Application Note

AN2311/D
Rev. 0, 8/2002

Bootstrapping the
MSC8101 Device
Through the HDI16 Port

by Joe Rebello

CONTENTS

1

Hardware

Implementation

Bootstrapping Process .. 5
Target Application

MSC8101ADS Test
Configuration Example. 9
Related Documents......

SREC TO ARRAY.C

Listing

11

11

Freescale Semiconductor, Inc.

als

"‘
MOTOROLA o .
intelligence everywhere” dl g / ta/ dn a

The Motorola StarCore®-based M SC8101 device incorporates a communications processor module
(CPM) with high-speed serial communications interfaces and a system integration unit (SIU). The SIU
can connect to external memory, such as SRAM, Flash, SDRAM, and peripheral devices. The external
system bus can be configured in either a 64-bit or 32-bit wide mode, the latter enabling the use of the
16-bit wide slave Host Data Interface (HDI16). An external host can read and write to the slave HDI16
port to transfer control information and data and to bootstrap the device. When bootstrapping through the
HDI16 port, the external host isrequired to write the Hard Reset Configuration Word (HRCW) aswell as
the desired target application to the slave MSC8101 device. The internal ROM of the dave MSC8101
provides asmall bootloader program that receives the application code in a certain format, which it parses
and executes.

This document describes a software driver to bootstrap a slave M SC8101 device through the Slave HDI 16
port from an external MSC8101 host. The driver software includes a utility to convert an S-record into
the format required by the M SC8101 internal boot ROM. The device driver is provided as an example for
developers and not as a supported product. The physical connections between a host MSC8101 system
bus operating in Single-Master mode and the HDI116 port of the slave MSC8101 are also described. After
adiscussion of the boot process through the HDI16 port and a method of creating a code image for the
target slave DSP, there is an example hardware set-up of two MSC8101 Application Devel opment
System (M SC8101ADS) boards and instructions on how to run the example code.

1 Hardware Implementation

The HDI16 port operation requires two MSC8101 devices (ahost and adave), with the system bus of the
host connected to the HDI16 port of the slave (see Figure 1). The host accesses the HDI16 port of the
slave device as a memory-mapped region. The host gains access through the system bus using its own
memory controller UPM-controlled chip select. The HDI16 port has two chip select signals that are
logically ORed internally. The first (HCS1) selects individual devices, and the other (HCS2) typically
broadcasts data to a number of devices—for example, in DSP farm applications. For the driver discussed
here, CS6 on the host DSP connects to HCS1 of the slave. The HDI16 port is big-endian, so the data bus
connection between the host system bus and slave HDI 16 port is D[0-15] — HD[0-15], with the address
bus connected so that A[27-30] — HA[0-3]. The interface uses the dual strobe mode with separate read
(HRD) and write (HWR) data strobes connected to PGPL2 and PDQMO, respectively, on the host.

The slave HDI16 port generates interrupts to the host in either single or dual request mode. Dual request
mode is usually preferred because separate request lines indicate aread (HRRQ) or write (HTRQ) request,
whereas the single request mode indicates only that HDI16 is ready to read or write data. Therefore, the
host must poll the HDI16 registers to determine whether the request is for aread or awrite, thus adding
overhead. Since sufficient IRQ inputs are available on the host, the driver uses dual request mode. The
two request lines from the slave MSC8101 connect to IRQ[4-5] on the host for interrupt servicing
options.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Hardware Implementation

MSC8101 Host MSC8101 Slave

CS6 > HCS1
PGPL2 » HRD
PDQMO » HWR

A[27-30] > HA[0-3]

D[0-15] |« » HD[0-15]
RQ4 |« HTRQ
IRQ5 [« HRRQ

Figure 1. MSC8101 Host to HDI16 Hardware Interface

At power-on reset, several pins that determine the boot source and chip mode of operation are sampled.
Table 1 shows the pins that enable the MSC8101 for HDI16 operation in 16-bit dual data strobe mode.

Table 1. Slave Hardware Pin Configuration

Pin Value Description
RSTCONF 1 Configuration slave selected
EEO 0 SC140 core starts in normal processing mode after reset
HPE/EE1 1 HPE=1, Host port Enabled
BTM[0-1)/EE[4:5] 01 BTM=01 MSC8101 boots from HDI16
HDDS 1 Dual data strobe mode enabled
H8BIT 0 16-Bit mode selected

The MSC8101 device has a highly configurable memory controller with a user-programmable machine
(UPM) interface, a general -purpose chip select machine (GPCM), and an SDRAM machine.

The UPM-controlled 60x-compatible system bus and HDI16 port are both programmable. You can
program the memory controller and UPM RAM to meet all the MSC8101 host port timing requirements.
The UPM offers very flexible memory control options with one quarter clock resolution. However,
depending upon the CPM :bus clock ratio, the relative phases of this one quarter of one clock granularity
may vary. Timing needs may change with different clock ratios. To ensure that the timing
recommendations developed here hold true at any clock speed or ratio, the analysisis performed using
the maximum bus clock of 100 MHz and using only the invariable one half of one clock boundaries (T1
and T3) to change signals. Therefore, the recommendations hold true for anything less than a 100 MHz
bus clock.

During aread access, the MSC8101 device latches data on the falling edge rather than on the usual rising
clock edge. The result is a sufficient timing margin to incorporate data buffer data delay with the same
timing settings still in effect. The DLT3 bit must be set in the corresponding UPM word to indicate the
datalatch point on the falling clock, and MXMR[GPL4DIS] must be set to enable thismode. In areal
system scenario, as shown in Figur e 2, buffering can be required, so the timings must be adjusted
accordingly. Furthermore, the read and write strobe deassertion times are readily met with theillustrated
UPM configuration, but thisis difficult to achieve with a competitive memory access profile in the
alternative GPCM-controlled case.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Hardware Implementation

Host
MSC8101
‘ Buffer ‘ ‘ Buffer ‘
]]
| |
]]
Slave Slave
MSC8101 MSC8101

Figure 2. DSP Farm System

The UPM-controlled HDI16 read and write accesses areillustrated in Figure 3 and Figure 4,
respectively. Both the read and write accesses on the system bus operating in Single-Master MSC8101
mode without data buffering can be accessed within five clocks.

Ons 25ns 50ns
A I . I ‘
e | S 2] - -
| € - — - — » 8101:t12
| | :¢ | 8101:t10
|
CLKIN !
][] .

[B .
e JL T L

I

NOTE: The txx numbers refer to the MSC8101 timing specification. For details, see the MSC8101
Technical Data sheet.

1 1 I
A[0-31] '] I I T U |
| ; T T] T |
I B
T roiess « -2 3 Hojeuse
CSx=HCS —p ! ! L S
| 1
: T HDI16:t44b
| ¢ - HDll6td4d4a o : ,)
|
GPL2_OE = HRD | | ;
|
! I
| »| HDI16:t50 | :
! p HDI16:t55 | |
D[0-16] } :
|
|
PSDVAL : T
, |

Figure 3. HDI16 UPM Read Cycle

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Hardware Implementation

Ons 25ns 50ns
N N [I I . ‘
CLKIN " ___________ ____________ I
L L L LT
I |
"N
|
o L[L L T JE
e - _ _ _ p MDIEETW - - L~
| ! HDI16:58 !
A[0-31] o . [
=5 . 1ies | | :¢_____-h'HD16:t56
:—| % HDIL6:t45 ' HDI16:146
A <« ; 1
I N 8101:t33a
D[0-15] H - ;
PSDVAL i ;

NOTE: The txx numbers refer to the MSC8101 timing specification. For details, see the MSC8101

Technical Data sheet.

Figure 4. HDI16 UPM Write Cycle

To program the UPM with the memory profile for the MSC8101 system bus-to-HDI 16 interface, the

single-beat read and write entries are aslisted in Table 2. All other valuesin the array representing bursts
and periodic timers are not required, and you can set them to OxFFFFFFFF (or OXFFFFFCFF) to disable

For More Information On This Product,
Go to: www.freescale.com

them.
Table 2. HDI16 UPM Settings
Cycle Type Single Read Burst Read Single Write Burst Write Refresh Exception
Offset in UPM 0x0 0x8 0x18 0x20 0x30 0x3C
Contents | 0x0 OXCFFFEC00 OXFFFFFFFF OxCFFFCCO00 OxFFFFFFFF OXxFFFFFFFF OxFFFFC000
J(r@ Offset | g9 OXOFFCECO00 OXFFFFFFFF 0xOCFFCCO00 OXFFFFFFFF OXFFFFFFFF OXxFFFFC005
0x2 OXOFFCECO00 OXFFFFFFFF O0x00FFCCO00 OXFFFFFFFF OXFFFFFFFF OXFFFFFFFF
0x3 OxOFFDECO04 OXFFFFFFFF OxOFFFCC04 OXFFFFFFFF OXFFFFFFFF OXxFFFFFFFF
0x4 Ox3FFFECO01 OXFFFFFFFF 0x3FFFCCO1 OXFFFFFFFF OXFFFFFFFF
0x5 OXFFFFFFFF OXxFFFFFFFF OXxFFFFFFFF OXFFFFFFFF OXFFFFFFFF
0x6 OXFFFFFFFF OXxFFFFFFFF OXFFFFFFFF OXFFFFFFFF OXFFFFFFFF
0x7 OXFFFFFFFF OXFFFFFFFF OXFFFFFFFF OXFFFFFFFF OXFFFFFFFF
0x8 OXxFFFFFFFF OXFFFFFFFF OXFFFFFFFF
0x9 OXxFFFFFFFF OXFFFFFFFF OXFFFFFFFF
OxA OXFFFFFFFF OXFFFFFFFF OXFFFFFFFF
0xB OXxFFFFFFFF OXFFFFFFFF OXFFFFFFFF
0xC OXxFFFFFFFF OXFFFFFFFF
0xD OXFFFFFFFF OXFFFFFFFF
OXE OXxFFFFFFFF OXFFFFFFFF
OxF OXxFFFFFFFF OXFFFFFFFF
4

Freescale Semiconductor, Inc.
Bootstrapping Process

For the example driver, the register settings shown in Table 3 are required.

Table 3. Host Memory Controller Register Settings

Register Value Description
BR6 0x04001081 Base address of the HDI16 port at 0x04000000, 16-bit
port size, UPMA
OR6 OxFFFF8100 32 KB memory space
MAMR 0x00000000 System bus assigned, no refresh, normal operation
BCR 0x00000000 Single Master MSC8101 bus mode

2 Bootstrapping Process

When the HDI16 mode of operation is selected, an external host must bootstrap the device. This section
describes the procedure for bootstrapping the slave MSC8101 over the HDI16 port and the host actions
reguired to download the reset configuration word and application code.

The bootstrapping process has to two parts:
» Writing the Hard Reset Configuration Word (HRCW) to the slave HDI 16.
» Writing the target application image to the slave HDI 16.

When the MSC8101 device is bootstrapped through the HDI16 port, it remainsin reset until the HRCW
is downloaded viathe HDI16 by writing four 8-bit values to the Reset Configuration Registers
(RSCFG[0-3]) at host address offsets 0x8, 0x9, OxA, and 0xB, respectively. The order of the bytesis
important because the LSB of the HRCW must be written to location 0x8. Once al reset configuration
bytes are written to RSCFG[0-3], the MSC8101 device locksthe PLL and DLL, exits reset, and begins
executing its boot ROM. The main actions of the slave MSC8101 boot ROM are as follows:

1. Get the IMMR of the device using the ISBSEL value in the HRCW.

2. Initialize the internal SRAM (CS10 and UPMC), depending on the SCCR settings.
3. Disable the software watchdog.

4. Enable and set up the host port.

5. Load al program blocks, with size not equal to O.

6. Load the end block with size equal to 0 and execute the application code.

The host MSC8101 device performs step 5 by reading the application image array and downloading it
word by word to the HDI 16 port. Figure 5 shows the data transfer flow performed by the host, as well as
the respective actions from the slave MSC8101 boot ROM. Steps 4, 5, and 6 are indicated on the figure.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Bootstrapping Process

< Load Host Interface >

Write Reset Configuration Word

® o

Read Size and Address From Array

Yes

Write End Block

Write Two 16-Bit Words Length
and Two 16-Bit Words Address

—>¢

Write Data and CRC

No

Data Complete?

Yes

v

End

Host

@ C Load Host Interface >
v

Configure Host Port
Disable Software Watchdog

v

> Wait for Host Input

v
’ Load Destination Address ‘

"y

’ Load Code Word ‘

v

‘4
‘ Load Block Size

v

’ Calculate Checksum ‘

‘ Calculate Checksum ‘

End of
Block?

Yes v
@ Set HCR[HF4] Flag to
Indicate End of Load

Yes

Checksum
Needed?

HCR[HF7
Sticky Bit
Set

No > Load Destination Address ‘

v

‘ Calculate Checksum ‘

v

(Begin Host Execution)

Yes

Load Checksum and Checksum

Yes Calculated =

Loaded?
No
| Set HCRIHF7] Sticky Bit

Slave

Figure 5. Host and Slave Bootstrap Data Flows

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

3 Target Application Image

Target Application Image

The bootstrap process over the HDI16 port requires data to be transferred in blocks. Table 4 shows the

block format.
Table 4. Boot Image Format
Word Description
1 Block size in 16 bits of the program block to be loaded, most significant part
2 Block size in 16 bits of the program block to be loaded, least significant part
3 Word Address where the program block is to be loaded most significant part
4 Address where the program block is to be loaded least significant part
5 Program data
6 Program data
7 Checksum, XOR
8 Checksum, XOR

The MSC8101 ROM resident bootstrap codeis sufficiently flexible to complete the whole download task
using the process described here (see Figure 6). The application code is converted from an embedded
link format (ELF) object into an S-record using an ELF to S-record utility. Then, it is convertedto aC
array that can be linked into the host bootstrap application. Each line of an S-record is essentially a
program block downloaded to the host port.

v v

v

C Compiler C Compiler

C Compiler

Slave.eld

elfsrec Utility

\ 4

srec2arr.exe EOS}. .
Utility pplication
S-Recordto C
Conversion @
Utility
A 4 A 4
C Compiler C Compiler

Host Tool Chain .

Figure 6. Conversion Process

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Target Application Image

The slave application files are compiled, assembled, and linked to produce an ELF object (. e1d file)
using the MetroWerks® Codewarrior® tools. Thisfile isthen converted to an S-record using the
elfsrec.exe application provided with the Codewarrior tools. The application isinvoked with the
following DOS command:

elfsrec.exe -w <filename.eld>

The —w specifies that an S2 format S-record is generated, and the resulting output file nameis
<filename.eld. s>, which should berenamedto <filename. s>. The next stepisto run the

srec2arr.exe utility on thisfile with the following DOS command:
srec2arr.exe <filename.s>

This command generates an output filenamed <slaveimg.c>. The srec2arr.exe programisa
small utility that takes the address, length, and data from each line of the S2 record and convertsittoaC
array in the following format:

» 2 words length (4 bytes)

» 2 words address (4 bytes)

* Number of words described in length as data
» 2words CRC (4 bytes)

« 2 words CRC (4 Bytes)

Table 5 illustrates one line of an example S-record (numbers in hexadecimal) and the converted
equivalent C array format.

Table 5. Format of One Line of an S-Record and Converted C Array

S-Record Length | Address Data CRC
Type
S2 14 0013CO0 3104203A800190C0 3D
90C090C0D8030000
Length Address Data Words CRC CRC
0x0000, 0x0000, 0x3104,0x203A,0x8001,0x90C0, 0x0000,0x0000, | 0x0000,0x0000,
0x000A, 0x13CO0, 0x90C0,0x90C0,0xD803,0x0000,

The conversion processfirst strips the S-record type. The number of bytesin length within the S-record is
changed to a 32-hit value described in two 16-bit words, and the value is halved to describe 16-bit words
rather than bytes. The length described in the C array must leave aremainder of two when it is divided by
four to match the boot ROM program requirements. The length for the driver example is OxA, which
meets this requirement. If necessary, additional dummy 16 bit words (0x0000) are added at the end of the
real datawords, and the length value is incremented appropriately. The address field for an S2 record is
three bytes, which are converted to two 16-bit words. The srec2arr . exe utility does not support the
S1 and S3 record types, although the code can easily be modified to handle them.

The actual datawords are then converted to 16-bit quantities. Finally, the CRC and CRC are added. These
are not calculated but are simply padded with 0x0000 because the CRC check in the boot ROM can
optionally be ignored. The source code (srec2arr. c) isprovided in Appendix A to add CRC
generation, if required.

Thelast line of the array includes the end block (length 0 address 0), which ends the download process
and starts executing the downloaded program. If the start addressis not zero, it must be modified to the
appropriate value, either inthe srec2arr. ¢ source code or in the generated C array. The
srec2arr.c listingisprovided in Appendix A for reference and can be modified as needed.

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

MSC8101ADS Test Configuration Example

4 MSC8101ADS Test Configuration Example

A simple example of bootstrapping the M SC8101 through the HDI16 is provided to test the hardware
interconnection and software driver functionality. The test software initializes the host memory controller
so that the slave board HDI16 is mapped as a 16-bit port at location 0x04000000. At start-up, the slave
board isin Reset mode waiting for the reset configuration word to be written to it. The host writes the
HRCW to the slave and then waits for reset to complete before loading the target application. When the
download completes, the slave begins executing the downloaded code, which simply flashes the Red
LED (LD9) on the slave MSC8101ADS board. Table 6 and Table 7 detail the hardware set-up for the
host and slave M SC8101ADS boards.

Note: Connecting two MSC8101ADS boards resultsin triple buffering that theoretically does not meet
the timing specifications or provide aggressive timing profiles required in atypical system
where no buffering or asingle level of buffering is expected. The timings (and UPM settings)
provided therefore do not include buffering delays. However these timings have been verified to
work between two MSC8101ADS boards and can be used for test purposes.

Table 6. Host MSC8101ADS Hardware Switch Settings

Switch Value Description
SW9 MODCK [1-6] = 000101 Clock mode 40
1 ON
2 ON
3 ON
4 OFF
5 ON
6 OFF
7 OFF Reset Configuration Word read from FPGA
8 OFF HPE = 0, Host Port not enabled
SW10
1 ON EE1 = 0, Device is in debug mode after reset
2 ON EE[4-5] = 00 = boot from Bus
3 ON
4 ON N/A
Swi1
1 ON HDSP = 0, Active Low data strobe polarity
2 ON HDDS = 0, Single data strobe mode
3 ON H8BIT = 0, 16 bit Mode
4 ON N/A
ui18 20 MHz Note: The oscillator value should be the same for both
host and slave boards. 16.384 MHz and 20 MHz have
been tested.
Table 7. Slave MSC8101ADS Hardware Switch Settings
Switch Value Description
SW9
1 ON MODCK [1-6] = 000101 Clock mode 40
2 ON
3 ON
4 OFF
5 ON
6 OFF
7 OFF N/A in Host port mode
8 ON HPE = 1, Host Port enabled

For More Information On This Product,
Go to: www.freescale.com

MSC8101ADS Test Configuration Example

10

Freescale Semiconductor, Inc.

Table 7. Slave MSC8101ADS Hardware Switch Settings (Continued)

Switch Value Description
SW10
1 OFF SC140 core runs after exiting reset
2 ON EE[4-5] = 01 = boot from HDI16 Port
3 OFF
4 ON N/A
SW1
1 ON HDSP = 0, Active Low data strobe polarity
2 OFF HDDS = 1, Dual data strobe mode
3 ON H8BIT = 0, 16 bit Mode
4 ON N/A
ui18 20 MHz Note: The oscillator value should be the same for both
host and slave boards. 16.384 MHz and 20 MHz have
been tested.

Connect the two M SC8101ADS boards using the wiring description in Table 8.

Table 8. Cable Interconnect Wiring Description

Host Board Pin Signal Signal
(P1)C4 TOOLCSb1 HCS1 (P4)25
(P1)C5 TOOLCSb2 HCS2 (P4)26
(P1)A15 EXPA30 HA3 (P4)24
(PL)A14 EXPA29 HA2 (P4)23
(P1)A13 EXPA28 HAL (P4)22
(P1)A12 EXPA27 HAOQ (P4)21
(P1)D9 EXPGPL2b HRD/HRW (P4)29
(P1)D4 EXPWEOb HWR/HDS (P4)30
(P1)C14 EXPDO HDO (P4)3
(P1)C15 EXPD1 HD1 (P4)4
(P1)C16 EXPD2 HD2 (P4)5
(P1)C17 EXPD3 HD3 (P4)6
(P1)C18 EXPD4 HD4 (P4)7
(P1)C19 EXPD5 HD5 (P4)8
(P1)C20 EXPD6 HD6 (P4)9
(P1)C21 EXPD7 HD7 (P4)10
(P1)C22 EXPD8 HD8 (P4)11
(P1)C23 EXPD9 HD9 (P4)12
(P1)C24 EXPD10 HD10 (P4)13
(P1)C25 EXPD11 HD11 (P4)14
(P1)C26 EXPD12 HD12 (P4)15
(P1)C27 EXPD13 HD13 (P4)16
(P1)C28 EXPD14 HD14 (P4)17
(P1)C29 EXPD15 HD15 (P4)18

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Related Documents

Table 8. Cable Interconnect Wiring Description (Continued)

Host Board Pin Signal Signal
(P1)C31 IRQ5 HRRQ/HACK (P4)27
(P1)C30 IRQ4 HREQ/HTRQ (P4)28

The slave image Cfileis created as follows:

1. Load the slave application project into the CodeWarrior tools by double clicking on the
led flash.mecpfilein...\hdilé appnote\Led flash\build\.

2.Build the project to create the . e1d file, whichisnamed starcore . eld. Closethe project.

3. Execute the dfsrec utility in a DOS window using the command line: elfsrec -w
starcore.eld.

4. Whenthe starcore.eld. s fileiscreated, renameit to starcore.s.

5. Execute the utility srec2arr.exe on the starcore.s file using the command line: srec2arr starcore.s Note
that the srec2arr.exefileislocated in . . . \hdilé appnote\srec_to array hdilé\.

6.Whenthe slaveimg. c fileis created, copy it to the location
...\hdile_appnote\host\source.

7.Open the project host.mcpin . . .\hdil6 appnote\host\build, add slaveimg.c, and com-
pile the project.

Download code onto the MSC8101ADS board via the EOnCE debug interface, as follows:
1. Initialize host and slave switch settings to those indicated in Table 6 and Table 7.

2. Connect the two boards as shown in Table 8.

3. Switch on both boards and press PRESET (SW8) on both boards.

4. L oad the software (CodeWarrior project host . mcp) onto the host MSC8101ADS using the debug
port.

The slave board LEDs L D8 and L D9 should be ON.
5. Start the program
Slave board LEDs LD8 and LD9 should go out and then L D9 should flash intermittently.

5 Related Documents

[1] SC140 DSP Core Reference Manual (MNSC140CORE/D), Motorola.
[2] MSC8101 Reference Manual (M SC8101RM/D), Motorola.

[3] MSC8101ADSUser’s Manual (M SC8101ADSUM/D), Motorola.

[4] MSC8101 Technical Data sheet (MSC8101/D), Motorola

APPENDIXES

A SREC_TO_ARRAY.C Listing

#include <stdio.h> /* 'sprintf’ */
#include <string.h> /* ’'strlen’, ’'strncmp’ */
#include <stdlib.h> /* "atoi’ */

11

For More Information On This Product,
Go to: www.freescale.com

Related Documents

12

Freescale Semiconductor, Inc.

/ -
* DEFINES

/* ASCII characters */

#define CHAR NUMBERO 0x30
#define CHAR NUMBER1 0x31
#define CHAR NUMBER2 0x32
#define CHAR NUMBER3 0x33
#define CHAR NUMBER4 0x34
#define CHAR NUMBERS5 0x35
#define CHAR NUMBERG6 0x36
#define CHAR NUMBER7 0x37
#define CHAR NUMBERS 0x38
#define CHAR NUMBERY 0x39
#define CHAR LETTER A 0x41
#define CHAR LETTER B 0x42
#define CHAR LETTER C 0x43
#define CHAR LETTER D 0x44
#define CHAR LETTER E 0x45
#define CHAR LETTER F 0x46

void main(int argc, char *argvl[])
{

FILE *pfiln;

FILE *pfioOut;

char ucCho;

char ucChi;

int uliCounter;

char ucLength;

char aucTemp [2] ;

int wulii;

int ulij;

int wuliRemainder;

int wuliSize;

int wuliEndFlag;

char szCurrentString[120];
char szTempString[120];

uliEndFlag = 0;

/* Ignore the application name */

/* argv[0] contains application name */

/* decrease arg count, increase arg value */

argv++;

strcpy (szCurrentString, *argv) ; /* Parse parameters */
strcpy (szTempString, &szCurrentString[0]); /* get loader file name */
if ((pfiIn = fopen (szTempString, "rb")) ==NULL)

{
printf ("error \n");
exit (1) ;
}
if ((pfiout = fopen(".\\slaveimg.c","wb")) ==NULL)
{
printf ("error2 \n");
exit (1) ;
!

/* Get line header S? */

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

ucChoO =
ucChl =

getc (pfiln) ;
getc (pfiln) ;

if ((ucChO0=='S")&&(ucChl=="'0"))

{

uliCounter = 0x0000;

for (ulii=0; ulii < 2; ulii++)

{

uliCounter <<= 4;
ucLength = getc (pfiIn);

if
if
if
if
if
if
if
if
if

(ucLength
(ucLength
(ucLength
(ucLength
(ucLength
(ucLength
(ucLength
(ucLength
(ucLength

if
if
if
if
if
if

(ucLength
(ucLength
(ucLength
(ucLength
(ucLength
(ucLength

}

= CHAR LETTER A
= CHAR LETTER B
= CHAR LETTER C
= CHAR LETTER D

= CHAR LETTER F

= CHAR NUMBER1)

CHAR NUMBER2)

= CHAR NUMBER3)
= CHAR NUMBER4)
= CHAR NUMBERS5)
= CHAR NUMBERS6)

= CHAR NUMBER7)
= CHAR NUMBERS)

CHAR NUMBER9)

)
)
)
)
CHAR_LETTER_E)
)

for (ulii=0; ulii<(uliCounter*2); ulii++)

{
}

/* get carriage return */
aucTemp [0] = getc(pfiln);
aucTemp [0] = getc(pfiln);

aucTemp [0]

fprintf (pfidut,

= getc(pfiln);

"#include \"prototype.h\"

uliCounter
uliCounter
uliCounter
uliCounter
uliCounter
uliCounter
uliCounter
uliCounter
uliCounter

uliCounter
uliCounter
uliCounter
uliCounter
uliCounter
uliCounter

fprintf (pfiOut, "extern UWordlé ausilmagel[]={");

/* Get line header S? */
ucCh0 = getc(pfiln);
ucChl = getc(pfiln);

while (uUliEndFlag==0)

{

,pfiout) ;
,pfiout) ;
,pfiout) ;
,pfilut) ;

putc (' 0’)
)
)
)
)

,pfilut) ;
)
)
)
)
)

putc (' x’
putc ('0’
putc ('0’
putc(’0’
putc(’0’
putc(’,’
putc ('0’
putc ('x’
putc ('0’
putc(’0’

,pfilOut

,pfilOut
,pfiout) ;
,pfiout) ;
,pfidut) ;
,pfioOut

I

7

uliCounter = 0x0000;

For More Information On This Product,
Go to: www.freescale.com

Related Documents

0x0001;
0x0002;
0x0003;
0x0004;
0x0005;
0x0006;
0x0007;
0x0008;
0x0009;

= 0x000A;
= 0x000B;
= 0x000C;
= 0x000D;
= 0x000E;
= 0xO000F;

// global defines \n");

13

Related Documents

Freescale Semiconductor, Inc.

for (ulii=0; ulii < 2; ulii++)

{

uliCounter <<= 4;
ucLength = getc (pfiIn);

if (ucLength CHAR NUMBER1) uliCounter |= 0x0001;
if (ucLength == CHAR NUMBER2) uliCounter |= 0x0002;
if (ucLength == CHAR NUMBER3) uliCounter |= 0x0003;
if (ucLength == CHAR NUMBER4) uliCounter |= 0x0004;
if (ucLength == CHAR NUMBER5) uliCounter |= 0x0005;
if (ucLength == CHAR NUMBER6) uliCounter |= 0x0006;
if (ucLength == CHAR NUMBER7) uliCounter |= 0x0007;
if (ucLength CHAR NUMBERS8) uliCounter |= 0x0008;
if (ucLength == CHAR NUMBER9) uliCounter |= 0x0009;
if (ucLength == CHAR LETTER A) uliCounter |= 0x000A;
if (ucLength == CHAR LETTER B) uliCounter |= 0x000B;
if (ucLength == CHAR LETTER C) uliCounter |= 0x000C;
if (ucLength == CHAR LETTER D) uliCounter |= 0x000D;
if (ucLength CHAR LETTER E) uliCounter |= 0x000E;
if (ucLength == CHAR IETTER F) uliCounter |= 0x000F;

}

uliSize = uliCounter-4; /* take away ucLength and crc */

uliRemainder=(uliSize+4)%8; /* add 4 bytes for bootload crc and */
/* see how short of div by 8 it is */

14

if (uliRemainder !=

{
}

uliSize =

uliRemainder =

if (uliSize <= OxF)

{

fprintf (pfioOut,

fprintf (pfidut,

}

putc(’,’,pfilut) ;

putc ('x’,pfiOut

)
putc (' 0’ ,pfilut) ;
)
putc (' 0’ ,pfilut)

7

7

putc(’0’,pfilut) ;
= getc(pfiln);
putc (aucTemp [0] ,pfiOut) ;

= getc(pfiln);
putc (aucTemp [0] ,pfiOut) ;

putc(’,’,pfilut) ;
putc(’0’,pfilut) ;
putc (‘x’,pfilut) ;

aucTemp [0]

aucTemp [0]

(uliSize+uliRemainder) /2;

(8-uliRemainder) ;

"0%X", uliSize) ;

"$X", uliSize)

for (ulij=0; ulij<4; ulij++)

{

aucTemp [0]

= getc(pfiln);

putc (aucTemp [0] ,pfiOut) ;

}

/* Get data words */

i

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.
Related Documents

for (ulii=0; ulii<((uliCounter-4)/2); ulii++)

{
putc(’,’,pfilut) ;
putc(’0’,pfilut) ;
putc ('x’,pfilut) ;
for (ulij=0; ulij<4; ulij++)
{
aucTemp [0] = getc(pfiln);
putc (aucTemp [0] ,pfiOut) ;
}
}
/* if ucLength of block is not divisible by 8 bytes add padding words. */
if (uliRemainder != 0)
{

printf ("$d ",uliRemainder) ;
for (ulij=0; ulij<((uliRemainder)/2) ; ulij++)
{
putc(’,’,pfilut) ;
putc (' 0’ ,pfilut) ;
putc ('x’,pfilut) ;
putc(’0’,pfilut) ;
)
)
)

putc (' 0’ ,pfilut) ;
putc (’0’,pfiOut

putc (' 0’ ,pfilut) ;

7

}

/* read checksum and carriage return */
aucTemp [0] = getc(pfiln);
aucTemp [0] = getc(pfiln);
aucTemp [0] = getc(pfiln);
aucTemp [0] = getc(pfiln);

/* add two 16 bit word for checksum */
putc(’,’,pfilut) ;

putc(’0’,pfiOut
putc ('x’,pfiOut

7

)
)i
putc(’0’,pfilut) ;
putc(’0’,pfilut) ;
putc (' 0’ ,pfilut) ;
putc(’0’,pfilut) ;
putc(’,’,pfilut) ;
)
)
)
)
)
)

putc (' 0’ ,pfilut) ;
putc (‘x’,pfilut) ;
putc (' 0’ ,pfilut) ;
putc (' 0’ ,pfilut) ;
putc (’0’,pfiOut
putc(’0’,pfiOut

7

/* Get line header S? */

ucCh0 = getc(pfiln);
ucChl = getc(pfiln);

if ((ucCh0=="S") && (ucChl=="8"))

{

uliEndFlag = 1;

/* Add End Block */
for(ulii=0; ulii<8; ulii++)

{

15

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

else

}

putc(’,’,pfilut) ;
putc (' 0’ ,pfilut) ;
putc ('x’,pfilut) ;
putc(’0’,pfilut) ;
)
)
)

putc (' 0’ ,pfilut) ;
putc(’0’,pfilut) ;
putc(’0’,pfilut) ;

}

fprintf (pfiOut, " } ")
putc (' \n’,pfiout) ;
break;

putc(’,’,pfilut) ;
putc (' \n’,pfiout) ;
putc(’ ’,pfilut) ;

printf ("\n ") ;
printf ("Conversion Complete") ;

HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour
Centre, 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong

852-26668334

TECHNICAL INFORMATION CENTER:
1-800-521-6274
HOME PAGE:

http://motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use
Motorola products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola
makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Motorola assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data
sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola
products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

@ MOTOROLA

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna
and StarCore are trademarks of Motorola, Inc. Metrowerks and CodeWarrior are registered
trademarks of Metrowerks Corp. in the U.S. and/or other countries. All other product or service names
are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action
Employer.

© Motorola, Inc. 2002

AN2311/D

For More Information On This Product,

Go to: www.freescale.com

	1 Hardware Implementation
	2 Bootstrapping Process
	3 Target Application Image
	4 MSC8101ADS Test Configuration Example
	5 Related Documents

