
© Motorola, Inc., 2002

AN2292
6/2002

8-Bit Software
Development Kit

Application Note

By Jiri Ryba

Introduction

This application note describes the features and advantages of the 8-bit SDK
(software development kit) to help users quickly create their own applications.
The intended audience is developers who are starting their first application
using the 8-bit SDK.

8-Bit SDK Overview

The Motorola Embedded Software Development Kit (8-bit SDK) has been
created to complement the existing development environment for Motorola
M68HC08 embedded processors. It provides a software infrastructure that
allows fast and efficient development of software applications, which are
portable and reusable among different M68HC08 Family MCUs. The M68HC08
SDK development environment contains peripheral drivers, algorithms,
examples, and interfaces that allow programmers to create their own C
application code, independent of the core architecture. The introductory SDK
components are oriented towards motor control applications but the SDK is by
no means limited to these.

This SDK has been tested with compilers from Metrowerks and Cosmic. It is
expected that the drivers and algorithms within can be readily ported to other
environments.

The purpose of the 8-bit SDK is to:

• Speed up the process of application development
• Decrease requirements for knowledge of MCU peripherals
• Simplify development of structured software
• Achieve high software efficiency — higher-speed

operation/lower-memory consumption
• Achieve high transparency and easy modification of the finalized code

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292

2 8-Bit Software Development Kit MOTOROLA

8-Bit SDK Features

The M68HC08 SDK environment is composed of the following major
components (see Figure 1):

• Core-system infrastructure
• On-chip drivers (drivers for built-in peripherals)
• Off-chip drivers (drivers for external hardware)
• Example applications
• Libraries with math functions and algorithms

The basic idea of the 8-bit SDK is the separation of the application software
from the hardware of the microcontroller. The hardware peripherals are
controlled only through the dedicated drivers. Thus, layered and structured
software can be developed. Highest attention is given to code efficiency.

Figure 1. 8-Bit SDK Architecture

Application

8-
bi

t S
D

K
 fo

r 6
8H

C
08

M
R

xx

System Infrastructure

8-bit SDK Core

On-Chip
Peripherals

External HW

PINS

External
Connections

*Optional

Application SW
ExamplesApplication SW

Examples Application SW

On-Chip Driver

On-Chip Drivers
efficient

reflecting the chip features

Off-Chip Driver
Off-chip Drivers*

external peripherals support

Algorithm

Application SW
Examples

PCMaster*
Support

External Appl.*
Support

D
oc

um
en

ta
tio

n

Algorithms
& Libraries

Application

8-
bi

t S
D

K
 fo

r 6
8H

C
08

M
R

xx

System Infrastructure

8-bit SDK Core

On-Chip
Peripherals

External HW

PINS

External
Connections

*Optional

Application SW
ExamplesApplication SW

Examples

Application SW
ExamplesApplication SW

Examples Application SW

On-Chip Driver

On-Chip Drivers
efficient

reflecting the chip features

Off-Chip Driver
Off-chip Drivers*

external peripherals support

Algorithm

Application SW
Examples

PCMaster*
Support

External Appl.*
Support

D
oc

um
en

ta
tio

n

Algorithms
& Libraries

SDK Package
Exported Software

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292
8-Bit SDK Features

MOTOROLA 8-Bit Software Development Kit 3

The 8-bit SDK core drivers and algorithms are intended to provide a high level
of code efficiency, comparable with pure assembly language code.

All the components of the 8-bit SDK use a C compatible interface.

This section provides an overview of the SDK components, while a
comprehensive description can be found in the 8-bit SDK M68HC08 target
documentation (see References).

Core-System
Infrastructure

The core-system infrastructure creates the fundamental infrastructure for
M68HC08 device operation and enables further integration with the 8-bit SDK
components. The provided basic development support includes:

• Commonly used macro definitions

• Portable architecture-dependent register declaration

• Generic types

• A mechanism for static configuration of on-chip peripherals

• Interrupt vectors

• Project templates

Static Initialization The 8-bit SDK uses static initialization of the peripheral configuration. The
default configuration of the peripherals corresponds to the default RESET
values of the microcontroller. The default configuration is stored in the header
files of the peripheral drivers, such as “pwmdrv.h” for the PWM driver, “spidrv.h”
for the SPI driver, etc. You can modify any of the default peripheral registers
using the application-specific file “appconfig.h”. Then, the configuration bits of
the individual registers are composed according to the required setting in the
“appconfig.h”. When the configuration of the register is equal to its default
value, no code is generated and the original RESET content of the register is
preserved. Finally, the generated configuration is stored in the configuration file
“config.c” that is used during the initialization of the microcontroller. The static
initialization is depicted in Figure 2.

Such an approach allows the easy initialization of the on-chip peripherals using
just the application-specific file “appconfig.h”. You do not need to study the
placement and syntax of the individual bits of the configuration registers of
on-chip peripherals. Any modification of the settings can easily be done in the
application-specific file without any accidental side effects.

Figure 2. Static Initialization of On-Chip Peripherals

appconfigh USER CONFIGURATION

configh

configc

DRIVER DEFAULT
CONFIGURATION

DRIVER INIT FUNCTION

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292

4 8-Bit Software Development Kit MOTOROLA

On-Chip Drivers The on-chip drivers isolate the hardware-specific functionality from user
software by a set of driver commands with a defined API (application
programming interface). The API standardizes the interface between the
software and the hardware, see Figure 3. Application software accesses
peripherals only through the on-chip drivers. This isolation enables a high
degree of portability or architectural and hardware independence for
application code. This is mainly valid for devices with similar peripheral
modules.

Figure 3. Software Structure

On-chip driver characteristics include:

• Dedicated to control of all on-chip peripherals
• Low-level drivers implemented as efficient macros
• Driver API clearly suggests its intended purpose
• Access to all HW features of the individual on-chip peripherals
• Static configuration
• Emphasis on efficiency — performance and memory
• Tested functionality
• Application examples available for each driver

Off-Chip Drivers The off-chip drivers have the same functionality as the on-chip drivers. The only
difference is that the off-chip drivers perform the interface between the software
and a peripheral which is not on the chip, but which can be controlled by the
chip. Off-chip drivers can access the hardware by means of the on-chip drivers.
This isolation enables a high degree of portability or architectural and hardware
independence for both application and off-chip drivers code. This is mainly
valid for standard external peripherals, such as a PC, display, keyboard,
switch, LED, etc.

ON-CHIP DRIVER

HARDWARE

APPLICATION SOFTWARE
API

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292
8-Bit SDK Features

MOTOROLA 8-Bit Software Development Kit 5

Algorithms The 8-bit SDK provides a set of dedicated algorithms, ready to use in the target
application. The algorithm library contains, for example, a Math Library and a
Motor Control Library. All algorithms are independent of drivers and can be
used for all chips with the same 68HC08 core. For more detail, see the 8-bit
SDK Algorithm Libraries.

PC Master Software PC master software is one of the off-chip drivers, which supports
communication between the target microcontroller and PC. This tool was
initially created for developers of motor control applications, but it may be
extended to any other application development. This tool allows the
programmer to remotely control an application using a user-friendly graphical
environment that is running on a PC. It also provides the ability to view some
real-time application variables in both text and graphic form.

Main features:

• Graphic environment
• Visual Basic Script or Java Script can be used to control the target board
• Easy to understand navigation
• Connection to target board is possible over a network, including the

Internet
• Demo mode with support for password protection
• Visualization of real-time data in the scope window
• Acquisition of fast data changes using the integrated recorder
• Value interpretation using custom defined text messages
• Built-in support for standard variable types (integer, floating point, bit

fields)
• Several built-in transformations for real type variables
• Automatic variable extraction from Metrowerks’ CodeWarrior linker1

output files (MAP, ELF)
• Remote control of application execution

PC master software is a versatile tool to be used for multipurpose algorithms
and applications. It provides a lot of excellent features, including:

• Real-time debugging
• Diagnostic tool
• Demonstration tool
• Education tool

A full description can be found in the PC master software User’s Manual and in
the dedicated application notes (see References).

1. CodeWarrior is a registered trademark of Metrowerks, a Motorola company.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292

6 8-Bit Software Development Kit MOTOROLA

Interrupts The 8-bit SDK supports two types of interrupt callbacks.

• Type 1 first calls the user function and then the SDK interrupt service
routine.

• Type 2 first calls the SDK interrupt service routine and then the user
function.

The SDK interrupt service routine provides service of the interrupt according to
its definition. It clears the interrupt flags, so you do not have to worry about the
interrupt flags in your code. The SDK drivers can call the user’s interrupt routine
automatically. For more detail, check the appropriate driver documentation. An
example of an SDK driver is the analog-to-digital converter (ADC) driver. The
driver starts the ADC and when the conversion is completed, it buffers the
converted input and starts the conversion again for the following ADC channel.
In this example, the service of the interrupt “Conversion Completed” is served
automatically by the SDK.

On the other hand, most of the low-level interrupt drivers only clear the interrupt
flags. You can disable clearing of the flags.

Quick Start with the 8-Bit SDK

This section describes the installation and use of the individual components of
the 8-bit SDK from a practical point of view. This example is for Metrowerks
CodeWarrior.

Install the 68HC08
SDK

Before the 8-bit SDK can be used, it needs to be installed on your PC. For
installation of the 8-bit SDK you need to:

1. Execute Setup.exe.
2. Follow the 68HC08 SDK software installation instructions on your

screen.
3. Copy the 8-bit SDK stationery to the Metrowerks stationery folder.
4. Set the path to the 68HC08 SDK source within IDE.

a. Launch CodeWarrior IDE from the Start->Programs->Metrowerks
CodeWarrior menu.

b. Open the IDE Preferences dialog window using Edit->Preferences.
c. Select the Source Trees panel from the IDE Preferences

Panels->General.
d. Type 68HC08 SDK src into the Name box.
e. Choose Absolute Path as the path type.
f. Click Choose and locate the 68HC08 SDK installation directory, e.g.

C:\Program Files\Motorola\68HC08 SDK\src.
g. Click Add.
h. Click OK to finish.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292
Quick Start with the 8-Bit SDK

MOTOROLA 8-Bit Software Development Kit 7

Create Project Follow these steps to create a new project:

1. In the menu File-New, select 68HC08 SDK Stationery and set your
project name and path, where the application will be placed.

2. Select the required device and required template. This creates a new
project (see Figure 4) including:
• Start-up code for the target device
• Appropriate linker command file “default.prm”
• Template of main routine main() in “main.c”
• Architecture dependent definitions “arch.h
• On-chip driver commands
• Application specific configuration file “appconfig.h”

Figure 4. New Project Created from the 68HC08 SDK Stationery

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292

8 8-Bit Software Development Kit MOTOROLA

Static Initialization The static initialization of the on-chip drivers is set in the “appconfig.h” file.
Follow these steps to configure the on-chip peripherals:

1. Copy the configuration items from the driver “name.txt” e.g. “pwmdrv.txt”
to the “appconfig.h” file. The files can be found in the project window
(see Figure 4).

2. In the “appconfig.h” file select the appropriate value for the driver
constants. The possible value are in comments. The individual options
are described in the 8-bit SDK User’s Manual. E.g., to define PWM
reload frequency use:
#define PWM_RELOAD_FREQUENCY PWM_EVERY_4_CYCLE

/*PWM_EVERY_1_CYCLE*/
/*PWM_EVERY_2_CYCLE*/
/*PWM_EVERY_4_CYCLE*/
/*PWM_EVERY_8_CYCLE*/

3. Include the desired driver by defining INCLUDE_driver in “appconfig.h”;
e.g., to include PWM driver use:
#define INCLUDE_PWM

4. Call Initialization function in the main():
void main (void)
{

/* Static Initialization of periphery */
(void) peripheralInit();

}

NOTE: Unchanged constants in the “appconfig.h” do not bring any code overhead.
Only non-default values are written to registers. If a constant is not defined in
the “appconfig.h”, then the default value, defined in the driver header file, is
used.

On-Chip Drivers On-chip peripherals are controlled by the IOCTL driver commands. The
general form of the driver command is the following:

IOCTL(peripheral_module_identifier,command,command_specif_parameter);

Where:

The peripheral_module_identifier parameter specifies the peripheral module
with predefined symbolic constants, like PWM for PWM module, TIMA for
Timer A, TIMB for Timer B etc.

The command parameter specifies the action, which will be performed on the
peripheral module. It represents the command name as it is implemented for
each on-chip driver.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292
Quick Start with the 8-Bit SDK

MOTOROLA 8-Bit Software Development Kit 9

The command_specific_parameter parameter specifies other data required to
execute the command. Generally speaking, it can be a pointer to the structure,
the “NULL” value or a variable value dependent on the specific command. If the
required parameter is a variable value, you should use a constant value if
possible, because it influences the efficiency of the resulting code. The
efficiency is illustrated by the following examples:

Using of the compilation constant as a command specific parameter
(written in “C”):
/* Write 1 to CH1IE in TBSC1
(Enable Interrupt for channel 1 of Timer B) */
IOCTL(TIMB,TIM_SET_CH1_INT,TIM_ENABLE);

assembly code as compilation result:
 BSET 6,89

Using a variable as a command specific parameter (written in “C”):
/* Write varU8 to CH1IE in TBSC1
(If varU8, Enable Interrupt for channel 1 of Timer B) */
IOCTL(TIMB,TIM_SET_CH1_INT,varU8);

assembly code as compilation result:
LDA varU8
BIT #1
BNE L1673 ;abs = 1673
BCLR 6,89
SKIP2 L1675 ;abs = 1675

L1673: BSET 6,89
L1675:

If the parameter in this example is constant then the command is compiled to
one assembly instruction. If the parameter is variable the parameter value is
tested at execution time resulting in longer code.

Algorithms To use an algorithm from the SDK library, add the source file of the algorithm
to your project and include the appropriate header file in your source code.

For example, if you are going to use a controller, add the “mccontrollers.c” to
your project file (*.mcp) and put the
#include mccontrollers.h

in your source file.

Available algorithms with detailed descriptions can be found in the “Algorithm
Library” documentation.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292

10 8-Bit Software Development Kit MOTOROLA

Interrupts

Interrupt Callbacks You can assign any application function to an interrupt by callback definition in
“appconfig.h”:
#define INT_PWM_RELOAD_CALLBACK_1 IsrPWM_Reload

In this example the “IsrPWM_Reload” is the name of the user function. This
name can be an arbitrary string. The “INT_PWM_RELOAD_CALLBACK_1”
determines in which interrupts the user function will be called and the type of
the callback. In this case the PWM interrupt callback type 1 is defined by the
suffix _1 at the end. It means that the IsrPWM_Reload() user function will be
called first, then the PWM Interrupt flag is cleared.

You can also define their own callback after the 68HC08 SDK ISR

#define INT_PWM_RELOAD_CALLBACK_2 IsrPWM_Reload

In this example the PWM Interrupt flag will be cleared and then the
IsrPWM_Reload() user function will be called.

Interrupt Flag Service Most interrupts use flags, which signal the request of the interrupt. New
interrupt cannot be requested until the flag is cleared. The constant
INT_FlagName_FLAG defined in the “appconfig.h”, determines if the flag is
cleared by the 68HC08 SDK or if you will take care of this flag by yourself:
#define INT_PWM_RELOAD_CALLBACK_1 IsrPWM_Reload
#define INT_PWM_RELOAD_FLAG CLEAR_USER

This definition leaves the flag service to you. In this case, you are responsible
for servicing the interrupt flag.

NOTE: The callback definition can be copied from the “callback.txt” file.

Interrupt Debug
Strobes

The IDS (interrupt debug strobes) can be used during the development of the
application. It indicates the interrupt duration to the developer. The selected I/O
pin is set at the beginning of the interrupt and cleared at the end of the interrupt.
The required I/O port and the pin have to be defined in the “appconfig.h” by the
definition:
/* definition of PORT for debug signal */
#define INT_InterruptName_STROBE_PORT PORTx

and
/* definition of PIN for debug signal on specified port */
#define INT_InterruptName_STROBE_PIN n

where “x” is the port identifier (A,B,C,E,F) and the “n” is the number of the pin
(0,1,2,3,4,5,6,7).

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292
Quick Start with the 8-Bit SDK

MOTOROLA 8-Bit Software Development Kit 11

For example, your definition of the debug strobe for the PWM interrupt can be:
/* definition of PORTB for debug signal */
#define INT_PWM_RELOAD_STROBE_PORT PORTB
/* definition of PIN 4 for debug signal on specified port */
#define INT_PWM_RELOAD_STROBE_PIN 4

Interrupt Debug Mode The IDM (interrupt debug mode) provides the service for all unhandled
interrupts. If you define INT_DEBUG_MODE TRUE in “appconfig.h”, then jumps
to a never-ending loop will be added to all of the unhandled interrupts, such as:
#define INT_DEBUG_MODE TRUE /* Allow never-end loop in unhandled INT */

By default IDM is disabled
#define INT_DEBUG_MODE FALSE

PC Master Software PC master software runs on a PC, connected with the target processor via an
RS232 serial interface. Make sure that the SCI baud rate and application bus
speed constants in the “pcmastersw.c” and “appconfig.h” files are configured to
match the PC communication rate.The default baud rate is 9600 baud for an
8 MHz bus clock. A small program, resident in the target processor,
communicates with the PC master software. It enables access to any memory
location of the target processor in real time. This section helps you install the
PC master software and include the PC master software in your application.

PC Requirements PC master software can run on any computer with a Microsoft Windows
operating system and Internet Explorer 4.0 or higher installed.1

The following requirements result from those for the Internet Explorer 4.0
application:

Computer: 486DX/66 MHz or higher processor (Intel Pentium
recommended)2

Operating system: Microsoft Windows NT, Windows 98 or Windows 95 +
DCOM pack

Memory: Windows 95 or 98: 16 MB RAM minimum (32 Mb recommended); for
Windows NT: 32 MB RAM minimum (64 MB recommended)

Required software: Internet Explorer 4.0 or higher installed, Metrowerks
CodeWarrior (or similar)

Hard drive space: 6 MB

1. Microsoft, Windows, NT, and Internet Explorer are registered trademarks of
Microsoft Corporation in the United States and/or other countries.

2. Intel and Pentium are registered trademarks of Intel Corporation.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292

12 8-Bit Software Development Kit MOTOROLA

Other hardware requirements: Mouse, serial RS-232 port for local control,
network access for remote control

PC master software is an optional part of the 8-bit SDK environment and must
be installed separately running the PC master software “Setup.exe”.

Enabling PC Master
Software on the
Target Application

To enable the PC master software operation on the target board application,
add the “pcmastersw.c” to your project and define
#define INCLUDE_PCMASTERSW /* allow PC master software installation */

in your “appconfig.h” file.

NOTE: If a RAM overflow occurs during compilation or if your application is time critical,
you can also use the assembly version of PC master software. In this case, add
“pclink.c and pclink.asm and pclinkvar.asm to your project and define

/*allow PC master software assembly version installation */
#define INCLUDE_PCLINK

in your “appconfig.h” file.

Using PC Master
Software

The following steps help you use PC master software for your own application:

1. Connect your application to the PC via the RS232 port.
2. Switch on your application.
3. Start the PC master software from the Start Menu.
4. Set your COM port number in the menu Project / Options / MCB Comm.
5. Check the communication speed. The default SCI baud rate is

9600 baud. If your application uses other baud rate, set the Speed
property in the menu Project / Options / MCB Comm.

6. Set your MAP file in the menu Project / Options / MAP Files (If the
application is compiled in Hiware object file format, use the “*.map” file.
If the application is compiled in ELF/DWARF format, use the “*.abs” file.
The compilation setting can be found in the menu Edit / Target Setting...
/ Compiler / Options / Output / Object File Format).

References • 8-bit SDK 68HC908MR32 Targeting Documentation, Motorola, 2002
• 8-bit SDK Algorithm Libraries, Motorola, 2002
• 8-bit SDK Application Targeting Documentation, Motorola 2002
• Embedded PC Master Application, Motorola, 2002
• Motorola SPS web page: http://motorola.com/semiconductors

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292
Quick Start with the 8-Bit SDK

MOTOROLA 8-Bit Software Development Kit 13

This page intentionally left blank.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292

14 8-Bit Software Development Kit MOTOROLA

This page intentionally left blank.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2292
Quick Start with the 8-Bit SDK

MOTOROLA 8-Bit Software Development Kit 15

This page intentionally left blank.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2002

AN2292/D

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	Introduction
	8-Bit SDK Overview
	8-Bit SDK Features
	Core-System Infrastructure
	Static Initialization
	On-Chip Drivers
	Off-Chip Drivers
	Algorithms
	PC Master Software
	Interrupts

	Quick Start with the 8-Bit SDK
	Install the 68HC08 SDK
	Create Project
	Static Initialization
	On-Chip Drivers
	Algorithms
	Interrupts
	Interrupt Callbacks
	Interrupt Flag Service
	Interrupt Debug Strobes
	Interrupt Debug Mode

	PC Master Software
	PC Requirements
	Enabling PC Master Software on the Target Application
	Using PC Master Software

	References

