
The Motorola StarCore®-based MSC8101 device incorporates a communications processor module
(CPM) with high-speed serial communications interfaces and a system integration unit (SIU). The SIU
can connect to external memory, such as SRAM, Flash, SDRAM, and peripheral devices. The external
system bus can be configured in either a 64-bit or 32-bit wide mode, the latter enabling the use of the
16-bit wide slave Host Data Interface (HDI16). An external host can read and write to the slave HDI16
port to transfer control information and data and to bootstrap the device. When bootstrapping through the
HDI16 port, the external host is required to write the Hard Reset Configuration Word (HRCW) as well as
the desired target application to the slave MSC8101 device. The internal ROM of the slave MSC8101
provides a small bootloader program that receives the application code in a certain format, which it parses
and executes.

This document describes a software driver to bootstrap a slave MSC8101 device through the slave HDI16
port from an external MSC8101 host. The driver software includes a utility to convert an S-record into
the format required by the MSC8101 internal boot ROM. The device driver is provided as an example for
developers and not as a supported product. The physical connections between a host MSC8101 system
bus operating in Single-Master mode and the HDI16 port of the slave MSC8101 are also described. After
a discussion of the boot process through the HDI16 port and a method of creating a code image for the
target slave DSP, there is an example hardware set-up of two MSC8101 Application Development
System (MSC8101ADS) boards and instructions on how to run the example code.

1 Hardware Implementation
The HDI16 port operation requires two MSC8101 devices (a host and a slave), with the system bus of the
host connected to the HDI16 port of the slave (see Figure 1). The host accesses the HDI16 port of the
slave device as a memory-mapped region. The host gains access through the system bus using its own
memory controller UPM-controlled chip select. The HDI16 port has two chip select signals that are
logically ORed internally. The first (HCS1) selects individual devices, and the other (HCS2) typically
broadcasts data to a number of devices—for example, in DSP farm applications. For the driver discussed
here, CS6 on the host DSP connects to HCS1 of the slave. The HDI16 port is big-endian, so the data bus
connection between the host system bus and slave HDI16 port is D[0–15] → HD[0–15], with the address
bus connected so that A[27–30] → HA[0–3]. The interface uses the dual strobe mode with separate read
(HRD) and write (HWR) data strobes connected to PGPL2 and PDQM0, respectively, on the host.

The slave HDI16 port generates interrupts to the host in either single or dual request mode. Dual request
mode is usually preferred because separate request lines indicate a read (HRRQ) or write (HTRQ) request,
whereas the single request mode indicates only that HDI16 is ready to read or write data. Therefore, the
host must poll the HDI16 registers to determine whether the request is for a read or a write, thus adding
overhead. Since sufficient IRQ inputs are available on the host, the driver uses dual request mode. The
two request lines from the slave MSC8101 connect to IRQ[4–5] on the host for interrupt servicing
options.

Application Note

AN2311/D
Rev. 0, 8/2002

Bootstrapping the
MSC8101 Device
Through the HDI16 Port

by Joe Rebello

CONTENTS

1 Hardware
Implementation 1

2 Bootstrapping Process .. 5
3 Target Application

Image 7
4 MSC8101ADS Test

Configuration Example . 9
5 Related Documents...... 11
A 65(&B72B55<�&

LLVWLQJ���������������������� ��

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

2

Hardware Implementation

Figure 1. MSC8101 Host to HDI16 Hardware Interface

At power-on reset, several pins that determine the boot source and chip mode of operation are sampled.
Table 1 shows the pins that enable the MSC8101 for HDI16 operation in 16-bit dual data strobe mode.

The MSC8101 device has a highly configurable memory controller with a user-programmable machine
(UPM) interface, a general-purpose chip select machine (GPCM), and an SDRAM machine.

The UPM-controlled 60x-compatible system bus and HDI16 port are both programmable. You can
program the memory controller and UPM RAM to meet all the MSC8101 host port timing requirements.
The UPM offers very flexible memory control options with one quarter clock resolution. However,
depending upon the CPM:bus clock ratio, the relative phases of this one quarter of one clock granularity
may vary. Timing needs may change with different clock ratios. To ensure that the timing
recommendations developed here hold true at any clock speed or ratio, the analysis is performed using
the maximum bus clock of 100 MHz and using only the invariable one half of one clock boundaries (T1
and T3) to change signals. Therefore, the recommendations hold true for anything less than a 100 MHz
bus clock.

During a read access, the MSC8101 device latches data on the falling edge rather than on the usual rising
clock edge. The result is a sufficient timing margin to incorporate data buffer data delay with the same
timing settings still in effect. The DLT3 bit must be set in the corresponding UPM word to indicate the
data latch point on the falling clock, and MxMR[GPL4DIS] must be set to enable this mode. In a real
system scenario, as shown in Figure 2, buffering can be required, so the timings must be adjusted
accordingly. Furthermore, the read and write strobe deassertion times are readily met with the illustrated
UPM configuration, but this is difficult to achieve with a competitive memory access profile in the
alternative GPCM-controlled case.

Table 1. Slave Hardware Pin Configuration

Pin Value Description

RSTCONF 1 &RQILJXUDWLRQ�sODYH�sHOHFWHG

EE0 0 6&����cRUH�sWDUWV�LQ�QRUPDO�SURFHVVLQJ�PRGH�DIWHU�UHVHW

HPE/EE1 1 HPE=1, Host port Enabled

BTM[0–1]/EE[4:5] 01 BTM=01 MSC8101 boots from HDI16

HDDS 1 Dual data strobe mode enabled

H8BIT 0 16-Bit mode selected

MSC8101 Host MSC8101 Slave

CS6

PGPL2

PDQM0

A[27–30]

D[0–15]

IRQ4

IRQ5

HCS1

HRD

HWR

HA[0–3]

HD[0–15]

HTRQ

HRRQ

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

3

Hardware Implementation

Figure 2. DSP Farm System

The UPM-controlled HDI16 read and write accesses are illustrated in Figure 3 and Figure 4,
respectively. Both the read and write accesses on the system bus operating in Single-Master MSC8101
mode without data buffering can be accessed within five clocks.

Figure 3. HDI16 UPM Read Cycle

Slave
Slave

Host
MSC8101

Buffer Buffer

Slave

MSC8101
Slave

Slave
Slave

Slave

MSC8101
Slave

0 1 2 3 4 0

0ns 25ns 50ns

CLKIN

T3

A[0–31]

CSx = HCS

T1T1

GPL2_OE = HRD

D[0–16]

PSDVAL

1 2

HDI16:t57R HDI16:t58

HDI16:t56

HDI16:t44bHDI16:t44a

HDI16:t50
HDI16:t55

HDI16:t53

8101:t12
8101:t10

NOTE: The txx numbers refer to the MSC8101 timing specification. For details, see the MSC8101
Technical Data sheet.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4

Hardware Implementation

Figure 4. HDI16 UPM Write Cycle

To program the UPM with the memory profile for the MSC8101 system bus-to-HDI16 interface, the
single-beat read and write entries are as listed in Table 2. All other values in the array representing bursts
and periodic timers are not required, and you can set them to 0xFFFFFFFF (or 0xFFFFFCFF) to disable
them.

Table 2. HDI16 UPM Settings

Cycle Type Single Read Burst Read Single Write Burst Write Refresh Exception

Offset in UPM 0x0 0x8 0x18 0x20 0x30 0x3C

Contents
@ Offset
+

0x0 0xCFFFEC00 0xFFFFFFFF 0xCFFFCC00 0xFFFFFFFF 0xFFFFFFFF 0xFFFFC000

0x1 0x0FFCEC00 0xFFFFFFFF 0x0CFFCC00 0xFFFFFFFF 0xFFFFFFFF 0xFFFFC005

0x2 0x0FFCEC00 0xFFFFFFFF 0x00FFCC00 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0x3 0x0FFDEC04 0xFFFFFFFF 0x0FFFCC04 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0x4 0x3FFFEC01 0xFFFFFFFF 0x3FFFCC01 0xFFFFFFFF 0xFFFFFFFF

0x5 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0x6 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0x7 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0x8 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0x9 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xA 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xB 0xFFFFFFFF 0xFFFFFFFF 0xFFFFFFFF

0xC 0xFFFFFFFF 0xFFFFFFFF

0xD 0xFFFFFFFF 0xFFFFFFFF

0xE 0xFFFFFFFF 0xFFFFFFFF

0xF 0xFFFFFFFF 0xFFFFFFFF

0 1 2 3 4 0

0ns 25ns 50ns

CLKIN

T3

A[0–31]

CS = HCS

T1T1

BS = HWR

D[0–15]

PSDVAL

1 2

HDI16:t57W
HDI16:t58

HDI16:t56

HDI16:t47
HDI16:t48

8101:t33a

HDI16:t46HDI16:t45

NOTE: The txx numbers refer to the MSC8101 timing specification. For details, see the MSC8101
Technical Data sheet.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5

Bootstrapping Process

For the example driver, the register settings shown in Table 3 are required.

2 Bootstrapping Process
When the HDI16 mode of operation is selected, an external host must bootstrap the device. This section
describes the procedure for bootstrapping the slave MSC8101 over the HDI16 port and the host actions
required to download the reset configuration word and application code.

The bootstrapping process has to two parts:

• Writing the Hard Reset Configuration Word (HRCW) to the slave HDI16.

• Writing the target application image to the slave HDI16.

When the MSC8101 device is bootstrapped through the HDI16 port, it remains in reset until the HRCW
is downloaded via the HDI16 by writing four 8-bit values to the Reset Configuration Registers
(RSCFG[0–3]) at host address offsets 0x8, 0x9, 0xA, and 0xB, respectively. The order of the bytes is
important because the LSB of the HRCW must be written to location 0x8. Once all reset configuration
bytes are written to RSCFG[0–3], the MSC8101 device locks the PLL and DLL, exits reset, and begins
executing its boot ROM. The main actions of the slave MSC8101 boot ROM are as follows:

1. Get the IMMR of the device using the ISBSEL value in the HRCW.

2. Initialize the internal SRAM (CS10 and UPMC), depending on the SCCR settings.

3. Disable the software watchdog.

4. Enable and set up the host port.

5. Load all program blocks, with size not equal to 0.

6. Load the end block with size equal to 0 and execute the application code.

The host MSC8101 device performs step 5 by reading the application image array and downloading it
word by word to the HDI16 port. Figure 5 shows the data transfer flow performed by the host, as well as
the respective actions from the slave MSC8101 boot ROM. Steps 4, 5, and 6 are indicated on the figure.

Table 3. Host Memory Controller Register Settings

Register Value Description

BR6 0x04001081 Base address of the HDI16 port at 0x04000000, 16-bit
port size, UPMA

OR6 0xFFFF8100 32 KB memory space

MAMR 0x00000000 System EXV�DVVLJQHG��QR�UHIUHVK��QRUPDO�RSHUDWLRQ

BCR 0x00000000 Single Master MSC8101 bus mode

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6

Bootstrapping Process

Figure 5. Host and Slave Bootstrap Data Flows

Load Host Interface

Write Reset Configuration Word

Read Size and Address From Array

Size = 0?

Write Two 16-Bit Words Length
and Two 16-Bit Words Address

Write Data and CRC

Data Complete?

Write End Block

End

Host

Load Host Interface

Configure Host Port
Disable Software Watchdog

Wait for Host Input

Load Block Size

Calculate Checksum

Size = 0?

Checksum
Needed?

Slave
Load Destination Address

Calculate Checksum

Begin Host Execution

Yes

No

No

Yes

HCR[HF7]
Sticky Bit

Set

Set HCR[HF4] Flag to
Indicate End of Load

Load Destination Address

Calculate Checksum

Load Code Word

End of
Block?

Load Checksum and Checksum

Calculated =
Loaded?

Set HCR[HF7] Sticky Bit

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

5 6

6

4 5

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7

Target Application Image

3 Target Application Image
The bootstrap process over the HDI16 port requires data to be transferred in blocks. Table 4 shows the
block format.

The MSC8101 ROM resident bootstrap code is sufficiently flexible to complete the whole download task
using the process described here (see Figure 6). The application code is converted from an embedded
link format (ELF) object into an S-record using an ELF to S-record utility. Then, it is converted to a C
array that can be linked into the host bootstrap application. Each line of an S-record is essentially a
program block downloaded to the host port.

Figure 6. Conversion Process

Table 4. Boot Image Format

Word Description

1 Block size in 16 bits of the program block to be loaded, most significant part

2 Block size in 16 bits of the program block to be loaded, least significant part

3 Word Address where the program block is to be loaded most significant part

4 Address where the program block is to be loaded least significant part

5 Program data

6 Program data

7 Checksum, XOR

8 Checksum, XOR

C Compiler C Compiler

Slave.eld

Slave1.c Slave2.c Slave3.c

Slave.s

elfsrec Utility

Host.c

Host
Application

srec2arr.exe
Utility

slaveimg.c

C Compiler C Compiler

Host.elf

S-Record to C
Conversion
Utility

Host Tool Chain

C Compiler

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8

Target Application Image

The slave application files are compiled, assembled, and linked to produce an ELF object (.eld file)
using the MetroWerks® Codewarrior® tools. This file is then converted to an S-record using the
elfsrec.exe application provided with the Codewarrior tools. The application is invoked with the
following DOS command:

elfsrec.exe -w <filename.eld>

The –w specifies that an S2 format S-record is generated, and the resulting output file name is
<filename.eld.s>, which should be renamed to <filename.s>. The next step is to run the
srec2arr.exe utility on this file with the following DOS command:

srec2arr.exe <filename.s>

This command generates an output file named <slaveimg.c>. The srec2arr.exe program is a
small utility that takes the address, length, and data from each line of the S2 record and converts it to a C
array in the following format:

• 2 words length (4 bytes)

• 2 words address (4 bytes)

• Number of words described in length as data

• 2 words CRC (4 bytes)

• 2 words CRC (4 Bytes)

Table 5 illustrates one line of an example S-record (numbers in hexadecimal) and the converted
equivalent C array format.

The conversion process first strips the S-record type. The number of bytes in length within the S-record is
changed to a 32-bit value described in two 16-bit words, and the value is halved to describe 16-bit words
rather than bytes. The length described in the C array must leave a remainder of two when it is divided by
four to match the boot ROM program requirements. The length for the driver example is 0xA, which
meets this requirement. If necessary, additional dummy 16 bit words (0x0000) are added at the end of the
real data words, and the length value is incremented appropriately. The address field for an S2 record is
three bytes, which are converted to two 16-bit words. The srec2arr.exe utility does not support the
S1 and S3 record types, although the code can easily be modified to handle them.

The actual data words are then converted to 16-bit quantities. Finally, the CRC and CRC are added. These
are not calculated but are simply padded with 0x0000 because the CRC check in the boot ROM can
optionally be ignored. The source code (srec2arr.c) is provided in Appendix A to add CRC
generation, if required.

The last line of the array includes the end block (length 0 address 0), which ends the download process
and starts executing the downloaded program. If the start address is not zero, it must be modified to the
appropriate value, either in the srec2arr.c source code or in the generated C array. The
srec2arr.c listing is provided in Appendix A for reference and can be modified as needed.

Table 5. ����������O	
�L�	
�����	 S�R
�����	��C�	�
��
��� A����

S-Record
Type

Length Address Data CRC

S2 14 0013C0 3104203A800190C0
90C090C0D8030000

3D

Length Address Data Words CRC CRC

0x0000,
0x000A,

0x0000,
0x13C0,

�[������[���$��[������[��&�,
0x90C0,0x90C0,0xD803,0x0000,

0x0000,0x0000, 0x0000,0x0000,

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

9

MSC8101ADS Test Configuration Example

4 MSC8101ADS Test Configuration Example
A simple example of bootstrapping the MSC8101 through the HDI16 is provided to test the hardware
interconnection and software driver functionality. The test software initializes the host memory controller
so that the slave board HDI16 is mapped as a 16-bit port at location 0x04000000. At start-up, the slave
board is in Reset mode waiting for the reset configuration word to be written to it. The host writes the
HRCW to the slave and then waits for reset to complete before loading the target application. When the
download completes, the slave begins executing the downloaded code, which simply flashes the Red
LED (LD9) on the slave MSC8101ADS board. Table 6 and Table 7 detail the hardware set-up for the
host and slave MSC8101ADS boards.

Note: Connecting two MSC8101ADS boards results in triple buffering that theoretically does not meet
the timing specifications or provide aggressive timing profiles required in a typical system
where no buffering or a single level of buffering is expected. The timings (and UPM settings)
provided therefore do not include buffering delays. However these timings have been verified to
work between two MSC8101ADS boards and can be used for test purposes.

Table 6. Host MSC8101ADS Hardware Switch Settings

Switch Value Description

SW9
1
2
3
4
5
6
7
8

ON
ON
ON
OFF
ON
OFF
OFF
OFF

MODCK [1-6] = 000101 Clock mode 40

Reset Configuration Word read from FPGA
HPE = 0, Host Port not enabled

SW10
1
2
3
4

ON
ON
ON
ON

EE1 = 0, Device is in debug mode after reset
EE[4-5] = 00 = boot from Bus

N/A

SW1
1
2
3
4

ON
ON
ON
ON

HDSP = 0, Active Low data strobe polarity
HDDS = 0, Single data strobe mode
H8BIT = 0, 16 bit Mode
N/A

U18 �� 0+] Note: The oscillator value should be the same for both
host and slave boards. 16.384 MHz and 20 MHz have
been tested.

Table 7. Slave MSC8101ADS Hardware Switch Settings

Switch Value Description

SW9
1
2
3
4
5
6
7
8

ON
ON
ON
OFF
ON
OFF
OFF
ON

MODCK [1-6] = 000101 Clock mode 40

N/A in Host port mode
HPE = 1, Host Port enabled

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10

MSC8101ADS Test Configuration Example

Connect the two MSC8101ADS boards using the wiring description in Table 8.

SW10
1
2
3
4

OFF
ON
OFF
ON

SC140 core runs after exiting reset
EE[4-5] = 01 = boot from HDI16 Port

N/A

SW1
1
2
3
4

ON
OFF
ON
ON

HDSP = 0, Active Low data strobe polarity
HDDS = 1, Dual data strobe mode
H8BIT = 0, 16 bit Mode
N/A

U18 20 MHz Note: The oscillator value should be the same for both
host and slave boards. 16.384 MHz and 20 MHz have
been tested.

Table 8. Cable Interconnect Wiring Description

Host Board Pin Signal Signal

(P1)C4 TOOLCSb1 HCS1 (P4)25

(P1)C5 TOOLCSb2 HCS2 (P4)26

(P1)A15 EXPA30 HA3 (P4)24

(P1)A14 EXPA29 HA2 (P4)23

(P1)A13 EXPA28 HA1 (P4)22

(P1)A12 EXPA27 HA0 (P4)21

(P1)D9 EXPGPL2b HRD/HRW (P4)29

(P1)D4 EXPWE0b HWR/HDS (P4)30

(P1)C14 EXPD0 HD0 (P4)3

(P1)C15 EXPD1 HD1 (P4)4

(P1)C16 EXPD2 HD2 (P4)5

(P1)C17 EXPD3 HD3 (P4)6

(P1)C18 EXPD4 HD4 (P4)7

(P1)C19 EXPD5 HD5 (P4)8

(P1)C20 EXPD6 HD6 (P4)9

(P1)C21 EXPD7 HD7 (P4)10

(P1)C22 EXPD8 HD8 (P4)11

(P1)C23 EXPD9 HD9 (P4)12

(P1)C24 EXPD10 HD10 (P4)13

(P1)C25 EXPD11 HD11 (P4)14

(P1)C26 EXPD12 HD12 (P4)15

(P1)C27 EXPD13 HD13 (P4)16

(P1)C28 EXPD14 HD14 (P4)17

(P1)C29 EXPD15 HD15 (P4)18

Table 7. Slave MSC8101ADS Hardware Switch Settings (Continued)

Switch Value Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

11

Related Documents

The slave image C file is created as follows:

1. Load the slave application project into the CodeWarrior tools by double clicking on the
led_flash.mcp file in ...\hdi16_appnote\Led_flash\build\.

2. Build the project to create the .eld file, which is named starcore.eld. Close the project.

3. Execute the elfsrec utility in a DOS window using the command line: elfsrec -w
starcore.eld.

4. When the starcore.eld.s file is created, rename it to starcore.s.

5. Execute the utility srec2arr.exe on the starcore.s file using the command line: srec2arr starcore.s Note
that the srec2arr.exe file is located in ...\hdi16_appnote\srec_to_array_hdi16\.

6. When the slaveimg.c file is created, copy it to the location
...\hdi16_appnote\host\source.

7. Open the project host.mcp in ...\hdi16_appnote\host\build, add slaveimg.c, and com-
pile the project.

Download code onto the MSC8101ADS board via the EOnCE debug interface, as follows:

1. Initialize host and slave switch settings to those indicated in Table 6 and Table 7.

2. Connect the two boards as shown in Table 8.

3. Switch on both boards and press PRESET (SW8) on both boards.

4. Load the software (CodeWarrior project host.mcp) onto the host MSC8101ADS using the debug
port.

The slave board LEDs LD8 and LD9 should be ON.

5. Start the program

Slave board LEDs LD8 and LD9 should go out and then LD9 should flash intermittently.

5 Related Documents
[1] SC140 DSP Core Reference Manual (MNSC140CORE/D), Motorola.

[2] MSC8101 Reference Manual (MSC8101RM/D), Motorola.

[3] MSC8101ADS User’s Manual (MSC8101ADSUM/D), Motorola.

[4] MSC8101 Technical Data sheet (MSC8101/D), Motorola.

APPENDIXES

A SREC_TO_ARRAY.C Listing
#include <stdio.h> /* ’sprintf’ */
#include <string.h> /* ’strlen’, ’strncmp’ */
#include <stdlib.h> /* ’atoi’ */

(P1)C31 IRQ5 HRRQ/HACK (P4)27

(P1)C30 IRQ4 HREQ/HTRQ (P4)28

Table 8. Cable Interconnect Wiring Description (Continued)

Host Board Pin Signal Signal

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

12

Related Documents

�������������������������
���������
��������������������������

/* ASCII characters */
#define CHAR_NUMBER0 0x30
#define CHAR_NUMBER1 0x31
#define CHAR_NUMBER2 0x32
#define CHAR_NUMBER3 0x33
#define CHAR_NUMBER4 0x34
#define CHAR_NUMBER5 0x35
#define CHAR_NUMBER6 0x36
#define CHAR_NUMBER7 0x37
#define CHAR_NUMBER8 0x38
#define CHAR_NUMBER9 0x39

#define CHAR_LETTER_A 0x41
#define CHAR_LETTER_B 0x42
#define CHAR_LETTER_C 0x43
#define CHAR_LETTER_D 0x44
#define CHAR_LETTER_E 0x45
#define CHAR_LETTER_F 0x46

void main(int argc, char *argv[])
{
FILE *pfiIn;
FILE *pfiOut;
char ucCh0;
char ucCh1;
int uliCounter;
char ucLength;
char aucTemp[2];
int ulii;
int ulij;
int uliRemainder;
int uliSize;
int uliEndFlag;
char szCurrentString[120];
char szTempString[120];

uliEndFlag = 0;
/* Ignore the application name */
/* argv[0] contains application name */
/* decrease arg count, increase arg value */
argv++;

strcpy(szCurrentString,*argv); /* Parse parameters */
strcpy(szTempString,&szCurrentString[0]); /* get loader file name */

if((pfiIn = fopen(szTempString,"rb")) ==NULL)
{

printf("error \n");
exit(1);

}
if((pfiOut = fopen(".\\slaveimg.c","wb")) ==NULL)
{

printf("error2 \n");
exit(1);

}
/* Get line header S? */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

13

Related Documents

ucCh0 = getc(pfiIn);
ucCh1 = getc(pfiIn);

if ((ucCh0==’S’)&&(ucCh1==’0’))
{

uliCounter = 0x0000;
for (ulii=0; ulii < 2; ulii++)
{

uliCounter <<= 4;
ucLength = getc(pfiIn);

if (ucLength == CHAR_NUMBER1) uliCounter |= 0x0001;
if (ucLength == CHAR_NUMBER2) uliCounter |= 0x0002;
if (ucLength == CHAR_NUMBER3) uliCounter |= 0x0003;
if (ucLength == CHAR_NUMBER4) uliCounter |= 0x0004;
if (ucLength == CHAR_NUMBER5) uliCounter |= 0x0005;
if (ucLength == CHAR_NUMBER6) uliCounter |= 0x0006;
if (ucLength == CHAR_NUMBER7) uliCounter |= 0x0007;
if (ucLength == CHAR_NUMBER8) uliCounter |= 0x0008;
if (ucLength == CHAR_NUMBER9) uliCounter |= 0x0009;

���������

 if (ucLength == CHAR_LETTER_A) uliCounter |= 0x000A;
if (ucLength == CHAR_LETTER_B) uliCounter |= 0x000B;
if (ucLength == CHAR_LETTER_C) uliCounter |= 0x000C;
if (ucLength == CHAR_LETTER_D) uliCounter |= 0x000D;
if (ucLength == CHAR_LETTER_E) uliCounter |= 0x000E;
if (ucLength == CHAR_LETTER_F) uliCounter |= 0x000F;

}
}

for(ulii=0; ulii<(uliCounter*2); ulii++)
{

aucTemp[0] = getc(pfiIn);
}

/* get carriage return */
aucTemp[0] = getc(pfiIn);
aucTemp[0] = getc(pfiIn);

fprintf(pfiOut, "#include \"prototype.h\" // global defines \n");
fprintf(pfiOut, "extern UWord16 ausiImage1[]={");

/* Get line header S? */
ucCh0 = getc(pfiIn);
ucCh1 = getc(pfiIn);

while(uliEndFlag==0)
{

putc(’0’,pfiOut);
putc(’x’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’,’,pfiOut);
putc(’0’,pfiOut);
putc(’x’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);

uliCounter = 0x0000;

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

14

Related Documents

for (ulii=0; ulii < 2; ulii++)
{

uliCounter <<= 4;
ucLength = getc(pfiIn);

if (ucLength == CHAR_NUMBER1) uliCounter |= 0x0001;
if (ucLength == CHAR_NUMBER2) uliCounter |= 0x0002;
if (ucLength == CHAR_NUMBER3) uliCounter |= 0x0003;
if (ucLength == CHAR_NUMBER4) uliCounter |= 0x0004;
if (ucLength == CHAR_NUMBER5) uliCounter |= 0x0005;
if (ucLength == CHAR_NUMBER6) uliCounter |= 0x0006;
if (ucLength == CHAR_NUMBER7) uliCounter |= 0x0007;
if (ucLength == CHAR_NUMBER8) uliCounter |= 0x0008;
if (ucLength == CHAR_NUMBER9) uliCounter |= 0x0009;

if (ucLength == CHAR_LETTER_A) uliCounter |= 0x000A;
if (ucLength == CHAR_LETTER_B) uliCounter |= 0x000B;
if (ucLength == CHAR_LETTER_C) uliCounter |= 0x000C;
if (ucLength == CHAR_LETTER_D) uliCounter |= 0x000D;
if (ucLength == CHAR_LETTER_E) uliCounter |= 0x000E;
if (ucLength == CHAR_LETTER_F) uliCounter |= 0x000F;

}

uliSize = uliCounter-4; /* take away ucLength and crc */
uliRemainder=(uliSize+4)%8; /* add 4 bytes for bootload crc and */

/* see how short of div by 8 it is */

if (uliRemainder != 0)
{

uliRemainder = (8-uliRemainder);
}

uliSize = (uliSize+uliRemainder)/2;

if (uliSize <= 0xF)
{

fprintf(pfiOut, "0%X", uliSize);
}
else
{

fprintf(pfiOut, "%X", uliSize);
}

putc(’,’,pfiOut);
putc(’0’,pfiOut);
putc(’x’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
aucTemp[0] = getc(pfiIn);
putc(aucTemp[0],pfiOut);
aucTemp[0] = getc(pfiIn);
putc(aucTemp[0],pfiOut);
putc(’,’,pfiOut);
putc(’0’,pfiOut);
putc(’x’,pfiOut);

for (ulij=0; ulij<4; ulij++)
{

aucTemp[0] = getc(pfiIn);
putc(aucTemp[0],pfiOut);

}
/* Get data words */

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

15

Related Documents

for (ulii=0; ulii<((uliCounter-4)/2); ulii++)
{

putc(’,’,pfiOut);
putc(’0’,pfiOut);
putc(’x’,pfiOut);

for (ulij=0; ulij<4; ulij++)
{

aucTemp[0] = getc(pfiIn);
putc(aucTemp[0],pfiOut);

}
}
/* if ucLength of block is not divisible by 8 bytes add padding words. */

if (uliRemainder != 0)
{

printf("%d ",uliRemainder);
for (ulij=0; ulij<((uliRemainder)/2) ; ulij++)
{

putc(’,’,pfiOut);
putc(’0’,pfiOut);
putc(’x’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);

}
}

/* read checksum and carriage return */
aucTemp[0] = getc(pfiIn);
aucTemp[0] = getc(pfiIn);
aucTemp[0] = getc(pfiIn);
aucTemp[0] = getc(pfiIn);

/* add two 16 bit word for checksum */
putc(’,’,pfiOut);
putc(’0’,pfiOut);
putc(’x’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’,’,pfiOut);
putc(’0’,pfiOut);
putc(’x’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);

/* Get line header S? */
ucCh0 = getc(pfiIn);
ucCh1 = getc(pfiIn);

if((ucCh0==’S’)&&(ucCh1==’8’))
{

uliEndFlag = 1;

/* Add End Block */
for(ulii=0; ulii<8; ulii++)
{

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2311/D

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour
Centre, 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use

Motorola products. There are no express or implied copyright licenses granted hereunder to design

or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola

makes no warranty, representation or guarantee regarding the suitability of its products for any

particular purpose, nor does Motorola assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters which may be provided in Motorola data

sheets and/or specifications can and do vary in different applications and actual performance may

vary over time. All operating parameters, including “Typicals” must be validated for each customer

application by customer’s technical experts. Motorola does not convey any license under its patent

rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other applications intended to

support or sustain life, or for any other application in which the failure of the Motorola product could

create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola

products for any such unintended or unauthorized application, Buyer shall indemnify and hold

Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or

indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,

even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna
and StarCore are trademarks of Motorola, Inc. Metrowerks and CodeWarrior are registered
trademarks of Metrowerks Corp. in the U.S. and/or other countries. All other product or service names
are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action
Employer.

© Motorola, Inc. 2002

putc(’,’,pfiOut);
putc(’0’,pfiOut);
putc(’x’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);
putc(’0’,pfiOut);

}

fprintf(pfiOut, "};");
putc(’\n’,pfiOut);
break;

}
else
{

putc(’,’,pfiOut);
putc(’\n’,pfiOut);
putc(’ ’,pfiOut);

}
�

printf("\n ");
printf("Conversion Complete");

}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	1 Hardware Implementation
	2 Bootstrapping Process
	3 Target Application Image
	4 MSC8101ADS Test Configuration Example
	5 Related Documents

