
This document contains information on a product under development. Motorola reserves the right to change or
discontinue this product without notice. © Motorola, Inc., 2002. All rights reserved.

1 Introduction
Due to the advancement of computers and computer peripherals, older systems of peripheral
communications have been replaced with new and faster technologies. Older technologies
such as the RS-232 have changed little since their introduction. Even though this
communication interface served as a cornerstone of serial communication, modern
applications demanded higher speed data transfers coupled with the ability to be hot
swappable. The creation of the USB (Universal System Bus) specification provides a high
speed method of data communications with true plug-and-play connectivity. The DragonBall
family of microprocessors has taken advantage of this advanced technology by introducing a
USB module within the Super VZ (MC68SZ328) DragonBall microprocessor. This
application note provides the information to configure the essential registers used to establish
communication via USB between a PC host and the DragonBall MC68SZ328 device.

1.1 USB Overview

The Universal System Bus module that is currently in the MC68SZ328 processor can only be
used for full speed mode (12 Mbps).

1.1.1 Endpoints and Types of Transfer

The DragonBall MC68SZ328 provides five physical FIFO registers (endpoints) that can be
used for communication with a host. These endpoints are used for the different types of
transfer that can be accomplished with the MC68SZ328 USB module. The data transfers
supported are control, interrupt, and bulk. The MC68SZ328 USB does not support
isochronous transfers.

Control endpoints are specifically used to inform the host or device about the data transfer
and the required setup information between host and client. Because endpoint zero represents
the control transfer buffer, it must be used for all data transfers. Endpoints one through four
are used for bulk or interrupt transfers and they can be configured by setting the desired bits
in the USB module registers.

Application Note

AN2294/D
Rev. 1.1, 07/2003

MC68SZ328 USB
Configuration Setup

By Ed Kroitor

Contents
1 Introduction 1
1.1 USB Overview 1
2 Hardware Interface 2
2.1 Bus and Power

Management 2
2.2 Transceiver 2
2.3 USB Crystal

Configuration 3
3 Software Interface 4
3.1 Initialization 4
3.2 Programming the

USB Device Core
(UDC) 9

3.3 Receive and Transmit
Data 15

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

2 MC68SZ328 Application Note MOTOROLA

Hardware Interface

1.1.2 Pipes

Pipes are abstract links between the host and the device. These links are not physical, instead, they are
software relationships. It is important to understand pipes relative to the types of data exchange and how
these exchanges take place between systems (host and device). There are two types of pipes, stream (used
in all transfers except control transfers) and message pipe (used in all control transfers).

1.1.3 Descriptors

Descriptors are structures of data sent by the device to the host for information purposes. With this data,
the host obtains all the required information necessary to connect to the peripheral device. This data is used
every time an enumeration occurs.

2 Hardware Interface
The MC68SZ328 processor has 3 main hardware interfaces: bus, transceiver, and USB crystal. This
section describes these interfaces.

2.1 Bus and Power Management

The bus is responsible for transferring the data between the host and the USB module. The USB bus is
comprised of four lines D+, D-, Vbus, and ground. The USB module can operate only as a self-powered
device with the power supplied by the DragonBall processor’s power pins, as the internal USB module
does not have separate power pins.

2.2 Transceiver

The following MC68SZ328 output pins are responsible for the interface with the USB transceiver:

• USBD_VPO

• USBD_SUSPND

• USBD_VMO

• USBD_ROEB

• USBD_VM

• USBD_VP

• USBD_RCV

• USBD_AFE

Figure 1 on page 3, shows the connections between the DragonBall processor and transceiver ISP1105W
using the USB pin outputs. Note that the SPEED signal is driven high on this diagram. This is necessary
for running at full speed mode.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Hardware Interface

MOTOROLA MC68SZ328 Application Note 3

Figure 1. Connection From MC68SZ328 to the Transceiver Using USB Outputs

Components R313, C252, R314 and C253 are not installed normally, they serve the purpose of fine tuning
the circuit.

2.3 USB Crystal Configuration

The USB uses its own stand-alone crystal that is isolated from the MCU PLL. Its function is to provide the
necessary clock signal to run the USB (48 MHz). Both the MCU PLL and the USB PLL clock frequencies
can be programmed using Equation 1 on page 5. The values for UMFI, UMFN, UMFD, and UPDF are
programmable using the UPFSR0 and UPFSR1 registers. Detailed information about these registers can be
found in the MC68SZ328 Reference Manual (Chapter 5). Figure 2 illustrates the crystal configuration
hardware for a 32.768 kHz crystal, and Figure 3 on page 4 illustrates the crystal configuration hardware for
the 16 MHz crystal.

Figure 2. 32.768 kHz Crystal Configuration Hardware

C28

22p

C29

22p

Y1

32.768k

CLK32KO

CLK32KI

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4 MC68SZ328 Application Note MOTOROLA

Software Interface

Figure 3. 16 MHz Crystal Configuration Hardware

3 Software Interface
This section provides the information to initialize the USB module with the host, program the USB Device
Core (UDC) registers, and receive and transmit data. Example code and instructions to program the
registers are provided.

3.1 Initialization

To start the communication process with the host, the PLL registers within the MC68SZ328 are used to
program the 48 MHZ clock signal required by the USB module.

3.1.1 USB PLL Initialization

The USB PLL output frequency is controlled by the two USB frequency select registers shown in Figure 4
and Figure 5.

Figure 4. USBPLL Frequency Select Register 1

UPFSR1 USBPLL Frequency Select Register 1
Addr

0x(FF)FFF20A
BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UPDF[3:0] UMFD

TYPE rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RESET
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0x0001

CLK16MO
CLK16MI

C30

22p

C31

10p

Y2

16M

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Software Interface

MOTOROLA MC68SZ328 Application Note 5

Figure 5. USBPLL Frequency Select Register 0

As these registers show, the values programmed in them control the output frequency for the USB module.
By using the Equation 1, the desired output frequency can be derived.

 Eqn. 1

Where:

Fusbpll = Output frequency of USBPLL

Fusbpllin = Output frequency of OSC16M or OSC32K + Premultiplier
(USB crystal oscillator)

UMFI = Integer of the USBPLL multiplication factor

UMFN = Numerator of the USBPLL multiplication factor

UMFD = Denominator of the USBPLL multiplication factor

UMFN = Pre-division factor of the USBPLL

The corresponding input values of the UMFD to the UPFSR1 register are shown in Table 1 and Table 2 on
page 5.

UPFSR0 USBPLL Frequency Select Register 0
Addr

0x(FF)FFF208
BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UMFI UBRMO UMFN

TYPE rw rw rw rw 1 rw rw rw rw rw rw rw rw rw rw

RESET
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1

0x0001

Table 1. Corresponding UMFD to the UPFSR1 Register Input Values

UMFD [9:0] UMFD

0 1

1 2

2 3

... ...

0x3FD 0x3FE

0x3FE 0x3FF

Table 2. Corresponding UPDF to the UPFSR1 Register Input Values

UPDF[3:0] UPDF

0 1

Fusbpll 2 Fusbpllin
UMFI UMFN UMFD()÷+

UPDF
--××=

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6 MC68SZ328 Application Note MOTOROLA

Software Interface

3.1.2 Clock Configuration

As shown in Figure 2 and Figure 3, there are two different clocks that can be used to drive the USB
module; the 32.768 kHz and the 16 MHz crystals. Clock source selection is controlled by bit 15 in the
CSCR register (see Figure 6). If the 16 MHz clock is selected, no premultiplier is required. If the
32.768 kHz crystal is selected, the signal comes from the output of the premultiplier.

The clock sources control register (CSCR) is used to select the clock source and control the divide ratios
for the USB module. This register is shown in Figure 6.

Figure 6. Clock Sources Control Register

The PLL registers work in two different modes according to the hardware settings programmed. The
following examples show the configuration for a module to run the PLL with the 32.768 kHz crystal or
using the 16 MHz crystal.

Using Equation 1 on page 5:

To produce an output of 48 MHz, use the values shown in Table 3 and use a USB Divider = 4.

1 2

2 3

... ...

0xE 15

0xF 16

CSCR Clock Sources Control Register
Addr

0x(FF)FFF20C
BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

USBSEL PLLBYPB USBCDIV DMACDIV OSC16EN CLKOSEL

TYPE rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RESET
1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1

0x0001

Table 3. Programming Values

Variable 32.768 kHz 16 MHz

UMFI 5 6

UMFN 361 0

UMFD[9:0] 0 0

UPDF[3:0] 499 0

Table 2. Corresponding UPDF to the UPFSR1 Register Input Values (Continued)

UPDF[3:0] UPDF

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Software Interface

MOTOROLA MC68SZ328 Application Note 7

The results are 192 MHz. However, because USBCDIV / 4 (CSCR bit 13-11) the USB_CLK output
frequency will be 48 MHz. Refer to the Code Example 1 on page 8 for more information on programming
the USBPLL registers.

System Configuration for the 32.768 kHz Crystal
1. Set the value of CSCR register to 0x4C04 using the following:

— Consider the premultiplier output (512 *32.768 KHz)

— Enable USBPLL

— Set USBCLK / 4

— Set MCUPLL_CLK /1

— Disable the internal clock

— Enable the USB clock

2. Set the values of UMFN, UMFI, UPDF, and UMFD in the two frequency select registers:

UPFSR0—0x2969

UPFSR1—0x01F3

PLLCR—0x6400

3. Set the value of CSCR after the previous registers are initialized to equal 0x4C03.

The system is now setup to use the system clock.

System Configuration for the 16 MHz Crystal
1. Set the value of the CSCR register to 0xCC0C by enabling the following:

— 16 MHz external clock

— USBPLL

— Internal clock

— USB clock

2. Set the values of UMFN, UMFI, UPDF, and UMFD in the two frequency select registers:

UPFSR0—0x3400

UPFSR1—0x0000

PLLCR—0x6400

3. CSCR remains the same because the system clock has already been enabled.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8 MC68SZ328 Application Note MOTOROLA

Software Interface

Code Example 1. Programming the USBPLL Registers

void init_USBPLL(void)
{
/* using 32.768 KHz crystal. */

reg_CSCR= 0x4C04;
reg_UPFSR0= 0x2969;
reg_UPFSR1= 0x01f3;
reg_PLLCR= 0x6400;
reg_CSCR= 0x4c03; }

void init_USBPLL(void)
{
/* using 16 MHz crystal. */

int i;
reg_CSCR = 0xCC0C;
reg_PLLCR = 0x2400;
reg_UPFSR0 = 0x3400;
reg_UPFSR1 = 0x0000;
reg_PLLCR = 0x6400; }

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Software Interface

MOTOROLA MC68SZ328 Application Note 9

3.2 Programming the USB Device Core (UDC)

The USB Device Core implements most of the USB protocol in hardware. As shown in Figure 7, the UDC
is the front-end device for communication with the USB transceiver and the peripheral bus.

Figure 7. USB Device Core (UDC) Block Diagram

The following steps are found in the MC68SZ328 Reference’s Manual on programming the UDC registers
but are explained in greater detail in this application note.

UDC Register Programming Instructions
1. Perform a hard reset or a software rest (RST bit in USB_ENAB register).

Software option—USB_ENAB = 0x8000 0000

This sets the RST bit and the ENAB bits. Wait for the bit to clear before continuing to program
registers. Check that the CFG bit in the CFGSTAT register is set.

Configuration

Peripheral Bus

Bus IP
(BlueLine)

USB DMA
Control

Control Logic
Interrupts
USB Configuration/Control
Endpoint Configuration
Module Specification Revision
Frame Count/Match
Endpoint Buffer Download

FIFO
RAM

Dual Port,
4 banks
x 9 bits

FIFO
RAM

Muxing
FIFO

Control

FIFO
Control

Write Port Read Port

UDC Core

Synchronization

Synchronization
& Transaction

Decode

To/From USB Transceiver

Register Decodes

FIFO
Application

Bus
Decode

... x5...

FIFO0
32 bytes

FIFO1
16 bytes

FIFO2
16 bytes

FIFO3
128 bytes

FIFO4
128 bytes

Internal Peripheral Bus

USB Core

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10 MC68SZ328 Application Note MOTOROLA

Software Interface

2. Download configuration data (EndptBufs) to the device via the USB_DDAT register shown
in Figure 8.

EndptBufs—A personality file that contains the bytes of the five endpoint buffers (40 bits) that
loads directly into the UDC module via DDAT[7:0]. The EndPtBufs register contains the necessary
setup data for each endpoint while configuring the USB module in the MC68SZ328.

Figure 8. USB Endpoint Buffer Register

To program all required 40 bits (5 bytes) per endpoint into the EndPtBufs buffer, the information must be
programmed into the DDAT field byte per byte. The USB Device Core in the MC68SZ328 processor has
five EndPutBuf registers that must be programmed. Each register represents one endpoint (Ep0–EP4).
Once loaded, the values in these buffers cannot be changed while the device is powered on.

The first EndPtBuf is reserved for information about control endpoint (or endpoint 0). The value for this
register is always 0x0000080000. Figure 9 on page 11 explains the EndPtBuf register.

When entering the endpoint buffer (EndPtBufs) information to the USB_DDAT register, the first byte
written is EPn[39:32] and the last byte written is EPn[7:0]. After writing each byte, and before performing
any other operation on the USB module, check that the BSY bit and the CFG bit have cleared in the
USB_CFGSTAT register. This check tells the program when the byte is written to the UDC, therefore
allowing the device to program this DDAT field with the byte, USB_CFGSTAT = 0x0000 0000.

Code Example 2 shows how to program the EndptBufs via the USB_DDAT field.

USB_DDAT USB Endpoint Buffer Register
Addr

0x(FF)FE0414
BIT 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TYPE

RESET
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0000

BIT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DDAT[7:0]

TYPE rw rw rw rw rw rw rw rw

RESET
0 0 0 0 0 0 0 0 X X X X X X X X

0x0001

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Software Interface

MOTOROLA MC68SZ328 Application Note 11

Code Example 2. Programming EndptBufs via the USB_DDAT

//Setup information that will go into the EndPtBufs register
static unsigned char epcfg[NUM_ENDPOINT][5] = { { 0x00,0x00,0x08,0x00,0x00 },

{ 0x14,0x10,0x10,0xC0,0x01 },
{ 0x24,0x14,0x10,0xC0,0x02 },
{ 0x34,0x10,0x40,0xC0,0x03 },
{ 0x44,0x14,0x40,0xC0,0x04 } };

{
int i,ep;

for (ep = 0; ep < NUM_ENDPOINT; ep++)
{

for (i = 0; i < 5; i++)
{

// setup information into DDAT register byte for byte

USB_DDAT = epcfg[ep][i];
while(USB_CFGSTAT & 0x40000000);

}

}
while (USB_CFGSTAT & 0x80000000);

return(TRUE)
}

Figure 9 represents the EndPBufs register with the appropriate register numbers as they should be
programmed into the UDC. Table 4 provides the register descriptions.

Figure 9. EndPBufs Register

USB UDC Endpoint Buffers Format
39 38 37 36 35 34 33 32

EpNum Config Interface

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AltSetting Type Dir MaxPktSize

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRXTYP Reserved FifoNum

Table 4. EndPBufs Register Description Table

Bit Field Type Description

[39:36] EpNum Logical endpoint number

[35:34] Config Configuration number—Maximum up to 1 configurations.

[33:32] Interface Interface number—Maximum up to 1 interface.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

12 MC68SZ328 Application Note MOTOROLA

Software Interface

Table 5 shows the register configuration for endpoints 0 through 4 in Code Example 2 on page 11.

The selection of the current EndPoint information from all the EndPtBuf registers is based on the current
configuration and current alternate setting of the interface with which the EndPtBuf is associated.
EndPtBuf0 (EndPtBuf information for End Point 0) is always fixed for EndPoint 0.

[31:29] AltSetting Alternate setting number—Maximum up to 4 alternate settings.

[28:27] Type Type of endpoint:
00 = Control
01 = Reserved
10 = Bulk
11 = Interrupt

[26] Dir Direction of the Endpoint:
0 = OUT endpoint
1 = IN endpoint

[25:16] MaxPktSize Maximum packet size for endpoint:
0x08 = 8 bytes
0x10 = 16 bytes
0x20 = 32 bytes
0x40 = 64 bytes

[15:14] TRXTYP These bits must be set to 2’b00 for endpoint 0 and 2’b11 for all other endpoints.

[13:3] Reserved

[2:0] FifoNum FIFO Number—This field maps the endpoint to one of the USB Device module’s
hardware FIFOs. Multiple UDC endpoints may map to a single hardware FIFO. It is
up to the software to monitor and control any data hazards related to operation in
this way.
The hardware FIFOs that are available are:

FIFO 0 (32 bytes)
FIFO 1 (16 bytes)
FIFO 2 (16 bytes)
FIFO 3 (128 bytes)
FIFO 4 (128 bytes)

Table 5.

Endpoint
(EP#)

Configuration Interface Alternate Setting Type Direction
Maximum

Packet Size
FIFO

Number

Endpt0 00 00 000 Control In/Out 8 bytes 0

Endpt1 01 00 000 Bulk Out 16 bytes 1

Endpt2 01 00 000 Bulk In 16 bytes 2

 Endpt3 01 00 000 Bulk Out 64 bytes 3

 Endpt4 01 00 000 Bulk In 64 bytes 4

Table 4. EndPBufs Register Description Table (Continued)

Bit Field Type Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Software Interface

MOTOROLA MC68SZ328 Application Note 13

There will be only one EndPoint0 for the entire device and this EndPoint is associated to all configurations
and interfaces in the device. The UDC ignores the values programmed in the Ep_Config, Ep_Interface, and
Ep_AltSetting fields of the EndPtBuf0.

3.2.1 USB Module General Registers

The general registers in the USB module cover the memory address locations, 0xFFFE0400 to
0XFFFE0428. The following list identifies specific characteristics of those registers.

• USB_FRAME—Used for debugging purposes.

• USB_SPEC—This register identifies the version of the USB specification to which the underlying
USB core is compliant. (MC68SZ328 USB module is version 1.1 and only covers full speed).

• USBB_STAT—Bits CFG, INTF, and ALTSET indicate the current USB configuration. These bits
are programmed during configuration download (using the EndPtBf register).

• USB_CTRL—Bit CMD_OVER (see note) is responsible for monitoring transactions between host
and device.

• USB_SPD—Bit is set, full speed (low and high speeds are not supported in the MC68SZ328).

• USBD_AFE—Bit high (full speed communication activation), enables USB module front-end
logic (ready for communication) with host.

• USB_CFGSTAT—Bits CFG and BSY are monitored during device configuration.

• USB_GEN_ISR—Sets interrupts necessary for chip to work properly.

• USB_MASK—Interrupt disable.

• USB_ENAB—No reset in progress, enables USB for communication with the host.

• USB_ISR—When the device is ready to receive and transmit data, all bits read as zero.

NOTE:

In the USB_CTRL register, the CMD_OVER bit is cleared after a request
is completed. The bit remains set until the current request is completed.

Actions to consider when setting up for initialization:

1. Program the USB interrupt mask register (USB_MASK) to enable USB general interrupts.

This enables all interrupts except the SOF and MSOF interrupts.

2. Clear interrupts by writing 1 to all bits in the general and Endpoint interrupt registers as
shown in Code Example 3.

Code Example 3. Clearing Interrupts in the General and Endpoint Interrupt Registers

void usbdIsrInit(void)
{

int i;

USB_GEN_ISR = 0x800000FF; //Clear interrupts
USB_MASK = 0x800000C0; // Mask interrupts

}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

14 MC68SZ328 Application Note MOTOROLA

Software Interface

3.2.2 USB Module Endpoint Specific Registers

The USB module Endpoint specific registers cover the memory address locations identified in Table 6.

Each of these registers is programmed according to the characteristics of each endpoint used.

During initialization the endpoint configuration register USB_EPn_STATCR must include the same
configuration setup for each endpoint in the EndPtBuf register. In the USB_EPn_STATCR register, the
direction, maximum packet size, and type of transfers are matched to the EndPtBufs register.

Before downloading the information to the endpoint registers, it is important to reset the interrupt requests
and to mask all desired interrupts in the USB_EP(n)_ISR registers (where n = endpoint 0–4). To clear any
interrupt in the USB module, including interrupts for the endpoints, registers need to be set to 1, because
interrupts do not clear even if the interrupt requests go away. By setting all bits to 1, the particular interrupt
clears. Writing 0 to registers that are already set does not clear these interrupts.

All other endpoint registers can be set with the default setting for initialization purposes.

In Code Example 4 all endpoints 0 through 5 are set for initialization.

Code Example 4. Setting Endpoints 0–5 for Initialization

static unsigned int epstat[NUM_ENDPOINT] = { 0x0002, 0x0032, 0x00B2, 0x0072, 0x00F2 };
// Same configuration as the already configured EndPtBufs register
bool usbdFifoInit(void) {
for (ep = 0; ep < NUM_ENDPOINT; ep++)

{

USB_EP_STATCR(ep) = epstat[ep];// Program dir, max size, type
USB_EP_FCTRL(ep) = 0x0900000 // Frame mode disable

for (i = 0; i < NUM_ENDPOINT; i++)
{

USB_EP_ISR(i) = 0x1FF; //Clear interrupts
USB_EP_MASK(i) = 0x1F0; //Set desired masks

}
}

Table 6. Endpoint Specific Register Memory Address Range

Endpoint Memory Address Range

Endpoint 0 0xFFFE0430 – 0xFFFE0458

Endpoint 1 0xFFFE0460 – 0xFFFE0488

Endpoint 2 0xFFFE0490 – 0xFFFE04B8

Endpoint 3 0xFFFE04C0 – 0xFFFE04E8

Endpoint 4 0xFFFE04F0 – 0xFFFE0518

Endpoint 5 0xFFFE0520 – 0xFFFE0548

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

Software Interface

MOTOROLA MC68SZ328 Application Note 15

3.3 Receive and Transmit Data

When receiving and transmitting data certain rules of engagement must be taken into account. The first
distinction between both actions is the way that they are processed. Both actions transmit from the same
differential lines, and the same endpoint registers in the MC68SZ328 using the USB_EPn_FDAT field
(where n = endpoint 0–4).

The USB_EPn_FDAT is a 16 bit register that is controlled by events coming from the
USB_EPn_STATCR (endpoint status registers). During configuration, the information in the status
register has to be the same as the information of the EndPtBfs buffer for each of the endpoints used. The
status register is responsible for the direction of transfer, the maximum amounts of stored bytes in FIFO,
type of transfer, FIFO flushing, stall acknowledgement, and so on.

At the same time, the USB_EPn_ISR (USB endpoint interrupt request registers) handle their specific
endpoint requests and create interrupt requests based on those software calls. Interrupts that are triggered
on this registers are: FIFO full, FIFO empty, error, high-level alarm, low-level alarm, multiple device
request, end-of-transfer, device request for single requests, and end-of-frame. When any interrupt bit is set
(interrupts occur) the USB module moves data accordingly. Follow the necessary steps to clear such
interrupts when needed.

3.3.1 Transmitting Data

When transmitting data, each endpoint in the device interfaces with its counterpart in the host through
pipes. Each FIFO in the device has a maximum amount of bytes of storage. For endpoint 0 there are 32
bytes of physical space available. Therefore, 32 byte maximum packet size that can be transmitted.

In Code Example 2 on page 11 only endpoint 0 is programmed to a maximum packet size transfer of 8
bytes (setup packet maximum size) for configuration purposes. "Ep0 - (0x0000080000)" (which
constitutes an 8 byte transfer maximum) is ignored because EP0 configuration is hard mapped, but the
download is still required to properly configure endpoints 1 to 4. However, after the endpoint configuration
is complete, the actual maximum packet size transfer for endpoint 0 is determined by the information
programmed in the MAX[1:0] of the USB_EP0_STATCR register (which should not be greater than 32
bytes).

Endpoints 1, 2, 3, and 4 can be used for control, interrupt or bulk types of transfer only. As mentioned
before, the MC68SZ328 does not support isochronous transfers. Endpoints 1 and 2 are 16 bytes and
endpoints 3, 4 are 128 bytes. Even though FIFOs for endpoints 3 and 4 are 128 bytes, the maximum
amount of packet size for a bulk transfer is 64 bytes. This doubling of space in the FIFO for endpoint 3 and
4 serves as a step to maintain data transfer timing requirements of the MC68SZ328. The behavior of each
endpoint changes according to how each endpoint register is programmed, and the behavior of each
transfer follows the characteristics of each endpoint. To send all necessary transfers from the device to the
host, the host needs to send requests to the device. The device acknowledges these requests and responds to
the host with the required information.

To Send a Packet of Data to the USB Host

Perform the following steps to send a packet of data to the USB host using programmed I/O.
Code Example 5 on page 17 provides the programming instructions to accompany these procedures.

For odd byte size packets:

1. For an N (N = odd) byte packet, write the first N-1 bytes to the FIFO data register
(USB_EPn_FDAT). Data may be written as words.

2. Set the WFR bit in the USB_EPn_FCTRL register, then write the last data word, (byte N-
1 and byte N) to the USB_EPn_FDAT register.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

16 MC68SZ328 Application Note MOTOROLA

Software Interface

When the WFR bit is set, it tells the device that the next transaction that takes place is the last data word
(either 16 or 8 bit) for that particular transaction.

Even byte size packets:

1. For an N (N = even) byte packet, write the first N-2 bytes to the FIFO data register
(USB_EPn_FDAT). Data may be written as words.

2. Set the WFR bit in the USB_EPn_FCTRL register and then write the last data word (byte
N-1 and byte N) to the USB_EPn_FDAT register.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MC68SZ328 Application Note 17
Motorola Confidential Proprietary, NDA Required / Draft #

NOTES

Code Example 5. Sending Packets

void Send_Odd_Packet(U32 start, U32 end)
{

U32 i;
// write first 2 bytes of last packet
// for (i=start; i<end; i=i++)
// {

// _reg_USBD_EP0_FDAT_byte_access = (USB_CONFIG_DESC[i]);

// count++
}

if (

_reg_USBD_EP0_FDAT_byte_access = (USB_CONFIG_DESC[80]);
_reg_USBD_EP0_FDAT_byte_access = (USB_CONFIG_DESC[81]);

// set WFR bit of USB_EP0_FCTRL register
_reg_USBD_EP0_FCTRL |= 0x20000000;

// write last byte of packet last
_reg_USBD_EP0_FDAT_byte_access = (USB_CONFIG_DESC[82]);

}

void Send_Even_Packet(U32 start, U32 end) //Example for 8 byte packet
{

U32 i;

if (start - end== 0)
{

// set WFR bit of USB_EP0_FCTRL register
_reg_USBD_EP0_FCTRL |= 0x20000000;

_reg_USBD_EP0_FDAT_byte_access = (USB_CONFIG_DESC[start]);
 }
 else
 {
// write first 6 bytes of packet 2

for (i=start; i<end+1; i=i+2)
{

_reg_USBD_EP0_FDAT = (USB_CONFIG_DESC[i] << 8) |
USB_CONFIG_DESC[i+1];

}

// set WFR bit of USB_EP0_FCTRL register
_reg_USBD_EP0_FCTRL |= 0x20000000;

// write last 2 bytes of packet 2 (8 byte total)
_reg_USBD_EP0_FDAT = (USB_CONFIG_DESC[end-1] << 8) |

USB_CONFIG_DESC[end];
}

}

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

18 MC68SZ328 Application Note MOTOROLA

Software Interface

3.3.2 Receiving Data

Customize the program to read USB_EPn_ISR (n=0-4) bit 1. After this bit is set, the end-of-transfer
interrupt enables. When set, it tells the device that the last packet of the transfer has been received. Read
the USB_EPn_FDAT register for the corresponding endpoint.

In special cases, such as the setup packet monitor shown in Code Example 6, USB_EPn_STATCR (SIP)
bit 8 and USB_EPn_ISR DEVREQ bit 1 are set. Clear corresponding EOF and DEVREQ interrupts. It is
important to clear the bit that caused the interrupt (by writing a 1 in the specific register) in the
USB_EPn_ISR register to clear that particular interrupt, otherwise interrupts will not clear automatically.
The UDC acknowledges to the host that the setup data is received, then the process of flushing the FIFOs
for next transfer takes place.

Code Example 6. Receiving Packets

void Setup_Packet_Detect()
{
// Verify the Registers

peek_USBD_ISR[0] = _reg_USBD_ISR;
peek_USBD_CTRL[0] = _reg_USBD_CTRL;
peek_EP0_STATCR[0] = _reg_USBD_EP0_STATCR;
peek_EP0_ISR[0] = _reg_USBD_EP0_ISR;
peek_EP0_FSTAT[0] = _reg_USBD_EP0_FSTAT;

_reg_USBD_MASK = (~0x000000FF);// clear mask
_reg_USBD_EP0_MASK = (~0x000001FF);

// 1. HOST Sends a setup packet to the device.

// 2. Wait until setup packet received, SIP set
while (!(_reg_USBD_EP0_STATCR & BIT8));

// 3. Wait until Device Request Received, DEVREQ set
while (!(_reg_USBD_EP0_ISR & DEVREQ_BIT));

// Clear DEVREQ and EOF if get it...
_reg_USBD_EP0_ISR |= 0x00000003;

// Read the 8 byte Packet
fifo_peek[0] = _reg_USBD_EP0_FDAT;
fifo_peek[1] = _reg_USBD_EP0_FDAT;
fifo_peek[2] = _reg_USBD_EP0_FDAT;
fifo_peek[3] = _reg_USBD_EP0_FDAT;

.

.

.

void ACK_Detect()
{
// 3. Wait until Device Request Received, DEVREQ set

while (!(_reg_USBD_EP0_ISR & EOF_BIT));

// Clear EOF
_reg_USBD_EP0_ISR |= 0x00000001;

// Flush the FIFO
_reg_USBD_EP0_STATCR |= 0x00000002

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA MC68SZ328 Application Note 19
Motorola Confidential Proprietary, NDA Required / Draft #

NOTES

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2294/D

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour
Centre, 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to

use Motorola products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits or integrated circuits based on the information in this

document.

Motorola reserves the right to make changes without further notice to any products herein.

Motorola makes no warranty, representation or guarantee regarding the suitability of its products

for any particular purpose, nor does Motorola assume any liability arising out of the application or

use of any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be provided in

Motorola data sheets and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals” must be validated

for each customer application by customer’s technical experts. Motorola does not convey any

license under its patent rights nor the rights of others. Motorola products are not designed,

intended, or authorized for use as components in systems intended for surgical implant into the

body, or other applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or death may

occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized

application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,

affiliates, and distributors harmless against all claims, costs, damages, and expenses, and

reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

associated with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. All other
product or service names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	1 Introduction
	1.1 USB Overview
	1.1.1 Endpoints and Types of Transfer
	1.1.2 Pipes
	1.1.3 Descriptors

	2 Hardware Interface
	2.1 Bus and Power Management
	2.2 Transceiver
	Figure�1. Connection From MC68SZ328 to the Transceiver Using USB Outputs

	2.3 USB Crystal Configuration
	Figure�2. 32.768�kHz Crystal Configuration Hardware
	Figure�3. 16�MHz Crystal Configuration Hardware

	3 Software Interface
	3.1 Initialization
	3.1.1 USB PLL Initialization
	Figure�4. USBPLL Frequency Select Register 1
	Figure�5. USBPLL Frequency Select Register 0
	Table�1. Corresponding UMFD to the UPFSR1 Register Input Values�
	Table�2. Corresponding UPDF to the UPFSR1 Register Input Values�

	3.1.2 Clock Configuration
	Figure�6. Clock Sources Control Register
	Table�3. Programming Values

	3.2 Programming the USB Device Core (UDC)
	Figure�7. USB Device Core (UDC) Block Diagram
	Figure�8. USB Endpoint Buffer Register
	Figure�9. EndPBufs Register
	Table�4. EndPBufs Register Description Table�
	Table�5.
	3.2.1 USB Module General Registers
	3.2.2 USB Module Endpoint Specific Registers
	Table�6. Endpoint Specific Register Memory Address Range

	3.3 Receive and Transmit Data
	3.3.1 Transmitting Data
	3.3.2 Receiving Data

