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The use of DSPs in computationally intensive applications, such 
as media gateways, voice over packet networks (VoIP, VoFR, 
VoATM), and xDSL modems, has resulted in efficient designs 
and systems with tremendous computational power. Most 
communication systems require precise tone generation and 
detection for functions such as dual tone multiple frequency 
(DTMF) signaling, call progress tones, and FAX requesting 
tones. The ITU-T Recommendation E.180/Q.35 [1] specifies 
the technical characteristics of tones used in most telephone 
services available today. Most off-the-shelf components do not 
meet the cost, size, and power consumption requirements of 
many systems. However, all the required signaling tones rely on 
the same basic principle, which can be efficiently implemented 
in today’s DSPs. The use of DSPs enables many unrelated tone 
protocols to be synthesized with the same firmware and used 
across a wide range of tone frequencies.

This application note presents the design, implementation, and 
testing of a generic tone generator on the Freescale MSC8101 
processor. The first member of the Freescale MSC8100 family 
of DSPs, the MSC8101 processor [2] is based on the 
StarCore™ SC140 four-ALU DSP core. This device has 512 
KB of memory and a Communications Processor Module 
(CPM), which make it a versatile device for communication 
applications. The proposed module has two major components: 
initialization (fsl_tone_gen) and generation 
(fsl_tone_gen_init). The first component relies on 
polynomial approximation of a cosine for calculating initial 
states and coefficients to be used in the second component. The 
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core of the tone generator (second component) relies on a digital oscillator. We tested this approach with a large 
number of signaling tones (such as DTMF, MF-R1, MF-R2), and it showed a good compromise in terms of 
performance, memory requirements, and precision. The module requires less than 0.1 MCPS, which can be 
improved with further hand-optimization of the assembly code. We also verified compliance with related ITU-T 
standards in terms of frequency accuracy, using both FFT magnitude plots of actual data generated from the 
module and real-time measurements with a spectrum analyzer. 

Further functionality can be added if needed. For example, tones with more than two frequencies—modulation 
with carrier, among others—can easily be incorporated into the module.

1 Digital Sine Wave Generation
The most common ways to synthesize sine waves are: 

• Table look-up. Offers the lowest complexity but is not used in the proposed tone generator because it 
cannot guarantee high precision with reasonable table sizes.

• Polynomial approximation. Offers the same high precision for every frequency, but requires the 
highest computational complexity. 

• Digital oscillator. Uses the intrinsic properties of trigonometric functions, which can be implemented 
with low memory and computational complexity and usually exceed precision requirements. 

The proposed tone generator employs both the digital oscillator and polynomial approximation methods. 

1.1   Digital Oscillator
The core of the tone generation module is a digital oscillator [3], that is, an IIR filter whose poles are on the unit 
circle. Our implementation uses a second-order filter, from which single-frequency tones are generated. The phase 
(θ) of the pole is related to the frequency of the synthesized sine wave: 

The equation for the oscillator is given as follows:

 Equation 1

where x(n) is a sine wave signal, f is the required frequency, and fs is the sampling frequency.

The amplitude and phase of the sine wave are determined by the initial states x (–1) and x (–2). Depending on 
initial conditions, either a cosine or a sine signal is generated by a digital oscillator. This algorithm has two main 
advantages:

• Low data and program memory requirements

• Low computational complexity

θ 2πf fs⁄=

x n( ) 2.=
2πf
fs
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A digital oscillator requires the following initializations:

• The coefficient 

• The two initial conditions: x(–1) and x(–2)

The following table shows the computation of initial conditions:

For a pre-defined number of target frequencies, the initialization values can be pre-computed. However, a generic 
tone generation requires the computation with high precision for any frequency. A polynomial approximation, 
described in the following section, is employed for this calculation.

1.2   Polynomial Approximation
A polynomial approximation is used to compute the cosine necessary to initialize the digital oscillator. This method 
uses the Taylor's expansion of a cosine:

 Equation 2

Replacing x with the following:

and defining the normalized frequency as follows yields Equation 3:

 Equation 3
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The actual implementation uses a factorized version of this formula with a finite number of elements and 
normalized coefficients. A sixth-order polynomial provides sufficient precision for 16-bit coefficients; 
furthermore, the same polynomial can be used to compute either sine or cosine, as follows: 

Thus, the final polynomial approximation is as shown in Equation 4:

 Equation 4

The corresponding normalized coefficients to be stored in memory are scaled by 2–7 (that is, m = 7) and listed in 
Table 1.

2 Tone Generator Implementation
The proposed tone generator synthesizes tones composed of up to two simultaneous frequencies with arbitrary 
duration and frequency values. The method of defining tones is easy and flexible. The output signal is decomposed 
into elementary components. Figure 1 shows an example of a possible desired tone.

Figure 1.   Example of a Desired Tone

Table 1.   Normalized Coefficients

Coefficients Fractional Value 16-bit Fixed Point

C0 0.0078125 256    (0x0100)

C1 –0.1542053 60483   (0xEC43)

C2 0.5073242 16624    (0x40F0)

C3 -0.6676025 43660  (0xAA8C)
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2.1   Elementary Components
The elementary tone component is a pair composed of a sound period followed by a silence period (see Figure 2). 
This pair (sound + silence) can be repeated as often as needed to yield a component. In the example shown in 
Figure 1, each component has only one consecutive occurrence of its base pair.

Figure 2.   Elementary Tone Component

Each component is defined by the following parameters:

• Frequencies (in Hz).

• Levels (in dBm0). The signal amplitude per frequency is given as follows:

• Sound duration. Indicates the duration of the sound (in ms).

• Silence duration. Indicates the duration of the silence period (in ms) that follows the sound period. The 
software fills in the linear_out buffer with zeroes to cover that period. A value of zero indicates no 
silence period.

• repeat_component. This value specifies the number of pairs (sound + silence) that must be generated 
to complete the component. A value of zero indicates that the pair should be repeated indefinitely.

• Control word. Defines whether the two sinusoids are to be added or modulated, the initial phase (0 or 
180°), and the frequency unit (f or f/3). This flag is stored in a byte as follows:

• Bit 0: Add/Mod

— 0  The two frequencies are added.

— 1  The two frequencies are modulated.

7: MSB 6 5 4 3 2 1 0:LSB

— — — Phase_2 Phase_1 Unit_2 Unit_1 Add/Mod

Sound Silence . . . . Sound Silence

Component
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• Bit 1: Unit_1

— 0 Frequency1.

— 1 Frequency1 divided by 3.

• Bit 2: Unit_2

— 0 Frequency2.

— 1 Frequency2 divided by 3.

• Bit 3: Phase_1

— 0 Frequency1 initialized with 0° phase.

— 1 Frequency1 initialized with 180° phase.

• Bit 4: Phase_2

— 0 Frequency2 initialized with 0° phase.

— 1 Frequency2 initialized with 180° phase.

The unit bits produce frequencies with 1/3 Hz. For example, 16 2/3 Hz is generated with 50 Hz 
when the unit bit is set (16 2/3 Hz = 50/3 Hz).

2.2   Tone Cycles
When all components are ready, they must be gathered into the desired tone. A component group is called a cycle, 
as shown in Figure 3. Up to five components can be grouped into one cycle. Finally, the created cycle can be 
repeated as often as needed to form the signaling tone.

Figure 3.   Cycle Components

2.3   Functional Interface
There are many different types of tones, such as single, dual, partial dual, and modulated. The starting times of 
sinusoids with different frequencies are arbitrary, but they are easily synchronized within the components. The 
external interface to the software consists of the following C functions (see Figure 4):

void fsl_tone_gen_init (GEN_CHANNEL *gen_channel, TONE_GENERIC *tone_control);
void fsl_tone_gen (GEN_CHANNEL *gen_channel, SIGNAL *linear_out, unsigned samples_out);

where:

• TONE_GENERIC is a structure that describes the tone to be generated.

• SIGNAL is a 16-bit signed fractional type.

• linear_out is an output buffer.

• samples_out, a multiple of eight, indicates how many samples the software must generate in this call.

• GEN_CHANNEL is a structure containing the description of the tone to be generated and the actual 
state of the generation.

COMP1 COMP2 COMP3 COMP4 COMP5 COMP1

One Cycle
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• gen_channel is a channel-dependent instance of GEN_CHANNEL containing all channel data for 
generation.

Figure 4.   External Interface to Software

fsl_tone_gen returns the following integer flag:

• Bit 0 (LSB): Indicates whether tone generation is complete.

— 0 Generation is not complete.

— 1 Generation is complete.

• Bit 1: Indicates whether the content of the entire buffer is silence. 

— 0 Buffer or part of the buffer contains sound.

— 1 Entire buffer is silence 

The main structures are defined as follows: 

typedef struct{ 
UINT16 tone_repeat_cycle; 
UINT16 tone_component_count; 
TONE_COMPONENT tone_component[5]; 

} TONE_GENERIC;
typedef struct{ 

UINT8 flags; 
UINT8 repeat_component; 
UINT16 sound_duration; 
UINT16 silence_duration; 
UINT16 frequency_1; 
UINT16 frequency_2; 
INT8 level_1; 
INT8 level_2; 

} TONE_COMPONENT;

where:

• tone_repeat_cycle. Number of cycle repetitions needed to generate the full tone.

tone_control
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• tone_component_count. Number of components in the cycle.

• tone_component[5]. An array that contains the description of every component.

TONE_COMPONENT parameters are described at the beginning of this section. The TONE_GENERIC structure 
is not persistent, so the fsl_tone_gen_init function does not save pointers to any part of this structure. After 
fsl_tone_gen_init returns, the software copies any information that is needed in the channel-dependent 
structure gen_channel.

2.4   Implementation Constraints
The implementation constraints apply to both tone initialization and tone generation.

2.4.1   Tone Initialization
The coefficients for all frequencies are calculated with a cosine polynomial approximation during the initialization 
routine, which restricts the coefficient precision to 14 bits. We tested the error introduced by this method with 
MATLAB simulations and found the error to be within the one percent tolerance required by ITU-T standards. We 
decreased the full-scale level to 0x7FC0 (instead of 0x7FFF) to avoid saturation. The impact of such an “under-
level” is negligible after A- or µ-law encoding stages [4]. This 0 dB level can be considered as a full scale one. Half 
scale tones are often preferred.

The initialization is divided into two parts:

• Creating a GEN_CHANNEL structure in conformance with the user's requirements, computing 
coefficients and duration for each component and copying any information needed after 
fsl_tone_gen_init returns. 

• Updating the channel-dependent structure for every new component using the fill_component_param 
function, which updates the initial samples (x(-2) and x(-1)). 

Each time new samples are produced, the number of sound and silence samples is updated in fsl_tone_gen. 
Instead of generating the samples for two tones with frequencies f1 and f2 and then modulating them, tones with 
frequencies f1+f2 and f1-f2 are initialized, scaled by 1/2 and added. This saves processing load, measured in 
millions of cycles per second (MCPS), and avoids generating low-frequency tones, which are difficult to generate 
with 16-bit precision. The current version of this module does not implement modulation with carrier (such as 
standard AM modulation). A third frequency component can be added at the expense of increased MCPS.

2.4.2   Tone Generation
The SC140 multiple ALU architecture allows simultaneous generation of samples for both frequencies. The 
performance is optimal with two frequencies because required data can be loaded and updated in a single clock 
cycle: four fractional moves for the four previous samples and two fractional moves for the two coefficients. 

To reduce MCPS, blocks of eight samples are generated. Furthermore, duration times are given in ms (number of 
samples is 8*(duration time)) so that eight samples are generated as grouped bursts. Each component includes a 
silence duration after a sound period. If a property of the tone must be changed without prior silence, the silence 
duration must be set to zero at the end of the previous component.

If a frequency level is 63 (–63 dBm0), the initial filter states are initialized with zeroes so that no samples are 
generated for this frequency. If a single frequency is generated with the modulation flag set, the result is silence. 
When a continuous tone must be generated, it is better to repeat a component with a long sound_duration because 
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the code runs faster than with a short sound_duration repeated very often. Note that the filter state is initialized 
between two cycles, but not between two occurrences of the same component without silence in between. If only 
one component is used, it is better to repeat the component, not the tone cycle, to prevent harmonic distortions.

2.5   Status Reporting
The top-level modules are informed of the tone generation status with the return values given by 
fsl_tone_gen. The return flag bits are as follows:

• Bit 0 (LSB): indicates whether tone generation is complete.

— 1 Complete.

— 0 Not complete.

• Bit 1: indicates whether the content of the buffer is silence. 

— 1 Entire buffer is silence.

— 0 Buffer or part of the buffer contains sound.

We recommend that silence be generated with the silence part of a component, not with the sound part initialized 
with null level (–63 dBm0) frequencies. Otherwise, the return flag does not reflect reality.

The “entire buffer is silence” flag detects whether the program has run the generation routine. If the generated 
sound is composed of null-level frequencies, the buffer contains only silence, but the returned flag indicates that 
sound has been generated. This approach saves MCPS in return flag computation (for testing every sample that 
would not be used). 

2.6   Tone Generator Code Structure
Figure 5 shows an overview of the tone generation code structure. For details, refer to the source code package. 
The main goal of the tone generation function is to generate the tone when required and update the associated state 
description structure.
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Figure 5.   Structure of the Tone Generator Code
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Example 1.   Tone Generator Pseudo Code

Function name: fsl_tone_gen 
Input: Pointer to output 

Pointer to buffer containing static variables 
Number of samples to generate 

Output: Return Flag
BEGIN 

FOR (Number of sample to generate/8) 
IF (sound duration is expired) 

IF (silence duration is not expired) 
Fill memory with 8 silence samples 

ELSE 
Initialize next component with respect to cycles  
and component number. 
Update flag if tone is complete. 

END IF 
ELSE 

FOR (8 couples of samples) 
Load previous oscillator state and coefficient 
Generate SAMPLE1 and SAMPLE2 together 
Fill output buffer with SAMPLE1+SAMPLE2 
Update flag (sound generated) 
END FOR 

END IF  
END FOR 
RETURN (Flag) 

END BEGIN

3 Using and Testing the Generic Tone Generator
We integrated and tested the generic tone generator on the MSC8101 Application Development System 
(MSC8101ADS) board [2] to confirm MATLAB simulation results. Many different tones were measured. 

3.1   Test Set-up
On the MSC8101ADS, an audio codec is connected to an MSC8101 device through one of its CPM multi-channel 
controllers (MCCs), which configures the codec, and one of its serial peripheral interfaces (SPIs), which sends 
audio samples out of the ADS. Figure 6 shows a diagram of this testing set-up. Alternatively, the ADSFS set-up 
[5] can be used, allowing generated samples to be written into files using the Ethernet port with a high transfer rate. 
In this case, the codec is not used.

3.2   Initialization Examples of Multi-Frequency Tones
The examples shown here provide specific configurations of the initialization function to generate several sets of 
tones composed by one or two frequencies. Because frequency values, power levels, and durations may vary from 
one case to another, the generic character of the generator is evident. Modifying the code to other types of signaling 
tones should be a fairly simple task.
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Figure 6.   Testing Set-Up

Example 2.   DTMF

UINT16 DTMFl[] = {697, 770, 852, 941}; 
UINT16 DTMFh[] = {1209, 1336, 1477, 1633}; 
void 
test_initialize(TONE_GENERIC * testcases) 
// testcases must point to a 16-item TONE_GENERIC structure 
{ 

int i, j; 
for (i = 0; i < 16; i++) { 

// Inialize the input structures for the i+1 key 
testcases[i].tone_repeat_cycle = 1; 
testcases[i].tone_component_count = 1; 
// 1 tone_component description 
testcases[i].tone_component[0].flags = 0x0; 
testcases[i].tone_component[0].repeat_component = 1; 
testcases[i].tone_component[0].sound_duration = 50; 
testcases[i].tone_component[0].silence_duration = 50; 
testcases[i].tone_component[0].level_1 = 10; 
testcases[i].tone_component[0].level_2 = 10; 

} 
// DTMF digits 
// Key:   1| 2| 3| 4| 5| 6| 7| 8| 9| 0| *| #| A| B| C| D 
// Code:  1| 2| 3| 5| 6| 7| 9|10|11|14|13|15| 4| 8|12|16 
for (i = 0; i < 4; i++) { 
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for (j = 0; j < 4; j++) { 
testcases[4 * i + j].tone_component[0].frequency_1 = DTMFl[i]; 
testcases[4 * i + j].tone_component[0].frequency_2 = DTMFh[j]; 

} 
} 

}

Example 3.   MF-R1

UINT16 R1[] = {700, 900, 1100, 1300, 1500, 1700};
void 
test_initialize(TONE_GENERIC * testcases) 
// testcases must point to a 15-item TONE_GENERIC structure 
{  

int i, j, k = 0; 
for (i = 0; i < 15; i++) { 

// Inialize the input structures 
testcases[i].tone_repeat_cycle = 1; 
testcases[i].tone_component_count = 1;
// 1 tone_component description 
testcases[i].tone_component[0].flags = 0x0; 
testcases[i].tone_component[0].repeat_component = 1; 
testcases[i].tone_component[0].sound_duration = 50; 
testcases[i].tone_component[0].silence_duration = 50; 
testcases[i].tone_component[0].level_1 = 10; 
testcases[i].tone_component[0].level_2 = 10; 

} 
// MF-R1 digits 
// Key:   1| 2| 3| 4| 5| 6| 7| 8| 9| 0| ST3P| STP| KP| STP2| ST 
// Code:  1| 2| 3| 4| 5| 6| 7| 8| 9|10|   11|  12| 13|   14| 15 
for (j = 1; j < 6; j++) { 

for (i = 0; i < j; i++) { 
testcases[k].tone_component[0].frequency_1 = R1[i]; 
testcases[k++].tone_component[0].frequency_2 = R1[j]; 

} 
} 

}

Example 4.   MF-R2

UINT16 R2f[] = {1380, 1500, 1620, 1740, 1860, 1980};  
UINT16 R2b[] = {1140, 1020, 900, 780, 660, 540};
void 
test_initialize(TONE_GENERIC * testcases) 
// testcases must point to a 30-item TONE_GENERIC structure 
// First 15 for MF-R2 foward direction 
// Last 15 for MR-R2 backward direction
{  

int i, j, k = 0; 
for (i = 0; i < 30; i++) { 

// Inialize the input structures for the i+1 key 
testcases[i].tone_repeat_cycle = 1; 
testcases[i].tone_component_count = 1;
// 1 tone_component description 
testcases[i].tone_component[0].flags = 0x0; 
testcases[i].tone_component[0].repeat_component = 1; 
testcases[i].tone_component[0].sound_duration = 50; 
testcases[i].tone_component[0].silence_duration = 50; 
testcases[i].tone_component[0].level_1 = 10; 



Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

14 Freescale Semiconductor

Using and Testing the Generic Tone Generator

testcases[i].tone_component[0].level_2 = 10; 
} 
// 15 MF-R2 forward direction digits 
for (j = 1; j < 6; j++) { 

for (i = 0; i < j; i++) { 
testcases[k].tone_component[0].frequency_1 = R2f[i]; 
testcases[k++].tone_component[0].frequency_2 = R2f[j]; 

} 
}  
// 15 MF-R2 backward direction digits 
for (j = 1; j < 6; j++) { 

for (i = 0; i < j; i++) { 
testcases[k].tone_component[0].frequency_1 = R2b[i]; 
testcases[k++].tone_component[0].frequency_2 = R2b[j]; 

} 
} 

}

Example 5.   Germany Dial Tone

void test_initialize(TONE_GENERIC * testcases) 
{ 

// Inialize the input structures 
testcases[0].tone_repeat_cycle = 0; 
testcases[0].tone_component_count = 1; 
// tone_component description 
testcases[0].tone_component[0].flags = 0x0; 
testcases[0].tone_component[0].repeat_component = 0; 
testcases[0].tone_component[0].sound_duration = 1000; 
testcases[0].tone_component[0].silence_duration = 0; 
testcases[0].tone_component[0].frequency_1 = 425;  // 425 or 450 
testcases[0].tone_component[0].level_1 = 0; 
// Only one frequency is used - level is initialized to -63dB 
testcases[0].tone_component[0].frequency_2 = 0; 
testcases[0].tone_component[0] .level_2 = 63; 

}

Example 6.   Japan Waiting Tone

void test_initialize(TONE_GENERIC * testcases) 
{  

// Inialize the input structures 
testcases[0].tone_repeat_cycle = 0; 
testcases[0].tone_component_count = 2; 
// 2 tone_component description 
// COMPONENT 1 
testcases[0].tone_component[0].flags = 0x0; 
testcases[0].tone_component[0].repeat_component = 1; 
testcases[0].tone_component[0].sound_duration = 100; 
testcases[0].tone_component[0].silence_duration = 100; 
testcases[0].tone_component[0].frequency_1 = 440; 
testcases[0].tone_component[0].level_1=0; 
// Only one frequency is used - level is initialized to -63db 
testcases[0].tone_component[0].frequency_2 = 0; 
testcases[0].tone_component[0].level_2 = NOT_USED; 
// COMPONENT 2 
testcases[0].tone_component[1].flags = 0x0; 
testcases[0].tone_component[1].repeat_component = 1; 
testcases[0].tone_component[1].sound_duration = 100; 
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testcases[0].tone_component[1].silence_duration = 1000; 
testcases[0].tone_component[1].frequency_1 = 440; 
testcases[0].tone_component[1].level_1=0; 
// Only one frequency is used - level is initialized to -63db 
testcases[0].tone_component[1].frequency_2 = 0; 
testcases[0].tone_component[1].level_2 = NOT_USED; 

}

3.3   Tests
The following MATLAB script displays the FFT of generated tones. A Hanning windowed FFT is used to measure 
the output frequency. A typical frequency accuracy requirement is about ±1% of the nominal frequency. At an 8 
kHz sampling rate, we must use at least 4096 samples (512 ms) to ensure that the error generated by the FFT is not 
prejudicial.

Example 7.   Frequency Response of Generated Tones

disp(’*** Generic Tone Generation on StarCore SC140 ***’) 
disp(’ ’), disp(’ ’)
REF = ’.wav’; TONE_NAME = ’DTMF’; BITS    = 16; 
SAMPLES = 8 * 50; SILENCE = 8 * 50; SPACE   = SAMPLES + SILENCE;
if TONE_NAME == ’DTMF’ 

number_of_digits = 16; fid = fopen([’gen_dtmf’ REF], ’r’); 
elseif TONE_NAME == ’MFR1’ 

number_of_digits = 15; fid = fopen([’gen_mfr1’ REF], ’r’); 
elseif TONE_NAME == ’MFR2’ 

number_of_digits = 30; fid = fopen([’gen_mfr2’ REF], ’r’); 
else 

number_of_digits = 0; disp(’Unknown tone.’) 
end
if number_of_digits > 0 

x = fread(fid, inf, ’short’); 
disp([’Playing ’ TONE_NAME ’ generated tones...’]) 
wavplay(x, 8000); 
for n = 1 : number_of_digits 

disp([’Plotting ’ TONE_NAME ’ tone ’ int2str(n) ’...’]) 
out = x(SPACE + (n - 1) * (SAMPLES + SILENCE + SPACE) + ... 
(1 : SAMPLES)) .* 2 ^ -(BITS - 1); 
abscisse = linspace(0, 4000, SAMPLES / 2); 
fft_out = 20*log10( abs( fft( hanning( SAMPLES) .* out))); 
fft_out = fft_out - max(fft_out); 
[a, b] = sort(-fft_out ( 1 : SAMPLES / 2)); 
[freq1, c] = sort(round(abscisse(1, b(1:2)))); 
figure, subplot(211) 
plot(out), grid on 
xlabel(’Sample #’) 
title([TONE_NAME ’ Tone ’ int2str(n)]) 
subplot(212), plot(abscisse, fft_out(1 : SAMPLES / 2)) 
grid on, hold on 
plot(freq(1), -a(c(1)), ’bo’), plot(freq1(2), -a(c(2)), ’ro’) 
legend([’FFT of Tone ’ int2str(n)], ... 

[’F_1 = ’ int2str(freq1(1)) ’ Hz’], ... 
[’F_2 = ’ int2str(freq1(2)) ’ Hz’]) 

xlabel(’Frequency (Hz)’), ylabel(’Magnitude (dB)’)   
end 

end 
disp(’Test complete.’) 
fclose(fid);
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Example 8.   Driver for Generating Time Domain Samples Using ADSFS [5]

#include "fsl_tone_gen.h" 
#define TBUFSZ 4096 
#define DTMF 
//#define MFR1 
//#define MFR2
#ifdef DTMF 
#define NUMBER_OF_TONES 16 
#endif
#ifdef MFR1 
#define NUMBER_OF_TONES 15 
#endif
#ifdef MFR2 
#define NUMBER_OF_TONES 30 
#endif
void test_pgm () 
{ 
fract16 samples[TBUFSZ]; 
#pragma align samples 8 

char samples2[10]; 
Word32 txid; // to write samples in text files 
char file_name[20]; 
int channel, len; 
TONE_GENERIC testcases[NUMBER_OF_TONES]; 
GEN_CHANNEL gen_channel[1]; 
int flag;
test_initialize(testcases);
for (channel = 0; channel < NUMBER_OF_TONES; channel++) { 

// Opens a file 
sprintf(file_name,"c:\\gen_out%d.dat",channel); 
txid = open_file (file_name, WRITEONLY); 
if (txid <= 0) 

error (1);
// Tone generation 
fsl_tone_gen_init (gen_channel, &testcases[channel]); 
flag = fsl_tone_gen (gen_channel, samples, TBUFSZ);
// Saves samples 
for (len=0; len<TBUFSZ; len++) { 

write_file(txid,(unsigned char *)samples2, 
sprintf(samples2,"%d\n",samples[len]));

 }
   close_file (txid);
  }

}

3.3.1   DTMF Frequency Accuracy Test 
The digital oscillator algorithm has reasonable frequency accuracy. The tests listed in Table 2 validate the use of 
the digital oscillator algorithm for DTMF generation, showing that it complies with the requirements of the ITU-T 
Recommendation Q.24 [6] for frequency accuracy. This test uses 4096 samples, generated with a –20 dBm0 level 
(11 percent of maximum scale). The measured DTMF tone precision is smaller than 0.2 percent.
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3.3.2   MF-R2 Frequency Accuracy Test
The module capabilities were tested on the most constraining standard for frequency accuracy: MF-R2 signaling 
defined in the ITU-T Recommendation Q.454 [7]. A deviation of up to 4 Hz is tolerated on generated frequencies. 
Each frequency is measured with an 8192 point Hanning windowed FFT. At an 8 kHz sampling rate, the resulting 
accuracy is smaller than 1 Hz. In Table 3 and Table 4, an error of 0 Hz means that the test is unable to detect any 
frequency deviation.

All tests of the tone generator passed. Our results indicate that the proposed tone generation module complies with 
the requirements for frequency accuracy of the ITU-T Recommendation Q.454 for MF-R2.

Table 2.   Digital Oscillator Algorithm for DTMF Generation

Frequency (Hz) Precision (Percent)

400 0.12

697 0.08

770 0.16

852 0.14

941 0.03 

1209 0.06

1336 0.05

1477 0.07

Table 3.   Forward Frequencies Test

Frequency (Hz)
Measured 

Frequency (Hz)
Error (Hz) R2 Test

F0 1380 1379.6 0.4 PASS

F1 1500 1499.7 0.3 PASS

F2 1620 1619.8 0.2 PASS

F3 1740 1740.0 0.0 PASS

F4 1860 1859.1 0.9 PASS

F5 1980 1979.2 0.8 PASS

Table 4.   Backward Frequencies Test

Frequency (Hz)
Measured 

Frequency (Hz)
Error (Hz) R2 Test

F0 1140 1139.3 0.7 PASS

F1 1020 1019.2 0.8 PASS

F2 900 900.0 0.0 PASS

F3 780 779.9 0.1 PASS

F4 660 659.7 0.3 PASS

F5 540 539.6 0.4 PASS
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3.4   Examples of Generated Signaling Tones
Figure 7 and Figure 8 illustrate the spectrum of two typical signaling tones. The figures on the left correspond to 
the FFT magnitude plots of actual data generated from the proposed module; the figures on the right correspond to 
measured spectra (using a spectrum analyzer). Observe that the noise floor of the measurements is around 80 dB 
below the peak values. 

MATLAB Measured Spectrum

Figure 7.   USA Busy Tone: 480 + 620 Hz

MATLAB Measured Spectrum

Figure 8.   Germany Dial Tone: 425 or 450 Hz
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3.5   Performance Measurements
The proposed tone generation module typically requires less than 0.1 MCPS. The worst case would be to change 
the component every millisecond, but this mode of operation is not used in practice (typical component change 
intervals are greater than 40 ms). 

To provide a generator with generic properties and readable C Code, the tone generation program is composed of a 
large number of tests and control instructions that increase memory usage. If the code is made more specific, that 
is, dedicated to a specific case such as DTMF generation, the memory usage can be reduced significantly [8].
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Table 5.   Typical MCPS Values

Tone ���������������	C
���
� Generation (MCPS)

DTMF 805 0.045

Germany Dial Tone 820 0.056

Japan Waiting Tone 820 0.034

Table 6.   Memory Usage

Data / Channel 
(Bytes) Table Size (Bytes) Stack Size (Bytes) Program Size (Bytes)

168 142 24 1906
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