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In a Wideband Code Division Multiple Access (WCDMA) 
environment, each user is assigned a unique complex 
scrambling sequence to encode its information-bearing signal. 
The receiver has the scrambling code of the user, unscrambles 
the received signal, and recovers the original data [1]. This 
application note presents a method for complex pseudo-random 
sequence (PN code) generation and complex scrambling of an 
I/Q code multiplexed signal on a StarCore® SC140 digital 
signal processor (DSP). The PN codes in this application note 
are generated for a WCDMA Universal Mobile 
Telecommunications Systems (UMTS) uplink (signal from 
handset to base station) according to the third-generation 
partnership project (3GPP) specifications. 

This application note provides practical information to help 
users understand PN code generation and complex scrambling, 
which are required in the WCDMA standards. Typically, these 
operations are performed on Architecture-Specific Integrated 
Circuits (ASICs), but here we explore the use of the Freescale 
StarCore™-based DSPs to accomplish the same task.
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Pseudo-Random Sequences

1 Pseudo-Random Sequences
Pseudo-random sequences or PN codes are sequences of 1s and 0s generated by an algorithm so that the resulting 
numbers look statistically independent and uniformly distributed. A random signal differs from a pseudo-random 
signal in that a random signal cannot be predicted. A pseudo-random signal is not random at all; it is a 
deterministic, periodic signal that is known to both the transmitter and the receiver. Even though the signal is 
deterministic, it appears to have the statistical properties of sampled white noise. To an unauthorized listener, it 
appears to be a truly random signal. 

1.1   Randomness Properties
CDMA systems achieve their multiple access capability using large sets of sequences with three basic properties 
that are applied to a periodic binary sequence as a test for the appearance of randomness [2]: 

• Balance Property. In each period of the sequence, the number of binary 1s must differ from the 
number of binary 0s by at most one digit. In other words, the sequences are balanced so that each 
element of the sequence alphabet occurs with equal frequency.

• Run Property. A run is defined as a sequence of the same binary digit. The appearance of a different 
binary digit marks the start of a new run. The length of the run is the number of digits in the run. For 
the randomness run property, in each period, about one-half the runs of each binary digit should be of 
length 1, about one-fourth of length 2, one-eighth of length 3, and so on.

• Correlation Property. Random sequences are often described in terms of their correlation properties. 
A scrambling sequence in a CDMA system must have small off-peak autocorrelation values to allow 
for rapid sequence acquisition at the receiver and to minimize self interference due to multipath 
acquisitions. Furthermore, the cross correlations are small enough among such sequences at all delays 
to minimize multiple-access interference.

1.2   Generating Pseudo-Random Sequences
Pseudo-random binary codes are typically generated using a system of linear feedback shift registers (LFSRs). The 
LFSR generators produce a sequence that depends on the number of stages, the feedback tap connections, and the 
initial conditions. The output sequences can be classified as either maximal length (m-sequence) or nonmaximal 
length. The m-sequences have the property that for an n-stage LFSR the sequence repetition period in clock pulses, 
p, is as shown in Equation 1.

 Equation 1

Thus, if the sequence length is less than the maximum period of (2n–1), the sequence is classified as a nonmaximal 
length sequence. In fact, all the m-sequences are generated by primitive polynomials of degree n over Galois Field 
2 (GF(2)).

2 Scrambling Codes for WCDMA
In a CDMA scheme, all users transmit on the same frequency and are differentiated by their unique scrambling 
codes. The receiver correlates the received signal with a synchronously generated replica of the scrambling code to 
recover the original information-bearing signal. The third-generation partnership project (3GPP) specifications 
define how these uplink complex scrambling codes are generated. Part of the process in the transmitter, in addition 

P = 2n–1
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to spreading, is the scrambling operation. Because scrambling is used on top of spreading as shown Figure 1, it 
does not change the bandwidth of the signal, but only makes the signals from different users separable from each 
other [3].

Figure 1.   Relation Between Spreading and Scrambling

With I-Q/code multiplexing, also called dual-channel quaternary phase shift keying (QPSK) modulation, the power 
levels of the dedicated physical data channel (DPDCH) and the dedicated physical control channel (DPCCH) 
typically differ. This is especially true as data rates increase and can lead in extreme cases to binary phase shift 
keying (BPSK) type transmission when the branches are independently transmitted. This situation is avoided by 
using a scrambling operation after the spreading with channelization codes. The transmission of two parallel 
channels, DPDCH and DPCCH, leads to multicode transmission, which increases the peak-to-average power ratio 
[3]. The spreading modulation solution shown in Figure 2 keeps the transmitter power amplifier efficiency the 
same as for normal balanced QPSK transmission in general.

Figure 2.   I-Q/Code Multiplexing With Complex Scrambling.

2.1   Generating Long Complex Scrambling Codes
All uplink physical channels are subjected to scrambling with a complex-valued scrambling code. In WCDMA 
uplink transmissions, the scrambling code can either be short or long. There are 224 long uplink scrambling codes, 
and these codes are assigned by higher layers. The long codes are essentially Gold codes. Large sets of Gold codes 
have low cross-correlation properties so that as many users as possible can use the channel with minimum mutual 
interference. According to 3GPP specifications, Gold codes are generated with a system of 25-stage linear 
feedback shift registers, as shown in Figure 3 [4].
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Figure 3.   Uplink Long Scrambling Code Generator

These 25-degree generator polynomials are truncated to the 10 ms frame length that results in 38400 chips at the 
rate of 3.84 Mcps. The long scrambling sequences, c1,n and c2,n, are constructed from a position-wise modulo 2 
sum of 38400 chip segments of the two binary m-sequences. The two binary m-sequences are constructed using the 
following primitive polynomial over GF(2), as show in Figure 3. Furthermore, sequence c2,n is a 16,777,232 chip 
delayed version of sequence c1,n.

 Equation 2

 Equation 3

Let x, and y be the two m-sequences that are constructed from primitive polynomials of Equation 2 and Equation 
3, respectively. The resulting sequences constitute segments of a set of Gold sequences. Now, let n23 ... n0 be the 
24-bit binary representation of the scrambling sequence number n with n0 as the least significant bit. The x 
sequence depends on the chosen scrambling sequence number n and is denoted as xn in the sequel. Furthermore, let 
xn(i) and y(i) denote the i:th symbol of the sequences xn and y, respectively. The m-sequences xn and y are 
constructed as follows:

1. Initial conditions:

 Equation 4

 Equation 5

2. Recursive definition of subsequent symbols:

MSB LSB C1,n

C2,n

X25 + X3 + 1

X25 + X3 + X2 + X + 1

xn(0) = n0, xn(1) = n1, ..., xn(22) = n22, xn(23) = n23, xn(24) = 1

y(0) = y(1) = ... = y(23) = y(24) = 1
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 Equation 6

.  Equation 7

3. Binary Gold sequence zn:

 Equation 8

4. Real-valued Gold sequence:

 Equation 9

a. The real-valued long scrambling sequences c1,n and c2,n are defined as follows:

 Equation 10

 Equation 11

b. The complex-valued long scrambling sequence Cn, is defined as follows, where i = 0, 1, ..., 225-2 
and denotes rounding to the nearest lower integer:

 Equation 12

A more intuitive way of forming the complex-valued scrambling code from two real-valued codes, 
c1,n and c2,n, with the decimation principle is:

 Equation 13

with sequences w0 and w1 given as chip rate sequences:

 Equation 14

The decimation factor for the second sequence is 2. Ultimately this way of creating the scrambling 
sequence reduces the zero crossings in the constellation and further reduces the amplitude 
violations in the modulation process. In conclusion, Equation 13 and Equation 14 give the same 
complex scrambling code as is achieved through Equation 12.

xn(i+25) = xn(i+3) + xn(i) modulo 2, i=0, ..., 225-27

y(i+25) = y(i+3) + y(i+2) + y(i+1) + y(i) modulo 2, i=0, ..., 225-27

zn(i) = xn(i) + y(i) modulo 2, i=0, ..., 225-2

Zn(i) =

+1 if zn(i) = 0

-1 if zn(i) = 1

for i = 0, 1, 2, ..., 225-2.

c1,n(i) = Zn(i), i=0, ..., 225-2

c2,n(i) = Zn(i+16777232) modulo (225–1), i=0, ..., 225–2

Cn(i) = c1,n(i) ( 1 + j( -1 )i c2,n( 2 * FLOOR(i/2) ) )

Cscrambling = c1,n( w0 + jc2,n (2k) w1 ), k = 0, 1, 2, ...

w0 = {1 1}, w1 = {1 -1}
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2.2   Scrambling an I-Q/Code Multiplexed Signal
Figure 2 shows that before the data signal is QPSK modulated, the I-Q/code multiplexed data signal is multiplied 
with the complex scrambling code. In this step, the two complex signals are multiplied together as shown in the 
following equations, where DI = the real part of the incoming data:

 Equation 15

Where:

• DI = real part of the incoming data

• DQ = complex part of the incoming data

• SI = real part of the scrambling code

• SQ = complex part of the scrambling code

• I = 0, 1, 2, . . . , 38399

Equation 15 implies the final result, as follows:

 Equation 16

3 Software Implementation on the StarCore 
SC140/SC1400 Cores

This section describes how the algorithms in Section 2, Scrambling Codes for WCDMA, are implemented on the 
StarCore SC140/SC1400 DSP cores. For ease of implementation, the algorithms slightly differ from the theory 
presented in Section 2. The first part of the program generates the PN code, and the second part performs the actual 
scrambling of the incoming signal. First, the memory space required for these calculations is specified.

3.1   Allocating Memory Space
The assembly code assumes that required memory space has been allocated before the assembly routine is called. 
This memory space is 16-bit aligned. Table 1 lists the exact amount of space required for different global variables. 

Table 1.   Memory Allocation

Global Variable Name Description Number of Bytes

REG1 Holds the starting phase value for PN code generation. As 
shown in Equation 3, the PN code generated depends on 
the initial value of the 25-stage LFSR. The most significant 
bit of the upper 25-stage LFSR is always one (1), and the 
initial value for this register is passed to the assembly code. 
The lower 25-stage LFSR does not require initialization 
because all of its 25 bits are always configured to a value of 
one (1) at the start of a new sequence.

4

( DIi + jDQi ) x ( SIi + jSQi )

(( DIi*SIi ) – ( DQi*SQi )) + j(( DIi*SQi ) + ( DQi*SIi ))
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3.2   Binary PN Code and Complex Scrambling Sequences
For optimal implementation of the algorithm to generate the complex binary PN code, 16 stacked-bit samples are 
generated in one iteration rather than generating the PN code one bit at a time. Since a PN code is essentially a 
system of LFSRs, the last 16 bits are processed in one operation to give 16 samples of PN code. Example 1 shows 
the pseudo code for this implementation.

Example 1.   Pseudo Code for 16-Bit Vector Processing

X= Upper LFSR
Y= Lower LFSR
for (i = 0; i < 2400; i++) ;//(38400/16) = 2400

{
X0  = (X >> 0) ;//X0 holds the lower 16 bits of X non-shifted, reqd for c1 & X25 feedback
X3  = (X >> 3) ;//X3 holds the lower 16 bits of X shifted by 3,reqd for X25 feedback 

poly.
X4  = (X >> 4) ;//X4 holds the lower 16 bits of X shifted by 4, reqd for c2
X7  = (X >> 7) ;//X7 holds the lower 16 bits of X shifted by 7, reqd for c2
X25 = (X3 ^ X0) ;//feedback polynomial, accodring to eqn. 6, most significant 16 bits

;//for next iteration, 9 from previous iteration, as old 16 shifted out
X = (X >> 16) ;//lower 16 bits shifted out
X = (X | (X25 << 9)) ;//most sig. 9 bits from prev iteration & 16 sig bits from this iteration

;//X is ready for next
X18 = (X >> 2) ;//X18 holds the lower 16 bits of X shifted by 18, reqd for c2

Y0  = (Y >> 0) ;//Y0 holds the lower 16 bits of Y non-shifted, reqd for c1 & Y25 feedback
Y1  = (Y >> 1) ;//Y1 holds the lower 16 bits of Y shifted by 1, reqd for Y25 feedback 

poly.
Y2  = (Y >> 2) ;//Y2 holds the lower 16 bits of Y shifted by 2, reqd for Y25 feedback 

poly.
Y3  = (Y >> 3) ;//Y3 holds the lower 16 bits of Y shifted by 3, reqd for Y25 feedback 

poly.
Y4  = (Y >> 4) ;//Y4 holds the lower 16 bits of Y shifted by 4, reqd for c2
Y6  = (Y >> 6) ;//Y5 holds the lower 16 bits of Y shifted by 6, reqd for c2
Y25 = (Y3 ^ Y2 ^ Y1 ^ Y0) ;//feedback polynomial, accodring to eqn. 7, most significant 16 bits

 ;//for next iteration, 9 from previous iteration, as old 16 shifted out
Y = (Y >> 16) ;//lower 16 bits shifted out
Y = (Y | (Y25 << 9)) ;//most sig. 9 bits from prev iteration & 16 sig bits from this iteration

;//Y is ready for next
Y17 = (Y >> 1) ;//X17 holds the lower 16 bits of Y shifted by 17, reqd for c2

CODE_IQ Points to the interleaved complex scrambling code. This 
scrambling code is stored as a real-valued code scaled 
down by a factor of 2 (+1 as +0.5 or -1 as -0.5). Since the 
code length for a frame is 38400 chip segments, each 
sample is stored as a 16 bit sample, and each chip segment 
contains an I and Q part, a buffer of 38400*2*2 bytes is 
assigned. 

38400 × 2 × 2

INPUT_IQ Points to the buffer in the memory where the interleaved 
input data to be scrambled is stored. This assembly code 
assumes that the data samples are 16-bits wide and are 
held in the memory buffer as I/Q interleaved samples. 

38400 × 2 × 2

OUTPUT_IQ Points to the memory buffer where the interleaved 
scrambled data is stored for one frame. 

38400 × 2 × 2

Table 1.   Memory Allocation

Global Variable Name Description Number of Bytes
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c1 = (X0 ^ Y0)  ;//16-stacked bit c1 according to figure 3 configuration
c2 = (X4 ^ X7 ^ X18 ^ Y4 ^ Y6 ^ Y17) ;//16-stacked bit c2 according to figure 3 configuration
}

Now, the formation of the complex scrambling codes begins. In this part of the code, the C/Assembly calling 
function enters the assembly code, and the data variables and pointers are put into the appropriate registers for the 
assembly function to use. The pn_generation subroutine includes the pn_generation_param.asm parameter file, 
which defines the local constants used by this subroutine:

• REG2_INIT holds the value 0x01FFFFFF for initializing the lower 25-stage LFSR, as shown in 
Figure 3. 

• MASK16 holds the value 0x000000FFFF for masking the lower 16-bits of a data register. 

• NUM_ITER specifies the number of times the main loop in the function iterates. It is initialized to 
2400. 

Data registers D6 and D7 are the two 25-stage LFSRs. Since the LFSRs are only 25-stage, only the lower 25 bits of 
the data registers are used for this purpose. The most significant 15-bits are set to zero (data registers are 40 bits 
wide). The first three instructions initialize the lower LFSR and the upper LFSR as shown in Figure 3 according to 
the initialization value that is stored in global variable REG1 for the upper LFSR (see Example 2). The last 
instruction loads address register R0 to point to the memory buffers to store the interleaved scrambling code 
samples I and Q.

Example 2.   Setting Data and Address Registers

move.l #REG1,r0 ;//R0 points to initial value of upper LFSR 
move.l #REG2_INIT,d7 ;//D7 is the lower LFSR  
move.l (r0),d6 ;//D6 is the upper LFSR 
move.l #CODE_IQ,r0 ;//R0 points to where IQ scrambling code 
will be stored

The program can be divided into two main parts:

1. Generating the binary PN code. 

2. Forming the complex scrambling sequence.

3.2.1   Generating the Binary PN Code
Generating the binary PN codes as stacked bits is accomplished following the algorithm shown in Example 1. The 
mainloop in the program generates the PN codes. The mainloop produces 16-bit stacked c1 and c2 PN code 
samples, as shown in Figure 3. As the routine starts, it executes instructions to set up the address and data registers 
before the code jumps into mainloop. The code sets up mainloop and the loop counter for the loop to perform 2400 
iterations, as described in Example 3 (which shows a complete assembly code listing for generating the PN codes 
and the function for forming complex scrambling sequences, pn_generation.asm). Following is a step-by-step 
description of one iteration of the StarCore DSP code to demonstrate how it executes: 

1. To determine c1and c2 for the PN code, we must determine the polynomials that are required. The c1 
part of the PN code is a modulo 2 sum of the least significant bits of the X and Y registers.

a. The first 16-bit c1 sample is determined in instruction set ‘b’ of Example 3.

b. Inside the mainloop, it is calculated in instruction set ‘j’ and stored into the memory buffer in 
instruction set ‘d’. 

2. Determining c2 requires a modulo 2 sum of several shifted polynomials:

— 4-bit shifted D6 (X4-instruction set ‘c’ and ‘k’)
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— 7-bit shifted D6 (X7-instruction set ‘d’)

— 18-bit shifted D6 (X18-instruction set ‘h’)

— 4-bit shifted D7 (Y4-instruction set ‘d’)

— 6-bit shifted D7 (Y6-instruction set ‘e’)

— 17-bit shifted D7 (Y17-instruction set ‘i’)

The first 16-bit sample for c2 is determined in instruction set ‘j’ of code listing 3 and then stored in the 
memory buffer in the very next instruction set ‘k’.

3. Since the algorithm determines 16-bit samples and then shifts out the lower 16 bits from data registers 
D6 and D7, the determination of the feedback polynomials, X25 and Y25, is required:

a. The feedback polynomial X25 is a modulo 2 sum of the non-shifted lower 16 bits of D6 (X0 
instruction set ‘a’ and ‘h’) and a 3-bit shifted version of D6 (X3 instruction set ‘b’ and ‘i’). 

b. The first feedback X25 polynomial is determined in instruction set ‘c’ and then in instruction set 
‘k’ in mainloop and is stored in register D1 in the same instruction set ‘k.’

c. The feedback polynomial Y25 is a modulo 2 sum of the non-shifted lower 16 bits of D7 (Y0 
instruction set ‘a’ and ‘i’), 1-bit shifted D7 (Y1 instruction set ‘a’ and ‘i’), 2-bit shifted D7 (Y2 
instruction set ‘b’ and ‘j’), and a 3-bit shifted D7 (Y3 instruction set ‘c’ and ‘k’). 

d. The first feedback Y25 polynomial is determined in instruction set ‘d’ and stored in register D9 in 
the same cycle.

4. After the feedback polynomials (X25 and Y25) have been determined and the original registers (D6 
and D7) are shifted by 16 bits, we put the significant 16 bits of the 25-stage LFSRs into place. This 
occurs in cycles ‘e,’ ‘f,’ ‘g,’ and ‘h:’

a. In instruction set ‘e,’ the lower 16 bits of the feedback polynomials (X25 and Y25) are extracted 
and stored in D1 and D9. 

b. In instruction set ‘f,’ the lower 16 bits of D1 and D9 are shifted to the left by 9, so that they 
become the higher 16 bits of a 25-stage LFSR. 

c. In instruction set ‘g,’ D6, which by now has shifted out its lower 16 bits and has only 9 bits located 
in its least significant part, gets the higher 16 bits from D1. 

d. Similarly, in instruction set ‘h,’ D7 gets its higher 16 bits from D9 for its 25-stage LFSR without 
affecting its lower 9 bits.

These are the overall steps performed to generate the binary PN code in mainloop. The mainloop iterates 2400 
times, producing 16-bit samples of c1 and c2 in each iteration. As a result, 38400 chip segments are produced.

3.3   Forming the Complex Scrambling Sequences
Once the binary PN code is generated, the next step is the formation of complex scrambling sequences from the 
binary PN code. Complex scrambling code is formed according to Equation 12 or Equation 13 and Equation 14. 
According to these equations, every other sample of c2 binary PN code is selected before the formation of complex 
scrambling code. After a 16-bit binary scrambling sequence is formed, it is mapped into a real-valued code 
according to Equation 9 on page 5, one bit at a time. This occurs in the mappingloop section of the program. This 
part of the code takes the 16-bit c1 and c2 samples and forms complex scrambling codes, 16 bits at a time. 
According to Equation 12, the real part of the scrambling sequence is c1 itself, and no change is required for 
calculating the real part of the scrambling sequence. The complex part of the scrambling sequence is a 
multiplicative result of the real valued code of c1,c2 and +1 or -1, depending on whether it is an even or odd 
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sample. Moreover, before the multiplication to calculate the complex part of the scrambling sequence, the c2 used 
is a decimated version of the original c2 by 2. Decimation of c2 by a factor of 2 is accomplished by ANDing c2 
with 0x5555, shifting the result to the left by one bit and then ORing the shifted result with itself.

The next step is the multiplication of c1 and decimated c2 using an exclusive-or (EOR) operation. 

The final step is the multiplication by +1 or -1, depending on whether it is an even or odd sample. This step is also 
performed using an EOR operation with 0xAAAA. Thus, for each 16-bit sample of PN code, 16 chip segments of 
complex scrambling code are formed. Finally, the complex scrambling code is mapped into real values and stored 
into the memory buffer as interleaved IQ samples. To prevent overflow, a scaled-down version of the real-valued 
code (+1 or –1 to +0.5 or –0.5) is stored in memory. The mappingloop program iterates 15 times for one iteration of 
the mainloop program because one iteration of the code is performed while mappingloop is being set up. 

Example 3.   Generating PN Codes

;*******************************************************************************

;*  File:             pn_generation.asm
;*  Function:         binary pn code generation for WCDMA
;*  Author:           Imran Ahmed
;*  Version/Date:     1.0 Oct 10 2001
;*
;*  Target Processor: Star*Core 140
;*
;*  Description:
;*  Module Details:
;*  Registers Used:
;*  d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15
;*  r0
;*  entry : jsr
;*******************************************************************************
;*
;*  Revision History:   Date       Change Details           Initials
;*                      ----       --------------           --------
;*
;*******************************************************************************
;----------------------------pn_generation_param.asm----------------------------
;*******************************************************************************
;
;MASK16     EQU  $000000FFFF
;REG2_INIT  EQU  $0001FFFFFF
;NUM_ITER   EQU #2400
;MASKONE EQU  $0000000001
;MASK_DECM2 EQU  $0000005555
;MASK_PN1 EQU  $000000AAAA
;
;*******************************************************************************
;------------------------------WCDMA PN GENERATION------------------------------
;*******************************************************************************

section .data local
 include ’pn_generation_param.asm’
  endsec
 
 section .text local
 global main_pn_generation
main_pn_generation type func
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[
push d6
push d7
]
[
push r6
push r7
]
move.l #REG1,r0 ;//R0 points to initial value of upper LFSR
move.l #REG2_INIT,d7 ;//D7 is the lower LFSR
move.l (r0),d6 ;//D6 is the upper LFSR

 move.l #CODE_IQ,r0 ;//R0 points to where IQ scrambling code will be stored
[
move.f #0.5,d13 ;//1 scaled down by a factor of 2 to 0.5 to avoid overflow
move.f #-0.5,d14 ;//-1 scaled down by a factor of 2 to -0.5 to avoid 

;//overflow
clr d4 ;//used to keep track for decimation of c2 code
]
dosetup0 mainloop          doen0 #NUM_ITER

;-------------------------generation of binary PN codes (c1 & c2) starts here-----------------a
 [

 move.w #9,d15 ;used for offset purposes in shifting registers
 tfr d6,d0    ;//c1 = x0

 tfr d7,d9    ;//y25 = y0
 lsr d7 ;//y1
 tfr d6,d1    ;//x25 = x0

 ]
b

 [
 eor d7,d9    ;//y25 = yo^y1

 eor d9,d0    ;//c2 = x0^y0
    lsr d7 ;//y2

 lsrr #3,d6    ;//x3 = x >> 3
 ]

c
 [
 lsr d7 ;//y3
 eor d7,d9    ;//y25 = y0^y1^y2
 eor d6,d1    ;//x25 = x0^x3
 lsr d6 ;//x4

     ]
;---------------------------mainloop main kernel--------------------------------------

 falign:
loopstart0

mainloop
d

[
    eor d7,d9    ;//y25 = y0^y1^y2^y3
   lsr d7     ;//y4
   lsrr #3,d6    ;//x7
    tfr d6,d8    ;//c2 = x4
 move.w #9,d15 ;//used as offset in shifting

]
e

[
 eor d7,d8  ;//c2 = x4^y4
 lsrr #2,d7  ;//y6
 and #MASK16,d1,d1 ;//get lower 16 bits of x25, zero high bits
 and #MASK16,d9,d9 ;//get lower 16 bits of y25, zero high bits
    ]

f
[

 eor d6,d8 ;//c2 = y4^x4^x7
 lsll d15,d1 ;//x25 =<<9
 lsll d15,d9 ;//y25 =<<9 
 lsrr #9,d6 ;//x >> 16
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 ]
g

[
 or d1,d6 ;//x |= x25
 lsrr #10,d7 ;//y >> 16, was at y6
 eor d7,d8 ;//c2 = y4^x4^x7 ^y6
 ]

h
[
tfr d6,d1 ;//x25 = x0
tfr d6,d0 ;//c1 = x0
or d9,d7 ;//y |= y25

 lsrr #2,d6 ;//x18
]

i
[

 eor d6,d8 ;//c2 = y4^x4^y6^x7^x18
 lsr d6 ;//x3
 tfr d7,d9 ;//y25 = y0
    lsr d7 ;//y17 = y16 >> 1  (y1)
 ]

j
[

 eor d7,d8 ;//c2 = y4^x4^y6^x7^x18^y17
    eor d7,d9 ;//y25 = y0^y1
    eor d9,d0 ;//c2 = x0^y0
    lsr d7 ;//y2 
    ]

k
[

 eor d6,d1 ;//x25 = x0^x3
 lsr d6 ;//x4
 eor d7,d9 ;//y25 = y0^y1^y2
 lsr d7 ;//y3
 ]

;--------------------mapping into real values sarts here-------------------------
[
and #MASK_DECM2,d8.l ;//decimation of every other sample of c2
dosetup1 mappingloop ;//setup mappingloop

 ]
 asl d8,d4 ;//left shift decimated version of c2

or d4,d8 ;//or with itself, repeats one sample twice
[
eor d12,d8 ;//Q part of scrambling = c1(i)*c2(i) -- eqn. 12
doen1 #15 ;//set mappingloop counter to 15
and #MASKONE,d12,d2 ;//extract c1’s least sig. bit
asr d12,d12 ;//shift out the c1 bit already checked
]
[
eor #MASK_PN1,d8.l ;//Q part of scrambling [c1(i)*c2(i)] * +1 and -1 

respecively 
;//-- eqn. 12

tsteq d2 ;//test c1’s bit for 0 or 1
tfr d13,d10 ;//I part of scram. code, assume c1==0, map into real 

value 1, 
;//i.e. put 0.5

and #MASKONE,d8,d3 ;//extracts c2’s least sig. bit
]
[
asr d8,d8 ;//extracts c2’s least sig. bit
tfrf d14,d10 ;//I part of scram. code, if c1==1, map into real value -

1, 
;//i.e. put -0.5

tsteq d3 ;//test c2’s bit for 0 or 1
tfr d13,d11 ;//assume c2==0, map into real value 1, i.e. put 0.5



Software Implementation on the StarCore SC140/SC1400 Cores

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 13

]
loopstart1

mappingloop
[
tfrf d14,d11 ;//if c2==1, map into real value -1, i.e. put 0.5
and #MASKONE,d12,d2 ;//extract c1’s least sig. bit
asr d12,d12 ;//shift out the c1 bit already checked
]
[
moves.2f d10:d11,(r0)+ ;//move I and Q scrambling code into memory buffer, 

increment 
;//buffer

tsteq d2 ;//test c1’s bit for 0 or 1
tfr d13,d10 ;//I part of scram. code, assume c1==0, map into real 

value 1, 
;//i.e. put 0.5

and #MASKONE,d8,d3 ;//extracts c2’s least sig. bit
asr d8,d8 ;//extracts c2’s least sig. bit
]
[
tfrf d14,d10 ;//I part of scram. code, if c1==1, map into real value -

1, 
;//i.e. put -0.5

tsteq d3 ;//test c2’s bit for 0 or 1
tfr d13,d11 ;//assume c2==0, map into real value 1, i.e. put 0.5
]
loopend1

tfrf d14,d11 ;//if c2==1, map into real value -1, i.e. put 0.5
moves.2f d10:d11,(r0)+ ;//move I and Q scrambling code into memory buffer, 

increment 
;//buffer

loopend0
[
pop r6
pop r7
]
[
pop d6
pop d7
]
rts

endsec

3.4   Complex Scrambling of an IQ/Code Multiplexed Signal
This section describes in detail how complex scrambling code is formed on the SC140 DSP core, and also 
describes the process of actual complex scrambling of an I/Q code multiplexed signal. With its four ALUs, the 
SC140 core can compute complex numbers and perform several different operations very efficiently. Imposing one 
constraint on the incoming complex signal is required to ensure that all entries of the incoming I-Q/code 
multiplexed signal are less than one to help prevent overflow. After complex scrambling, the final output signal is 
scaled down by a factor of 2 and stored in memory.

After the complex signal has been formed, it is time for scrambling the received data. This function carries out the 
complex scrambling operation according to Equation 16. The received I-Q/code multiplexed signal is multiplied 
by the complex scrambling code, and the Output_IQ is stored in memory. Following is the flow of the assembly 
code in Example 4 for generating the complex scrambling sequence from previously-generated binary PN code 
and scrambling the received data:

1. START mainloop #38400.

2. Read the I and Q, complex scrambling code from memory, 1-word sample at a time.
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3. Read the I and Q, input signal data from memory, 1-word sample at a time.

4. Perform the scrambling of the input data signal, according to Equation 16.

5. Store the I-Q/code interleaved complex scrambled signal into memory.

6. END mainloop.

Example 4.   Complex Scrambling of an I-Q/code Multiplexed Signal

;*******************************************************************************
;*
;*  File:             cmplx_scrambling.asm
;*  Function:         formation of complex scrambling code and scrambling of 
;* received I-Q/code multiplexed signal for WCDMA
;*  Author:           Imran Ahmed
;*  Version/Date:     1.0 Oct 10 2001
;*
;*  Target Processor: Star*Core 140
;*
;*  Description:
;*  Module Details:
;*  Registers Used:
;*  d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d15
;*  r0,r2,r4
;*  entry : jsr
;*******************************************************************************
;*
;*  Revision History:   Date       Change Details           Initials
;*                      ----       --------------           --------
;*
;*******************************************************************************
;--------------------------cmplx_scrambling_param.asm---------------------------
;*******************************************************************************
;
;NUM_ITEREQU19199 ;//(38400-2)/2
;INV_SQRT2  EQU #0.70710678;//1/sqrt(2)
;
;*******************************************************************************
;---------------------------WCDMA COMPLEX SCRAMBLING----------------------------
;*******************************************************************************

section .data local
 include ’cmplx_scrambling_param.asm’
  endsec

section .text local
global main_cmplx_scrambling

main_cmplx_scrambling type func
[
push d6
push d7
]
[
push r6
push r7
]
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move.l #INPUT_IQ,r0 ;//R0 -> received input signal
move.l #CODE_IQ,r4 ;//R4 -> complex scrambling signal
move.l #OUTPUT_IQ,r2 ;//R2 -> IQ complex scrambled signal to be stored
move.f #INV_SQRT2,d15 ;//(1/sqrt(2)), required for scrambling to keep 

the 
;//energy of the srambled signal constant

dosetup1 mainloop doen1 #NUM_ITER

[
move.4f (r0)+,d0:d1:d2:d3 ;//move 2 input IQ samples from memory to data 

;//registers
move.4f (r4)+,d4:d5:d6:d7 ;//move 2 scrambling IQ code samples from memory 

to 
;//data registers

]
[
mpy d0,d4,d8 ;//(DI*SI) part from eqn. 16, 1st sample
mpy d0,d5,d9 ;//(DI*SQ) part from eqn. 16, 1st sample
mpy d2,d6,d10 ;//(DI*SI) part from eqn. 16, 2nd sample
mpy d2,d7,d11 ;//(DI*SQ) part from eqn. 16, 2nd sample
]
[
mac -d1,d5,d8 ;//(-(DQ*SQ)) part from eqn. 16, 1st sample
mac d1,d4,d9 ;//(DQ*SI) part from eqn. 16, 1st sample
mac -d3,d7,d10 ;//(-(DQ*SQ)) part from eqn. 16, 2nd sample
mac d3,d6,d11 ;//(DQ*SI) part from eqn. 16, 2nd sample
]

;-------------------code and scaling to preserve the energy of the constellation----------
-------------  

[
;-------------------code and scaling to preserve the energy of the constellation--------

mpy d15,d8,d8 ;//(1/sqrt(2)) x (scrambled output I), 1st sample
mpy d15,d9,d9 ;//(1/sqrt(2)) x (scrambled output Q), 1st sample
mpy d15,d10,d10 ;//(1/sqrt(2)) x (scrambled output I), 2nd sample
mpy d15,d11,d11 ;//(1/sqrt(2)) x (scrambled output Q), 2nd sample
]
[
asl d8,d8 ;//output I scaling factor change from 4 to 2, 1st 

;//sample
asl d9,d9 ;//output Q scaling factor change from 4 to 2, 1st 

;//sample
asl d10,d10 ;//output I scaling factor change from 4 to 2, 2nd 

;//sample
asl d11,d11 ;//output Q scaling factor change from 4 to 2, 2nd 
sample
]

;----------------------------end of code to preserve energy of constellation--------------
------

[
move.4f (r0)+,d0:d1:d2:d3 ;//move 2 input IQ samples from memory to data 

;//registers
move.4f (r4)+,d4:d5:d6:d7 ;//move 2 scrambling IQ code samples from memory 

to 
;//data registers

]

falign
loopstart1

mainloop
[
moves.4f d8:d9:d10:d11,(r2)+ ;//move 2 complex scrambled IQ samples into 

memory  
;//buffer
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mpy d0,d4,d8 ;//(DI*SI) part from eqn. 16, 1st sample
mpy d0,d5,d9 ;//(DI*SQ) part from eqn. 16, 1st sample
mpy d2,d6,d10 ;//(DI*SI) part from eqn. 16, 2nd sample
mpy d2,d7,d11 ;//(DI*SQ) part from eqn. 16, 2nd sample
]
[
mac -d1,d5,d8 ;//(-(DQ*SQ)) part from eqn. 16, 1st sample
mac d1,d4,d9 ;//(DQ*SI) part from eqn. 16, 1st sample
mac -d3,d7,d10 ;//(-(DQ*SQ)) part from eqn. 16, 2nd sample
mac d3,d6,d11 ;//(DQ*SI) part from eqn. 16, 2nd sample
move.4f (r0)+,d0:d1:d2:d3 ;//move 2 input IQ samples from memory to data 

;//registers
move.4f (r4)+,d4:d5:d6:d7 ;//move 2 scrambling IQ code samples from memory 

to 
;//data registers

]
;-------------------code and scaling to preserve the energy of the constellation----------
------

[
mpy d15,d8,d8 ;//(1/sqrt(2)) x (scrambled output I), 1st sample
mpy d15,d9,d9 ;//(1/sqrt(2)) x (scrambled output Q), 1st sample
mpy d15,d10,d10 ;//(1/sqrt(2)) x (scrambled output I), 2nd sample
mpy d15,d11,d11 ;//(1/sqrt(2)) x (scrambled output Q), 2nd sample
]
[
asl d8,d8 ;//output I scaling factor change from 4 to 2, 1st 

;//sample
asl d9,d9 ;//output Q scaling factor change from 4 to 2, 1st 

;//sample
asl d10,d10 ;//output I scaling factor change from 4 to 2, 2nd 

;//sample
asl d11,d11 ;//output Q scaling factor change from 4 to 2, 2nd 

sample
]

;----------------------------end of code to preserve energy of constellation--------------
------

loopend1 

moves.4f d8:d9:d10:d11,(r2)+ ;//move 2 complex scrambled IQ samples into 
memory 

;//buffer
[
pop r6
pop r7
]
[
pop d6
pop d7
]
rts

endsec

4 Results 
The plots in Figure 4 and Figure 5 show the corresponding Matlab and StarCore DSP results for the complex 
scrambled signal. As these figures indicate, the StarCore DSP and the Matlab results agree.
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Figure 4.   Real Part of the Complex Scrambled Signal (Chips 19150–19250)

Figure 5.   Imaginary Part of Complex Scrambled Signal (Chips 19150–19250)

In Figure 4 and Figure 5, the x-axis represents the number of the chip, and the y-axis represents the magnitude of 
each of the chips. The StarCore DSP output is scaled up by a factor of 2 to account for the scaling factors used by 
the DSP in an implementation of complex scrambling code. The complex scrambled signal obtained from the DSP 
implementation matches the Matlab result. Figure 6 shows the signal constellation for the I-Q/code multiplexed 
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signal before complex scrambling, and Figure 7 shows the signal constellation after the complex scrambling 
operations. The I-Q/code multiplexed signal with complex scrambling results in a rotated QPSK constellation. 
Figure 7 shows the resulting constellation achieved by both the Matlab and the StarCore DSP implementations.

Figure 6.   QPSK Constellation Before Complex Scrambling

Figure 7.   QPSK Constellation Map after Complex Scrambling

Table 2 shows the assembly code results for PN code generation and formation of the pn_generation complex 
scrambling sequence function for one frame. The second row of the table shows the results for scrambling of an I-
Q/code multiplexed signal in the cmplx_scrambling function for one frame.
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Table 2.   Assembly Code Results

Function Code Size (Bytes) Cycles per Frame MIPS

pn_generation 330 153618 15.36

cmplx_scrambling1 124 38411 3.84

NOTES: 1. If scaling to preserve the energy of the constellation before and after 
complex scrambling is included, it requires 7.6 MIPS with a code size of 
180 bytes.
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