
Freescale Semiconductor
Application Note

AN2254
Rev. 1, 11/2004

© Freescale Semiconductor, Inc., 2002, 2004. All rights reserved.

In a Wideband Code Division Multiple Access (WCDMA)
environment, each user is assigned a unique complex
scrambling sequence to encode its information-bearing signal.
The receiver has the scrambling code of the user, unscrambles
the received signal, and recovers the original data [1]. This
application note presents a method for complex pseudo-random
sequence (PN code) generation and complex scrambling of an
I/Q code multiplexed signal on a StarCore® SC140 digital
signal processor (DSP). The PN codes in this application note
are generated for a WCDMA Universal Mobile
Telecommunications Systems (UMTS) uplink (signal from
handset to base station) according to the third-generation
partnership project (3GPP) specifications.

This application note provides practical information to help
users understand PN code generation and complex scrambling,
which are required in the WCDMA standards. Typically, these
operations are performed on Architecture-Specific Integrated
Circuits (ASICs), but here we explore the use of the Freescale
StarCore™-based DSPs to accomplish the same task.

CONTENTS

1 Pseudo-Random Sequences2
1.1 Randomness Properties ... 2
1.2 Generating Pseudo-Random Sequences2
2 Scrambling Codes for WCDMA2
2.1 Generating Long Complex Scrambling Codes 3
2.2 Scrambling an I-Q/Code Multiplexed Sign al 6
3 Software Implementation on the StarCore

SC140/SC1400 Cores ... 6
3.1 Allocating Memory Space 6
3.2 Binary PN Code and Complex Scrambling

Sequences.. 7
3.3 Forming the Complex Scrambling Sequences9
3.4 Complex Scrambling of an IQ/Code

Multiplexed Signal .. 13
4 Results ...16
5 References ...19

Scrambling Code Generation for
WCDMA on the StarCore™
SC140/SC1400 Cores
By Imran Ahmed

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

2 Freescale Semiconductor

Pseudo-Random Sequences

1 Pseudo-Random Sequences
Pseudo-random sequences or PN codes are sequences of 1s and 0s generated by an algorithm so that the resulting
numbers look statistically independent and uniformly distributed. A random signal differs from a pseudo-random
signal in that a random signal cannot be predicted. A pseudo-random signal is not random at all; it is a
deterministic, periodic signal that is known to both the transmitter and the receiver. Even though the signal is
deterministic, it appears to have the statistical properties of sampled white noise. To an unauthorized listener, it
appears to be a truly random signal.

1.1 Randomness Properties
CDMA systems achieve their multiple access capability using large sets of sequences with three basic properties
that are applied to a periodic binary sequence as a test for the appearance of randomness [2]:

• Balance Property. In each period of the sequence, the number of binary 1s must differ from the
number of binary 0s by at most one digit. In other words, the sequences are balanced so that each
element of the sequence alphabet occurs with equal frequency.

• Run Property. A run is defined as a sequence of the same binary digit. The appearance of a different
binary digit marks the start of a new run. The length of the run is the number of digits in the run. For
the randomness run property, in each period, about one-half the runs of each binary digit should be of
length 1, about one-fourth of length 2, one-eighth of length 3, and so on.

• Correlation Property. Random sequences are often described in terms of their correlation properties.
A scrambling sequence in a CDMA system must have small off-peak autocorrelation values to allow
for rapid sequence acquisition at the receiver and to minimize self interference due to multipath
acquisitions. Furthermore, the cross correlations are small enough among such sequences at all delays
to minimize multiple-access interference.

1.2 Generating Pseudo-Random Sequences
Pseudo-random binary codes are typically generated using a system of linear feedback shift registers (LFSRs). The
LFSR generators produce a sequence that depends on the number of stages, the feedback tap connections, and the
initial conditions. The output sequences can be classified as either maximal length (m-sequence) or nonmaximal
length. The m-sequences have the property that for an n-stage LFSR the sequence repetition period in clock pulses,
p, is as shown in Equation 1.

 Equation 1

Thus, if the sequence length is less than the maximum period of (2n–1), the sequence is classified as a nonmaximal
length sequence. In fact, all the m-sequences are generated by primitive polynomials of degree n over Galois Field
2 (GF(2)).

2 Scrambling Codes for WCDMA
In a CDMA scheme, all users transmit on the same frequency and are differentiated by their unique scrambling
codes. The receiver correlates the received signal with a synchronously generated replica of the scrambling code to
recover the original information-bearing signal. The third-generation partnership project (3GPP) specifications
define how these uplink complex scrambling codes are generated. Part of the process in the transmitter, in addition

P = 2n–1

Scrambling Codes for WCDMA

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 3

to spreading, is the scrambling operation. Because scrambling is used on top of spreading as shown Figure 1, it
does not change the bandwidth of the signal, but only makes the signals from different users separable from each
other [3].

Figure 1. Relation Between Spreading and Scrambling

With I-Q/code multiplexing, also called dual-channel quaternary phase shift keying (QPSK) modulation, the power
levels of the dedicated physical data channel (DPDCH) and the dedicated physical control channel (DPCCH)
typically differ. This is especially true as data rates increase and can lead in extreme cases to binary phase shift
keying (BPSK) type transmission when the branches are independently transmitted. This situation is avoided by
using a scrambling operation after the spreading with channelization codes. The transmission of two parallel
channels, DPDCH and DPCCH, leads to multicode transmission, which increases the peak-to-average power ratio
[3]. The spreading modulation solution shown in Figure 2 keeps the transmitter power amplifier efficiency the
same as for normal balanced QPSK transmission in general.

Figure 2. I-Q/Code Multiplexing With Complex Scrambling.

2.1 Generating Long Complex Scrambling Codes
All uplink physical channels are subjected to scrambling with a complex-valued scrambling code. In WCDMA
uplink transmissions, the scrambling code can either be short or long. There are 224 long uplink scrambling codes,
and these codes are assigned by higher layers. The long codes are essentially Gold codes. Large sets of Gold codes
have low cross-correlation properties so that as many users as possible can use the channel with minimum mutual
interference. According to 3GPP specifications, Gold codes are generated with a system of 25-stage linear
feedback shift registers, as shown in Figure 3 [4].

Data

Symbol Rate Chip Rate Chip Rate

Channelization
Code

Scrambling
Code

IQ
Multiplex

I

Q

I+jQ

To QPSK
Modulation

CSCRAMB

CD

CC

DPDCH

DPCCH

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

4 Freescale Semiconductor

Scrambling Codes for WCDMA

Figure 3. Uplink Long Scrambling Code Generator

These 25-degree generator polynomials are truncated to the 10 ms frame length that results in 38400 chips at the
rate of 3.84 Mcps. The long scrambling sequences, c1,n and c2,n, are constructed from a position-wise modulo 2
sum of 38400 chip segments of the two binary m-sequences. The two binary m-sequences are constructed using the
following primitive polynomial over GF(2), as show in Figure 3. Furthermore, sequence c2,n is a 16,777,232 chip
delayed version of sequence c1,n.

 Equation 2

 Equation 3

Let x, and y be the two m-sequences that are constructed from primitive polynomials of Equation 2 and Equation
3, respectively. The resulting sequences constitute segments of a set of Gold sequences. Now, let n23 ... n0 be the
24-bit binary representation of the scrambling sequence number n with n0 as the least significant bit. The x
sequence depends on the chosen scrambling sequence number n and is denoted as xn in the sequel. Furthermore, let
xn(i) and y(i) denote the i:th symbol of the sequences xn and y, respectively. The m-sequences xn and y are
constructed as follows:

1. Initial conditions:

 Equation 4

 Equation 5

2. Recursive definition of subsequent symbols:

MSB LSB C1,n

C2,n

X25 + X3 + 1

X25 + X3 + X2 + X + 1

xn(0) = n0, xn(1) = n1, ..., xn(22) = n22, xn(23) = n23, xn(24) = 1

y(0) = y(1) = ... = y(23) = y(24) = 1

Scrambling Codes for WCDMA

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 5

 Equation 6

. Equation 7

3. Binary Gold sequence zn:

 Equation 8

4. Real-valued Gold sequence:

 Equation 9

a. The real-valued long scrambling sequences c1,n and c2,n are defined as follows:

 Equation 10

 Equation 11

b. The complex-valued long scrambling sequence Cn, is defined as follows, where i = 0, 1, ..., 225-2
and denotes rounding to the nearest lower integer:

 Equation 12

A more intuitive way of forming the complex-valued scrambling code from two real-valued codes,
c1,n and c2,n, with the decimation principle is:

 Equation 13

with sequences w0 and w1 given as chip rate sequences:

 Equation 14

The decimation factor for the second sequence is 2. Ultimately this way of creating the scrambling
sequence reduces the zero crossings in the constellation and further reduces the amplitude
violations in the modulation process. In conclusion, Equation 13 and Equation 14 give the same
complex scrambling code as is achieved through Equation 12.

xn(i+25) = xn(i+3) + xn(i) modulo 2, i=0, ..., 225-27

y(i+25) = y(i+3) + y(i+2) + y(i+1) + y(i) modulo 2, i=0, ..., 225-27

zn(i) = xn(i) + y(i) modulo 2, i=0, ..., 225-2

Zn(i) =

+1 if zn(i) = 0

-1 if zn(i) = 1

for i = 0, 1, 2, ..., 225-2.

c1,n(i) = Zn(i), i=0, ..., 225-2

c2,n(i) = Zn(i+16777232) modulo (225–1), i=0, ..., 225–2

Cn(i) = c1,n(i) (1 + j(-1)i c2,n(2 * FLOOR(i/2)))

Cscrambling = c1,n(w0 + jc2,n (2k) w1), k = 0, 1, 2, ...

w0 = {1 1}, w1 = {1 -1}

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

6 Freescale Semiconductor

Software Implementation on the StarCore SC140/SC1400 Cores

2.2 Scrambling an I-Q/Code Multiplexed Signal
Figure 2 shows that before the data signal is QPSK modulated, the I-Q/code multiplexed data signal is multiplied
with the complex scrambling code. In this step, the two complex signals are multiplied together as shown in the
following equations, where DI = the real part of the incoming data:

 Equation 15

Where:

• DI = real part of the incoming data

• DQ = complex part of the incoming data

• SI = real part of the scrambling code

• SQ = complex part of the scrambling code

• I = 0, 1, 2, . . . , 38399

Equation 15 implies the final result, as follows:

 Equation 16

3 Software Implementation on the StarCore
SC140/SC1400 Cores

This section describes how the algorithms in Section 2, Scrambling Codes for WCDMA, are implemented on the
StarCore SC140/SC1400 DSP cores. For ease of implementation, the algorithms slightly differ from the theory
presented in Section 2. The first part of the program generates the PN code, and the second part performs the actual
scrambling of the incoming signal. First, the memory space required for these calculations is specified.

3.1 Allocating Memory Space
The assembly code assumes that required memory space has been allocated before the assembly routine is called.
This memory space is 16-bit aligned. Table 1 lists the exact amount of space required for different global variables.

Table 1. Memory Allocation

Global Variable Name Description Number of Bytes

REG1 Holds the starting phase value for PN code generation. As
shown in Equation 3, the PN code generated depends on
the initial value of the 25-stage LFSR. The most significant
bit of the upper 25-stage LFSR is always one (1), and the
initial value for this register is passed to the assembly code.
The lower 25-stage LFSR does not require initialization
because all of its 25 bits are always configured to a value of
one (1) at the start of a new sequence.

4

(DIi + jDQi) x (SIi + jSQi)

((DIi*SIi) – (DQi*SQi)) + j((DIi*SQi) + (DQi*SIi))

Software Implementation on the StarCore SC140/SC1400 Cores

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 7

3.2 Binary PN Code and Complex Scrambling Sequences
For optimal implementation of the algorithm to generate the complex binary PN code, 16 stacked-bit samples are
generated in one iteration rather than generating the PN code one bit at a time. Since a PN code is essentially a
system of LFSRs, the last 16 bits are processed in one operation to give 16 samples of PN code. Example 1 shows
the pseudo code for this implementation.

Example 1. Pseudo Code for 16-Bit Vector Processing

X= Upper LFSR
Y= Lower LFSR
for (i = 0; i < 2400; i++) ;//(38400/16) = 2400

{
X0 = (X >> 0) ;//X0 holds the lower 16 bits of X non-shifted, reqd for c1 & X25 feedback
X3 = (X >> 3) ;//X3 holds the lower 16 bits of X shifted by 3,reqd for X25 feedback

poly.
X4 = (X >> 4) ;//X4 holds the lower 16 bits of X shifted by 4, reqd for c2
X7 = (X >> 7) ;//X7 holds the lower 16 bits of X shifted by 7, reqd for c2
X25 = (X3 ^ X0) ;//feedback polynomial, accodring to eqn. 6, most significant 16 bits

;//for next iteration, 9 from previous iteration, as old 16 shifted out
X = (X >> 16) ;//lower 16 bits shifted out
X = (X | (X25 << 9)) ;//most sig. 9 bits from prev iteration & 16 sig bits from this iteration

;//X is ready for next
X18 = (X >> 2) ;//X18 holds the lower 16 bits of X shifted by 18, reqd for c2

Y0 = (Y >> 0) ;//Y0 holds the lower 16 bits of Y non-shifted, reqd for c1 & Y25 feedback
Y1 = (Y >> 1) ;//Y1 holds the lower 16 bits of Y shifted by 1, reqd for Y25 feedback

poly.
Y2 = (Y >> 2) ;//Y2 holds the lower 16 bits of Y shifted by 2, reqd for Y25 feedback

poly.
Y3 = (Y >> 3) ;//Y3 holds the lower 16 bits of Y shifted by 3, reqd for Y25 feedback

poly.
Y4 = (Y >> 4) ;//Y4 holds the lower 16 bits of Y shifted by 4, reqd for c2
Y6 = (Y >> 6) ;//Y5 holds the lower 16 bits of Y shifted by 6, reqd for c2
Y25 = (Y3 ^ Y2 ^ Y1 ^ Y0) ;//feedback polynomial, accodring to eqn. 7, most significant 16 bits

 ;//for next iteration, 9 from previous iteration, as old 16 shifted out
Y = (Y >> 16) ;//lower 16 bits shifted out
Y = (Y | (Y25 << 9)) ;//most sig. 9 bits from prev iteration & 16 sig bits from this iteration

;//Y is ready for next
Y17 = (Y >> 1) ;//X17 holds the lower 16 bits of Y shifted by 17, reqd for c2

CODE_IQ Points to the interleaved complex scrambling code. This
scrambling code is stored as a real-valued code scaled
down by a factor of 2 (+1 as +0.5 or -1 as -0.5). Since the
code length for a frame is 38400 chip segments, each
sample is stored as a 16 bit sample, and each chip segment
contains an I and Q part, a buffer of 38400*2*2 bytes is
assigned.

38400 × 2 × 2

INPUT_IQ Points to the buffer in the memory where the interleaved
input data to be scrambled is stored. This assembly code
assumes that the data samples are 16-bits wide and are
held in the memory buffer as I/Q interleaved samples.

38400 × 2 × 2

OUTPUT_IQ Points to the memory buffer where the interleaved
scrambled data is stored for one frame.

38400 × 2 × 2

Table 1. Memory Allocation

Global Variable Name Description Number of Bytes

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

8 Freescale Semiconductor

Software Implementation on the StarCore SC140/SC1400 Cores

c1 = (X0 ^ Y0) ;//16-stacked bit c1 according to figure 3 configuration
c2 = (X4 ^ X7 ^ X18 ^ Y4 ^ Y6 ^ Y17) ;//16-stacked bit c2 according to figure 3 configuration
}

Now, the formation of the complex scrambling codes begins. In this part of the code, the C/Assembly calling
function enters the assembly code, and the data variables and pointers are put into the appropriate registers for the
assembly function to use. The pn_generation subroutine includes the pn_generation_param.asm parameter file,
which defines the local constants used by this subroutine:

• REG2_INIT holds the value 0x01FFFFFF for initializing the lower 25-stage LFSR, as shown in
Figure 3.

• MASK16 holds the value 0x000000FFFF for masking the lower 16-bits of a data register.

• NUM_ITER specifies the number of times the main loop in the function iterates. It is initialized to
2400.

Data registers D6 and D7 are the two 25-stage LFSRs. Since the LFSRs are only 25-stage, only the lower 25 bits of
the data registers are used for this purpose. The most significant 15-bits are set to zero (data registers are 40 bits
wide). The first three instructions initialize the lower LFSR and the upper LFSR as shown in Figure 3 according to
the initialization value that is stored in global variable REG1 for the upper LFSR (see Example 2). The last
instruction loads address register R0 to point to the memory buffers to store the interleaved scrambling code
samples I and Q.

Example 2. Setting Data and Address Registers

move.l #REG1,r0 ;//R0 points to initial value of upper LFSR
move.l #REG2_INIT,d7 ;//D7 is the lower LFSR
move.l (r0),d6 ;//D6 is the upper LFSR
move.l #CODE_IQ,r0 ;//R0 points to where IQ scrambling code
will be stored

The program can be divided into two main parts:

1. Generating the binary PN code.

2. Forming the complex scrambling sequence.

3.2.1 Generating the Binary PN Code
Generating the binary PN codes as stacked bits is accomplished following the algorithm shown in Example 1. The
mainloop in the program generates the PN codes. The mainloop produces 16-bit stacked c1 and c2 PN code
samples, as shown in Figure 3. As the routine starts, it executes instructions to set up the address and data registers
before the code jumps into mainloop. The code sets up mainloop and the loop counter for the loop to perform 2400
iterations, as described in Example 3 (which shows a complete assembly code listing for generating the PN codes
and the function for forming complex scrambling sequences, pn_generation.asm). Following is a step-by-step
description of one iteration of the StarCore DSP code to demonstrate how it executes:

1. To determine c1and c2 for the PN code, we must determine the polynomials that are required. The c1
part of the PN code is a modulo 2 sum of the least significant bits of the X and Y registers.

a. The first 16-bit c1 sample is determined in instruction set ‘b’ of Example 3.

b. Inside the mainloop, it is calculated in instruction set ‘j’ and stored into the memory buffer in
instruction set ‘d’.

2. Determining c2 requires a modulo 2 sum of several shifted polynomials:

— 4-bit shifted D6 (X4-instruction set ‘c’ and ‘k’)

Software Implementation on the StarCore SC140/SC1400 Cores

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 9

— 7-bit shifted D6 (X7-instruction set ‘d’)

— 18-bit shifted D6 (X18-instruction set ‘h’)

— 4-bit shifted D7 (Y4-instruction set ‘d’)

— 6-bit shifted D7 (Y6-instruction set ‘e’)

— 17-bit shifted D7 (Y17-instruction set ‘i’)

The first 16-bit sample for c2 is determined in instruction set ‘j’ of code listing 3 and then stored in the
memory buffer in the very next instruction set ‘k’.

3. Since the algorithm determines 16-bit samples and then shifts out the lower 16 bits from data registers
D6 and D7, the determination of the feedback polynomials, X25 and Y25, is required:

a. The feedback polynomial X25 is a modulo 2 sum of the non-shifted lower 16 bits of D6 (X0
instruction set ‘a’ and ‘h’) and a 3-bit shifted version of D6 (X3 instruction set ‘b’ and ‘i’).

b. The first feedback X25 polynomial is determined in instruction set ‘c’ and then in instruction set
‘k’ in mainloop and is stored in register D1 in the same instruction set ‘k.’

c. The feedback polynomial Y25 is a modulo 2 sum of the non-shifted lower 16 bits of D7 (Y0
instruction set ‘a’ and ‘i’), 1-bit shifted D7 (Y1 instruction set ‘a’ and ‘i’), 2-bit shifted D7 (Y2
instruction set ‘b’ and ‘j’), and a 3-bit shifted D7 (Y3 instruction set ‘c’ and ‘k’).

d. The first feedback Y25 polynomial is determined in instruction set ‘d’ and stored in register D9 in
the same cycle.

4. After the feedback polynomials (X25 and Y25) have been determined and the original registers (D6
and D7) are shifted by 16 bits, we put the significant 16 bits of the 25-stage LFSRs into place. This
occurs in cycles ‘e,’ ‘f,’ ‘g,’ and ‘h:’

a. In instruction set ‘e,’ the lower 16 bits of the feedback polynomials (X25 and Y25) are extracted
and stored in D1 and D9.

b. In instruction set ‘f,’ the lower 16 bits of D1 and D9 are shifted to the left by 9, so that they
become the higher 16 bits of a 25-stage LFSR.

c. In instruction set ‘g,’ D6, which by now has shifted out its lower 16 bits and has only 9 bits located
in its least significant part, gets the higher 16 bits from D1.

d. Similarly, in instruction set ‘h,’ D7 gets its higher 16 bits from D9 for its 25-stage LFSR without
affecting its lower 9 bits.

These are the overall steps performed to generate the binary PN code in mainloop. The mainloop iterates 2400
times, producing 16-bit samples of c1 and c2 in each iteration. As a result, 38400 chip segments are produced.

3.3 Forming the Complex Scrambling Sequences
Once the binary PN code is generated, the next step is the formation of complex scrambling sequences from the
binary PN code. Complex scrambling code is formed according to Equation 12 or Equation 13 and Equation 14.
According to these equations, every other sample of c2 binary PN code is selected before the formation of complex
scrambling code. After a 16-bit binary scrambling sequence is formed, it is mapped into a real-valued code
according to Equation 9 on page 5, one bit at a time. This occurs in the mappingloop section of the program. This
part of the code takes the 16-bit c1 and c2 samples and forms complex scrambling codes, 16 bits at a time.
According to Equation 12, the real part of the scrambling sequence is c1 itself, and no change is required for
calculating the real part of the scrambling sequence. The complex part of the scrambling sequence is a
multiplicative result of the real valued code of c1,c2 and +1 or -1, depending on whether it is an even or odd

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

10 Freescale Semiconductor

Software Implementation on the StarCore SC140/SC1400 Cores

sample. Moreover, before the multiplication to calculate the complex part of the scrambling sequence, the c2 used
is a decimated version of the original c2 by 2. Decimation of c2 by a factor of 2 is accomplished by ANDing c2
with 0x5555, shifting the result to the left by one bit and then ORing the shifted result with itself.

The next step is the multiplication of c1 and decimated c2 using an exclusive-or (EOR) operation.

The final step is the multiplication by +1 or -1, depending on whether it is an even or odd sample. This step is also
performed using an EOR operation with 0xAAAA. Thus, for each 16-bit sample of PN code, 16 chip segments of
complex scrambling code are formed. Finally, the complex scrambling code is mapped into real values and stored
into the memory buffer as interleaved IQ samples. To prevent overflow, a scaled-down version of the real-valued
code (+1 or –1 to +0.5 or –0.5) is stored in memory. The mappingloop program iterates 15 times for one iteration of
the mainloop program because one iteration of the code is performed while mappingloop is being set up.

Example 3. Generating PN Codes

;***

;* File: pn_generation.asm
;* Function: binary pn code generation for WCDMA
;* Author: Imran Ahmed
;* Version/Date: 1.0 Oct 10 2001
;*
;* Target Processor: Star*Core 140
;*
;* Description:
;* Module Details:
;* Registers Used:
;* d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14,d15
;* r0
;* entry : jsr
;***
;*
;* Revision History: Date Change Details Initials
;* ---- -------------- --------
;*
;***
;----------------------------pn_generation_param.asm----------------------------
;***
;
;MASK16 EQU $000000FFFF
;REG2_INIT EQU $0001FFFFFF
;NUM_ITER EQU #2400
;MASKONE EQU $0000000001
;MASK_DECM2 EQU $0000005555
;MASK_PN1 EQU $000000AAAA
;
;***
;------------------------------WCDMA PN GENERATION------------------------------
;***

section .data local
 include ’pn_generation_param.asm’
 endsec

 section .text local
 global main_pn_generation
main_pn_generation type func

Software Implementation on the StarCore SC140/SC1400 Cores

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 11

[
push d6
push d7
]
[
push r6
push r7
]
move.l #REG1,r0 ;//R0 points to initial value of upper LFSR
move.l #REG2_INIT,d7 ;//D7 is the lower LFSR
move.l (r0),d6 ;//D6 is the upper LFSR

 move.l #CODE_IQ,r0 ;//R0 points to where IQ scrambling code will be stored
[
move.f #0.5,d13 ;//1 scaled down by a factor of 2 to 0.5 to avoid overflow
move.f #-0.5,d14 ;//-1 scaled down by a factor of 2 to -0.5 to avoid

;//overflow
clr d4 ;//used to keep track for decimation of c2 code
]
dosetup0 mainloop doen0 #NUM_ITER

;-------------------------generation of binary PN codes (c1 & c2) starts here-----------------a
 [

 move.w #9,d15 ;used for offset purposes in shifting registers
 tfr d6,d0 ;//c1 = x0

 tfr d7,d9 ;//y25 = y0
 lsr d7 ;//y1
 tfr d6,d1 ;//x25 = x0

]
b

 [
 eor d7,d9 ;//y25 = yo^y1

 eor d9,d0 ;//c2 = x0^y0
 lsr d7 ;//y2

 lsrr #3,d6 ;//x3 = x >> 3
]

c
 [
 lsr d7 ;//y3
 eor d7,d9 ;//y25 = y0^y1^y2
 eor d6,d1 ;//x25 = x0^x3
 lsr d6 ;//x4

]
;---------------------------mainloop main kernel--------------------------------------

 falign:
loopstart0

mainloop
d

[
 eor d7,d9 ;//y25 = y0^y1^y2^y3
 lsr d7 ;//y4
 lsrr #3,d6 ;//x7
 tfr d6,d8 ;//c2 = x4
 move.w #9,d15 ;//used as offset in shifting

]
e

[
 eor d7,d8 ;//c2 = x4^y4
 lsrr #2,d7 ;//y6
 and #MASK16,d1,d1 ;//get lower 16 bits of x25, zero high bits
 and #MASK16,d9,d9 ;//get lower 16 bits of y25, zero high bits
]

f
[

 eor d6,d8 ;//c2 = y4^x4^x7
 lsll d15,d1 ;//x25 =<<9
 lsll d15,d9 ;//y25 =<<9
 lsrr #9,d6 ;//x >> 16

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

12 Freescale Semiconductor

Software Implementation on the StarCore SC140/SC1400 Cores

]
g

[
 or d1,d6 ;//x |= x25
 lsrr #10,d7 ;//y >> 16, was at y6
 eor d7,d8 ;//c2 = y4^x4^x7 ^y6
]

h
[
tfr d6,d1 ;//x25 = x0
tfr d6,d0 ;//c1 = x0
or d9,d7 ;//y |= y25

 lsrr #2,d6 ;//x18
]

i
[

 eor d6,d8 ;//c2 = y4^x4^y6^x7^x18
 lsr d6 ;//x3
 tfr d7,d9 ;//y25 = y0
 lsr d7 ;//y17 = y16 >> 1 (y1)
]

j
[

 eor d7,d8 ;//c2 = y4^x4^y6^x7^x18^y17
 eor d7,d9 ;//y25 = y0^y1
 eor d9,d0 ;//c2 = x0^y0
 lsr d7 ;//y2
]

k
[

 eor d6,d1 ;//x25 = x0^x3
 lsr d6 ;//x4
 eor d7,d9 ;//y25 = y0^y1^y2
 lsr d7 ;//y3
]

;--------------------mapping into real values sarts here-------------------------
[
and #MASK_DECM2,d8.l ;//decimation of every other sample of c2
dosetup1 mappingloop ;//setup mappingloop

]
 asl d8,d4 ;//left shift decimated version of c2

or d4,d8 ;//or with itself, repeats one sample twice
[
eor d12,d8 ;//Q part of scrambling = c1(i)*c2(i) -- eqn. 12
doen1 #15 ;//set mappingloop counter to 15
and #MASKONE,d12,d2 ;//extract c1’s least sig. bit
asr d12,d12 ;//shift out the c1 bit already checked
]
[
eor #MASK_PN1,d8.l ;//Q part of scrambling [c1(i)*c2(i)] * +1 and -1

respecively
;//-- eqn. 12

tsteq d2 ;//test c1’s bit for 0 or 1
tfr d13,d10 ;//I part of scram. code, assume c1==0, map into real

value 1,
;//i.e. put 0.5

and #MASKONE,d8,d3 ;//extracts c2’s least sig. bit
]
[
asr d8,d8 ;//extracts c2’s least sig. bit
tfrf d14,d10 ;//I part of scram. code, if c1==1, map into real value -

1,
;//i.e. put -0.5

tsteq d3 ;//test c2’s bit for 0 or 1
tfr d13,d11 ;//assume c2==0, map into real value 1, i.e. put 0.5

Software Implementation on the StarCore SC140/SC1400 Cores

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 13

]
loopstart1

mappingloop
[
tfrf d14,d11 ;//if c2==1, map into real value -1, i.e. put 0.5
and #MASKONE,d12,d2 ;//extract c1’s least sig. bit
asr d12,d12 ;//shift out the c1 bit already checked
]
[
moves.2f d10:d11,(r0)+ ;//move I and Q scrambling code into memory buffer,

increment
;//buffer

tsteq d2 ;//test c1’s bit for 0 or 1
tfr d13,d10 ;//I part of scram. code, assume c1==0, map into real

value 1,
;//i.e. put 0.5

and #MASKONE,d8,d3 ;//extracts c2’s least sig. bit
asr d8,d8 ;//extracts c2’s least sig. bit
]
[
tfrf d14,d10 ;//I part of scram. code, if c1==1, map into real value -

1,
;//i.e. put -0.5

tsteq d3 ;//test c2’s bit for 0 or 1
tfr d13,d11 ;//assume c2==0, map into real value 1, i.e. put 0.5
]
loopend1

tfrf d14,d11 ;//if c2==1, map into real value -1, i.e. put 0.5
moves.2f d10:d11,(r0)+ ;//move I and Q scrambling code into memory buffer,

increment
;//buffer

loopend0
[
pop r6
pop r7
]
[
pop d6
pop d7
]
rts

endsec

3.4 Complex Scrambling of an IQ/Code Multiplexed Signal
This section describes in detail how complex scrambling code is formed on the SC140 DSP core, and also
describes the process of actual complex scrambling of an I/Q code multiplexed signal. With its four ALUs, the
SC140 core can compute complex numbers and perform several different operations very efficiently. Imposing one
constraint on the incoming complex signal is required to ensure that all entries of the incoming I-Q/code
multiplexed signal are less than one to help prevent overflow. After complex scrambling, the final output signal is
scaled down by a factor of 2 and stored in memory.

After the complex signal has been formed, it is time for scrambling the received data. This function carries out the
complex scrambling operation according to Equation 16. The received I-Q/code multiplexed signal is multiplied
by the complex scrambling code, and the Output_IQ is stored in memory. Following is the flow of the assembly
code in Example 4 for generating the complex scrambling sequence from previously-generated binary PN code
and scrambling the received data:

1. START mainloop #38400.

2. Read the I and Q, complex scrambling code from memory, 1-word sample at a time.

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

14 Freescale Semiconductor

Software Implementation on the StarCore SC140/SC1400 Cores

3. Read the I and Q, input signal data from memory, 1-word sample at a time.

4. Perform the scrambling of the input data signal, according to Equation 16.

5. Store the I-Q/code interleaved complex scrambled signal into memory.

6. END mainloop.

Example 4. Complex Scrambling of an I-Q/code Multiplexed Signal

;***
;*
;* File: cmplx_scrambling.asm
;* Function: formation of complex scrambling code and scrambling of
;* received I-Q/code multiplexed signal for WCDMA
;* Author: Imran Ahmed
;* Version/Date: 1.0 Oct 10 2001
;*
;* Target Processor: Star*Core 140
;*
;* Description:
;* Module Details:
;* Registers Used:
;* d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d15
;* r0,r2,r4
;* entry : jsr
;***
;*
;* Revision History: Date Change Details Initials
;* ---- -------------- --------
;*
;***
;--------------------------cmplx_scrambling_param.asm---------------------------
;***
;
;NUM_ITEREQU19199 ;//(38400-2)/2
;INV_SQRT2 EQU #0.70710678;//1/sqrt(2)
;
;***
;---------------------------WCDMA COMPLEX SCRAMBLING----------------------------
;***

section .data local
 include ’cmplx_scrambling_param.asm’
 endsec

section .text local
global main_cmplx_scrambling

main_cmplx_scrambling type func
[
push d6
push d7
]
[
push r6
push r7
]

Software Implementation on the StarCore SC140/SC1400 Cores

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 15

move.l #INPUT_IQ,r0 ;//R0 -> received input signal
move.l #CODE_IQ,r4 ;//R4 -> complex scrambling signal
move.l #OUTPUT_IQ,r2 ;//R2 -> IQ complex scrambled signal to be stored
move.f #INV_SQRT2,d15 ;//(1/sqrt(2)), required for scrambling to keep

the
;//energy of the srambled signal constant

dosetup1 mainloop doen1 #NUM_ITER

[
move.4f (r0)+,d0:d1:d2:d3 ;//move 2 input IQ samples from memory to data

;//registers
move.4f (r4)+,d4:d5:d6:d7 ;//move 2 scrambling IQ code samples from memory

to
;//data registers

]
[
mpy d0,d4,d8 ;//(DI*SI) part from eqn. 16, 1st sample
mpy d0,d5,d9 ;//(DI*SQ) part from eqn. 16, 1st sample
mpy d2,d6,d10 ;//(DI*SI) part from eqn. 16, 2nd sample
mpy d2,d7,d11 ;//(DI*SQ) part from eqn. 16, 2nd sample
]
[
mac -d1,d5,d8 ;//(-(DQ*SQ)) part from eqn. 16, 1st sample
mac d1,d4,d9 ;//(DQ*SI) part from eqn. 16, 1st sample
mac -d3,d7,d10 ;//(-(DQ*SQ)) part from eqn. 16, 2nd sample
mac d3,d6,d11 ;//(DQ*SI) part from eqn. 16, 2nd sample
]

;-------------------code and scaling to preserve the energy of the constellation----------

[
;-------------------code and scaling to preserve the energy of the constellation--------

mpy d15,d8,d8 ;//(1/sqrt(2)) x (scrambled output I), 1st sample
mpy d15,d9,d9 ;//(1/sqrt(2)) x (scrambled output Q), 1st sample
mpy d15,d10,d10 ;//(1/sqrt(2)) x (scrambled output I), 2nd sample
mpy d15,d11,d11 ;//(1/sqrt(2)) x (scrambled output Q), 2nd sample
]
[
asl d8,d8 ;//output I scaling factor change from 4 to 2, 1st

;//sample
asl d9,d9 ;//output Q scaling factor change from 4 to 2, 1st

;//sample
asl d10,d10 ;//output I scaling factor change from 4 to 2, 2nd

;//sample
asl d11,d11 ;//output Q scaling factor change from 4 to 2, 2nd
sample
]

;----------------------------end of code to preserve energy of constellation--------------

[
move.4f (r0)+,d0:d1:d2:d3 ;//move 2 input IQ samples from memory to data

;//registers
move.4f (r4)+,d4:d5:d6:d7 ;//move 2 scrambling IQ code samples from memory

to
;//data registers

]

falign
loopstart1

mainloop
[
moves.4f d8:d9:d10:d11,(r2)+ ;//move 2 complex scrambled IQ samples into

memory
;//buffer

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

16 Freescale Semiconductor

Results

mpy d0,d4,d8 ;//(DI*SI) part from eqn. 16, 1st sample
mpy d0,d5,d9 ;//(DI*SQ) part from eqn. 16, 1st sample
mpy d2,d6,d10 ;//(DI*SI) part from eqn. 16, 2nd sample
mpy d2,d7,d11 ;//(DI*SQ) part from eqn. 16, 2nd sample
]
[
mac -d1,d5,d8 ;//(-(DQ*SQ)) part from eqn. 16, 1st sample
mac d1,d4,d9 ;//(DQ*SI) part from eqn. 16, 1st sample
mac -d3,d7,d10 ;//(-(DQ*SQ)) part from eqn. 16, 2nd sample
mac d3,d6,d11 ;//(DQ*SI) part from eqn. 16, 2nd sample
move.4f (r0)+,d0:d1:d2:d3 ;//move 2 input IQ samples from memory to data

;//registers
move.4f (r4)+,d4:d5:d6:d7 ;//move 2 scrambling IQ code samples from memory

to
;//data registers

]
;-------------------code and scaling to preserve the energy of the constellation----------

[
mpy d15,d8,d8 ;//(1/sqrt(2)) x (scrambled output I), 1st sample
mpy d15,d9,d9 ;//(1/sqrt(2)) x (scrambled output Q), 1st sample
mpy d15,d10,d10 ;//(1/sqrt(2)) x (scrambled output I), 2nd sample
mpy d15,d11,d11 ;//(1/sqrt(2)) x (scrambled output Q), 2nd sample
]
[
asl d8,d8 ;//output I scaling factor change from 4 to 2, 1st

;//sample
asl d9,d9 ;//output Q scaling factor change from 4 to 2, 1st

;//sample
asl d10,d10 ;//output I scaling factor change from 4 to 2, 2nd

;//sample
asl d11,d11 ;//output Q scaling factor change from 4 to 2, 2nd

sample
]

;----------------------------end of code to preserve energy of constellation--------------

loopend1

moves.4f d8:d9:d10:d11,(r2)+ ;//move 2 complex scrambled IQ samples into
memory

;//buffer
[
pop r6
pop r7
]
[
pop d6
pop d7
]
rts

endsec

4 Results
The plots in Figure 4 and Figure 5 show the corresponding Matlab and StarCore DSP results for the complex
scrambled signal. As these figures indicate, the StarCore DSP and the Matlab results agree.

Results

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 17

Figure 4. Real Part of the Complex Scrambled Signal (Chips 19150–19250)

Figure 5. Imaginary Part of Complex Scrambled Signal (Chips 19150–19250)

In Figure 4 and Figure 5, the x-axis represents the number of the chip, and the y-axis represents the magnitude of
each of the chips. The StarCore DSP output is scaled up by a factor of 2 to account for the scaling factors used by
the DSP in an implementation of complex scrambling code. The complex scrambled signal obtained from the DSP
implementation matches the Matlab result. Figure 6 shows the signal constellation for the I-Q/code multiplexed

1.915 1.916 1.917 1.918 1.919 1.92 1.921 1.922 1.923 1.924 1.925

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Real part of Scrambled Signal

va
lue

 o
f c

hip
 in

 co
ns

te
lla

tio
n

chip segment number

Green − DSP output

Blue −− Matlab output

1.915 1.916 1.917 1.918 1.919 1.92 1.921 1.922 1.923 1.924 1.925

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Imaginary part of Scrambled Signal

va
lue

 o
f c

hip
 in

 co
ns

te
lla

tio
n

chip segment number

Green − DSP output

Blue −− Matlab output

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

18 Freescale Semiconductor

Results

signal before complex scrambling, and Figure 7 shows the signal constellation after the complex scrambling
operations. The I-Q/code multiplexed signal with complex scrambling results in a rotated QPSK constellation.
Figure 7 shows the resulting constellation achieved by both the Matlab and the StarCore DSP implementations.

Figure 6. QPSK Constellation Before Complex Scrambling

Figure 7. QPSK Constellation Map after Complex Scrambling

Table 2 shows the assembly code results for PN code generation and formation of the pn_generation complex
scrambling sequence function for one frame. The second row of the table shows the results for scrambling of an I-
Q/code multiplexed signal in the cmplx_scrambling function for one frame.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X (Blue) − DSP output

O (Green) − Matlab output

References

Scrambling Code Generation for WCDMA on the StarCore™ SC140/SC1400 Cores, Rev. 1

Freescale Semiconductor 19

5 References
[1] R. Prasad, “An Overview of CDMA Evolution Toward Wideband CDMA,” IEEE Communications

Surveys, vol. 1, no. 1, Fourth Quarter 1998.

[2] B. Sklar, DIGITAL COMMUNICATIONS Fundamentals and Applications. New Jersey: Prentice-Hall, Inc.,
1988.

[3] H Holma and A. Toskala, WCDMA for UMTS-Radio Access For Third Generation Mobile
Communications. New York: John Wiley & Sons, Ltd., 2001.

[4] 3GPP, “TS 25.213 V3.40 (2000-12): Spreading and Modulation (FDD),” Release 1999.

Table 2. Assembly Code Results

Function Code Size (Bytes) Cycles per Frame MIPS

pn_generation 330 153618 15.36

cmplx_scrambling1 124 38411 3.84

NOTES: 1. If scaling to preserve the energy of the constellation before and after
complex scrambling is included, it requires 7.6 MIPS with a code size of
180 bytes.

AN2254
Rev. 1
11/2004

Information in this document is provided solely to enable system and software implementers to
use Freescale Semiconductor products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on
the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any and all liability, including without limitation consequential
or incidental damages. “Typical” parameters which may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the
Freescale Semiconductor product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. StarCore
is a trademark of StarCore LLC. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2002, 2004.

How to Reach Us:
Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations not listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GMBH
Technical Information Center
Schatzbogen 7
81829 München, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

	1 Pseudo-Random Sequences
	1.1 Randomness Properties
	1.2 Generating Pseudo-Random Sequences

	2 Scrambling Codes for WCDMA
	2.1 Generating Long Complex Scrambling Codes
	2.2 Scrambling an I-Q/Code Multiplexed Signal

	3 Software Implementation on the StarCore SC140/SC1400 Cores
	3.1 Allocating Memory Space
	3.2 Binary PN Code and Complex Scrambling Sequences
	3.3 Forming the Complex Scrambling Sequences
	3.4 Complex Scrambling of an IQ/Code Multiplexed Signal

	4 Results
	5 References

