reduced context
saving/restoring. These two switches must both be set or cleared.

2.2.6 Timer and Statistics
A timer displays the RMON frame counters on the IDE I/O window every 10 seconds. The procedure for
initializing this timer is much like that for initializing FCCs. During initialization, the timer registers are
configured, and the timer interrupt handler is connected to the interrupt controller. The timer period is
crystal-dependent, so a check of the on-board crystal is required. Any changes to the crystal or to
MODCLK should be reflected in the appropriate files.

2.3 Software Configuration Options
This section discusses the files containing the global parameters, with listings of the default values, which
provide the best throughput.

• 2FCCs.h. Enable/disable FCC1 or FCC2:

#define FCC1_ENABLED 1
#define FCC2_ENABLED 1
#define FCC1_RX_ENABLED 1
#define FCC2_RX_ENABLED 1
#define FCC1_TX_ENABLED 1
#define FCC2_TX_ENABLED 1

6 The PIC also manages the priorities among the rest of the MSC8101 peripherals.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10

Performance

• Timer.h. Reflects the value of the on-board crystal:

#define DIV16 1
#define BRG_VALUE 306 // refer to the table

• Payload.h. Sets the frame size:

#define FRAME_SIZE_1 64 // must be an even number
#define FRAME_SIZE_2 64 // must be an even number

• FCCs_Int_Handler.h. Uses the hand-optimized ASM (reduced register set) or C version:

#define INTHANDLER ASM // C

• FCC1_ENET.h and FCC2_ENET.h. Sets or unsets the internal loopback, sets the FCC MAC
address, and determines the number and the size of buffers for both the transmit and receive paths:

#define FCCx_INTLPBK 0 //1

#define ENETx_PADDR_H 0x00E0 //Physical Addr.1 (MSB)
#define ENETx_PADDR_M 0x0C12 //Physical Addr.1
#define ENETx_PADDR_L 0x3472 //Physical Addr.1 (LSB)

#define FCCx_TX_BUF_SIZE 0x5EE //1518 in decimal
#define FCCx_RX_BUF_SIZE 0x5EE //1518 in decimal

#define FCCx_TX_NUM_BUF 4
#define FCCx_RX_NUM_BUF 4

• IRQ.h. Specifies normal or reduced context switching:

#define OPTIMIZATIONS ON

The parts of the 2FCCs project that can remain as is are as follows:

• Most of the initialization for the board

• Most of the initialization for the Ethernet PHY

• Most of the initialization for the FCCs

• The interrupt controller in normal mode

The parts of the 2FCCs project that may need to be changed and adapted are as follows:

• Buffer descriptor initialization

• Buffer management

3 Performance
MSC8101 target markets include media (voice/fax/data) over packet gateways. In such embedded
systems, packet traffic is characterized by moderate to high bandwidth consumption. Packets are usually
shorter than 250 bytes. On MSC8101 Ethernet links, this traffic has an impact on frequency interrupt,
final throughput, and packet latency. This section discusses how to optimize the Ethernet parameter
values. Modifications may be needed if the Ethernet network traffic differs from that described here.

3.1 Accesses to MSC8101 Internal SRAM
The SC140 core should use CS0 at memory offset 0x0 to access the internal SRAM. Such an access
requires one cycle. In contrast, accessing SRAM via CS10 at memory offset 0x02000000 on the system
bus requires many more cycles. The CS0 setting at a memory offset of 0x0 is the default, which can be
reconfigured. Read or write operations can consume up to four bus cycles, and assuming an SC140
core/bus speed ratio of 5 (MODCLK 40), such operations may require up to 20 SC140 core cycles

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

11

Performance

because read or write requests must cross the Q2PPC bridge and the system bus/local bus bridge. This
requirement directly affects MSC8101 internal bus loading and global system speed, as well as all
memory space to be accessed by both the SC140 core and the CPM, such as buffers and buffer
descriptors.

3.2 Buffers
The MSC8101 buffers enable data transfers to/from the CPM and FCC and to/from memory through
SDMA transactions that are transparent to the user. Buffers can be located in three types of memory:

• Internal SRAM. Provides rapid one-cycle access to the buffer.

• External SDRAM. Accesses to the buffer consume more SC140 core cycles but free the internal
memory so that the payload fabric can work in temporary space in the internal SRAM while DMA
transfers occur to/from external SDRAM. This use of memory space increases the frame latency.

• Internal DPRAM. This is the right choice for applications in which the SC140 core does not access the
data and directly forward it to a CPM communications channel. Otherwise, it offers no advantages.
This choice has an impact on the RSTATE register in the FCC common parameters.

In a complete MSC8101-based embedded system, the choice of memory location for buffers is a trade-off
based upon the available internal SRAM and SDRAM space, frame latency, load on the system bus/local
bus, and so on. Buffers can be 4-bye aligned or not, depending on memory space allocation. CPM
communications channels (SCC, MCC, FCC) access their buffers and BDs via SDMA. As for all DMA
data transfers, the alignment on a 4-byte boundary (for 32-bit systems such as the MSC8101) provides the
best performance.

For the 2FCC project, these values yield the best balance between SRAM consumption and throughput.
More buffers on the receive side allow a greater burst of frame; more buffers on the transmit side allow
larger frame burst generation. Of course, allocating fewer buffers for both receiving and transmitting data
saves memory space.

To simplify buffer management, allocate one buffer for one frame rather than several buffers for one
frame. This practice increases buffer size so that the use of memory space is less flexible. However,
depending on the Ethernet protocol, if a partial chunk checksum must be computed (such as for IP and
UDP), allocating one buffer per frame results in faster and simpler algorithms because the data is always
contiguous.

We set buffer size to 1500 (Ethernet MTU) + 18 (Ethernet encapsulation). When the system is connected
to an unfamiliar environment, this is the safest choice. When the system is connected to an entirely
defined environment, setting the buffer size to a known maximum frame size saves memory space. If you
are allocating several buffers to one frame, you can set the size to a smaller value than the known
maximum frame size (for example, 64 bytes). Because the 2FCCs project must handle frame sizes in the
range of 64–1500 bytes, it is mandatory that we set the buffer size to 1500 (Ethernet MTU) + 18 (Ethernet
encapsulation).

Note: Once the BD that points to a buffer is full or not empty (for transmit buffers) or empty or not
fully (for receive buffers), neither the SC140 core nor any MSC8101 peripherals should write or
even read the contents of the buffer. Doing so may result in a crash and freeze of the CPM
and/or SC140 core.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

12

Performance

3.3 Buffer Descriptors
A BD is a set of structures containing information on the buffer size, status, properties, and pointers. BDs
provide the means to manage buffers. The CPM/FCC reads and writes to BDs via SDMA transfers that
are transparent to the user. BD rings should be located in internal SRAM because they do not consume
much memory and they allow flexibility in buffer servicing methods for the FCC interrupt handler.
Locating BDs in external SDRAM decreases system performance without offering any advantages.
Locating BDs in internal DPRAM may offer the advantage of low interrupt frequency, but accesses to
DPRAM increase SC140 core cycle consumption and latency. Also, locating BDs in internal DPRAM
has an impact on the RSTATE in the FCC common parameters. As noted in Section 3.2, BD rings should
be 4-byte aligned.

The transmit buffer descriptor INT bit is set in one of three ways, and the setting has a direct impact on
the interrupt frequency and thus on the system global performance:

• Set for each transmit buffer. As soon as a smart buffer management or buffer queuing system is
implemented, this choice is a must. The 2FCCs project uses this option in order to count transmitted
frames.

• Set for the last buffer of the transmit ring, which is suitable for basic systems.

• Set for none, which simplifies the design of the FCC interrupt handler.

The receive buffer descriptor INT bit is set in one of three ways:

• Set for each receive buffer. As soon as a smart buffer management or buffer queuing system is
implemented, this choice is a must.

• Set for the last buffer of the receive ring, which is suitable for basic systems.

• Set for none: polling. In systems in which the main task is intensive and repetitive (such as traffic
aggregation), polling received buffers can be advantageous. The interrupt mechanism is then no longer
mandatory, but a system scheduler must be implemented.

Note: Once the BD that points to a buffer is is full or not empty (for transmit buffers) or empty or not
fully (for receive buffers), neither the SC140 core nor any MSC8101 peripherals should write or
even read the contents of the buffer. Doing so may result in a crash and freeze of the CPM
and/or SC140 core.

3.4 Interrupt Service Routine
An interrupt service routine (ISR) runs when the SIU-CPM interrupt controller (SIC) generates an
interrupt. The ISR determines the resource(s) responsible for the interrupt and launches the appropriate
resource interrupt handler. The routine is encapsulated by context saving and restoring functions. Context
switching can be either complete or reduced, as follows:

• Complete. In normal conditions, complete register context saving/restoring consumes 56 cycles.

• Reduced. In the 2FCCs project, the number of cycles was decreased to 26 by saving/restoring registers
(r[0–7] and d[0–7]).

The choice between reduced or complete context switching has a direct impact on the Ethernet frame
latency and on the real-time aspects of the global system. Context switching is a great source of errors, so
care must be taken in designing this module. Other important aspects of ISRs that warrant consideration
at design time are reentrance and whether the ISR is edge or level triggered.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

13

Performance

The ISR decision logic is implemented through either the SIU Interrupt Vector Register (SIVEC) or
through the SIU Interrupt Pending Register (SIPNR_H and SIPNR_L), as follows:

• SIVEC. This register contains a 6-bit code representing the unmasked interrupt source of the highest
priority level. Use of SIVEC results in interrupt service that is generic and independent of peripherals.

• SIPNR_H and SIPNR_L. Each bit in the interrupt pending registers corresponds to an interrupt source.
When an interrupt is received, the interrupt controller sets the corresponding SIPNR bit. These
registers are used in conjunction with their respective mask (SIMR_H and SIMR_L). Use of these
registers can slightly improve performance.

On most compilers, the ISR is defined by adding a line in the source code just before the function
definition, as follows:

"#pragma interrupt Name_of_the_ISR_function"

An interrupt handler function differs from other functions in two main ways. Context saving and
restoring surrounds the ISR function, and it runs in Exception mode, forcing the compiler to generate
instructions that differ slightly from the instructions issued in Normal mode.

3.5 FCC Interrupt Handler
For the 2FFC project, the FCC interrupt handler is a simple BD manager. In a complete system, it would
also provide hooks for upper protocol layers (software) and function as the entry point for a payload
fabric. The coding language is either assembly or C. The use of assembly language permits a reduction in
SC140 core cycles and is required when the ISR is working with reduced context switching. Assembly
code is a great source of errors, especially for the ISR, so care must be taken in writing Assembly code.
The C language is the default option and is more portable and more easily maintainable.

There are many possible buffer servicing methods for the interrupt handler. Calls to the FCC interrupt
handler consume SC140 core cycles. The servicing method directly determines the ISR call frequency.
Thus the choice of the servicing method and the FCC interrupt handler design are critical in a system
design. Buffers can be serviced one at a time so that each received or transmitted buffer generates an
interrupt. This method can result in a non-serviced buffer, which then breaks the BD rings and stops
reception or transmission. Such breakages can occur at high throughputs as more than one buffer can be
transmitted or received between two FCC Interrupt handler calls.

Alternatively, all buffers can be serviced at once so that each received or transmitted buffer generates an
interrupt. This method consumes many SC140 core cycles but ensures that all buffers are serviced so that
no BD rings are broken. Yet a third buffer service option is to use a minimum FCCINTHandler in
conjunction with dynamic buffer allocation/management. A flag/semaphore and separate handler
launched by scheduler/RTOS can also be added to decrease the cycles spent in the handler, thus
improving the real-time aspect of the global system.

The goal of the 2FCCs project is to provide a simple example with high Ethernet throughput. Therefore,
it implements the method of servicing the buffers one at a time because of its simplicity. In real, more
complex systems, using a minimum FCCINTHandler in conjunction with dynamic buffer
allocation/management (or a similar schema) would be necessary because of the flexibility. The
maximum reachable throughput should be similar, regardless of the buffer servicing method.

Note: For the reasons provided here, the FCC interrupt handler should reduce its access to FCCE and
other DPRAM registers/memory areas to a minimum and make use of optimized code.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

14

Results and Conclusions

3.6 Timer and Statistics
In its default configuration, the 2FCC project works with a reduced context switching ISR in conjunction
with an ASM FCC interrupt handler. However, the timer interrupt handler is not written in ASM and can
potentially use registers that are not yet saved when a timer interrupt occurs. In most systems, this would
lead to crashes, but in the 2FCC project, the main program is an empty infinite loop that executes no
instructions. Thus, the fact that the timer interrupt handler is not written in ASM has no impact.

4 Results and Conclusions
The direct application of the 2FCCs project is the benchmarking for Voice over IP (VoIP) systems. The
array shown in Table 5 gives the Ethernet frame size for VoIP/G711 communications. The test runs the
project for different frame sizes, from 64 to 1500 bytes with several steps including the values shown.
The hardware and software assumptions for this test are described in the previous sections of this
document.

The validity of the test is limited. In fact, the use of a software tool called CPM_Perf (see Section 5),
indicates that the CPM RISC processor does not run under normal conditions (saturation) when the frame
size is less than approximately 138 bytes. The maximum MSC8101 speed configuration is SC140
core/CPM/system bus = 300/150/100 MHz, and the minimum frame size is approximately 64 bytes. See
the calculations for these two scenarios in the results matrix of the 2FCCs test (Table 7).

The throughput divergence between the FCCs is a confirmation of the expected limit (138 bytes) given by
the CPM_Perf tool. At full speed, this limitation disappears. Sometimes the debugger I/O window
displayed the message discarded frames = 2 because of BD resynchronization after the timer

Table 5. G711 Figures for Frame Size

G711 X (Ms) 2.5 5 10 20

Frequency (Hz) 400 200 100 50

Voice payload (bytes) 20 40 80 160

RTP (bytes) 12 12 12 12

UDP (bytes) 8 8 8 8

IP (bytes) 20 20 20 20

Ethernet MAC @ (bytes) 14 14 14 14

Ethernet CRC (bytes) 4 4 4 4

Total size of a packet (bytes) 78 98 138 218

Throughput for one full duplex (Tx and Rx)
channel (kbits/s)

249.6 156.8 110.4 87.2

Table 6. 2FFCs Throughput Performances

G711 X (Ms) X 2.5 5 10 20 X X X

Ethernet frame length 64 78 98 138 218 500 1000 1500

FCC1 throughput (Mbits/s) 54.9 65.4 77.8 84 89.3 94.8 96.8 97.2

FCC2 throughput (Mbits/s) 60.5 60.4 78.4 84 89.3 94.8 96.8 97.2

Total throughput (Mbits/s) 115.4 125.8 156.2 168 178.6 189.6 193.6 194.4

Interrupt frequency (1/s) 1803125 1612821 1593878 1217391 819266 379200 193600 129600

Number of channels X 504 996 1522 2048 X X X

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

15

CPM Performance Tool

interrupt, itself due to the basic buffer management. As expected, the interrupt frequency increases when
frame size decreases. This demonstrates the need for care in both the interrupt controller and FCC
interrupt handler design.

The results obtained show the high performance of the MSC8101 CPM. They prove that the MSC8101 is
suitable for most applications requiring high throughput. There are technical ways to increase the
Ethernet throughput. For example, several IP packets can be concatenated into one Ethernet frame, with
additional software mechanisms to control the packet latency. Another way would be to implement CPM
microcode for IP and, even upper layers, encapsulation/desencapsulation in the CPM RISC processor.

5 CPM Performance Tool
This section describes how to test PowerQUICC II product-based systems such as the MSC8101and
MPC8260. In four steps, it is possible to know the loads on the CPM RISC processor and the two internal
buses (local and 60x-compatible system bus):

1. Launch the CPM_Perf application, read the first screen, and then acknowledge.

Figure 6. CPM Performance Tool, Opening Screen

2. On the main screen, set CPM speed, bus speed, and the access scheme. Then, specify the location of
the buffer and BDs on the local bus (SRAM) or not (SDRAM, DPRAM).

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

16

CPM Performance Tool

Figure 7. CPM Performance Tool, Screen 2

3. Set the speed, buffer size and other parameters for both FCC1 and FCC2.

Figure 8. CPM Performance Tool, Screen 3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

17

CPM Performance Tool

4. Directly watch the results or save them into a text file.

Figure 9. CPM Performance Tool, Screen 4

The assumptions underlying the 2FCCs project settings are as follows:

• CPM bus access schemes:

— System bus memory wait states = 5, 1, 1, 1

— Local bus memory wait states = 5, 1, 1, 1

• CPM FCC configuration:

— Data is placed on the local bus (internal SRAM)

— Buffer descriptors are placed on the local bus (internal SRAM)

— Receiver baud rate = 100 Mbps (Fast Ethernet)

— Transmitter baud rate = 100 Mbps (Fast Ethernet)

— Buffer length = 1500 bytes (no frame fragmentation)

— Unaligned buffers = YES (optimum)

Table 7 shows the results of simulations for two scenarios.

Table 7. CPM Performance Tool Results

Speed
Configuration

CPM/Buses Clock = 98/39 MHz CPM/Buses Clock = 150/100 MHz

Frame Size (Bytes) CPM Busy (%) FCC Busy (%) CPM Busy (%) FCC Busy (%)

64 150.22 75.11 98.15 49.07

98 122.26 61.13 79.87 39.94

138 96.10 48.05 62.79 31.39

218 71.56 35.78 46.75 23.38

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

18

Related Reading

6 Related Reading
[1] MSC8101 Reference Manual, MSC8101RM/D, available at the website shown on the back cover of

this document.

[2] MSC8101ADS User’s Manual, available at the website shown on the back cover of this document.

[3] Ethernet quick reference, inspired from the source available at http://www.whatis.com

[4] Intel LXT970 data sheet (PDF document available at http://developer.intel.com).

[5] Metrowerks Enterprise compiler documentation available with Metrowerks CodeWarrior® for
StarCore®.

500 50.82 25.41 33.20 16.60

1000 42.62 21.31 27.84 13.92

1500 39.14 19.57 25.57 12.79

Table 7. CPM Performance Tool Results (Continued)

Speed
Configuration

CPM/Buses Clock = 98/39 MHz CPM/Buses Clock = 150/100 MHz

Frame Size (Bytes) CPM Busy (%) FCC Busy (%) CPM Busy (%) FCC Busy (%)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

19

Related Reading

NOTES:

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2333/D

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour
Centre, 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use

Motorola products. There are no express or implied copyright licenses granted hereunder to design

or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola

makes no warranty, representation or guarantee regarding the suitability of its products for any

particular purpose, nor does Motorola assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters which may be provided in Motorola data

sheets and/or specifications can and do vary in different applications and actual performance may

vary over time. All operating parameters, including “Typicals” must be validated for each customer

application by customer’s technical experts. Motorola does not convey any license under its patent

rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other applications intended to

support or sustain life, or for any other application in which the failure of the Motorola product could

create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola

products for any such unintended or unauthorized application, Buyer shall indemnify and hold

Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or

indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,

even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna
and StarCore are trademarks of Motorola, Inc. Metrowerks and CodeWarrior are registered
trademarks of Metrowerks Corp. in the U.S. and/or other countries. All other product or service names
are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action
Employer.

© Motorola, Inc. 2002

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	1 IEEE 802.3 Ethernet Basics
	1.1 Ethernet Transceiver
	1.2 Media Independent Interface (MII)
	1.3 MSC810ADS FCCs Running Ethernet
	1.4 Control and Data path

	2 2FCCs Project
	2.1 Hardware Set-up
	2.2 Software Modules
	2.3 Software Configuration Options

	3 Performance
	3.1 Accesses to MSC8101 Internal SRAM
	3.2 Buffers
	3.3 Buffer Descriptors
	3.4 Interrupt Service Routine
	3.5 FCC Interrupt Handler
	3.6 Timer and Statistics

	4 Results and Conclusions
	5 CPM Performance Tool
	6 Related Reading

