
© Motorola, Inc., 2003

AN2302/D
Rev. 1, 1/2003

EEPROM Emulation for the
MC9S12C32

Application Note

By: Stuart Robb
Motorola, East Kilbride

Introduction

Many applications require EEPROM (Electrically Erasable Programmable
Read-Only Memory) for non-volatile data storage. EEPROM is typically
characterised by the ability to erase and write individual bytes of memory many
times over, with programmed locations retaining their data over an extended
period when the power supply is removed.

Most MC9S12 Flash microcontrollers include on-chip EEPROM but some omit
EEPROM for reduced price. MC9S12 microcontrollers which do not have on-
chip EEPROM, such as the MC9S12C family, can store non-volatile data in the
on-chip Flash memory using the software described in this application note,
thus saving the cost of an external EEPROM.

This application note describes a software method for emulating EEPROM
using the on-chip Flash memory of the MC9S12C32. This method may be used
on other MC9S12 flash microcontrollers that do not have on-chip EEPROM and
may also be used to provide additional EEPROM data storage on MC9S12
flash microcontrollers that have insufficient EEPROM for a particular
application. This software makes no assumptions about the way in which the
non-volatile data will be stored or updated. Data variables may be of arbitrary
size and may be updated at random. It is possible that a more optimised
approach may exist for a less general case.

The software described in this application note may be configured to allow
interrupts to be serviced during the programming and erasure of non-volatile
data. Alternatively, a "call-back" function may be enabled, allowing inputs to be
polled or a watchdog to be refreshed during programming and erasure.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

2 EEPROM Emulation for the MC9S12C32 MOTOROLA

EEPROM Emulation software features:

• User configured emulated EEPROM size

• Non-volatile data variables stored in Flash

• ReadEeprom and WriteEeprom functions to access variables

• Low RAM requirements - 35 bytes minimum (plus stack)

• Low Flash requirements - 1024 bytes minimum for emulated EEPROM,
691 bytes minimum for code

• User defined callback function during program/erase

• Interrupt servicing during program/erase is possible

Implementation

There are two common methods used to store non-volatile data in Flash. One
method is to keep a copy of all non-volatile data variables in a buffer in RAM.
The data is "saved" to Flash as often as is considered necessary by
programming the entire buffer contents to a pre-erased Flash sector. This
method is relatively simple to implement, permits the data variables to be read
at all times and allows control of the number of program/erase cycles. The
major disadvantage is that a large amount of RAM is required, as both the data
buffer and the programming routine must be located in RAM. There is also a
risk of losing data if a reset should occur after updating the RAM buffer but
before the data is re-programmed into Flash.

An alternative method is used by the software described in this paper. This
method eliminates the RAM buffer and instead requires that a minimum of two
512 byte Flash sectors are allocated to non-volatile data storage. In this
method, all the non-volatile data variables are located in one or other of the
Flash sectors. Whenever one non-volatile data variable is to be updated, the
"new" Flash sector is erased and then all the unchanged data variables plus the
new data are programmed into the "new" Flash sector. A complete set of the
most recent data values always exists in Flash. The RAM requirements are
greatly reduced as there is no RAM buffer. The main disadvantage of this
method is that the non-volatile data variables cannot be read whilst they are
being updated.

A further potential disadvantage, namely that updating a data variable causes
the whole Flash block to be written, can be overcome without using excessive
amounts of RAM. In order to minimise the number of Flash program/erase
cycles, copies of the most frequently updated non-volatile data variables
should be permanently located in RAM. The frequently changing copies in
RAM can then be used to update the non-volatile data variable on a less
frequent basis, prior to a power-down cycle for example.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Implementation

MOTOROLA EEPROM Emulation for the MC9S12C32 3

The Flash implementation on the MC9S12C32 is programmed one word (two
bytes) at a time and erased in 512 byte sectors. Refer to the Flash 32K Block
Guide (S12FTS32KV1/D) for further details.

The Flash implementation on the MC9S12C32 includes an on-chip charge
pump which generates the required voltages for programming and erasure, so
no additional external supply is required.

A Flash block cannot be read at the same time that it is being programmed or
erased. Thus the code which is controlling the program or erase operation
cannot be executed from the Flash block that is being programmed or erased.
The MC9S12C32 has a single Flash block, so some critical portions of the
Flash programming code cannot be executed from Flash and must be
executed from RAM. This code is written in assembly code in order to minimise
the RAM requirement.

Program/Erase
Cycles

One concern when emulating EEPROM using Flash is the issue of
program/erase cycles. When EEPROM is used, each individual byte can
typically be programmed and erased a finite number of times with guaranteed
data integrity. Program/erase cycles of 10,000 or 100,000 are typically
specified. With Flash however, the minimum erase size is a sector and the
number of program/erase cycles applies to a sector. The Flash implementation
on the MC9S12C32 has an erase sector size of 512 bytes and a minimum
program size of one word (2 bytes). Each individual word in a sector can be
programmed only once before the sector must be erased. The MC9S12C32
electrical characteristics at the time of writing guarantee a minimum of 10,000
program/erase cycles per sector. Consult the latest Data Sheet for the current
electrical characteristics.

This means that, if for example the non-volatile data variables fill an entire
sector (512 bytes) and 2 complete sectors are allocated to non-volatile data
storage, then the total number of permitted data updates is 2 x 10,000 =
20,000. Note that this figure does not apply to each individual data variable, it
is the sum of all updates for all data variables. An average number of updates
per variable can be obtained by dividing the total number of permitted updates
by the number of non-volatile data variables.

In a typical application, the majority of non-volatile data variables will be
updated infrequently and a few will be updated more frequently. Consider an
example of 256 non-volatile data variables each 2 bytes long and the minimum
2 Flash sectors allocated to non-volatile data storage. A minimum specification
of 10,000 program/erase cycles per sector is assumed. If 200 of these variables
are each updated 10 times in the lifetime of the microcontroller, then 200 x 10
= 2000 program/erase cycles will be used. If 50 of the remaining variables are
each updated 100 times, then 50 x 100 + 2000 = 7000 program/erase cycles
will be used. This would leave 20,000 - 7000 = 13,000 program/erase cycles
for the remaining 6 variables, or an average of 2166 updates each.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

4 EEPROM Emulation for the MC9S12C32 MOTOROLA

There are two strategies that can be employed (within the context of the
software described in this paper) to increase the effective permitted number of
data updates. The first is simply to increase the number of Flash sectors
allocated to non-volatile data storage. If the non-volatile data variables fill one
entire sector, the permitted number of data updates is Number of Sectors x
Program/Erase cycles per Sector.

Thus if the previous example is modified so that 16 Flash sectors are allocated
to non-volatile data storage then the total number of updates becomes 16 x
10,000 = 160,000. If, as before, 200 variables are each updated 10 times and
50 variables are each updated 100 times, then the remaining 6 variables can
be updated 160,000 - 2000 - 5000 = 153,000 times, or an average of 25,500
times each.

However, if the size of all the non-volatile data variables is less than half the
size of a Flash sector, the Flash sector can be conceptually sub-divided into
units called banks or pages. Each bank must be large enough to hold all the
non-volatile data variables and there must be an integer number of whole
banks per sector. Thus valid bank sizes are 512, 256, 128, 64, 32, 16, 8, 4, and
2 bytes. The permitted number of data updates is now:

Number of Banks per Sector x Number of Sectors x Program/Erase cycles per
Sector.

If we now consider an example where there are 32 non-volatile data variables
each 2 bytes long, then we can have 8 banks of 64 bytes per sector. If 4 Flash
sectors are allocated to non-volatile data storage, then the permitted number of
data updates for this example is 8 x 4 x 10,000 = 320,000. This equates to an
average of 10,000 updates per data variable.

As mentioned previously, the number of Flash program/erase cycles used can
be minimised by permanently allocating copies of the most frequently updated
non-volatile data variables in RAM. The frequently changing copies in RAM can
then be used to update the non-volatile data on a less frequent basis, prior to
a power-down cycle for example.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Implementation

MOTOROLA EEPROM Emulation for the MC9S12C32 5

Program/Erase Time The Flash program/erase state machine is clocked from a signal derived from
the microcontroller oscillator. The value of the Flash clock prescaler must be
chosen so that the frequency of the Flash clock, fNVMOP is within the range of
150kHz to 200kHz. The calculation of the prescaler value is performed by a
pre-processor macro in the software accompanying this paper. The time
required by the Flash state machine to program a single word is defined by .

Equation 1

Typical values for tswpgm are slightly under 50µs, depending on the selected
values for the oscillator frequency and the MCU internal bus frequency.
Whenever a non-volatile data variable is updated, an entire bank is
programmed. Thus if a bank is defined to be 32 words, the programming time
will be approximately 50µs x 32 = 1.6ms. The execution time of the software
controlling the programming process will slightly increase the actual
programming time beyond this value.

The time required by the Flash state machine to erase a sector is defined by
Equation 2.

Equation 2

Typical values for tera are around 21ms.

Interrupts From the times calculated for programming and in particular erasing, it is clear
that the update of non-volatile data variables could interfere with the
performance of some time critical real-time applications. However the software
accompanying this paper allows the possibility to service interrupts whilst the
Flash is being erased or programmed. As the interrupt vector addresses
normally reside in Flash and the Flash is unavailable during programming and
erasure, an alternative approach is required. The solution adopted is to re-map
the RAM to the top of the physical address space, so that the interrupt vectors
are now located in RAM. The interrupt vector table is copied into RAM at the
normal vector table address. The interrupt handler routines must also be
executed from RAM and so the interrupt vectors must point to the RAM address
of the interrupt handler routines. As the amount of RAM may be limited, only
the most essential interrupts should remain enabled during programming and

busNVMOP
swpgm ff

t
259 +=

NVMOP
era f

t
4000=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

6 EEPROM Emulation for the MC9S12C32 MOTOROLA

erasure of the Flash. The Flash area which is overlaid by RAM is no longer
available for use.

NOTE: If the non-maskable interrupt is enabled (X-bit cleared), then it cannot
subsequently be disabled by software. In this case, the RAM must be re-
mapped to the top of the memory map, the vector table must be copied to RAM,
and the non-maskable interrupt service routine must be executed from RAM.

Callback Function A less RAM intensive alternative to enabling interrupts is to enable a callback
function. The callback function is called repeatedly by the ProgFlash function
while the function is waiting for the program or erase operation to complete.
The callback function must be executed from RAM and can access RAM and
all I/O registers. The callback function is defined by the user to suit the
application, typical uses for the callback function are to poll some inputs or
interrupt flags or to refresh a COP watchdog.

Power Failure
Recovery

One concern when programming data is the subsequent behaviour if a system
failure, such as power failure, occurs during programming. In the software
implementation accompanying this paper, one word of flash is reserved in each
bank for status information. This status word is the last word to be programmed
in each bank, and is only programmed if the whole of the rest of the bank has
programmed successfully. The value of the status word indicates the most
recently programmed bank. In the event of a power failure, or some other
interruption to programming, a bank may be incompletely programmed and the
status word will not be programmed. When power is restored and InitEeprom
is next called, the last successfully programmed bank will be identified and the
partially programmed bank will be ignored and subsequently erased. In this
way the only data that is lost is the new data value that was to be updated at
the time of the failure; this data variable retains its previous value.

Memory Map Figure 1 illustrates the default memory map of the MC9S12C32 with a typical
allocation of resources for non-volatile data storage, where interrupts are not
required to be serviced during programming or erasure. Figure 2 illustrates an
alternative memory map for the MC9S12C32 with the RAM remapped to the
top of the memory map, to enable interrupts to be serviced during programming
or erasure.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Implementation

MOTOROLA EEPROM Emulation for the MC9S12C32 7

Figure 1. Example MC9S12C32 Memory Map with EEPROM Emulation

In the Figure 1 example, 2 sectors of Flash are allocated, with 8 banks of 128
bytes of non-volatile data storage. All interrupts are masked during Flash
programming and erasure.

Registers
$0000

$03FF

$0800

$0FFF

RAM

RAM_FUNCS

$4000

$FF80

$FFFF

Flash

Interrupt Vectors

FLASH_COPY

FLASH_EEPROM

Copied by
InitRam()

Bank 0 (old data)

Bank 1 (old data)

Bank 2
(current data)

Bank 3 (erased)

Bank 4 (old data)

Bank 5 (old data)

Bank 6 (old data)

Bank 7 (old data)

Unchanged data
copied and new
data written by
WriteEeprom()

This sector
erased before
writing Bank 4

$C000

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

8 EEPROM Emulation for the MC9S12C32 MOTOROLA

Figure 2. Example MC9S12C32 Memory Map with EEPROM Emulation and Interrupts

In the Figure 2 example, the RAM is remapped to the top of the memory map,
enabling interrupts to be serviced during Flash programming and erasure.

RAM

Registers
$0000

$03FF

$F800

$4000

$FF80

$FFFF
Interrupt Vectors

Flash

FLASH_COPY

FLASH_EEPROM

RAM_FUNCS

Copied by
InitRam()

$C000

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Software Description

MOTOROLA EEPROM Emulation for the MC9S12C32 9

Software Description

The purpose of each source file is described in this section. The code was
written mainly in 'C' with some assembly code using the MetroWerks
CodeWarrior for HCS12 tools. If a different tool suite is to be used, changes will
be required to the method for identifying and linking code and data segments,
the in-line assembly code would also have to be changed.

User's Application
Files

Non-Volatile Data
Variables

Non-volatile data variables, i.e. variables which are to be located in emulated
EEPROM, are declared in the user's application files as and when required.
The variables must be located in the segment called EEPROM_VARS using a
#pragma statement as in the following example:

#pragma DATA_SEG EEPROM_VARS
unsigned char EepromVar1;
unsigned int EepromVar2;
#pragma DATA_SEG DEFAULT

A count should be kept of the total size of all variables allocated to
EEPROM_VARS, this number will be required to determine the Eeprom bank
size. The total size can also be obtained in the map file output from the linker.

In the user's application, all non-volatile data variables are accessed using the
functions ReadEeprom and WriteEeprom. The user's application files which
access non-volatile data variables should therefore include the file
EE_Emulation.h.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

10 EEPROM Emulation for the MC9S12C32 MOTOROLA

EE_Emulation.h The file EE_Emulation contains function prototypes and the configuration
parameters for Eeprom emulation of non-volatile data variables. This file
should be included in all files which call any function in EE_Emulation.c. The
following values must be correctly defined by the user:

IRQ_DURING_PROG This value can optionally be defined either in this file, or on the compiler
command line. If this value is defined, it enables interrupts to be serviced during
programming and erasure. The interrupt service routines for the interrupts
which remain enabled during programming and erasure must be located in the
file EE_RAMfuncs.c, the RAM must be re-mapped to the top of the memory
map, and the vector table must be copied into the re-mapped RAM.

If IRQ_DURING_PROG is NOT defined, then it is not possible to service
interrupts during programming and erasure. In this case the WriteEeprom
routine takes care of masking the maskable interrupts when required.

NOTE: If the non-maskable interrupt is enabled (X-bit cleared), then it cannot
subsequently be disabled by software. If the non-maskable interrupt will be
enabled (X-bit cleared), IRQ_DURING_PROG must be defined.

EEPROM_SIZE_
BYTES

This value defines the number of bytes of emulated EEPROM variables. Valid
values are: 2, 6, 14, 30, 62, 126, 254 and (m x 512) - 2, where m = 1, 2, 3...
The selected value must be equal to or greater than the total number of bytes
of all non-volatile data variables.

EEPROM_BANKS This value defines the number of banks (or copies) of non-volatile data
variables that there are. EEPROM_BANKS x (EEPROM_SIZE_BYTES + 2)
equals the total amount of Flash allocated to EEPROM emulation.

If EEPROM_SIZE_BYTES < 510, the total amount of Flash allocated must be
2 or more complete Flash sectors, i.e. EEPROM_BANKS x
(EEPROM_SIZE_BYTES + 2) = n x 512, where permitted values of n = 2, 3,
4…

If EEPROM_SIZE_BYTES >= 510, the total amount of Flash allocated must be
2 or more banks, i.e. EEPROM_BANKS = n, where permitted values of n = 2,
3, 4…

Larger values for EEPROM_BANKS permit a larger number of updates of the
non-volatile data variables, at the expense of requiring a larger amount of Flash
for EEPROM emulation.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Software Description

MOTOROLA EEPROM Emulation for the MC9S12C32 11

EEPROM_START This value defines the start address for the region of Flash memory that will be
used to emulate EEPROM. The end of this region is given by
EEPROM_START + (EEPROM_SIZE_BYTES + 2) x EEPROM_BANKS.
These addresses must match the addresses of the FLASH_EEPROM section
in the linker prm file.

FLASH_COPY_
START

This value defines the start address for the region of Flash memory where the
RAM functions will be located, prior to being copied into RAM. The end address
is FLASH_COPY_START + RAM_FUNCS_SIZE - 1. These addresses must
match the addresses of the FLASH_COPY section in the linker prm file.

RAM_FUNCS_
START

This value defines the start address for the region of RAM where the RAM
functions will be copied to. The end address is RAM_FUNCS_START +
RAM_FUNCS_SIZE - 1. These addresses must match the addresses of the
RAM_FUNCS section in the linker prm file.

RAM_FUNCS_SIZE This value defines the number of bytes required by the RAM functions. This
value may be obtained from the map file obtained after compiling and linking
the EE_RAMfuncs.c file. A minimum of 34 bytes is required for the case where
IRQ_DURING_PROG is not defined and EECALLBACK is not defined. In the
case where either IRQ_DURING_PROG or EECALLBACK are defined, the
value of RAM_FUNCS_SIZE will depend on the size of the user defined
functions and can be obtained from the map file obtained when compiling and
linking the file EE_RAMFuncs.c.

VT_START This value is only required if interrupts must be serviced during programming
(IRQ_DURING_PROG defined). This value defines the start address for the
region of (re-mapped) RAM that the vector table will be copied to. This value
will normally be 0xFF80.

VT_SIZE This value is only required if interrupts must be serviced during programming
(IRQ_DURING_PROG defined). This value matches the size of the
VectorTable array and will normally be 126.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

12 EEPROM Emulation for the MC9S12C32 MOTOROLA

EE_Emulation.c The file EE_Emulation contains the functions required for Eeprom emulation of
non-volatile data variables which are executed from Flash. All functions in this
file are located in the DEFAULT code segment. The user should not modify this
file.

ReadEeprom The ReadEeprom function is used to obtain the current value of a non-volatile
data variable. This is the only way to obtain the current value, accessing the
data variable directly will NOT generally result in the current value being read.
InitEeprom must have been called once before this function is called.

Prototype: void ReadEeprom(void *srcAddr, void *destAddr, UINT16 size)

Parameters: srcAddr pointer to the non-volatile data variable to be read.

destAddr pointer to a RAM location to copy the read value to.

size size in bytes of the non-volatile data variable to be read.

Return: void

Example: ReadEeprom(&EepromVar1, ReadBuffer, sizeof(EepromVar1));

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Software Description

MOTOROLA EEPROM Emulation for the MC9S12C32 13

Figure 3. ReadEeprom Flow Diagram

ReadEeprom

Add (ActiveBank *
(EEPROM_SIZE_BYTES + 2))
to EEPROM source address to

get current location

Increment EEPROM address
and destination address by 1

Decrement size by 1

Copy one byte of EEPROM
address to destination

address

size = 0 ?

Return

No

Yes

MaskInterrupts

RestoreCCR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

14 EEPROM Emulation for the MC9S12C32 MOTOROLA

WriteEeprom The WriteEeprom function is used to update a non-volatile data variable with a
new value. InitEeprom must have been called once before this function is
called. Whenever this function is called, a whole new bank is programmed. This
will take approximately (EEPROM_SIZE_BYTES + 2) x 25µs. Furthermore, if
there are no more erased banks in the current sector, then the next Flash
sector will be erased, this will take approximately 20ms. If the macro
IRQ_DURING_PROG is not defined, this routine will take care of masking
interrupts when required. InitEeprom must have been called once before this
function is called.

Prototype: UINT8 WriteEeprom(void *destAddr, void *srcAddr, UINT16 size)

Parameters: destAddr pointer to the non-volatile data variable to be updated.

srcAddr pointer to the new data to be written to the non-volatile data
variable.

size size in bytes of the non-volatile data variable to be updated.

Return: PASS update was successful.

FAIL a programming failure occurred during the update process.

Example: status = WriteEeprom(&EepromVar1, WriteBuffer, sizeof(EepromVar1));

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Software Description

MOTOROLA EEPROM Emulation for the MC9S12C32 15

Figure 4. WriteEeprom Flow Diagram

WriteEeprom

Add (ActiveBank * (EEPROM_SIZE_BYTES + 2))
to EEPROM destination address to get new

destination location
EEPROM start address = start of new bank + 2

Next EEPROM address
Decrement size by 1

Next EEPROM address

Valid EEPROM
destination address ?

EEPROM address less
than word aligned

destination address?

ProgEepromWord:
Program new bank

with data word
from old bank.

EEPROM
destination

address word
aligned?

ProgEepromWord:
Program word

comprising one byte
old bank, one byte

new data.

No

No

Return FAIL

No

A

Yes

Yes

Flash clock
prescaler initialised?

Yes

Yes

No

Increment ActiveBank

New flash
sector?

EraseEepromBank:
Erase flash sector(s)

Bank erased?

Yes

No

No

Yes

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

16 EEPROM Emulation for the MC9S12C32 MOTOROLA

Figure 5. WriteEeprom Flow Diagram (continuation)

A

size = 0 ?

size = 1 ?

ProgEepromWord:
Program word

comprising one byte
old bank, one byte

new data

Next EEPROM address
Decrement size by 1

ProgEepromWord:
Program word

comprising new
data

Next EEPROM address
Decrement size by 2

YesNo

EEPROM
address = end

of bank?

ProgEepromWord:
Program new bank

with data word
from old bank

No

Next EEPROM address

Yes

No

Return status

Yes
Errors when

programming?

Yes

ActiveBank = oldBank

ProgEepromWord:
Program EEPROM
bank status word

with value one
greater than status
value of old bank.

No

Programming
error?

Yes

No

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Software Description

MOTOROLA EEPROM Emulation for the MC9S12C32 17

InitEeprom This function must be called once before either ReadEeprom or WriteEeprom
are called. This function initialises the Flash prescaler, copies the required
functions to RAM and determines the bank with the most recent data.

Prototype: void InitEeprom(void)

Parameters: void

Return: void

Example: InitEeprom();

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

18 EEPROM Emulation for the MC9S12C32 MOTOROLA

Figure 6. InitEeprom Flow Diagram

InitEeprom

InitRAMFuncs

Initialise Flash
clock prescaler

Return

Start with bank 0

Status word =
erased?

Status roll-over
detected?

Read bank Status word

No

Status word = 0?

ActiveBank = this bank

Largest Status
word so far?

No

No

Largest Status word
less than

EEPROM_BANKS?

Roll-over = true
Start again with bank 0

ActiveBank = this bank

Yes

Yes

Checked all
banks?

Status word
erased in all

banks?

No

YesNext bank No

Yes

EraseEepromBank:
Erase bank 0

sector(s)

ActiveBank = 0

Yes

No

Yes

Yes

No

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Software Description

MOTOROLA EEPROM Emulation for the MC9S12C32 19

InitRAMFuncs This function is called by InitEeprom to copy the required functions to RAM. If
the macro IRQ_DURING_PROG is defined, the vector table is also copied into
addresses 0xFF80 to 0xFFFD, which is expected to be RAM. This function is
provided to enable the application to refresh the code in RAM if this is
considered necessary.

Prototype: void InitRAMFuncs(void)

Parameters: void

Return: void

Example: InitRAMFuncs();

Figure 7. InitRAMFuncs Flow Diagram

InitRAMFuncs

CopyToRAM:
Copy

VectorTable
to RAM

CopyToRAM:
Copy RAM
functions to

RAM

Return

IRQ_DURING_PROG defined

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

20 EEPROM Emulation for the MC9S12C32 MOTOROLA

CopyToRAM This static function is called by InitRAMFuncs to copy code and data from Flash
to RAM. It is not callable by the application.

Prototype: void CopyToRAM(UINT8 *src, UINT8 *dest, UINT16 size)

Parameters: src pointer to the source code to be copied.

dest pointer to the destination for the code to be copied to.

size size in bytes of code to be copied.

Return: void

Example: CopyToRAM((UINT8 *)FLASH_COPY_START,
(UINT8 *)RAM_FUNCS_START, RAM_FUNCS_SIZE);

Figure 8. CopyToRAM Flow Diagram

ProgEepromWord This static function is called by WriteEeprom to program a single word of
emulated EEPROM. After verifying the programmed word, the flash address
pointer is incremented. Interrupts are masked if IRQ_DURING_PROG is not
defined. This function is not callable by the application.

Prototype UINT8 ProgEepromWord(UINT16 **progAddr, UINT16 data);

Parameters: progAddr pointer to a pointer to the flash location to be programmed.

data data word to be programmed

Return PASS word was programmed successfully

FAIL word failed to program

Example: Status = ProgEepromWord(&eepromAddr, eepromData);

CopyToRAM

size = 0 ?

Copy one byte of source
data to destination address

Inrement source and
destination addresses

Decrement size

No

ReturnYes

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Software Description

MOTOROLA EEPROM Emulation for the MC9S12C32 21

Figure 9. ProgramEepromWord Flow Diagram

EraseEepromBank This static function is called to erase a bank of emulated EEPROM. If the
EEPROM bank size is less than or equal to the size of a flash sector, one sector
is erased. If the EEPROM bank size is greater than the flash sector size, then
as many sectors as required are erased. Each sector takes approximately
20ms. Interrupts are masked if IRQ_DURING_PROG is not defined. This
function is not callable by the application.

Prototype: UINT8 EraseEepromBank(UINT16 *eepromAddr);

ProgEepromWord

Interrupts
during

programming?

MaskInterrupts

ProgFlash:
program flash

word

Interrupts
during

programming?

RestoreCCR

No

Yes

No

prog word =
data?

status = FAIL

Increment flash
address pointer

Return status

Yes

Yes

No

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

22 EEPROM Emulation for the MC9S12C32 MOTOROLA

Parameters: eepromAddr address of the (first) flash sector(s) to be erased

Return PASS flash erase commands executed successfully

FAIL flash erase commands failed

Example: status = EraseEepromBank(eepromAddr);

Figure 10. EraseEepromBank Flow Diagram

EraseEepromBank

Interrupts
during erase?

MaskInterrupts

ProgFlash:
erase flash

sector

Interrupts
during erase?

RestoreCCR

No

Yes

No

Yes

EEPROM bank
size > flash

sector?

All sectors in
bank erased?

Yes

Return

Next sector

No

No Yes

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Software Description

MOTOROLA EEPROM Emulation for the MC9S12C32 23

MaskInterrupts This static function is called to mask interrupts before programming and
erasing, if IRQ_DURING_PROG is not defined.

Prototype: void MaskInterrupts(UINT8 *dest);

Parameters: dest pointer to storage location for CCR

Return: void

Example: MaskInterrupts(&CCRCopy);

Figure 11. MaskInterrupts flow diagram

RestoreCCR This static function is called to restore the CCR to its previous value after
programming and erase, if IRQ_DURING_PROG is not defined.

Prototype: void RestoreCCR(UINT8 src)

Parameters: src value to store in CCR

Return void

Example: RestoreCCR(CCRCopy);

Figure 12. RestoreCCR flow diagram

MaskInterrupts

Store CCR
Set I-mask bit

in CCR

Return

RestoreCCR

Return

Transfer stored
CCR value

back into CCR

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

24 EEPROM Emulation for the MC9S12C32 MOTOROLA

EE_RAMFuncs.h The file EE_Emulation contains function prototypes for the files in
EE_RAMFuncs.c. Remember to add function prototypes for any user defined
interrupt service routines added to EE_RAMFuncs.c. EECALLBACK should be
defined in this file to enable EECallBackFunc. This file is included in
EE_Emulation.c and VectorTable.c.

EE_RAMfuncs.c This file should contain all functions which are required to execute from RAM
while the Flash is being programmed or erased. These will include:

ProgFlash - always required,

EECallBackFunc - required if EECALLBACK defined.

In addition, if IRQ_DURING_PROG is defined, all user defined interrupt service
routines for interrupts which will remain enabled during programming and
erasure must be located in this file. Interrupt service routines for non-essential
interrupts which are disabled during programming and erasure should be located
in Flash and not in this file i.e. not in the code segment RAM_FUNCTIONS.

All functions in this file are located in the code segment RAM_FUNCTIONS.
This file is compiled and linked to its final RAM address as a ROM library prior
to being linked into the final application with EE_Emulation.c. This ensures that
all calls to functions within this file result in calls to the final execution
addresses, which is more efficient than calling the functions using function
pointers. The ROM library is then appended to the final application file with an
offset resulting in a Flash address. This process is described in the Example
Project section.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Software Description

MOTOROLA EEPROM Emulation for the MC9S12C32 25

ProgFlash This function is copied to and executed from RAM. This function is written in
assembly code for maximum code efficiency, to minimise the RAM requirement.
This function performs programming of a single word or erasure of a single
sector of Flash. Programming a word requires approximately 50µs. Erasing a
sector requires approximately 20ms. This function is called by
ProgEepromWord and EraseEepromBank and is not callable by the application.
If EECALLBACK is defined, this function will repeatedly call the user defined
function EECallBackFunc while programming or erasure is taking place.

Prototype: UINT8 ProgFlash(UINT8 command, UINT16 *progAddr, UINT16 data)

Parameters: command PROG - programs a single word of data,

ERASE - erases a single Flash sector.

progAddr pointer to the Flash word to be programmed or the Flash sector to
be erased.

data the data word to be programmed, dummy data if erasing.

Return: PASS the ACCERR or PVIOL bits were not set when the program or erase
command was executed.

FAIL the ACCERR or PVIOL bits were set when the program or erase
command was executed.

Example : status = ProgFlash(PROG, eepromAddr, eepromData.word);

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

26 EEPROM Emulation for the MC9S12C32 MOTOROLA

Figure 13. ProgFlash Flow Diagram

ProgFlash

Write ACCERR | PVIOL to
Flash status register to clear

error flags if set

Write data to progAddr

Write CBEIF to Flash status
register to launch the

command

Write command to Flash
command register

ACCERR or
PVIOL flags set ?

Command
Complete flag

set?

EECallBackFunc

Return FAIL

Return PASS

No

No

Yes

Yes

EECALLBACK defined

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Software Description

MOTOROLA EEPROM Emulation for the MC9S12C32 27

EECallBackFunc This is a user defined function which is enabled by defining EECALLBACK in
EE_RAMfuncs.h. If enabled, this function is called repeatedly by ProgFlash
while waiting for the CCIF flag to be set during program and erase operations.
This function is copied to and executed from RAM. This function could be used
to refresh a watchdog for example.

Prototype: void EECallBackFunc(void)

Parameters: void.

Return: void.

Example : EECallbackFunc(void);

VectorTable.c This file is only required if interrupts must be serviced during programming
(IRQ_DURING_PROG defined). This file contains the vector table that is
copied into re-mapped RAM. This vector table must contain the addresses of
ALL interrupt service routines - those which will be located in RAM and those
located in Flash which are disabled during programming. The reset vector is not
required in this table and must be located at address 0xFFFE in Flash, as the
re-mapped RAM will be moved back to its default location during a reset.

Start12.c This is the default start up file included with the Metrowerks Codewarrior
stationery that has been modified slightly. This modification is only required if
interrupts must be serviced during programming (IRQ_DURING_PROG
defined). In this case, the INITRM register is initialised with 0xF9 to re-map the
RAM to the top of the memory map.

mcucfg.h This file contains some general MCU configuration data that is required for
correct determination of macros etc.

OSCCLK_FREQ_
KHZ

This value defines the frequency of the MCU oscillator in kHz. The defined
value must have an "L" appended (e.g. 8000L) to force a long type so that the
FCLK_PRESCALER macro works correctly.

PLL_ENABLED This value should be defined if the PLL will be enabled. PLL initialisation code
is not included in this example.

REFDV If PLL_ENABLED is defined, the value for the REFDV register should be
defined so that the BUSCLK_FREQ_KHZ macro can be evaluated.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

28 EEPROM Emulation for the MC9S12C32 MOTOROLA

SYNR If PLL_ENABLED is defined, the value for the SYNR register should be defined
so that the BUSCLK_FREQ_KHZ macro can be evaluated.

TIMER_PRESCALER
_FACTOR

This value is only required for the example if interrupts must be serviced during
programming (IRQ_DURING_PROG defined). This value defines the Timer
Prescaler Factor, permitted values are 1, 2, 4, 8, 16, 32, 64, and 128.

mottypes.h This file contains type definitions for common types such as unsigned char,
signed char, etc.

s12_fectl.h This file contains definitions for the Flash register structure as well as the
FCLK_PRESCALER macro. This macro is essential for the correct initialisation
of the Flash clock prescaler and depends on correct definitions of
OSCCLK_FREQ_KHZ and BUSCLK_FREQ_KHZ in mcucfg.h.

s12_stdtimer.h This file contains definitions for the standard timer register structure used on
the MC9S12C32. This file is only required for the example if interrupts must be
serviced during programming (IRQ_DURING_PROG defined).

Example Project

A Metrowerks Codewarrior example project is available for download to
accompany this paper. The pertinent features of this project are explained
here, along with instructions on how to build the project.

The project is split into 4 targets, 2 for the case where interrupts are masked
during programming and erasure, and 2 for the case where interrupts remain
enabled during programming and erasure.

In both cases, building the final application is a 2 step process. First the RAM
functions are built as a ROM library. The second step is to build the final
application linked to the ROM library and with the ROM library appended to the
final absolute or s-record file.

Example with
Interrupts Masked
during Programming

Two targets are provided to build an example with interrupts masked during
programming and erasure.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Example Project

MOTOROLA EEPROM Emulation for the MC9S12C32 29

EE RAM functions,
no IRQ

This target is provided to build the RAM functions as a ROM library. The file
EE_RAMfuncs.c is compiled and linked by itself, generating the absolute file
EE_RAMfuncs.abs and the s-record file EE_RAMfuncs.sx.

The linker directive "-AsROMlib" is specified on the linker command line to
enable this to be built as a ROM library, so no main function is expected. The
usual start-up initialisation structure is not generated either.

The linker directive "-M" is specified on the linker command line so that a map
file is generated.

The linker directive "-B" is specified on the linker command line so that an s-
record file is generated.

The ROM library is placed at the addresses specified in the associated prm file,
EERAMfuncs.prm, listed below:

NAMES
END

SECTIONS
LASH_REGS = NO_INIT 0x100 TO 0x110;
DUMMY_RAM = READ_WRITE 0x800 TO 0x800;
RAM_FUNCS = READ_ONLY 0x0FD0 TO 0xFFF;

END

PLACEMENT

DEFAULT_RAM INTO DUMMY_RAM;
DEFAULT_ROM,RAM_FUNCTIONS INTO RAM_FUNCS;
FLASH_REG INTO FLASH_REGS;

END

ENTRIES
ProgFlash /* list all RAM function names here */

/* eg EECallBackFunc */
END

The RAM functions defined within code segment RAM_FUNCTIONS are
placed in section RAM_FUNCS. This is located at the RAM address at which
the functions will be copied to and executed from, this section must have the
attribute READ_ONLY. The addresses allocated for the RAM functions may
need to be expanded if EECALLBACK is defined.

The structure containing the Flash control registers is placed in the section
FLASH_REGS which is located at the default address. If the registers are
remapped after reset then this address will have to be changed. This section
must have the attribute NO_INIT.

The pre-defined segments DEFAULT_RAM and DEFAULT_ROM are listed to
comply with the linker, although they contain no data or code.

Finally, all the RAM function names that are not explicitly called must be listed
under the ENTRIES command.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

30 EEPROM Emulation for the MC9S12C32 MOTOROLA

EE Emulation no IRQ This target is provided to build the final application with interrupts disabled
during programming and erasure.

The files EE_Emulation.c and main.c are compiled and linked together with the
ROM library generated by the "EE RAM functions, no IRQ" target, generating
the absolute file EE_Emulation.abs.

The linker directive "-AddEE_RAMfuncs.abs" is specified on the linker
command line to link in the previously generated ROM library.

The linker directive "-M" is specified on the linker command line so that a map
file is generated.

The application is linked to the addresses specified in the associated prm file,
EE_Emulation.prm, listed below:

NAMES
END

SECTIONS
FLASH_REGS = NO_INIT 0x100 TO 0x110;
RAM = READ_WRITE 0x0800 TO 0x0FCF;

/* reserve for RAM_FUNCS */
RAM_FUNCS = NO_INIT 0x0FD0 TO 0x0FFF;

/* min 2 complete sectors */
FLASH_EEPROM = NO_INIT 0xC000 TO 0xC3FF;
FLASH_CODE = READ_ONLY 0xD030 TO 0xD3FF;

END

PLACEMENT

PRESTART, STARTUP,
ROM_VAR, STRINGS,
NON_BANKED, DEFAULT_ROM,
COPY INTO FLASH_CODE;

EEPROM_STAT, EEPROM_VARS INTO FLASH_EEPROM; /* EEPROM_STAT must be first */
DEFAULT_RAM INTO RAM;
FLASH_REG INTO FLASH_REGS;

END

STACKSIZE 0x100

VECTOR ADDRESS 0xFFFE _Startup /* list all other vectors here */

/* 0xC030 + 0x0FD0 = 0xD000 = FLASH_COPY_START */
HEXFILE EE_RAMfuncs.sx OFFSET 0xC030

The application code is placed in section FLASH_CODE.

The section FLASH_EEPROM is reserved for EEPROM emulation data and
contains all the variables in segment EEPROM_VARS. This section must be
large enough for EEPROM_BANKS x (EEPROM_SIZE_BYTES + 2).

The structure containing the Flash control registers is placed in the section
FLASH_REGS that is located at the default address. If the registers are

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Example Project

MOTOROLA EEPROM Emulation for the MC9S12C32 31

remapped after reset then this address will have to be changed. This section
must have the attribute NO_INIT.

The section RAM_FUNCS is reserved as a space in RAM for the RAM
functions to be copied to for execution. The RAM functions are copied here
from the FLASH_COPY section by the InitRAMFuncs function. The addresses
allocated for the RAM functions may need to be expanded if EECALLBACK is
defined.

Finally, the EE_RAMFuncs ROM library file must be included using the linker
HEXFILE command. An OFFSET must be added to the addresses in this file
so that it is loaded into Flash. The offset is chosen so that when added to the
original addresses the desired Flash address is obtained. This address is
equivalent to FLASH_COPY_START in EE_Emulation.h. No other code must
be located in this address space.

Example with
Interrupts Enabled
during Programming

Two targets are provided to build an example with interrupts enabled during
programming and erasure.

EE RAM functions
with IRQs

This target is provided to build the RAM functions as a ROM library. The file
EE_RAMfuncs.c is compiled and linked by itself, generating the absolute file
EE_RAMfuncsIRQ.abs and the s-record file EE_RAMfuncsIRQ.sx.

The compiler directive "-DIRQ_DURING_PROG" is specified on the compiler
command line to activate the code required to enable interrupts to be serviced.

The linker directive "-AsROMlib" is specified on the linker command line to
enable this to be built as a ROM library, so no main function is expected. The
usual start-up initialisation structure is not generated either.

The linker directive "-M" is specified on the linker command line so that a map
file is generated.

The linker directive "-B" is specified on the linker command line so that an s-
record file is generated.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

32 EEPROM Emulation for the MC9S12C32 MOTOROLA

The ROM library is placed at the addresses specified in the associated prm file,
EERAMfuncsIRQ.prm, listed below:

NAMES
END

SECTIONS
TIMER_REGS = NO_INIT 0x0040 TO 0x006F;
FLASH_REGS = NO_INIT 0x100 TO 0x110;
DUMMY_RAM = READ_WRITE 0xF800 TO 0xF800;
RAM_FUNCS = READ_ONLY 0xFF00 TO 0xFF7F;

END

PLACEMENT

DEFAULT_RAM INTO DUMMY_RAM;
DEFAULT_ROM,RAM_FUNCTIONS INTO RAM_FUNCS;
FLASH_REG INTO FLASH_REGS;
TIMER_REG INTO TIMER_REGS;

END

ENTRIES
ProgFlash /* list all RAM function names here */
TIMER0_ISR /* list all RAM ISR functions names here */
END

The RAM functions defined within code segment RAM_FUNCTIONS are
placed in section RAM_FUNCS. This is located at the RAM address at which
the functions will be copied to and executed from, this section must have the
attribute READ_ONLY. The addresses allocated for the RAM functions may
need to be expanded, depending on the size of the interrupt service routines
and if EECALLBACK is defined.

The structure containing the Flash control registers is placed in the section
FLASH_REGS which is located at the default address. If the registers are
remapped after reset then this address will have to be changed. This section
must have the attribute NO_INIT.

This example uses the timer module, so the structure containing the timer
control registers is placed in the section TIMER_REGS at the default address.

The pre-defined segments DEFAULT_RAM and DEFAULT_ROM are listed to
comply with the linker, although they contain no data or code.

Finally, all the RAM function names and interrupt service routines that are
executed from RAM and are not explicitly called must be listed under the
ENTRIES command.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Example Project

MOTOROLA EEPROM Emulation for the MC9S12C32 33

EE Emulation with
IRQs

This target is provided to build the final application with interrupts enabled
during programming and erasure.

The files EE_Emulation.c, VectorTable.c and main.c are compiled and linked
together with the ROM library generated in the "EE RAM functions with IRQs"
target, generating the absolute file EE_EmulationIRQ.abs.

The compiler directive "-DIRQ_DURING_PROG" is specified on the compiler
command line to activate the code required to enable interrupts to be serviced.

The linker directive "-AddEE_RAMfuncsIRQ.abs" is specified on the linker
command line to link in the previously generated ROM library.

The linker directive "-M" is specified on the linker command line so that a map
file is generated.

The application is linked to the addresses specified in the associated prm file,
EE_Emulation_IRQ.prm, listed below:

NAMES
END

SECTIONS
TIMER_REGS = NO_INIT 0x0040 TO 0x006F;
FLASH_REGS = NO_INIT 0x0100 TO 0x010F;
RAM = READ_WRITE 0xF800 TO 0xFEFF;

/* reserve for RAM_FUNCS */
RAM_FUNCS = NO_INIT 0xFF00 TO 0xFF7F;

/* min 2 complete sectors */
FLASH_EEPROM = NO_INIT 0xC000 TO 0xC3FF;
FLASH_CODE = READ_ONLY 0xD100 TO 0xD7FF;

END

PLACEMENT

PRESTART, STARTUP,
ROM_VAR, STRINGS,
NON_BANKED, DEFAULT_ROM,
COPY INTO FLASH_CODE;
RAM_FUNCTIONS INTO FLASH_COPY;
EEPROM_STAT, EEPROM_VARS INTO FLASH_EEPROM; /* EEPROM_STAT must be first */
DEFAULT_RAM INTO RAM;
FLASH_REG INTO FLASH_REGS;
IMER_REG INTO TIMER_REGS;

END

STACKSIZE 0x100

ENTRIES
VectorTable
END

VECTOR ADDRESS 0xFFFE _Startup /* reset vector only */

/* 0xFFFFD100 + 0xFF00 = 0xD000 = FLASH_COPY_START */
HEXFILE EE_RAMfuncsIRQ.sx OFFSET 0xFFFFD100

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D

34 EEPROM Emulation for the MC9S12C32 MOTOROLA

The application code is placed in section FLASH_CODE.

The section FLASH_EEPROM is reserved for EEPROM emulation data and
contains all the variables in segment EEPROM_VARS. This section must be
large enough for EEPROM_BANKS x EEPROM_SIZE_BYTES.

The structure containing the Flash control registers is placed in the section
FLASH_REGS that is located at the default address. If the registers are
remapped after reset then this address will have to be changed. This section
must have the attribute NO_INIT.

This example uses the timer module, so the structure containing the timer
control registers is placed in the section TIMER_REGS at the default address.

The section FLASH_COPY is reserved as a space for the RAM functions in
Flash. The RAM functions are placed at this address using the linker HEXFILE
command to load in the previously generated ROM library
EE_RAMfuncsIRQ.sx, with an OFFSET added to each record. The OFFSET
value of 0xFFFF4100 is calculated by subtracting the RAM_FUNCS start
address from the FLASH_COPY start address.

The section RAM_FUNCS is reserved as a space in RAM for the RAM
functions to be copied to for execution. The addresses allocated for the RAM
functions may need to be expanded, depending on the size of the interrupt
service routines and if EECALLBACK is defined. The RAM functions are copied
here from the FLASH_COPY section by the InitRAMFuncs function.

Finally, the EE_RAMFuncsIRQ ROM library file must be included using the
linker HEXFILE command. An OFFSET must be added to the addresses in this
file so that it is loaded into Flash. The offset is chosen so that when added to
the original addresses the desired Flash address is obtained. This address is
equivalent to FLASH_COPY_START in EE_Emulation.h. No other code must
be located in this address space.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2302/D
Example Project

MOTOROLA EEPROM Emulation for the MC9S12C32 35

Debugging Tips When debugging the examples, the users final application, or any other code
that writes to Flash, it is essential that the debugger does not attempt to effect
a breakpoint by attempting to write a SWI instruction to a Flash address. The
write to Flash by the debugger is interpreted as the beginning of a Flash
programming sequence by the Flash state machine, leading to a Flash access
error when the Flash programming routine is executed.

When using the Metrowerks HI-WAVE debugger, SWI breakpoints are
prevented by setting the debugger option:

HWBREAKONLY ON

This may be done on the debugger command line, or within the startup.cmd file.

When set to ON, this option prevents the debugger from attempting to write the
SWI instruction to effect a breakpoint. Instead, the hardware breakpoint module
is used exclusively.

A current limitation of the Metrowerks HI-WAVE debugger is that it is only able
to load symbols from a single ELF executable file at a time.

In order to debug the code in the ROM library, the following steps must be
followed:

• Delete all commands from the preload.cmd and postload.cmd files.

• Put a breakpoint on the call to the ROM library function,

• Make a single step to enter into the ROM library code. The assembly
window should display some code, but the Source and Data 1 window
will be empty.

• In the Target menu select Load.

• In the "Load Executable File" dialog, browse for the ROM library
executable file and make sure the "Load Symbol Only" radio button is
checked.

• Click on "Open". The symbolic information from the ROM library should
be loaded into the debugger and you should be able to debug your ROM
library.

When returning to the main application, repeat the above process to re-load the
symbol table for the main application again.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

AN2302/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	Introduction
	Implementation
	Program/Erase Cycles
	Program/Erase Time
	Interrupts
	Callback Function
	Power Failure Recovery
	Memory Map

	Software Description
	User's Application Files
	EE_Emulation.h
	EE_Emulation.c
	EE_RAMFuncs.h
	EE_RAMfuncs.c
	VectorTable.c
	Start12.c
	mcucfg.h
	mottypes.h
	s12_fectl.h
	s12_stdtimer.h

	Example Project
	Example with Interrupts Masked during Programming
	Example with Interrupts Enabled during Programming
	Debugging Tips

