
This application note describes a methodology for porting and optimizing the ITU-T G.729
Recommendation with Annex A and Annex B (G.729AB) on the StarCore™ SC140 core.1 This
recommendation proposes three algorithms for reducing the transmission rate during periods of silence:

• Voice Activity Detection (VAD)
• Discontinuous Transmission (DTX)
• Comfort Noise Generator (CNG)

The methodology integrates an optimized ITU-T G.729A implementation with the ITU-T G.729/Annex
B Recommendation and considers an interface to the G.729AB library. The integration phase is a
challenge because some optimizations from G.729A (Levinson(), for example) must be re-optimized
according to the modifications introduced by Annex B. Of the new functions in Annex B, only six
functions are optimized in C, and one is optimized using assembly language. The StarCore compiler also
reduces the effort required in the optimization phase. The tests to verify the bit exactness use all available
ITU test vectors, as well as an extended set of internal Motorola test vectors.

The ITU-T G.729AB implementation yields high performance on the SC140 core—61 channels on a 300
MHz SC140 core using only 202 KB of memory. These results demonstrate the power of the SC140 core
for wireless infrastructure products.

1 The project was implemented accordingly to the methodology for implementing ITU-T
G.729A on the SC140 core [5]. The ITU-T G.729/Annex B Recommendation [3] was added
to the optimized ITU-T G.729A implementation to maintain bit-exactness.

Application Note

AN2261/D
Rev. 1, 3/2002

ITU-T G.729AB
Implementation on the
StarCore SC140 Core

by Corneliu Margina,
Bogdan Costinescu,
and Costel Ilas

CONTENTS

1 G.729AB Background.... 2
2 Implementation Process 2
2.1 Differences Between

ITU-T G.729A and
ITU-T G.729AB........... 3

2.2 Project-Level
Optimizations 7

2.3 Function-Level
Optimizations 8

3 Results 10
4 References 11

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

2

G.729AB Background

1 G.729AB Background
G.729AB is an 8kbit/s Conjugate-Structure Algebraic-Code-Excited Linear-Prediction (CS-ACELP)
speech codec employed in simultaneous voice and data applications. The Annex B of the ITU-T G.729
Recommendation proposes a silence compression scheme for terminals to be used with ITU-T G.729 or
ITU-T G.729A. It contains three algorithms for reducing the transmission rate during periods of silence,
as follows:

• Voice Activity Detection. Indicates the presence or absence of voice, thus activating the vocoder to
code/decode active voice frames. This algorithm makes a decision on voice activity every 10 ms in
correlation with the frame size of the G.729/G.729A vocoder. The output of the VAD module is either
a 1 or 0, indicating the presence or absence of voice activity. The decision is based on a set of
difference parameters: the full band energy, the low band energy, the zero-crossing rate and a spectral
measure. If the output of a VAD module is 1, the speech codec is invoked to code/decode active voice
frames (speech). If the output is 0, the DTX/CNG algorithms are used to code/decode non-active voice
frames (silence).

• Discontinuous Transmission. Receives the active/non-active voice information from the VAD module
and sends a set of non-active voice update parameters to the speech decoder by measuring the changes
in the non-active voice signal. The update decision is based on the absolute and adaptive thresholds on
the frame energy and the spectral distortion measure. If the update is required, the encoder sends
information to generate a signal similar to the original non-active voice signal. This information
comprises an energy level and a description of the spectral envelope. If no update is required, the
decoder generates the signal on the basis of the last received energy level and the spectral shape
information of the non-active voice frame. The decision output of the DTX module is as follows:

— 0 untransmitted frame

— 1 active speech frame

— 2 Silence Insertion Descriptor (SID) frame

• Comfort Noise Generator. At the decoder, reproduces non-active voice frames based on the decisions
of the VAD (output 0) and DTX modules at the encoder. The comfort noise is generated by introducing
a pseudo-white excitation signal of a controlled level into interpolated LPC filters, in the same way that
the decoder produces active speech by filtering the decoded excitation. The excitation level and LPC
filters are obtained from the previous SID information.

2 Implementation Process
The process of porting and optimizing the ITU-T G.729 with integrated Annex A and Annex B
Recommendations references the methodology used in the implementations of ITU-T G.729 [4] and
ITU-T G.729A [5] Recommendations. Table 1 summarizes the main phases of this process.

Table 1. Implementation Phases

Implementation Phase Description

Porting ITU-T G.729AB to the SC140
core by integrating it into ITU-T
G.729A optimized implementation

Adding new functions, channel data, and tables with respect to the
changed functions and tables from G.729A. Data type definitions and
introduction of pragmas and intrinsic functions (Section 2.1 on page 3).

Project-level optimizations Function inlining, data alignment, channel data transformations
(Section 2.2 on page 7).

Algorithm changes Changing algorithms based on better platform usage (Section 2.3 on page
8).

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

3

Implementation Process

The following sections describe these implementation phases, indicating the performance results. Table 2
summarizes the requirements of the ITU-T G.729AB implementation.

These requirements are based on the results obtained for the ITU-T G.729A optimized implementation on
the SC140 core, presented in Table 3.

After all implementation phases, a testing phase verified and ensured the bit exactness and measured the
speed (MCPS) and code size (bytes) of the project. Section 2.1.4 on page 6 describes the test vectors. The
tests were performed on both the StarCore SC140 simulator and the MSC8101ADS board using the
Metrowerks CodeWarrior for StarCore Integrated Development Environment (IDE) Release 1.1.

2.1 Differences Between ITU-T G.729A and ITU-T G.729AB
The differences between Annex B of the ITU-T G.729 Recommendation and the ITU-T G.729A
Recommendation are determined by comparing the reference C code from the ITU-T. The result consists
of added channel data, functions, and tables for implementing Annex B. However, some data and
functions must be changed, as summarized in the following sections. The comparison of the reference
code is helpful in porting and integrating Annex B with the ITU-T G.729A optimized
implementation.The compiler for implementing and porting ITU-T G.729AB is Metrowerks®
CodeWarrior® for StarCore, Release 1.1.

Function-level C optimizations C optimization techniques (multisample, loop unroll, split summation, loop
merging, code factorization) with a better use of intrinsic functions to
increase performance (Section 2.3 on page 8).

Function-level assembly
implementations and optimizations

Implementing selected function using assembly language in order to
increase performance (Section 2.3 on page 8).

Table 2. ITU-T G.729AB Implementation Requirements

Requirement Size (Encoder + Decoder)

Code Size 40 KB

Data ROM (Tables) 6 KB

Data RAM - Channel 3 * N1 KB

1 N = number of channels

Data RAM - Stack 3 KB

Peak Performance (speed) 5.5 MCPS

Table 3. G.729A Optimized Implementation Results

Type of
Implementation

Speed
(MCPS)

ROM RAM

Program
(KB)

Tables
(Bytes)

Channel
Data

(Bytes)

Stack
(Bytes)

C only 6.81 32.80 4736 2240 x N1

1 N = number of channels

2312

C and assembly 4.7 28.09 4736 2240 x N 2312

Table 1. Implementation Phases (Continued)

Implementation Phase Description

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

4

Implementation Process

Porting Annex B to the SC140 core required use of the following elements:

• Defined data types (for example, Word16, Word32) as defined in ITU-T G.729A to comply with the
SC140 architecture.

• Intrinsic functions defined by the compiler instead of their emulated versions.

• Overflow handling intrinsics instead of the boolean overflow and carry flags at the base of the
emulated functions.

Integrating Annex B with the ITU-T G.729A optimized implementation requires the following steps:

1. Integrate the new functions in the ITU-T G.729A optimized implementation by adding the calls and
code of these functions (Section 2.1.1). Split these functions into files, one function per file, thus using
the code structure of the ITU-T G.729A optimized implementation.

2. Add the modified code corresponding to the changed functions as they are implemented in the C refer-
ence code, optimizing them in the next project implementation phase (Section 2.2).

3. Add/modify the data structures of the channel data with the new global and static variables from each
new/changed added function (Section 2.1.2);

4. Add the new Annex B-defined tables (Section 2.1.3).

5. Make the G.729AB library interface comply with the Application Binary Interface (ABI) as described
in Section 2.1.5, and modify the initialization functions of the structures accordingly.

Table 4 summarizes the results of the SC140 porting phase of the ITU-T G.729AB. The results were
obtained using only C versions of the functions:

• C optimized versions of the unchanged functions from ITU-T G.729A optimized implementation.

• C reference code of the functions implemented or modified by Annex B.

2.1.1 Integrating the New Functions
The C reference code of the ITU-T G.729A and ITU-T G.729AB recommendations was compared at the
function-level. Table 5 summarizes the results of the comparison. This analysis was used for integrating
the new functions in the ITU-T G.729A optimized implementation. The functions were integrated in
conjunction with the modification of the channel data and data tables. The new functions implement three
algorithms of the Annex B (VAD, DTX, and CNG) and the quantization algorithms for computing the
SID. As Table 5 shows, only a few functions differ, and most are identical. The differences consist of
new added computations:

• Autocorr() computes an exponent of the autocorrelation vector used by the VAD algorithm.

• Levinson() computes a residual energy used by the DTX algorithm.

• Post_Filter() calls the function that performs the harmonic postfilter based on the input VAD
decision.

• Random() returns a pointer to the generated seed.

Table 4. Performance After Porting to the SC140 Core

Speed (MCPS)

ROM RAM

Program
(KB)

Tables
(Bytes)

Channel Data
(Bytes)

Stack
(Bytes)

9.54 44.78 5640 2544 x N1

1 N = number of channels

3104

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5

Implementation Process

Table 5. Differences Between ITU-T G.729A and ITU-T G.729AB Functions

Encoder Functions Common Functions Decoder Functions

Function Name Difference Function Name Difference Function Name Difference

Autocorr few diff. Random few diff. Post_Filter few diff.

Levinson few diff. Calc_exc_rand new Dec_cng new
Calc_pastfilt new Gauss new Init_Dec_cng new
Calc_RCoeff new Init_lsfq_noise new sid_lsfq_decode new

Calc_sum_acf new Qua_Sidgain new Get_decfreq_prev new
Cmp_filt new Quant_Energy new Update_decfreq_prev new
Cod_cng new Sqrt new D_lsp same

Get_freq_prev new Copy same agc same
Init_Cod_cng new Gain_predict same Dec_gain same

lsfq_noise new Gain_update same Dec_lag3 same
MakeDec new Get_lsp_pol same Decod_ACELP same

New_ML_search_1 new Int_qlpc same Gain_update_erasure same
New_ML_search_2 new Inv_sqrt same Init_Post_Filter same

Qnt_e new Log2 same Lsp_decw_reset same
Update_cng new Lsf_lsp2 same Lsp_iqua_cs same

Update_freq_prev new Lsp_Az same pit_pst_filt same
Update_sumAcf new Lsp_expand_1_2 same Post_Process same

vad new Lsp_get_quant same preemphasis same
vad_init new Lsp_prev_compose same

ACELP_Code_A same Lsp_prev_extract same
Az_lsp same Lsp_prev_update same

Chebps_10 same Lsp_stability same
Chebps_11 same Pow2 same

Cor_h same Pred_lt_3 same
Cor_h_X same Residu same
Corr_xy2 same Set_zero same

D4i40_17_fast same Syn_filt same
Dot_Product same Weight_Az same

Enc_lag3 same
G_pitch same

Gbk_presel same
Get_wegt same

Lag_window same
Lsp_encw_reset same
Lsp_expand_1 same
Lsp_expand_2 same
Lsp_get_tdist same

Lsp_last_select same
Lsp_lsf same

Lsp_lsf2 same
Lsp_pre_select same

Lsp_qua_cs same
Lsp_select_1 same
Lsp_select_2 same
Parity_Pitch same

Pitch_fr3_fast same
Pitch_ol_fast same
Pre_Process same

Qua_gain same
Qua_lsp same

Relspwed same

test_err same

update_exc_err same

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6

Implementation Process

2.1.2 Modifying the Channel Data
The modified channel data consists of global data used by both the encoder and decoder of the speech
codec to perform the following tasks:

• Decode the SID information

• Make the DTX decision

• Make the VAD decision

• Generate the comfort noise (CNG algorithm)

The changed functions necessitated additions of data to the global data for Linear Prediction Coding
(LPC), Linear Spectral Pair (LSP), and LSP quantization.

2.1.3 Adding the Annex B-Defined Tables
Table 6 presents the changes for some data tables from ITU-T G.729A required to integrate the ITU-T
G.729 Annex B Recommendation.

2.1.4 Verifying Bit Exactness Using Test Vectors
ITU provides a set of test vectors to verify the bit exactness of the encoder and decoder in the G.729AB
vocoder (see Table 7). Other internal Motorola test vectors are also used. In addition, the ITU test vectors
for the ITU-T G.729A optimized implementation maintain the bit exactness of the ITU-T G.729A
Recommendation when the VAD is disabled.2

Table 6. Data Table Modifications

Table Name Comment

Word32 lag[] Two values added (8 bytes added)

Word16 table2[] Doubled size, thus removing the optimization from ITU-T G.729A
optimized implementation (64 bytes added)

Word16 slope[] Doubled size, thus removing the optimization from ITU-T G.729A
optimized implementation (64 bytes added)

Word16 freq_prev_reset[] New table (20 bytes added)

2 These test vectors are described in [5].

Table 7. ITU-T G.729AB Test Vectors

Encoder Input
Encoder Output
Decoder Input

Decoder Output

Tstseq1.bin Tstseq1.bit Tstseq1.out

Tstseq2.bin Tstseq2.bit Tstseq2.out

Tstseq3.bin Tstseq3.bit Tstseq3.out

Tstseq4.bin Tstseq4.bit Tstseq4.out

Tstseq5.bit Tstseq5.out

Tstseq6.bit Tstseq6.out

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7

Implementation Process

2.1.5 Making the Library Interface ABI-Compliant
The G.729AB library must comply with the Application Binary Interface as specified in [4] and [5].
Example 1 presents the ABI-compliant C functions of the vocoder external interface.

Example 1. G.79AB Library Interface

void MDCR_G729AB_encode_initialize(MDCR_G729AB_ENCODER_CHANNEL_INFO_T *enc_info);
Word16 MDCR_G729AB_enableVAD(MDCR_G729AB_ENCODER_CHANNEL_INFO_T *enc_info,

IN Word16 flag);
Word16 MDCR_G729AB_getVADStatus(MDCR_G729AB_ENCODER_CHANNEL_INFO_T *enc_info);

void MDCR_G729AB_encode(Word16 *signal,
Word16 *prm,

 MDCR_G729AB_ENCODER_CHANNEL_INFO_T *enc_info);
void MDCR_G729AB_decode_initialize(MDCR_G729AB_DECODER_CHANNEL_INFO_T *dec_info);
void MDCR_G729AB_decode(Word16 *prm,

Word16 *synth,
MDCR_G729AB_DECODER_CHANNEL_INFO_T *dec_info);

The functions are as follows:

• MDCR_G729AB_encode_initialize(). Initializes the encoder channel data structures. By
default, the encoder behavior is set to enable the VAD/DTX functionality described in G.729 Annex B.

• MDCR_G729AB_enableVAD(). Enables/disables the VAD part of the encoder. If the least
significant bit of the second parameter is set to 1, the VAD is enabled. The function returns the old
status of the VAD subsystem.

• MDCR_G729AB_getVADStatus(). Returns the current status of the VAD subsystem. Possible
return values are MDCR_G729AB_VAD_DISABLED (VAD is disabled) and
MDCR_G729AB_VAD_ENABLED (VAD is enabled).

• MDCR_G729AB_encode(). Using either G729 Annex A or G729 Annexes A plus B, this function
encodes the input speech samples in the signal array. The encoder output is provided in the prm[]
vector. The length of the data depends on the input speech type: active speech or silence. The channel
history and data are provided in the enc_info data structure.

• MDCR_G729AB_decode_initialize(). Initializes the decoder channel data structures.

• MDCR_G729AB_decode(). To conform with the G729AB, this function decodes the input frame
parameters in the prm array. The 160-byte decoder output (synthesized data) is provided in the
synth[] vector. The channel history and data are in the dec_info data structure.

2.2 Project-Level Optimizations
The global project optimizations are built upon the ITU-T G.729A optimized implementation,
considerably reducing the work required. The optimizations described in this section apply only to the
new and changed functions integrated from Annex B, as follows:

• Data Precision Format (DPF) operations to speed up the 32-bit operations because the StarCore C
compiler provides efficient support for the DPF operations based on intrinsic functions [6].

• Alignment of the new data structures added to the channel data.

• Alignment of some vectors and data tables of the new and changed functions to benefit from the
compiler optimizations when -O3 is used.

• Use of assembly versions of the functions from the ITU-T G.729A optimized implementation that were
unaffected by the integration phase, thus gaining speed and minimizing code size.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8

Implementation Process

The following assembly functions were integrated from the ITU-T G.729A optimized implementation,
thus improving speed and program size:

• Get_lsp_pol()

• Pred_lt_3()

• Residu()

• Syn_filt()

• Post_Process()

• Autocorr()

• Az_lsp()

• Chebps()

• Cor_h()

• D4i40_17_fast()

• Dot_Product()

• Levinson()

• Pitch_fr3_fast()

• Pitch_ol_fast()

• Pre_Process()

• Qua_gain()

The function changes introduced by Annex B apply to the assembly versions of the Autocorr() and
Levinson() functions. The assembly version of Levinson() is based on [6]. Table 8 summarizes
performance results after application of the global project optimizations. The processing load value of
7.73 MCPS is the worst case introduced by Annex B.

l

2.3 Function-Level Optimizations
The algorithmic changes applied to the functions ported from Annex B use both C and assembly
language. There are two types of C code transformations:

• Platform-independent. To avoid repeated computations or fetches of the same value and reduce the
number of tests.

• Platform-dependent. To perform non-dependent computation in parallel and reorder vectors to use
packed moves.

A few optimizations were made to a reduced number of functions from Annex B after a profiling session.
Six functions were optimized using C language, and only one function required optimization using
assembly language. Thus, the compiler proves to deliver highly-optimized generated code. The
optimizations increased performance.

Table 8. Performance Results After Project-Level Optimizations

Speed (MCPS)

ROM RAM

Program
(KB)

Tables
(Bytes)

Channel Data
(Bytes)

Stack
(Bytes)

7.73 40.52 5740 2544 x N1

1 N = number of channels

2824

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

9

Implementation Process

The C optimization techniques are as follows:

• Multisampling

• Loop merging

• Loop unrolling

• Loop splitting

• Split summation

These techniques were applied to the following functions:

• Calc_exc_rand()

• Gauss()

• Random()

• New_ml_search_1()

• New_ml_search_2()

• Lsp_lsf()

Several descendants of Calc_exc_rand() were optimized. The result of combining the Gauss()
and Random() functions is the Generate_Gauss_Exc() function, which is used by
Calc_exc_rand(). This result was optimized using assembly to increase speed. Also, the loops used
for normalization were extracted into separate functions, normalize_1() and normalize_2(),
that were optimized in C to increase speed. Table 9 summarizes the results of optimizing the
Calc_exc_rand() function.

Special optimization techniques were applied to New_ml_search_1() and New_ml_search_2()
to reduce the number of cycles. The goal was to optimize the loop that finds the index of the minimum
value in a vector of 16-bit values. The optimization consisted of creating a 32-bit array that contains the
16-bit value on the high part and its index in the low part. Using the split-summation technique, four
minimums and their indexes are computed at each loop iteration. Using this technique in conjunction
with the C optimization techniques improved the results, as shown in Table 10.

Table 9. Performance Results for the Calc_exc_rand() Optimization Phases

C Version
Number of

Cycles
Code Size

(Bytes)

ITU-T Reference Code 22495 2168

Optimized Code
+

Generate_Gauss_Exc() (C optimized version)
7946 2442

Optimized Code
+

Generate_Gauss_Exc() (assembly version)
6822 2442

Optimized Code
+

Generate_Gauss_Exc() (assembly version)
+

normalize_1() and normalize_2() (C optimized code)

4684 2218

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10

Results

3 Results
Table 11 summarizes the performance results of the ITU-T G.729AB optimized implementation on the
StarCore SC140 core. A profiling session after a small number of functions from Annex B were
optimized demonstrated that the performance targets are more attainable under the following conditions:

• All C optimized functions are compiled for speed (-O3 compiler flag) and the rest for size (-Os -O3
compiler flag), thus obtaining smaller code with only a small decrease in the speed.

• All C functions are compiled for speed, thus obtaining a higher speed with only a small increase in
code size.

As Table 11 shows, the values for the C-only implementations differ significantly from the
implementations using assembly versions of the functions. The assembly versions of the functions from
the ITU-T G.729A optimized implementation provided a solid basis for performance increases. Figure 1
shows the effort (in man-months) to meet the project targets.

Table 10. Performance Results for New_ml_search1() and New_ml_search2()

Function Name C Version
Number of

Cycles
Code size

(Bytes)

New_ml_search_1() ITU-T Reference Code 3063 666

Optimized Code 980 748

New_ml_search_2() ITU-T Reference Code 4040 1126

Optimized Code 2800 1062

Table 11. Performance Results of the G.729AB Optimized Implementation for the SC140 Core

Type of Optimizations
Speed

(MCPS)

ROM RAM (KB)

Program
(KB)

Tables
(KB)

Channel Data
(Bytes)

Stack
(Bytes)

(C and assembly project implementation)
85 functions compiled for speed
17 assembly functions

4.89 40.82 5.6 2544 x N1

1 N = number of channels

2824

(C and assembly project implementation)
19 functions compiled for speed
66 functions compiled for size
17 assembly functions

5.12 37.24 5.6 2544 x N 2824

(C-only project implementation)
102 functions compiled for speed

6.62 45 5.6 2544 x N 2824

(C-only project implementation)
36 functions compiled for speed
66 functions compiled for size

6.85 41.44 5.6 2544 x N 2816

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

11

References

Figure 1. Processing Load Versus Implementation Effort

4 References
[1] ITU-T Recommendation G.729—Coding of Speech at 8 kbit/s Using Conjugate-Structure

Algebraic-Code-Excited Linear-Prediction (CS-ACELP), March 1996.

[2] ITU-T Recommendation G.729/Annex A—Reduced Complexity 8 kbit/s CS-ACELP Speech Codec,
November 1996.

[3] ITU-T Recommendation G.729/Annex B— A Silence Compression Scheme for G.729 Optimized for
Terminals Conforming to Recommendation V.70, November 1996.

[4] ITU-T G.729 Implementation on StarCore SC140, Motorola, AN2094/D.

[5] ITU-T G.729A Implementation on StarCore SC140, Motorola, AN2151/D.

[6] Implementing the Levinson-Durbin Algorithm on the SC140, Motorola, AN2197/D.

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5 3 3.5

Effort (man-months)

M
C

P
S

SC140 Porting and Integrating
with ITU-T G.729A

Project-level Optimizations

Function-level Optimizations

Project Requirements

38 Channels
145 kbytes Memory

7.73 MCPS

31 Channels
130 kbytes Memory

9.54 MCPS

58 Channels
191 kbytes Memory

5.12 MCPS

61 Channels
202 kbytes Memory

4.89 MCPS

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2261/D

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour
Centre, 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use

Motorola products. There are no express or implied copyright licenses granted hereunder to design

or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola

makes no warranty, representation or guarantee regarding the suitability of its products for any

particular purpose, nor does Motorola assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters which may be provided in Motorola data

sheets and/or specifications can and do vary in different applications and actual performance may

vary over time. All operating parameters, including “Typicals” must be validated for each customer

application by customer’s technical experts. Motorola does not convey any license under its patent

rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other applications intended to

support or sustain life, or for any other application in which the failure of the Motorola product could

create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola

products for any such unintended or unauthorized application, Buyer shall indemnify and hold

Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or

indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,

even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna,
StarCore, and EOnCE are trademarks of Motorola, Inc. Metrowerks and CodeWarrior are registered
trademarks of Metrowerks Corp. in the U.S. and/or other countries. All other product or service names
are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action
Employer.

© Motorola, Inc. 2002

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

	1 G.729AB Background
	2 Implementation Process
	2.1 Differences Between ITU-T G.729A and ITU-T G.729AB
	2.2 Project-Level Optimizations
	2.3 Function-Level Optimizations

	3 Results
	4 References

