
Freescale Semiconductor
Application Note

AN2274
Rev. 1, 12/2004

© Freescale Semiconductor, Inc., 2002, 2004. All rights reserved.

The use of DSPs in computationally intensive applications, such
as media gateways, voice over packet networks (VoIP, VoFR,
VoATM), and xDSL modems, has resulted in efficient designs
and systems with tremendous computational power. Most
communication systems require precise tone generation and
detection for functions such as dual tone multiple frequency
(DTMF) signaling, call progress tones, and FAX requesting
tones. The ITU-T Recommendation E.180/Q.35 [1] specifies
the technical characteristics of tones used in most telephone
services available today. Most off-the-shelf components do not
meet the cost, size, and power consumption requirements of
many systems. However, all the required signaling tones rely on
the same basic principle, which can be efficiently implemented
in today’s DSPs. The use of DSPs enables many unrelated tone
protocols to be synthesized with the same firmware and used
across a wide range of tone frequencies.

This application note presents the design, implementation, and
testing of a generic tone generator on the Freescale MSC8101
processor. The first member of the Freescale MSC8100 family
of DSPs, the MSC8101 processor [2] is based on the
StarCore™ SC140 four-ALU DSP core. This device has 512
KB of memory and a Communications Processor Module
(CPM), which make it a versatile device for communication
applications. The proposed module has two major components:
initialization (fsl_tone_gen) and generation
(fsl_tone_gen_init). The first component relies on
polynomial approximation of a cosine for calculating initial
states and coefficients to be used in the second component. The

CONTENTS

1 Digital Sine Wave Generation2
1.1 Digital Oscillator ...2
1.2 Polynomial Approximation..................................... 3
2 Tone Generator Implementation 4
2.1 Elementary Components ...5
2.2 Tone Cycles... 6
2.3 Functional Interface .. 6
2.4 Implementation Constraints 8
2.5 Status Reporting .. 9
2.6 Tone Generator Code Structure 9
3 Using and Testing the Generic Tone Generator11
3.1 Test Set-up ..11
3.2 Initialization Examples of Multi-Frequency Tones 11
3.3 Tests ..15
3.4 Examples of Generated Signaling Tones18
3.5 Performance Measurements 19
4 References ...19

Generic Tone Generation on the
StarCore™ SC140/SC1400 Cores
By Marc Cougoule, Lúcio F. C. Pessoa, David Melles, Valentin Emiya

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

2 Freescale Semiconductor

Digital Sine Wave Generation

core of the tone generator (second component) relies on a digital oscillator. We tested this approach with a large
number of signaling tones (such as DTMF, MF-R1, MF-R2), and it showed a good compromise in terms of
performance, memory requirements, and precision. The module requires less than 0.1 MCPS, which can be
improved with further hand-optimization of the assembly code. We also verified compliance with related ITU-T
standards in terms of frequency accuracy, using both FFT magnitude plots of actual data generated from the
module and real-time measurements with a spectrum analyzer.

Further functionality can be added if needed. For example, tones with more than two frequencies—modulation
with carrier, among others—can easily be incorporated into the module.

1 Digital Sine Wave Generation
The most common ways to synthesize sine waves are:

• Table look-up. Offers the lowest complexity but is not used in the proposed tone generator because it
cannot guarantee high precision with reasonable table sizes.

• Polynomial approximation. Offers the same high precision for every frequency, but requires the
highest computational complexity.

• Digital oscillator. Uses the intrinsic properties of trigonometric functions, which can be implemented
with low memory and computational complexity and usually exceed precision requirements.

The proposed tone generator employs both the digital oscillator and polynomial approximation methods.

1.1 Digital Oscillator
The core of the tone generation module is a digital oscillator [3], that is, an IIR filter whose poles are on the unit
circle. Our implementation uses a second-order filter, from which single-frequency tones are generated. The phase
(θ) of the pole is related to the frequency of the synthesized sine wave:

The equation for the oscillator is given as follows:

 Equation 1

where x(n) is a sine wave signal, f is the required frequency, and fs is the sampling frequency.

The amplitude and phase of the sine wave are determined by the initial states x (–1) and x (–2). Depending on
initial conditions, either a cosine or a sine signal is generated by a digital oscillator. This algorithm has two main
advantages:

• Low data and program memory requirements

• Low computational complexity

θ 2πf fs⁄=

x n() 2.=
2πf
fs

--------⎝ ⎠
⎛ ⎞cos x n 1–() x n 2–()–⋅

Digital Sine Wave Generation

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 3

A digital oscillator requires the following initializations:

• The coefficient

• The two initial conditions: x(–1) and x(–2)

The following table shows the computation of initial conditions:

For a pre-defined number of target frequencies, the initialization values can be pre-computed. However, a generic
tone generation requires the computation with high precision for any frequency. A polynomial approximation,
described in the following section, is employed for this calculation.

1.2 Polynomial Approximation
A polynomial approximation is used to compute the cosine necessary to initialize the digital oscillator. This method
uses the Taylor's expansion of a cosine:

 Equation 2

Replacing x with the following:

and defining the normalized frequency as follows yields Equation 3:

 Equation 3

COSINE Initialization SINE Initialization

2. 2πf fs⁄()cos

x 2–() amplitude±=

x 1–() amplitude±=() coefficient
2

---------------------------- amplitude
2πf
fs

--------⎝ ⎠
⎛ ⎞cos×=×

x 2–() amplitude±=() 2πf
fs

-----------sin amplitude
2πf
fs

π
2
---–

⎝ ⎠
⎜ ⎟
⎛ ⎞

cos×=×

x 1–() 0=

x()cos akx
2k

ak,
k 0=

∞

∑ 1–()k

2k()!
-------------= =

2πf fs⁄

fn f fs⁄=

2πfn()cos bkfn
2k

bk,
k 0=

∞

∑ 2π()2k
ak= =

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

4 Freescale Semiconductor

Tone Generator Implementation

The actual implementation uses a factorized version of this formula with a finite number of elements and
normalized coefficients. A sixth-order polynomial provides sufficient precision for 16-bit coefficients;
furthermore, the same polynomial can be used to compute either sine or cosine, as follows:

Thus, the final polynomial approximation is as shown in Equation 4:

 Equation 4

The corresponding normalized coefficients to be stored in memory are scaled by 2–7 (that is, m = 7) and listed in
Table 1.

2 Tone Generator Implementation
The proposed tone generator synthesizes tones composed of up to two simultaneous frequencies with arbitrary
duration and frequency values. The method of defining tones is easy and flexible. The output signal is decomposed
into elementary components. Figure 1 shows an example of a possible desired tone.

Figure 1. Example of a Desired Tone

Table 1. Normalized Coefficients

Coefficients Fractional Value 16-bit Fixed Point

C0 0.0078125 256 (0x0100)

C1 –0.1542053 60483 (0xEC43)

C2 0.5073242 16624 (0x40F0)

C3 -0.6676025 43660 (0xAA8C)

x()sin x
π
2
---–⎝ ⎠

⎛ ⎞cos=

2πfn()cos 2
m

c3fn
2

c2+()fn
2

c1+()fn
2

c0+() ck 2 b
m–

k=,=

Time

Level

Silence Silence Silence

Component 1 Component 2 Component 1

f1

f2

f3

Tone Generator Implementation

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 5

2.1 Elementary Components
The elementary tone component is a pair composed of a sound period followed by a silence period (see Figure 2).
This pair (sound + silence) can be repeated as often as needed to yield a component. In the example shown in
Figure 1, each component has only one consecutive occurrence of its base pair.

Figure 2. Elementary Tone Component

Each component is defined by the following parameters:

• Frequencies (in Hz).

• Levels (in dBm0). The signal amplitude per frequency is given as follows:

• Sound duration. Indicates the duration of the sound (in ms).

• Silence duration. Indicates the duration of the silence period (in ms) that follows the sound period. The
software fills in the linear_out buffer with zeroes to cover that period. A value of zero indicates no
silence period.

• repeat_component. This value specifies the number of pairs (sound + silence) that must be generated
to complete the component. A value of zero indicates that the pair should be repeated indefinitely.

• Control word. Defines whether the two sinusoids are to be added or modulated, the initial phase (0 or
180°), and the frequency unit (f or f/3). This flag is stored in a byte as follows:

• Bit 0: Add/Mod

— 0 The two frequencies are added.

— 1 The two frequencies are modulated.

7: MSB 6 5 4 3 2 1 0:LSB

— — — Phase_2 Phase_1 Unit_2 Unit_1 Add/Mod

Sound Silence Sound Silence

Component

Number of pair repetition: repeat_component

Sound Duration

Silence Duration
PAIR (Sound + Silence)

. . . .

A 10
Level– dBm0() 20⁄

2⁄=

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

6 Freescale Semiconductor

Tone Generator Implementation

• Bit 1: Unit_1

— 0 Frequency1.

— 1 Frequency1 divided by 3.

• Bit 2: Unit_2

— 0 Frequency2.

— 1 Frequency2 divided by 3.

• Bit 3: Phase_1

— 0 Frequency1 initialized with 0° phase.

— 1 Frequency1 initialized with 180° phase.

• Bit 4: Phase_2

— 0 Frequency2 initialized with 0° phase.

— 1 Frequency2 initialized with 180° phase.

The unit bits produce frequencies with 1/3 Hz. For example, 16 2/3 Hz is generated with 50 Hz
when the unit bit is set (16 2/3 Hz = 50/3 Hz).

2.2 Tone Cycles
When all components are ready, they must be gathered into the desired tone. A component group is called a cycle,
as shown in Figure 3. Up to five components can be grouped into one cycle. Finally, the created cycle can be
repeated as often as needed to form the signaling tone.

Figure 3. Cycle Components

2.3 Functional Interface
There are many different types of tones, such as single, dual, partial dual, and modulated. The starting times of
sinusoids with different frequencies are arbitrary, but they are easily synchronized within the components. The
external interface to the software consists of the following C functions (see Figure 4):

void fsl_tone_gen_init (GEN_CHANNEL *gen_channel, TONE_GENERIC *tone_control);
void fsl_tone_gen (GEN_CHANNEL *gen_channel, SIGNAL *linear_out, unsigned samples_out);

where:

• TONE_GENERIC is a structure that describes the tone to be generated.

• SIGNAL is a 16-bit signed fractional type.

• linear_out is an output buffer.

• samples_out, a multiple of eight, indicates how many samples the software must generate in this call.

• GEN_CHANNEL is a structure containing the description of the tone to be generated and the actual
state of the generation.

COMP1 COMP2 COMP3 COMP4 COMP5 COMP1

One Cycle

Tone Generator Implementation

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 7

• gen_channel is a channel-dependent instance of GEN_CHANNEL containing all channel data for
generation.

Figure 4. External Interface to Software

fsl_tone_gen returns the following integer flag:

• Bit 0 (LSB): Indicates whether tone generation is complete.

— 0 Generation is not complete.

— 1 Generation is complete.

• Bit 1: Indicates whether the content of the entire buffer is silence.

— 0 Buffer or part of the buffer contains sound.

— 1 Entire buffer is silence

The main structures are defined as follows:

typedef struct{
UINT16 tone_repeat_cycle;
UINT16 tone_component_count;
TONE_COMPONENT tone_component[5];

} TONE_GENERIC;
typedef struct{

UINT8 flags;
UINT8 repeat_component;
UINT16 sound_duration;
UINT16 silence_duration;
UINT16 frequency_1;
UINT16 frequency_2;
INT8 level_1;
INT8 level_2;

} TONE_COMPONENT;

where:

• tone_repeat_cycle. Number of cycle repetitions needed to generate the full tone.

tone_control

fsl_tone_gen_init

Tone Initialization
Used Once Per Tone

User-Friendly Tone
Configuration

gen_channel

fsl_tone_gen

linear_out

Current
Status
Update

samples_out

Flag

Legend

Structure

Function

Input

Output

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

8 Freescale Semiconductor

Tone Generator Implementation

• tone_component_count. Number of components in the cycle.

• tone_component[5]. An array that contains the description of every component.

TONE_COMPONENT parameters are described at the beginning of this section. The TONE_GENERIC structure
is not persistent, so the fsl_tone_gen_init function does not save pointers to any part of this structure. After
fsl_tone_gen_init returns, the software copies any information that is needed in the channel-dependent
structure gen_channel.

2.4 Implementation Constraints
The implementation constraints apply to both tone initialization and tone generation.

2.4.1 Tone Initialization
The coefficients for all frequencies are calculated with a cosine polynomial approximation during the initialization
routine, which restricts the coefficient precision to 14 bits. We tested the error introduced by this method with
MATLAB simulations and found the error to be within the one percent tolerance required by ITU-T standards. We
decreased the full-scale level to 0x7FC0 (instead of 0x7FFF) to avoid saturation. The impact of such an “under-
level” is negligible after A- or µ-law encoding stages [4]. This 0 dB level can be considered as a full scale one. Half
scale tones are often preferred.

The initialization is divided into two parts:

• Creating a GEN_CHANNEL structure in conformance with the user's requirements, computing
coefficients and duration for each component and copying any information needed after
fsl_tone_gen_init returns.

• Updating the channel-dependent structure for every new component using the fill_component_param
function, which updates the initial samples (x(-2) and x(-1)).

Each time new samples are produced, the number of sound and silence samples is updated in fsl_tone_gen.
Instead of generating the samples for two tones with frequencies f1 and f2 and then modulating them, tones with
frequencies f1+f2 and f1-f2 are initialized, scaled by 1/2 and added. This saves processing load, measured in
millions of cycles per second (MCPS), and avoids generating low-frequency tones, which are difficult to generate
with 16-bit precision. The current version of this module does not implement modulation with carrier (such as
standard AM modulation). A third frequency component can be added at the expense of increased MCPS.

2.4.2 Tone Generation
The SC140 multiple ALU architecture allows simultaneous generation of samples for both frequencies. The
performance is optimal with two frequencies because required data can be loaded and updated in a single clock
cycle: four fractional moves for the four previous samples and two fractional moves for the two coefficients.

To reduce MCPS, blocks of eight samples are generated. Furthermore, duration times are given in ms (number of
samples is 8*(duration time)) so that eight samples are generated as grouped bursts. Each component includes a
silence duration after a sound period. If a property of the tone must be changed without prior silence, the silence
duration must be set to zero at the end of the previous component.

If a frequency level is 63 (–63 dBm0), the initial filter states are initialized with zeroes so that no samples are
generated for this frequency. If a single frequency is generated with the modulation flag set, the result is silence.
When a continuous tone must be generated, it is better to repeat a component with a long sound_duration because

Tone Generator Implementation

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 9

the code runs faster than with a short sound_duration repeated very often. Note that the filter state is initialized
between two cycles, but not between two occurrences of the same component without silence in between. If only
one component is used, it is better to repeat the component, not the tone cycle, to prevent harmonic distortions.

2.5 Status Reporting
The top-level modules are informed of the tone generation status with the return values given by
fsl_tone_gen. The return flag bits are as follows:

• Bit 0 (LSB): indicates whether tone generation is complete.

— 1 Complete.

— 0 Not complete.

• Bit 1: indicates whether the content of the buffer is silence.

— 1 Entire buffer is silence.

— 0 Buffer or part of the buffer contains sound.

We recommend that silence be generated with the silence part of a component, not with the sound part initialized
with null level (–63 dBm0) frequencies. Otherwise, the return flag does not reflect reality.

The “entire buffer is silence” flag detects whether the program has run the generation routine. If the generated
sound is composed of null-level frequencies, the buffer contains only silence, but the returned flag indicates that
sound has been generated. This approach saves MCPS in return flag computation (for testing every sample that
would not be used).

2.6 Tone Generator Code Structure
Figure 5 shows an overview of the tone generation code structure. For details, refer to the source code package.
The main goal of the tone generation function is to generate the tone when required and update the associated state
description structure.

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

10 Freescale Semiconductor

Tone Generator Implementation

Figure 5. Structure of the Tone Generator Code

fsl_tone_gen BEGIN

ts_generate END

Generated Samples = 0
Flag = Not Completed

+ Buffer Empty

Is

sound_duration=0?

Is

silence_duration=0?

Initialize Next Component
in Respect of Cycles and

Component Number. Update
Flag if Tone is complete.

Is Generated

Samples =
sample_out?

Return Flag

Fill Memory 1 With 8
Silence Samples

Fill Memory 2 With 8
Silence Samples

Generated Samples += 8

Load Previous Oscillator
State and Coefficient

Generate 8 Couples of
Samples (SAMPLE1,

SAMPLE2)

Generated Samples += 8
flag = Not Completed
+ Buffer Not Empty

Fill Output Buffer With
SAMPLE1 + SAMPLE2

No Yes

Yes

Yes

No

No

Using and Testing the Generic Tone Generator

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 11

Example 1. Tone Generator Pseudo Code

Function name: fsl_tone_gen
Input: Pointer to output

Pointer to buffer containing static variables
Number of samples to generate

Output: Return Flag
BEGIN

FOR (Number of sample to generate/8)
IF (sound duration is expired)

IF (silence duration is not expired)
Fill memory with 8 silence samples

ELSE
Initialize next component with respect to cycles
and component number.
Update flag if tone is complete.

END IF
ELSE

FOR (8 couples of samples)
Load previous oscillator state and coefficient
Generate SAMPLE1 and SAMPLE2 together
Fill output buffer with SAMPLE1+SAMPLE2
Update flag (sound generated)
END FOR

END IF
END FOR
RETURN (Flag)

END BEGIN

3 Using and Testing the Generic Tone Generator
We integrated and tested the generic tone generator on the MSC8101 Application Development System
(MSC8101ADS) board [2] to confirm MATLAB simulation results. Many different tones were measured.

3.1 Test Set-up
On the MSC8101ADS, an audio codec is connected to an MSC8101 device through one of its CPM multi-channel
controllers (MCCs), which configures the codec, and one of its serial peripheral interfaces (SPIs), which sends
audio samples out of the ADS. Figure 6 shows a diagram of this testing set-up. Alternatively, the ADSFS set-up
[5] can be used, allowing generated samples to be written into files using the Ethernet port with a high transfer rate.
In this case, the codec is not used.

3.2 Initialization Examples of Multi-Frequency Tones
The examples shown here provide specific configurations of the initialization function to generate several sets of
tones composed by one or two frequencies. Because frequency values, power levels, and durations may vary from
one case to another, the generic character of the generator is evident. Modifying the code to other types of signaling
tones should be a fairly simple task.

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

12 Freescale Semiconductor

Using and Testing the Generic Tone Generator

Figure 6. Testing Set-Up

Example 2. DTMF

UINT16 DTMFl[] = {697, 770, 852, 941};
UINT16 DTMFh[] = {1209, 1336, 1477, 1633};
void
test_initialize(TONE_GENERIC * testcases)
// testcases must point to a 16-item TONE_GENERIC structure
{

int i, j;
for (i = 0; i < 16; i++) {

// Inialize the input structures for the i+1 key
testcases[i].tone_repeat_cycle = 1;
testcases[i].tone_component_count = 1;
// 1 tone_component description
testcases[i].tone_component[0].flags = 0x0;
testcases[i].tone_component[0].repeat_component = 1;
testcases[i].tone_component[0].sound_duration = 50;
testcases[i].tone_component[0].silence_duration = 50;
testcases[i].tone_component[0].level_1 = 10;
testcases[i].tone_component[0].level_2 = 10;

}
// DTMF digits
// Key: 1| 2| 3| 4| 5| 6| 7| 8| 9| 0| *| #| A| B| C| D
// Code: 1| 2| 3| 5| 6| 7| 9|10|11|14|13|15| 4| 8|12|16
for (i = 0; i < 4; i++) {

Using and Testing the Generic Tone Generator

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 13

for (j = 0; j < 4; j++) {
testcases[4 * i + j].tone_component[0].frequency_1 = DTMFl[i];
testcases[4 * i + j].tone_component[0].frequency_2 = DTMFh[j];

}
}

}

Example 3. MF-R1

UINT16 R1[] = {700, 900, 1100, 1300, 1500, 1700};
void
test_initialize(TONE_GENERIC * testcases)
// testcases must point to a 15-item TONE_GENERIC structure
{

int i, j, k = 0;
for (i = 0; i < 15; i++) {

// Inialize the input structures
testcases[i].tone_repeat_cycle = 1;
testcases[i].tone_component_count = 1;
// 1 tone_component description
testcases[i].tone_component[0].flags = 0x0;
testcases[i].tone_component[0].repeat_component = 1;
testcases[i].tone_component[0].sound_duration = 50;
testcases[i].tone_component[0].silence_duration = 50;
testcases[i].tone_component[0].level_1 = 10;
testcases[i].tone_component[0].level_2 = 10;

}
// MF-R1 digits
// Key: 1| 2| 3| 4| 5| 6| 7| 8| 9| 0| ST3P| STP| KP| STP2| ST
// Code: 1| 2| 3| 4| 5| 6| 7| 8| 9|10| 11| 12| 13| 14| 15
for (j = 1; j < 6; j++) {

for (i = 0; i < j; i++) {
testcases[k].tone_component[0].frequency_1 = R1[i];
testcases[k++].tone_component[0].frequency_2 = R1[j];

}
}

}

Example 4. MF-R2

UINT16 R2f[] = {1380, 1500, 1620, 1740, 1860, 1980};
UINT16 R2b[] = {1140, 1020, 900, 780, 660, 540};
void
test_initialize(TONE_GENERIC * testcases)
// testcases must point to a 30-item TONE_GENERIC structure
// First 15 for MF-R2 foward direction
// Last 15 for MR-R2 backward direction
{

int i, j, k = 0;
for (i = 0; i < 30; i++) {

// Inialize the input structures for the i+1 key
testcases[i].tone_repeat_cycle = 1;
testcases[i].tone_component_count = 1;
// 1 tone_component description
testcases[i].tone_component[0].flags = 0x0;
testcases[i].tone_component[0].repeat_component = 1;
testcases[i].tone_component[0].sound_duration = 50;
testcases[i].tone_component[0].silence_duration = 50;
testcases[i].tone_component[0].level_1 = 10;

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

14 Freescale Semiconductor

Using and Testing the Generic Tone Generator

testcases[i].tone_component[0].level_2 = 10;
}
// 15 MF-R2 forward direction digits
for (j = 1; j < 6; j++) {

for (i = 0; i < j; i++) {
testcases[k].tone_component[0].frequency_1 = R2f[i];
testcases[k++].tone_component[0].frequency_2 = R2f[j];

}
}
// 15 MF-R2 backward direction digits
for (j = 1; j < 6; j++) {

for (i = 0; i < j; i++) {
testcases[k].tone_component[0].frequency_1 = R2b[i];
testcases[k++].tone_component[0].frequency_2 = R2b[j];

}
}

}

Example 5. Germany Dial Tone

void test_initialize(TONE_GENERIC * testcases)
{

// Inialize the input structures
testcases[0].tone_repeat_cycle = 0;
testcases[0].tone_component_count = 1;
// tone_component description
testcases[0].tone_component[0].flags = 0x0;
testcases[0].tone_component[0].repeat_component = 0;
testcases[0].tone_component[0].sound_duration = 1000;
testcases[0].tone_component[0].silence_duration = 0;
testcases[0].tone_component[0].frequency_1 = 425; // 425 or 450
testcases[0].tone_component[0].level_1 = 0;
// Only one frequency is used - level is initialized to -63dB
testcases[0].tone_component[0].frequency_2 = 0;
testcases[0].tone_component[0] .level_2 = 63;

}

Example 6. Japan Waiting Tone

void test_initialize(TONE_GENERIC * testcases)
{

// Inialize the input structures
testcases[0].tone_repeat_cycle = 0;
testcases[0].tone_component_count = 2;
// 2 tone_component description
// COMPONENT 1
testcases[0].tone_component[0].flags = 0x0;
testcases[0].tone_component[0].repeat_component = 1;
testcases[0].tone_component[0].sound_duration = 100;
testcases[0].tone_component[0].silence_duration = 100;
testcases[0].tone_component[0].frequency_1 = 440;
testcases[0].tone_component[0].level_1=0;
// Only one frequency is used - level is initialized to -63db
testcases[0].tone_component[0].frequency_2 = 0;
testcases[0].tone_component[0].level_2 = NOT_USED;
// COMPONENT 2
testcases[0].tone_component[1].flags = 0x0;
testcases[0].tone_component[1].repeat_component = 1;
testcases[0].tone_component[1].sound_duration = 100;

Using and Testing the Generic Tone Generator

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 15

testcases[0].tone_component[1].silence_duration = 1000;
testcases[0].tone_component[1].frequency_1 = 440;
testcases[0].tone_component[1].level_1=0;
// Only one frequency is used - level is initialized to -63db
testcases[0].tone_component[1].frequency_2 = 0;
testcases[0].tone_component[1].level_2 = NOT_USED;

}

3.3 Tests
The following MATLAB script displays the FFT of generated tones. A Hanning windowed FFT is used to measure
the output frequency. A typical frequency accuracy requirement is about ±1% of the nominal frequency. At an 8
kHz sampling rate, we must use at least 4096 samples (512 ms) to ensure that the error generated by the FFT is not
prejudicial.

Example 7. Frequency Response of Generated Tones

disp(’*** Generic Tone Generation on StarCore SC140 ***’)
disp(’ ’), disp(’ ’)
REF = ’.wav’; TONE_NAME = ’DTMF’; BITS = 16;
SAMPLES = 8 * 50; SILENCE = 8 * 50; SPACE = SAMPLES + SILENCE;
if TONE_NAME == ’DTMF’

number_of_digits = 16; fid = fopen([’gen_dtmf’ REF], ’r’);
elseif TONE_NAME == ’MFR1’

number_of_digits = 15; fid = fopen([’gen_mfr1’ REF], ’r’);
elseif TONE_NAME == ’MFR2’

number_of_digits = 30; fid = fopen([’gen_mfr2’ REF], ’r’);
else

number_of_digits = 0; disp(’Unknown tone.’)
end
if number_of_digits > 0

x = fread(fid, inf, ’short’);
disp([’Playing ’ TONE_NAME ’ generated tones...’])
wavplay(x, 8000);
for n = 1 : number_of_digits

disp([’Plotting ’ TONE_NAME ’ tone ’ int2str(n) ’...’])
out = x(SPACE + (n - 1) * (SAMPLES + SILENCE + SPACE) + ...
(1 : SAMPLES)) .* 2 ^ -(BITS - 1);
abscisse = linspace(0, 4000, SAMPLES / 2);
fft_out = 20*log10(abs(fft(hanning(SAMPLES) .* out)));
fft_out = fft_out - max(fft_out);
[a, b] = sort(-fft_out (1 : SAMPLES / 2));
[freq1, c] = sort(round(abscisse(1, b(1:2))));
figure, subplot(211)
plot(out), grid on
xlabel(’Sample #’)
title([TONE_NAME ’ Tone ’ int2str(n)])
subplot(212), plot(abscisse, fft_out(1 : SAMPLES / 2))
grid on, hold on
plot(freq(1), -a(c(1)), ’bo’), plot(freq1(2), -a(c(2)), ’ro’)
legend([’FFT of Tone ’ int2str(n)], ...

[’F_1 = ’ int2str(freq1(1)) ’ Hz’], ...
[’F_2 = ’ int2str(freq1(2)) ’ Hz’])

xlabel(’Frequency (Hz)’), ylabel(’Magnitude (dB)’)
end

end
disp(’Test complete.’)
fclose(fid);

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

16 Freescale Semiconductor

Using and Testing the Generic Tone Generator

Example 8. Driver for Generating Time Domain Samples Using ADSFS [5]

#include "fsl_tone_gen.h"
#define TBUFSZ 4096
#define DTMF
//#define MFR1
//#define MFR2
#ifdef DTMF
#define NUMBER_OF_TONES 16
#endif
#ifdef MFR1
#define NUMBER_OF_TONES 15
#endif
#ifdef MFR2
#define NUMBER_OF_TONES 30
#endif
void test_pgm ()
{
fract16 samples[TBUFSZ];
#pragma align samples 8

char samples2[10];
Word32 txid; // to write samples in text files
char file_name[20];
int channel, len;
TONE_GENERIC testcases[NUMBER_OF_TONES];
GEN_CHANNEL gen_channel[1];
int flag;
test_initialize(testcases);
for (channel = 0; channel < NUMBER_OF_TONES; channel++) {

// Opens a file
sprintf(file_name,"c:\\gen_out%d.dat",channel);
txid = open_file (file_name, WRITEONLY);
if (txid <= 0)

error (1);
// Tone generation
fsl_tone_gen_init (gen_channel, &testcases[channel]);
flag = fsl_tone_gen (gen_channel, samples, TBUFSZ);
// Saves samples
for (len=0; len<TBUFSZ; len++) {

write_file(txid,(unsigned char *)samples2,
sprintf(samples2,"%d\n",samples[len]));

 }
 close_file (txid);
 }

}

3.3.1 DTMF Frequency Accuracy Test
The digital oscillator algorithm has reasonable frequency accuracy. The tests listed in Table 2 validate the use of
the digital oscillator algorithm for DTMF generation, showing that it complies with the requirements of the ITU-T
Recommendation Q.24 [6] for frequency accuracy. This test uses 4096 samples, generated with a –20 dBm0 level
(11 percent of maximum scale). The measured DTMF tone precision is smaller than 0.2 percent.

Using and Testing the Generic Tone Generator

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 17

3.3.2 MF-R2 Frequency Accuracy Test
The module capabilities were tested on the most constraining standard for frequency accuracy: MF-R2 signaling
defined in the ITU-T Recommendation Q.454 [7]. A deviation of up to 4 Hz is tolerated on generated frequencies.
Each frequency is measured with an 8192 point Hanning windowed FFT. At an 8 kHz sampling rate, the resulting
accuracy is smaller than 1 Hz. In Table 3 and Table 4, an error of 0 Hz means that the test is unable to detect any
frequency deviation.

All tests of the tone generator passed. Our results indicate that the proposed tone generation module complies with
the requirements for frequency accuracy of the ITU-T Recommendation Q.454 for MF-R2.

Table 2. Digital Oscillator Algorithm for DTMF Generation

Frequency (Hz) Precision (Percent)

400 0.12

697 0.08

770 0.16

852 0.14

941 0.03

1209 0.06

1336 0.05

1477 0.07

Table 3. Forward Frequencies Test

Frequency (Hz)
Measured

Frequency (Hz)
Error (Hz) R2 Test

F0 1380 1379.6 0.4 PASS

F1 1500 1499.7 0.3 PASS

F2 1620 1619.8 0.2 PASS

F3 1740 1740.0 0.0 PASS

F4 1860 1859.1 0.9 PASS

F5 1980 1979.2 0.8 PASS

Table 4. Backward Frequencies Test

Frequency (Hz)
Measured

Frequency (Hz)
Error (Hz) R2 Test

F0 1140 1139.3 0.7 PASS

F1 1020 1019.2 0.8 PASS

F2 900 900.0 0.0 PASS

F3 780 779.9 0.1 PASS

F4 660 659.7 0.3 PASS

F5 540 539.6 0.4 PASS

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

18 Freescale Semiconductor

Using and Testing the Generic Tone Generator

3.4 Examples of Generated Signaling Tones
Figure 7 and Figure 8 illustrate the spectrum of two typical signaling tones. The figures on the left correspond to
the FFT magnitude plots of actual data generated from the proposed module; the figures on the right correspond to
measured spectra (using a spectrum analyzer). Observe that the noise floor of the measurements is around 80 dB
below the peak values.

MATLAB Measured Spectrum

Figure 7. USA Busy Tone: 480 + 620 Hz

MATLAB Measured Spectrum

Figure 8. Germany Dial Tone: 425 or 450 Hz

References

Generic Tone Generation on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 19

3.5 Performance Measurements
The proposed tone generation module typically requires less than 0.1 MCPS. The worst case would be to change
the component every millisecond, but this mode of operation is not used in practice (typical component change
intervals are greater than 40 ms).

To provide a generator with generic properties and readable C Code, the tone generation program is composed of a
large number of tests and control instructions that increase memory usage. If the code is made more specific, that
is, dedicated to a specific case such as DTMF generation, the memory usage can be reduced significantly [8].

4 References
[1] ITU-T Recommendation E.180/Q.35, Technical characteristics of tones for the telephone service.

[2] MSC8101 Application Development System User’s Manual, Freescale Semiconductor, Inc.

[3] A. V. Oppenheim, R. W. Schafer, J. R. Buck. Discrete Time Signal Processing. Prentice Hall, Second
edition, 1999.

[4] ITU-T Recommendation G.711, Pulse Code Modulation (PCM) of Voice Signals, 1993.

[5] Freescale Semiconductor, ADS File Server via Ethernet for MSC8101.

[6] ITU-T Recommendation Q.24, Multi-frequency push bottom signal reception, 11/98.

[7] ITU-T Recommendation Q.454, The Sending Part of the Multi-Frequency Signalling Equipment.

[8] DTMF Transmitter/Receiver for MSC810x DSPs, Freescale Semiconductor.

Table 5. Typical MCPS Values

Tone ���������������	C
���
� Generation (MCPS)

DTMF 805 0.045

Germany Dial Tone 820 0.056

Japan Waiting Tone 820 0.034

Table 6. Memory Usage

Data / Channel
(Bytes) Table Size (Bytes) Stack Size (Bytes) Program Size (Bytes)

168 142 24 1906

AN2274
Rev. 1
12/2004

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2002, 2004.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

	1 Digital Sine Wave Generation
	1.1 Digital Oscillator
	1.2 Polynomial Approximation

	2 Tone Generator Implementation
	2.1 Elementary Components
	2.2 Tone Cycles
	2.3 Functional Interface
	2.4 Implementation Constraints
	2.5 Status Reporting
	2.6 Tone Generator Code Structure

	3 Using and Testing the Generic Tone Generator
	3.1 Test Set-up
	3.2 Initialization Examples of Multi-Frequency Tones
	3.3 Tests
	3.4 Examples of Generated Signaling Tones
	3.5 Performance Measurements

	4 References

